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Finding a shortest path for a given pair of vertices in a graph drawing is one of the fundamental
tasks for qualitative evaluation of graph drawings. In this paper, we present the first machine learning
approach to predict human shortest path task performance, including accuracy, response time, and
mental effort.

To predict the shortest path task performance, we utilize correlated quality metrics and the ground
truth data from the shortest path experiments. Specifically, we introduce path faithfulness metrics and
show strong correlations with the shortest path task performance. Moreover, to mitigate the problem
of insufficient ground truth training data, we use the transfer learning method to pre-train our deep
model, exploiting the correlated quality metrics.

Experimental results using the ground truth human shortest path experiment data show that our
models can successfully predict the shortest path task performance. In particular, model MSP achieves
an MSE (i.e., test mean square error) of 0.7243 (i.e., data range from −17.27 to 1.81) for prediction.

© 2022 The Authors. Published by Elsevier B.V. on behalf of ZhejiangUniversity and ZhejiangUniversity
Press Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Evaluation of graph drawings has been established as an im-
ortant research area in graph drawing. Quality metrics (or aes-
hetic criteria), such as edge crossings, bends, area, total edge
engths, angular resolution and stress, have been proposed for
uantitative evaluation of graph drawings (Di Battista et al., 1999).
ubsequently, various graph drawing algorithms have been devel-
ped to optimize these metrics.
Moreover, qualitative evaluation on graph drawings is well

tudied using HCI (Human Computer Interaction) evaluation
ethods such as controlled human experiments. In particular,

inding a shortest path for a given pair of vertices in a graph
rawing is one of the fundamental tasks for qualitative evalu-
tion (Huang et al., 2008; Purchase, 1997; Ware et al., 2002).
amely, a drawing D1 of a graph is better than a drawing D2,

if human spend less time finding the shortest path with fewer
errors.

A number of studies have established the correlation between
quality metrics, such as edge crossings and crossing angles, and
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the shortest path task performance (i.e., time and accuracy).
Specifically, Huang et al. (2016) defined the performance-based
efficiency E of the shortest path task performance based on the
accuracy, response time, and mental effort.

Recently, machine learning approaches have been used to
address research problems in graph visualization, mainly focusing
on quantitative evaluation (i.e., quality metrics) (Haleem et al.,
2019; Kwon and Ma, 2019). More recently, a machine learning
approach has been proposed to address qualitative evaluation,
specifically predicting human preference task performance (Cai
et al., 2021).

In this paper, we present the first machine learning approach
to predict the human shortest path task performance. Specifically,
we propose three machine learning models using correlated qual-
ity metrics and graph drawing images with the highlighted short-
est path from the ground truth human experiment data (Huang
et al., 2016; Fletcher et al., 2019; Huang et al., 2014). The main
contributions of this paper are summarized as follows:

1. We introduce new path faithfulness metrics and show that
they are strongly correlated with the efficiency E of the
shortest path task, using the ground truth data from short-
est path experiments (Huang et al., 2016; Fletcher et al.,
2019; Huang et al., 2014) (See Section 3).
Moreover, we perform correlation analysis and the feature
importance test using a variety of quality metrics and graph
sity and Zhejiang University Press Co. Ltd. This is an open access article under the
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properties, to find the most correlated metrics or properties
to the efficiency E.

2. We present the first machine learning approach for pre-
dicting shortest path task performance, with the following
three models (see Section 4):

• Model M (Metrics) is based on regression and classifi-
cation models, and trained using the most correlated
quality metrics and the task performance labels (see
Section 4.1).

• Model SP (Shortest path) is a CNN-based (convo-
lutional neural network) deep model, which reads
graph drawing images with the highlighted shortest
path from the ground truth shortest path experi-
ments (Huang et al., 2016; Fletcher et al., 2019; Huang
et al., 2014) and converts them into feature vectors.
The deep model is trained to mimic the ground truth
efficiency for the shortest path task by fitting the
training data, consisting of graph drawing images and
task performance labels.

• Model MSP (M+SP) employs the transfer learning
method to mitigate insufficient ground truth training
data from the shortest path experiments. Specifically,
we first pre-train the model using graph drawing im-
ages with highlighted paths and the metric-based label
(i.e., the most correlated quality metrics or properties,
see Section 4.4). Then, we fine-tune the model using
graph drawing images with highlighted paths and
task performance labels.

3. Experiments using the ground truth shortest path experi-
ment data (Huang et al., 2016; Fletcher et al., 2019; Huang
et al., 2014) show that all three models successfully predict
the shortest path task performance. Overall, MSP performs
the best, demonstrating the importance of employing path
quality metrics for transfer learning, achieving an MSE of
0.7243 (i.e., data range from −17.27 to 1.81) for predicting
efficiency E (see Section 5).

The rest of this paper is organized as follows. Section 2 de-
scribes the background, and Section 3 presents the new path
faithfulness metrics and correlation analysis. Section 4 presents
our machine learning models in detail, and Section 5 describes
experimental results and discussions. Section 6 concludes with
future work.

2. Background

2.1. Quality metrics for graph drawing

Readability Metrics. Various quality metrics, called aesthetic
criteria, are available for quantitative evaluation of graph draw-
ings (Di Battista et al., 1999). Consequently, many graph draw-
ing algorithms have been designed to optimize these quality
metrics (Di Battista et al., 1999).

Traditional readability metrics, such as edge crossings, bends,
area, total edge lengths, angular resolution, crossing angles and
overlap between the vertices and edges, measure how human
understand graph drawings. However, most readability metrics
tend to focus on small graphs.

Faithfulness Metrics. Recently, faithfulness metrics have been
eveloped for the evaluation of large graph drawings, which
easure how faithfully drawings show the ground truth structure
f graphs. For example, stress (Di Battista et al., 1999) is a dis-
ance faithful metric, which compares the difference between the
raph-theoretic distance of vertices and the Euclidean distance
51
of vertices in a drawing. The shape-based metrics compare the
similarity between a graph and a proximity graph, such as the
Gabriel graph and the Relative Neighborhood graph, computed
from a drawing (Eades et al., 2015).

