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Predicting chemical properties is one of the most important applications of machine learning. In recent years, the
prediction of the properties of energetic materials using machine learning has been receiving more attention. This
review summarized recent advances in predicting energetic compounds’ properties (e.g., density, detonation
velocity, enthalpy of formation, sensitivity, the heat of the explosion, and decomposition temperature) using

machine learning. Moreover, it presented general steps for applying machine learning to the prediction of
practical chemical properties from the aspects of data, molecular representation, algorithms, and general accu-
racy. Additionally, it raised some controversies specific to machine learning in energetic materials and its possible
development directions. Machine learning is expected to become a new power for driving the development of

energetic materials soon.

1. Introduction

Chemical theory and calculations have been widely used to obtain the
properties of energetic materials.' > However, traditional molecular de-
signs combined with theoretical calculations are often accompanied by
problems, such as high computational cost or long estimation cycle,
which are challenging due to the high-throughput computing re-
quirements and experimental needs.” For example, density functional
theory (DFT) requires expensive electronic structure calculations and a
long cycle of geometric iterations, which results in high computational
costs. Additionally, the consumption of chemical theory methods
dramatically increases as the accuracy increases.” It is urgent to develop
new methods to calculate the properties of energetic materials. There-
fore, the emergence of machine learning enables the fast prediction of
energetic materials’ properties with accuracy approaching quantum
chemical methods.®

The amount of data is rapidly expanding in the information age.
Researchers can access information from massive data, acquire intrinsic
mapping between molecular structures and properties, and finally pre-
dict the properties of unseen molecules.” This scientific research method
is called the data-intensive or fourth scientific paradigm.® The rise in the
application of the fourth paradigm to materials science implies that data
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analysis is increasingly used in material science research. Machine
learning algorithms conform to the urgent need of the big-data era and
have become powerful tools for data processing and model fitting.
Among the different types of models, the supervised regression model,
which is trained with continuously variable labels, is commonly used to
determine energetic materials’ properties.’

The key factors that affect the precision of regression algorithms in
predicting molecular properties include the size and quality of data,
featurization method, choice of algorithms, and hyperparameters tun-
ing.'° Typically, data collection is the first step for model training. The
data resources mainly include experimental values from reported liter-
ature,'''® calculation results obtained using software programs (e.g.,
Gaussian and Vasp),'* and formatted data from existing databases (e.g.,
CCDC and PubChem; Fig. 1a).'>'® The second step is to choose methods
to represent the chemical data, i.e., featurization. The most prevalent
way for storing molecule structures is the Simplified Molecular Input Line
Entry System (SMILES)—a method for representing molecular structures
with ASCII strings.'” Although SMILES can be regarded as a featurization
method, it is usually leveraged as the starting point for constructing
machine-readable features. Furthermore, traditional engineering-based
featurization methods typically require extensive expertise in feature
design and selection processes,'® including Coulomb Matrix,
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Fig. 2. (A) Histogram of error parameters of ANN and MLR, including the determination coefficients of total data set, training data set, and test data set from left to

right along the x-axis; (b) ANN topological graph.®'.

extended-connectivity fingerprint, and custom descriptors.'®%? With the
maturity of artificial intelligence techniques, some scientists gradually
utilize deep learning (e.g., graph neural networks to molecular graphs) to
construct molecular fingerprints (Fig. 1b).?* After determining the mo-
lecular representation method, it is necessary to identify the algorithms
that are suitable for molecular property prediction, which is traditionally
a regression task. There are many algorithms suitable for regression
tasks, and the commonly used ones include linear regression, Support
Vector Machine (SVM), K-Nearest Neighbor (KNN), decision tree, kernel
ridge regression, and neural network.?*?> After training, the fitness of
models can be evaluated using error metrics. The frequently used error
metrics for the regression task include coefficient of determination (Rz),
correlation coefficient(r), mean squared error (MSE), and mean absolute
error (MAE).>%%7 Among them, r reflects the similarity between the
measurements of two or more variables across a data set. R? represents
the proportion of variance (of y) explained by the independent variables
in the model and indicates the goodness of fit and, therefore, is a measure
of the efficiency of the model in predicting unseen samples. MAE is a risk
metric corresponding to the expected value of the absolute error loss. In
addition, MSE is a risk metric corresponding to the expected value of the
squared (i.e., quadratic) error or loss, which can be used as the loss
function reflecting the algorithm's robustness. These analytical methods
are derived from statistics. These methods allow for determining whether
the selected structural attributes are beneficial in predicting properties
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and whether the constructed model can optimize the parameters.
Generally, the data is split into three parts, i.e., training, validation, and
test sets. The metrics on training, validation, and test sets help show the
fitness of models, hyperparameter tuning, and the evaluation of the
model performance on unseen data, respectively (Fig. 1c). These error
metrics can be used to quantitatively compare the pros and cons of
different models.