The cluster faithfulness metrics (Meidiana et al., 2019) compare
the similarity between the ground truth clustering of a graph and
the geometric clustering computed from a drawing. The symmetry
faithfulness metrics (Meidiana et al., 2020b) measure how the
ground truth automorphisms of a graph are displayed as symme-
tries in a drawing. The change faithfulness metrics (Meidiana et al.,
2020a) measure how the ground truth changes in dynamic graphs
are proportionally displayed as a geometric change in drawings.

2.2. Qualitative evaluation using shortest path experiments

Qualitative evaluation of graph drawings has been investi-
gated by conducting HCI experiments with task performance,
measuring time and accuracy. Finding the shortest path for a
given pair of vertices in a graph drawing is one of the most
popular tasks for qualitative evaluation of graph drawing.

For example, Ware et al. (2002) found that fewer edge cross-
ings and path continuity (i.e., less path bendiness) are significantly
correlated with the shortest path task performance. Moreover,
Huang et al. (2008, 2009) found a correlation between large
crossing angles and the shortest path task performance, as well
as the geodesic-path tendency (i.e., edges toward the target vertex
is more likely to be searched first) in finding a shortest path.

Recently, a series of shortest path experiments have been
conducted (Huang et al., 2016; Fletcher et al., 2019; Huang et al.,
2014) using the system shown in Fig. 1. Each experiment re-
cruited participants from different organizations, and participants
could practice the system before the experiment started. The ex-
periments used the Rome graphs1 (i.e., small and sparse graphs)
drawn with a force-directed algorithm in Batagelj and Mrvar
(2004).

Each trial of the experiment began with the first screen (see
Fig. 1(1)), showing two highlighted vertices, which were ran-
domly selected with the following conditions: the shortest path
was unique and the path length was between 3 and 6.

The second screen (see Fig. 1(2)) presented a node-link dia-
gram, and participants were instructed to find the shortest path
between the two highlighted vertices, as quickly and accurately
as possible. The time to complete the task was recorded as the
response time. The third screen (see Fig. 1(3)) asked participants
to answer the length of the found path, and then rate the mental
ffort from 1 to 9 on a Likert scale.
The accuracy (True (1) or False (0)) was computed based on

the ground truth shortest path length, i.e., the accuracy is True
if a participant correctly answers the length of the shortest path.
Huang et al. (2016) defined the performance-based efficiency E for
shortest path task performance as follows:

E =
Zaccuracy − Zmental effort − Zresponse time

√
3

Roughly speaking, the efficiency E is defined as the difference
between the cognitive gain (i.e., accuracy) and the cognitive cost
(i.e., mental effort and response time). Specifically, a drawing is
of high efficiency, if high accuracy is achieved with low mental
effort and less response time, and vice versa.

Note that the accuracy, mental effort and response time have
been normalized into z scores to be on the same scale and become
addable, e.g., Z =

τ−µ

σ
, where µ is the mean and σ is the standard

deviation of data entries among all drawings and participants, and
τ is the value of the accuracy (resp., mental effort or response
time) of each data entry.

1 http://www.graphdrawing.org/data.html.

http://www.graphdrawing.org/data.html
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Fig. 1. Examples of three screens shown to participants for the shortest path task.
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.3. Machine learning approaches for graph visualization

Recently, machine learning approaches have been popular for
ddressing problems in visualization. For example, see a sur-
ey (Wang et al., 2020) on machine learning techniques to im-
rove design, development, and evaluation of visualization.
Specifically, Kwon and Ma (2019) designed a GNN(graph neu-

al network)-based encoder–decoder neural network to generate
new good layout from the pairwise distance matrix of vertex
ositions of a given layout. Giovannangeli et al. (2020) used deep
onvolutional networks to predict the length of the shortest path
etween two highlighted vertices in the images of node-link
iagrams and adjacency matrices.

achine Learning Approaches using Quality Metrics. A number
f researchers employed machine learning approaches to solve
roblems in graph drawing, mainly focusing on quantitative evalu-
tion (i.e., quality metrics) (Haleem et al., 2019; Kwon et al., 2017;
lammler et al., 2018). For example, Haleem et al. (2019) used a
NN with graph layout images to predict the readability metrics,
uch as vertex spread, minimum angle, edge length variation,
roup overlap and edge crossings.
Kwon et al. (2017) used a support vector regression model to

stimate the quality metrics of a given drawing D1 of a graph G1
using a drawing D2 of a graph G2, where G1 and G2 have similar
opological structures and D1 and D2 are computed by the same
ayout algorithm. Klammler et al. (2018) used the Siamese neural
etwork with quality metrics to compare a graph drawing D with

its deformed drawing D′.

Machine Learning Approaches for Qualitative Evaluation. Re-
cently, a machine learning approach has been proposed to predict
qualitative evaluation for graph drawing (Cai et al., 2021). Specif-
ically, a CNN-Siamese-based model was presented to predict hu-
man preference between a pair of different layouts of the same
graph. They employed a transfer learning method to overcome
the insufficiency of ground truth human preference experiment
data for training the deep model, i.e., pretraining the model
using quality metrics correlated to human preference, and then
fine-tuning the model using the ground truth human preference
experiment data.

3. Faithfulness metrics and correlation analysis

Previous work (Ware et al., 2002; Huang et al., 2016; Fletcher
et al., 2019; Huang et al., 2014, 2009) established the correlation
between the readability metrics (see Table 1) and the shortest path
ask performance (i.e., efficiency, response time, accuracy and
ental effort). More recently, researchers established the corre-

ation between the faithfulness metrics and the human preference
ask performance (Eades et al., 2015; Chimani et al., 2014).

Motivated by these results, in this paper, we investigate the
orrelation between the faithfulness metrics and the shortest
ath task performance. More specifically, we introduce new path
aithfulness metrics for measuring the quality of a drawing of the

hortest path.
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3.1. Path faithfulness metrics

Path faithfulness metrics are defined for a shortest path P
between a pair of vertices and a drawing DP of P .

Path Shape-based Metrics. We define the path shape-based met-
rics using the mean Jaccard Similarity between a path P = (V , E)
and a proximity graph P ′

= (V , E ′), computed from a drawing DP ,
as follows:

MJS(P, P ′) =
1

|V |

∑
v∈V

|N(v) ∩ N ′(v)|
|N(v) ∪ N ′(v)|

where N(v) is the set of neighbors of v in P .
Specifically, we present several variations of path shape-based

metrics, pShape_GG, pShape_RNG, pShape_EMST , and pShape_KNN ,
based on the types of proximity graphs (Toussaint, 2014) defined
as follows. For a given point set Q in the plane,

• The Gabriel graph (GG) has an edge between two points
p, q ∈ Q if the closed disk which has the line segment pq
as a diameter contains no other elements of Q .

• The relative neighborhood graph (RNG) has an edge be-
tween two points p, q ∈ Q if there is no point r ∈ Q such
that d(p, r) ≤ d(p, q) and d(q, r) ≤ d(p, q).

• A Euclidean minimum spanning tree (EMST) is a minimum
spanning tree of Q where the weight of the edge is the
Euclidean distance.

• The k-nearest neighbor graph (KNN) has a (directed) edge
from p ∈ Q to q ∈ Q if the number of points r ∈ Q with
d(p, r) < d(p, q) is at most k − 1.

Path Stress Metrics. We define the path stress metrics based
on the difference between the graph-theoretic distance and the
Euclidean distance of two vertices i, j of a path in the drawing.
Specifically, we define three variations based on the scaling as
follows:

pRegularStress(DP ) =

∑
i,j∈P

wij(∥xi − xj∥/dij − 1)2

pAvgScaledStress(DP ) =

∑
i,j∈P

wij(∥xi − xj∥/(dij · lavg ))2

AvgStress(DP ) =

∑
i,j∈P

wij(∥xi − xj∥/dij − lavg )2

here

• xi is the position of a vertex i of P in DP ,
• ∥xi − xj∥ is the Euclidean distance between xi and xj in DP ,
• dij is the graph-theoretic distance between i and j in P ,
• wij = d−2

ij is the weight factor,
• lavg is the average edge length of DP .

Table 1 shows the complete list of quality metrics (including
eadability and faithfulness metrics) as well as properties of a
raph G and a path P .
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Table 1
List of quality metrics and properties: readability metrics (Ware et al., 2002; Huang et al., 2016; Fletcher et al.,
2019; Huang et al., 2014, 2009), and faithfulness metrics for graph and path.

Graph

Property |V | (number of vertices)
|E| (number of edges)

Readability
metrics

crossing (number of edge crossings)
angleM (mean of all crossing angles)
angleD (standard deviation of all crossing angles)
minAng (minimum crossing angle)
edgeM (mean of all edge lengths)
edgeD (standard deviation of all edge lengths)
minVertx (minimum vertex angular resolution)
finVertx (mean of the differences between 2π /degree and minimum angle for all
vertices)
minPtEdg (minimum distance from a vertex to an edge)

Faithfulness
metrics

Shape_GG (shape-based metric using Gabriel graph)
Shape_RNG (shape-based metric using Relative Neighborhood graph)
Shape_EMST (shape-based metric using Euclidean Minimum Spanning Tree)
Shape_KNN (shape-based metric using k-Nearest Neighbor graph)
RegularStress (regular stress)
AvgScaledStress (average scaled stress)
AvgStress (average stress)

Path

Property PathLength (number of edges of the path)

Readability
metrics

pCrossNo (number of edge crossings of the path)
pAngMean (mean of all crossing angles of the path)
pMinAng (minimum crossing angles of the path)
pContinu (path continuity: sum of angular deviations at all vertices of the path)
pGeode (geodesic path continuity)

New
faithfulness
metrics

pShape_RNG (path shape-based metric using Relative Neighborhood graph)
pShape_EMST (path shape-based metric using Euclidean Minimum Spanning Tree)
pShape_KNN (path shape-based metric using k-Nearest Neighbor)
pRegularStress (regular stress of the path)
pAvgScaledStress (average scaled stress of the path)
pAvgStress (average stress of the path)
Fig. 2. Pearson correlation test between quality metrics, graph (resp., path) properties, and task performance (i.e., efficiency, response time, accuracy and mental
effort). Red (resp., blue) color represents negative (resp., positive) correlation, and darker color represents a stronger correlation.
3.2. Correlation and feature importance

To find the most correlated metrics and properties for pre-
icting shortest path task performance, we employ the Pearson
orrelation test (see Fig. 2) and the feature importance test (see
able 2).

orrelation between Faithfulness Metrics and Efficiency. The
earson correlation test (Benesty et al., 2009) is executed by
he default setting of DataFrame.corr function and the feature
mportance test is done by sklearn.feature_selection.SelectKBest
unction. Specifically, we use F − value for regression (i.e., effi-
iency and response time), and Chi2 (i.e., Chi-squared statistics)
or classification (i.e., accuracy and mental effort).

Fig. 2 clearly shows that faithfulness metrics are correlated
ith efficiency E. Specifically, efficiency E is positively correlated
ith the shape-based metrics and negatively correlated with
53
stress. Among the variations in the shape-based (resp., stress)
metrics, pShape_KNN (resp., pAvgStress) shows the strongest cor-
relation.

Path Quality Metrics vs. Graph Quality Metrics. Fig. 2 shows
that the path quality metrics have a stronger correlation than
the graph quality metrics. For example, pShape_KNN = 0.35
(resp., pCrossNo = −0.4) shows a much stronger positive (resp.,
negative) correlation than corresponding Shape_KNN = 0.17
(resp., crossing = −0.24).

Readability Metrics vs. Faithfulness Metrics. For path quality
metrics, both readability metrics (pCrossNo = −0.4, pGeode =

−0.38, pContinu = −0.34) and faithfulness metrics (pShape_KNN
= 0.35, pAvgStress = −0.33, pAvgScaledStress = −0.31) show
correlations.
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Table 2
Feature importance test among quality metrics, graph (resp., path) properties in descending order of the efficiency.
A larger F − value (resp., Chi2) represents a more important metric or property.

Efficiency
(F − value)

Response time
(F − value)

Accuracy
(Chi2)

Mental effort
(Chi2)

pCrossNo 1823.52 1105.77 95.03 160.04
pGeode 1665.46 1215.85 30.26 131.78
pShape_KNN 1491.28 1112.49 31.19 299.45
PathLength 1478.81 1140.70 54.82 535.77
pContinu 1413.28 1036.81 18.86 94.16
pAvgStress 1259.86 950.80 42.14 102.60
pAvgScaledStress 1072.76 846.31 23.04 101.16
pMinAng 994.70 536.09 68.64 101.95
Crossing 626.63 337.92 55.87 82.18
Shape_GG 567.24 348.87 16.68 34.91
Shape_EMST 557.28 310.74 23.05 39.94
Shape_RNG 549.94 324.72 19.81 37.31
AvgStress 513.93 347.01 24.38 48.69
AvgScaledStress 491.99 344.65 16.40 51.57
pAngMean 490.34 230.94 13.44 19.47
|E| 480.78 237.26 19.10 34.52
RegularStress 417.49 216.38 28.42 36.27
minAng 385.82 222.08 23.98 41.47
angleD 373.82 203.68 11.18 23.29
|V | 367.00 206.50 12.62 36.08
pShape_RNG 321.00 212.04 23.32 36.83
pShape_EMST 321.00 212.04 23.32 36.83
Shape_KNN 274.13 155.07 16.46 57.92
minPtEdg 240.45 103.27 23.29 70.81
pRegularStress 197.92 163.87 2.47 27.01
minVertx 194.74 79.92 17.05 29.30
finVertx 190.35 129.48 2.87 4.49
angleM 114.78 67.11 0.67 0.95
edgeD 13.58 16.12 2.93 10.05
edgeM 2.59 0.07 0.01 10.18
For graph quality metrics, the faithfulness metrics (e.g.,
Shape_GG = 0.23 and AvgStress = −0.22) show stronger
correlations than the readability metrics (e.g., angleM = 0.11 and
minVertx = 0.14), except crossing = −0.24 and minAng = 0.2.

Most Correlated Metrics and Properties.
Table 2 shows the feature importance test results. Based on

the results, we select the following 7 most correlated metrics and
properties with strong correlation (i.e., Pearson coefficient > 0.3
and F − value > 900), including pCrossNo, pGeode, pShape_KNN ,
PathLength, pContinu, pAvgStress and pMinAng , for our machine
learning models M and MSP for predicting shortest path task
performance in Section 4.

Note that we choose pMinAng instead of pAvgScaledStress,
although the F−value of pAvgScaledStress is larger than pMinAng ,
since pAvgStress shows a stronger correlation than
pAvgScaledStress.

4. Machine learning models

This section describes our machine learning approach for pre-
dicting the efficiency, response time, accuracy and mental effort
of human finding the shortest path in a graph drawing.

4.1. Shortest path task performance labels

Let Dk(s, t) denote a drawing of a graph Gk with two pre-
specified end-vertices s and t . For each instance Dk(s, t), we com-
pute task performance labels, Lefficiency, Ltime, Laccuracy and Leffort , using
the ground truth data from the shortest path experiments (Huang
et al., 2016; Fletcher et al., 2019; Huang et al., 2014). Since human
task performance can be subjective, different participants may
have different efficiencies (resp., response time, accuracy and
mental effort) for the same instance. To solve this conflict, we

use the following method to reach a consensus.
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For an instance Dk(s, t), let Tefficiency (resp., Ttime, Taccuracy and
Teffort ) denote the z scores of efficiency (resp., response time),
accuracy and mental effort from the ground truth shortest path
experiment data. Specifically, we compute each task performance
label Lefficiency, Ltime, Laccuracy and Leffort for Dk(s, t) using the average
value of Tefficiency, Ttime, Taccuracy and Teffort of each participant as
follows:

1. For each instance Dk(s, t), let l be the number of occur-
rences in the ground truth shortest path experiment data.

2. For each instance Dk(s, t), compute task performance labels
as follows:

• Lefficiency =
∑l

i=1 Tefficiency/l
• Ltime =

∑l
i=1 Ttime/l

• Laccuracy = ⌊
∑l

i=1 Taccuracy/l⌉
• Leffort = ⌊

∑l
i=1 Teffort/l − 1⌉.

4.2. Model M using quality metrics

Fig. 3 shows the pipeline of the machine learning model M
to predict task performance labels, including (a) Model input:
the most correlated path metrics or properties (i.e., pShape_KNN ,
pAvgStress, pCrossNo, pMinAng , pContinu, pGeode and PathLength)
from Section 3.2; (b) Selected regression and classification
models; and (c) Output prediction. To improve the learning per-
formance, each metric is scaled to the range [0, 1], using prepro-
cessing.MinMaxScaler function in sklearn library.

(a) Model Input. In the training phase, the input includes the
most correlated path metrics or properties (i.e., pShape_KNN ,
pAvgStress, pCrossNo, pMinAng , pContinu, pGeode and PathLength),
and task performance labels of the training data. In the test-
ing phase, input includes the most correlated path metrics or
properties of the test data to predict the task performance labels.

(b) Model Selection for Regression and Classification. We use

regression models (resp., classification models) for Lefficiency and
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Fig. 3. Model M: (a) model input, (b) selected regression and classification models, (c) Output prediction.
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Ltime (resp., Laccuracy and Leffort ) from sklearn library (Pedregosa
et al., 2011). Specifically, the selected regression (resp., classifi-
cation) models are shown in Fig. 3(b).

Regression models include linear regression, ridge, Bayesian
ridge, support vector regression, random forest regressor, gra-
dient boosting regressor, and multi-layer perceptron regressor.
Classification models include logistic regression, ridge classifier,
support vector classifier, stochastic gradient descent classifier,
multinomial naive Bayes, gradient boosting classifier, and multi-
layer perceptron classifier.

Note that such models are selected based on smaller validation
mean square errors (MSE) for regression and larger validation
accuracy (ACC) for classification among machine learning models
in the sklearn library (Pedregosa et al., 2011). More specifically,
MSE means the mean squared error regression loss between the
ground truth target values and the estimated target values. ACC
means the accuracy classification score between the ground truth
labels and predicted labels.

(c) Output prediction. In the training phase, we need to mea-
sure and minimize the difference between the output prediction
(e.g., L′

efficiency) and task performance labels (e.g., Lefficiency).
In the testing phase, we use the MSE and ACC to measure

the difference between the output prediction and the task per-
formance labels of the test data set, and eventually evaluate the
model performance.

4.3. CNN-based model SP

We also present a CNN-based model SP that can predict task
performance labels from graph drawing images. The notable ad-
vantage of CNNs is that they excel at extracting features from
image inputs.

Fig. 4 shows the pipeline of model SP, including: (a) Model
input, i.e., a graph drawing with a highlighted shortest path
in red color and the task performance labels; (b) A CNN-based
(i.e., ResNet-18 He et al., 2016) image feature extractor and fully
connected layers that convert the model output to match task
performance labels; and (c) Output prediction.

(a) Model Input. In the training phase, input includes graph
drawing images of size 320 × 320 with highlighted shortest path,
and task performance labels of the training data. In the testing
phase, input includes graph drawing images with highlighted
shortest path of the test data to predict the task performance
labels.

(b) A CNN-based Image Feature Extractor. Our CNN-based image
feature extractor is built on ResNet-18, an 18-layer-deep residual
network, which shows the best performance among other deep

models in our preliminary experiment.
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The last fully connected layer converts the output of the seman-
tic feature vectors and maps them on task performance labels.
Fig. 4(b) shows the design of our CNN-based feature extractor.

(c) Output Prediction. In the training phase, we aim to train
the proposed deep model to have outputs aligning with task
performance labels. Specifically, we optimize the parameters of
the deep model by minimizing the difference between the model
output and task performance labels.

More specifically, the output feature size of the last fully con-
nected layer is one (resp., two and nine) with a sigmoid function
(resp., Softmax function) for predicting Lefficiency and Ltime (resp.,
Laccuracy and Leffort ). For Laccuracy (resp., Leffort ), we convert the 2-
imensional array (resp., 9-dimensional array) to a single value
sing the numpy.argmax function, which returns the indices of
he maximum values of an array.

Fig. 4(c) shows an example of task performance labels (e.g.,
accuracy = 1) and the model outputs (i.e., L′

accuracy = [0.0021,
.8755] and the maximum value is 0.8755 at index 1, which
atches Laccuracy = 1), similar to the prediction of mental effort.

.4. Model MSP using transfer learning

ransfer Learning. To train a deep model to better understand
uman performing the shortest path task, we need a large
mount of labeled data. However, running the human experiment
s usually time-consuming and expensive, therefore we address
his issue by employing the transfer learning method (Pan and
ang, 2009).
Transfer learning extracts knowledge from a source task (dif-

erent but related task) to improve learning performance in a
arget task, where the source task and target task share some sim-
lar information. Typically, if the target task has limited training
ata, by employing transfer learning, we can use a source task
hat has sufficient training data.

etric-based Label. To pre-train the deep model MSP, we define
metric-based label (see Fig. 5(A)), using the following seven
etrics and properties (i.e., pShape_KNN , pAvgStress, pCrossNo,
MinAng , pContinu, pGeode and PathLength), which are most cor-
elated to shortest path task performance as shown in Section 3.2.
o improve the learning performance, each metric is scaled to
he range [0, 1]. Then we use the target task data (e.g., task
erformance labels) on the training data set to fine-tune the deep
odel MSP.

odel MSP. Fig. 5 shows the pipeline of model MSP with two
hases:
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Fig. 4. Model SP: (a) Model input, (b) A CNN-based (i.e., ResNet-18) image feature extractor, (c) Output prediction.
Fig. 5. Model MSP: (A) pre-training, (B) fine-tuning.
L

(A) Pre-training: In the pre-training phase, input includes
graph drawing images with highlighted shortest path, and
the metric-based label of the training data.
The model output is converted by a fully connected layer
with a Sigmoid function. When the total validation loss of
the metric-based label reaches a minimum value, we stop
training and save the optimized model for fine-tuning.

(B) Fine-tuning: In the fine-tuning phase, input includes graph
drawing images with highlighted shortest path, and the
task performance labels of the training data, where we
fine-tune the pre-trained model in phase (A) using the
input.
In the testing phase, input includes graph drawing images
with highlighted shortest path to predict the task perfor-
mance labels using the fine-tuned deep model in phase
(B).

5. Experiments

This section presents the details of our experiment, includ-
ing data set, model design and implementation, model training,
prediction results, and discussion.
56
5.1. Data set

We use the ground truth data from the shortest path exper-
iments (Huang et al., 2016; Fletcher et al., 2019; Huang et al.,
2014). The graphs are small and sparse Rome graphs (13–50
vertices and 12–71 edges) drawn by a force-directed layout. The
length of the shortest path varies from 3 to 6.

Specifically, the data sets contain 230 graph drawings with
various pre-specified vertices, resulting in 5542 instances of
graph drawings with highlighted shortest paths. For each in-
stance, we compute the task performance labels, as described in
Section 4, where Lefficiency ∈ [−17.27, 1.81], Ltime ∈ [−0.92, 31.34],
accuracy is 0 or 1, and Leffort is an integer from [0, 8].

5.2. Model design and implementation

To validate the importance of using path faithfulness metrics,
we compare our models with a baseline model B, which uses
the same selected regression and classification models shown
in 3(b), however, trained with different inputs. Specifically, in the
training phase, input includes all path readability metrics and task
performance labels of the training data. In the testing phase, input
includes all path readability metrics of the test data to predict the
task performance labels.
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Table 3
MSE and ACC of the prediction results of four trained models: All the models succeed in predicting task performance
labels (i.e., efficiency, response time and accuracy). Note that MSP performs the best, M performs better than B,
and SP performs better than M. A smaller MSE (resp., larger ACC) represents a better prediction result.

B M SP MSP

MSE: efficiency 0.7919 ± 0.0088 0.7740 ± 0.0078 0.7389 ± 0.0071 0.7243 ± 0.0069
MSE: response time 0.3757 ± 0.0065 0.3664 ± 0.0071 0.3627 ± 0.0059 0.3555 ± 0.0104
ACC: accuracy (69.25 ± 0.83)% (69.44 ± 0.91)% (71.15 ± 0.76)% (71.69 ± 0.73)%
ACC: mental effort (30.40 ± 1.36)% (32.17 ± 1.03)% (32.69 ± 0.83)% (33.37 ± 0.68)%
Therefore, we compare the following four models in our ex-
eriments:

1. B: a baseline regression (resp., classification) model trained
on only path readability metrics (i.e., pCrossNo, pAngMean,
pMinAng , pContinu and pGeode) and task performance la-
bels.

2. M: a regression (resp., classification) model trained on the
7 most correlated path readability and faithfulness metrics
(i.e., pShape_KNN , pAvgStress, pCrossNo, pMinAng , pContinu,
pGeode and PathLength) and task performance labels.

3. SP: a deep model trained on graph drawing images with
highlighted shortest path and task performance labels.

4. MSP: a deep model pre-trained on graph drawing images
with highlighted shortest path and the metric-based la-
bels, and then fine-tuned on graph drawing images with
highlighted shortest path and task performance labels.

We implement the ResNet-18 for models SP and MSP by
PyTorch on Google Colab Pro. The model parameters include an
Adam optimizer, 5×10−4 weight decay, 128 batch size, 5×10−4

earning rate and 200 epochs.

.3. Model training

For a machine learning algorithm to predict task performance
abels, we need training data sets to train the model param-
ters. Furthermore, we need to select a model controlled by
yper-parameters with good performance.
To avoid overfitting in deep models, we exploit the data

ugmentation, including horizontal random flips and random
otations (i.e., 25 degrees). All experiments are repeated five
imes based on random data splitting, using random_state of
odel_selection.train_test_split function in sklearn library.
Specifically, we randomly split the input data into training and

est data sets with a ratio of 7 : 3, therefore, training data are not
sed for the test data. For the training set, we further randomly
elected 70% for training and 30% for validation. We repeat the
andom splitting five times to avoid overfitting.

More specifically, for model M (resp., B), we randomly split the
ost correlated path readability and faithfulness metrics (resp.,
ath readability metrics) and their task performance labels for
raining and test data sets. Similarly, for model SP, we randomly
plit the graph drawings with highlighted shortest path and their
ask performance labels for training and test data sets. For model
SP, we randomly split graph drawings with highlighted shortest
ath and their metric-based (resp., task performance) labels for
re-training (resp., fine-tuning and test data set).

.4. Prediction results

To compare the models, we use the MSE (test mean square
rror) and ACC (test accuracy) of their prediction results. Specif-
cally, the MSE (resp., ACC) for models M and B is the mini-
um (resp., maximum) MSE (resp., ACC) of the prediction results
mong the seven regression (resp., classification) models de-
cribed in Section 4.2. For models MSP and SP, the MSE (resp.,
57
Table 4
The p-values of the Wilcoxon signed-rank tests for comparing the pairwise

difference between two models, showing that the comparison between the
models is statistically significant (e.g., a p-value < 0.05 means that the first
model is statistically significantly better than the second model).

M vs. B SP vs. M MSP vs. M MSP vs. SP

Efficiency 0.0313 0.0313 0.0313 0.0313
Response time 0.0313 0.1563 0.0313 0.0938
Accuracy 0.0721 0.0313 0.0313 0.0313
Mental effort 0.0313 0.0938 0.0313 0.0313

ACC) is of the prediction results for the model. We compute the
average MSE and ACC of prediction results from the five times
of random splitting, with a standard deviation for four trained
models.

Table 3 shows the MSE and ACC of the prediction results for
four trained models. A smaller MSE (resp., larger ACC) represents
a better prediction result. In summary, the results show that
all the models successfully predict human shortest path task
performance labels (i.e., efficiency, response time and accuracy).
Specifically, MSP performs the best, demonstrating the success
of the transfer learning, i.e., the importance of pre-training on
graph drawing images with highlighted shortest path and the
metric-based labels, and fine-tuning on graph drawing images
with highlighted shortest path and task performance labels.

Note that M performs better than B, demonstrating the impor-
tance of the new path faithfulness metrics in predicting human
shortest path task performance. Similarly, SP performs better
than M, demonstrating the importance of graph drawing images
with highlighted shortest path for predicting human shortest path
task performance.

To validate whether the comparison between the models
in Table 3 is statistically significant, we perform the Wilcoxon
signed-rank test (Wilcoxon, 1992), a non-parametric statistical
hypothesis test method to compare the pairwise models using
scipy.stats.wilcoxon function with MSE and ACC values.

Table 4 shows the p-values of the Wilcoxon signed-rank tests
for comparing the pairwise models. The p-value depends on
the median MSE (resp., ACC) of the first model that is larger
(resp., smaller) than the median MSE (resp., ACC) of the second
model. Generally, a p-value < 0.05 means that the first model is
statistically significantly better than the second model.

Note that MSP performs better than M, where the difference
for predicting all task performance labels is significant, which
demonstrates the importance of fine-tuning on graph drawing
images with highlighted shortest path and task performance la-
bels. Furthermore, MSP performs better than SP, where the dif-
ference for predicting efficiency, accuracy and mental effort is
significant, which demonstrates the importance of pre-training
on the metric-based labels.

Overall, M performs better than B, where the difference is
significant except for the accuracy, which demonstrates the im-
portance of the new path faithfulness metrics in predicting hu-
man shortest path task performance. Similarly, SP performs better
than M, where the difference is significant for the efficiency and
accuracy, which demonstrates the importance of graph draw-
ing images with highlighted shortest path for predicting human
shortest path task performance.
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Fig. 6. Examples of short paths with good quality drawing (e.g., D25(19, 0), D220(18, 3) and D95(32, 0)) and long paths with poor quality drawing (e.g., D29(23, 1),
61(18, 0) and D75(28, 2)), where all three models succeed in predicting accuracy (resp., for efficiency and response time, the difference between the ground
ruth/predicted label is within ±0.6; for mental effort, the difference between actual/predicted value is within ±2).
Fig. 7. Examples of path drawing with small angular resolution (e.g., D27(5, 1), D41(35, 0) and D42(41, 0)) and high degree vertices around the path drawing
e.g., D46(26, 0), D31(33, 3) and D38(5, 3)), where all three models fail to predict accuracy (resp., efficiency, response time and mental effort).
.5. Discussion and summary

In summary, our extensive experiments show that the short-
st path task performance can be predicted by a machine. In
eneral, all the models succeed in predicting shortest path task
erformance labels (i.e., efficiency, response time and accuracy).
n particular, MSP performs the best, demonstrating the impor-
ance of the transfer learning. M performs better than B, and SP
erforms better than M.
In particular, our models show good prediction results for the

ollowing instances:

• Short path with good quality drawing: when the path length
is small (i.e., PathLength ≤ 4) and the quality of the path
drawing is good, all three models successfully predict the
accuracy.
Fig. 6 shows examples (i.e., D25(19, 0), D220(18, 3) and D95
(32, 0)) of path drawings with large pShape_KNN , small
 a
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pAvgStress and a few crossing (see Table 5), where all three
models succeed to predict task performance labels (see
Table 6).

• Long path with poor quality drawing: When the path length is
long (i.e., PathLength ≥ 5), and the quality of graph drawing
and path drawing are both bad, three models successfully
predict the accuracy.
Fig. 6 shows examples (i.e., D29(23, 1), D61(18, 0) and D75

(28, 2)) of graph drawings with small Shape_GG and many
crossings, and path drawings with small pShape_KNN , large
pContinu (zigzag path) and large pGeode (zigzag geodesic
path) (see Table 5), where all three models succeed in pre-
dicting task performance labels (see Table 6).

Nevertheless, there are some difficult cases for prediction,

lthough the quality metrics of the drawing are good:
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Table 5
Quality metrics for the graph drawing (i.e., Shape_GG, AvgStress and Crossing); property and quality metrics for the
path drawing (i.e., PathLength, pShape_KNN , pAvgStress, pCrossNo, pMinAng , pContinu and pGeode) for graph drawings
shown in Fig. 6.
Dk Shape_GG AvgStress Crossing

D25 0.40 0.20 40
D220 0.49 0.11 11
D95 0.57 0.09 13
D29 0.25 0.32 32
D61 0.19 0.34 25
D75 0.35 0.26 16

Dk(s, t) PathLength pShape_KNN pAvgStress pCrossNo pMinAng pContinu pGeode

D25(19, 0) 4 0.58 0.06 1 0.96 0.33 0.25
D220(18, 3) 4 0.58 0.07 1 0.7 0.29 0.36
D95(32, 0) 3 1 0.02 1 0.72 0.28 0.25
D29(23, 1) 5 0.25 0.26 8 0.10 0.50 0.67
D61(18, 0) 6 0 0.37 11 0.23 0.73 0.58
D75(28, 2) 5 0.25 0.19 12 0.28 0.53 0.54
Table 6
The ground truth label and the predicted labels of model M, SP and MSP for graph drawings shown in Fig. 6.
Dk(s, t) Lefficiency Ltime

Ground
truth

M SP MSP Ground
truth

M SP MSP

D25(19, 0) 0.52 0.45 0.52 0.51 −0.17 −0.35 −0.20 −0.25
D220(18, 3) 0.46 0.30 0.37 0.47 −0.18 −0.19 −0.08 −0.23
D95(32, 0) 0.48 0.65 0.32 0.49 −0.35 −0.37 −0.27 −0.36
D29(23, 1) −1.24 −1.23 −0.70 −1.02 1.27 0.76 0.41 0.60
D61(18, 0) −1.38 −1.39 −1.48 −1.68 0.43 1.24 0.80 0.96
D75(28, 2) −1.11 −1.38 −1.21 −1.45 0.49 0.93 0.72 0.83

Dk(s, t) Laccuracy Leffort
Ground
truth

M SP MSP Ground
truth

M SP MSP

D25(19, 0) 1 1 1 1 2 1 3 3
D220(18, 3) 1 1 1 1 3 2 3 3
D95(32, 0) 1 1 1 1 3 1 3 1
D29(23, 1) 0 0 0 0 4 4 3 3
D61(18, 0) 0 0 0 0 3 4 5 5
D75(28, 2) 0 0 0 0 3 4 3 3
Table 7
Quality metrics for the graph drawing (i.e., Shape_GG, AvgStress and Crossing); property and quality metrics for the
path drawing (i.e., PathLength, pShape_KNN , pAvgStress, pCrossNo, pMinAng , pContinu and pGeode) for graph drawings
shown in Fig. 7.
Dk Shape_GG AvgStress Crossing

D27 0.44 0.15 9
D41 0.36 0.28 18
D42 0.28 0.34 37
D46 0.27 0.42 32
D31 0.38 0.37 47
D38 0.18 0.34 75

Dk(s, t) PathLength pShape_KNN pAvgStress pCrossNo pSPinAng pContinu pGeode

D27(5, 1) 4 0.58 0.16 3 0.94 0.25 0.36
D41(35, 0) 5 0.25 0.20 3 0.61 0.35 0.29
D42(41, 0) 6 0 0.32 4 0.34 0.71 0.66
D46(26, 0) 5 0.25 0.48 6 0.48 0.35 0.51
D31(33, 3) 5 0.25 0.44 7 0.24 0.37 0.34
D38(5, 3) 3 1.00 0.04 6 0.33 0.25 0.29
• Path drawing with small angular resolution: When a path
drawing has a small angular resolution, even with a few
crossings and small stress, it was difficult for a machine to
predict shortest path task performance.
Fig. 7 shows examples (i.e., D27(5, 1), D41(35, 0) and D42(41,
0)) of path drawings with small angular resolution (see the
related metrics in Table 7 and predicted labels in Table 8).

• High degree vertices around the path drawing: When there
are high degree vertices or overlap between the vertices
and edges near the shortest path, even with small crossings,
59
it was difficult for a machine to predict shortest path task
performance.
Fig. 7 shows examples (i.e., D46(26, 0), D31(33, 3) and D38

(5, 3)) of graph drawings with high degree vertices around
the path or vertices too close to the path (see the related
metrics in Table 7 and predicted labels in Table 8).

The first case is due to the fact that the angular resolution of
a path drawing was not included in the quality metrics for model
training. Therefore, to improve the prediction results, we may
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Table 8
The ground truth label and the predicted labels of model M, SP and MSP for graph drawings shown in Fig. 7.
Dk(s, t) Lefficiency Ltime

Ground
truth

M SP MSP Groundtruth M SP MSP

D27(5, 1) −3.51 0.17 −0.12 0.14 3.10 −0.11 0.05 0.02
D41(35, 0) −2.43 −0.10 −0.07 −0.02 2.30 0.12 0.09 0.08
D42(41, 0) −4.37 −0.94 −1.08 −1.52 3.24 0.82 1.13 0.47
D46(26, 0) −3.62 −0.77 −0.62 −0.83 1.92 0.59 0.54 0.39
D31(33, 3) −2.98 −0.85 −0.23 −0.40 1.64 0.58 0.18 0.23
D38(5, 3) −3.16 0.09 −0.18 −0.12 1.40 −0.13 −0.21 0.04

Dk(s, t) Laccuracy Leffort
Ground
truth

M SP MSP Groundtruth M SP MSP

D27(5, 1) 0 1 1 1 6 2 3 3
D41(35, 0) 0 1 1 1 5 3 3 3
D42(41, 0) 0 1 1 1 8 4 3 3
D46(26, 0) 0 1 1 1 8 3 3 3
D31(33, 3) 0 1 1 1 7 3 3 3
D38(5, 3) 0 1 1 1 8 2 3 3
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need to include the angular resolution metrics of a path drawing
for model training.

Similarly, the second case is due to the fact that structural
raph properties such as high degree vertices, as well as the
uality of drawings of subgraphs near the path drawing, were
ot considered for model training. Therefore, to improve the
rediction results, we may need to consider high degree vertices
nd the quality metrics of drawings near the path drawing for
odel training.

.6. Implication, potential application and limitation

In this paper, we show that a machine can successfully predict
he qualitative evaluation in graph drawings, by considering the
ost fundamental task, i.e., the shortest path task, advancing

he known results in the literature for predicting quantitative
valuation (such as quality metrics) in graph drawings.
In contrast to quantitative evaluation, where quality metrics

an be easily computed (e.g., in O(nlogn) time for edge cross-
ngs), qualitative evaluation requires significant time and effort
o conduct controlled human experiments, including the ethics
pproval. Therefore, a potential practical application of our model
s to save time and effort for qualitative evaluation of a graph
rawing, by predicting human shortest path task performance
ithout conducting a controlled human experiment.
Although our model can successfully predict the human short-

st task performance, there are some limitations. Our model is
ased on the ground truth human experiment data, which uses a
orce-directed layout of small and sparse Rome graphs. Therefore,
t may not generalize well for different types of graphs (e.g., large
nd complex graphs) and different graph layouts.

. Conclusion and future work

We present the first machine learning approach to predict
uman shortest path task performance, including efficiency, accu-
acy, response time, and mental effort, utilizing correlated quality
etrics, the ground truth shortest path experiments data, and

ransfer learning.
Specifically, we introduce path faithfulness metrics and show

strong correlations with the shortest path task performance.
Moreover, we use the transfer learning method to pre-train
our deep model, exploiting the most correlated quality met-
rics (i.e., pCrossNo, pGeode, pShape_KNN , PathLength, pContinu,
pAvgStress and pMinAng) to mitigate the problem of insufficient
ground truth training data.
60
Experimental results show that our models can successfully
predict the shortest path task performance. In particular, MSP
performs the best, achieving an MSE of 0.7243 (i.e., data range
from −17.27 to 1.81) for prediction, demonstrating the success
of transfer learning using the correlated metrics.

While, in general, our trained models show good predic-
tion performance, there are some difficult cases for prediction,
e.g., path drawings with small angular resolution and high degree
vertices around the path drawing. Therefore, our future work is
to design new quality metrics to better measure the quality of
path drawings to improve prediction for such cases.

Moreover, we plan to conduct a new human experiment using
various graph types and graph layouts, to generate new ground
truth shortest path performance data, which will be used to
improve our model and overcome current limitations.
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