Machine learning-based predictions of the properties of energetic
materials have recently been on the rise and achieved remarkable ad-
vancements in recent years. In the existing literature, some studies used
the same o predict different properties,”® some used different models to
predict different properties,?>* and some used different models to pre-
dict the same properties. If we organized the studies according to pre-
dicted properties or machine learning models, the same study would be
repeatedly mentioned in different sections, resulting in an overly verbose
and loose-organized paper. Therefore, this review summarized recent
advances in forecasting properties of energetic materials from two as-
pects, i.e., single property and multiple properties. This review compared
the prediction accuracy and the advantages and disadvantages of each
prediction method in detail. The purpose of this review is to reveal the
research status of the energetic material property prediction based on
machine learning, analyze the advantages of machine learning over
traditional computing methods, and discover the existing problems in
machine learning. Lastly, this review proposed the development
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direction and prospect of machine learning in material property predic-
tion in the future.

2. Single-property prediction
2.1. Density

Density is an important factor that affects the detonation performance
of energetic materials. The detonation velocity and pressure of energetic
molecules increase with increasing density. Traditional methods for
predicting density mainly calculate the density using molecular or crystal
volume, which can be accessed by theoretical or empirical methods, such
as molecular dynamics or group additivity. Nevertheless, these methods
always have some limitations. Molecular dynamics’ accuracy heavily
relies on the accuracy of the force field. If the applicable force field pa-
rameters are lacking, the prediction of crystal structure will have obvious
deviation. The group additivity rules seldom consider molecular config-
uration and intermolecular interaction and thus are unable to distinguish
the density of isomers. In addition, the influence of temperature and
crystallographic form on density is neglected in group additivity rules,
narrowing their applicability.® As the emerging forecasting method,
machine learning can directly draw on the intrinsic relationship between
structure and density while avoiding the effects of external conditions,
thereby improving the computational efficiency and reducing the pre-
diction error.

In 2018, Fathollahi et al.®' extracted three molecular descriptors
based on the optimized chemical structures of 26 selected energetic
cocrystals. Their densities were predicted using an artificial neural
network (ANN) and then the predicted results were compared with re-
sults from the multiple linear regression (MLR). The final calculation
results are shown in Fig. 2a. According to this figure, the results predicted
using ANN were larger than those of MLR, and the test precision was up
to 0.9918. Fathollahi et al.*' built a model consisting of an input layer
with three neurons, a hidden layer with three neurons, and an output
layer and determined that this model was ideal for valuation, as shown in
Fig. 2b. This model could be used for screening the target chemical
structure from the database to obtain the cocrystal with desired density.
Moreover, Fathollahi et al.>? predicted the decomposition temperature of
energetic cocrystals using the ANN model again in 2018. The data set was
divided into a training set containing 19 samples, a test set containing 6
samples, and a validation set containing 5 samples. The R? for ANN was
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0.9784, which was higher than that of the MLR model (0.7438).
Although a robust model used to predict property cannot be obtained
using only 30 energetic cocrystals, the result reveals that ANN is an
effective model for predicting decomposition temperature.

In 2021, Yang et al.®® found that selecting molecular descriptors is
time-consuming and relies on excellent professional knowledge. They
decided to find a direct mapping relationship between density and mo-
lecular structure and take molecular topology as the sole known input. To
this end, they filtered the crystallographic data of 2002 neutral nitro
compounds from the CCDC database (Fig. 3a) and tested three algo-
rithms, i.e., Random Forest (RF), Graph Neural Network (GNN), and
Support Vector Machine (SVM), using inputs prepared collaboratively
using Open Babel, Materials Studio, and RDKit library (Fig. 3b). More-
over, they compared the accuracy of predicted results of the DFT-QSPR,
RF, SVM, and GNN models. The results indicated that the GNN model had
the highest accuracy with R? up to 0.949, followed by the DFT-QSPR
model with R? of 0.925. These results suggest that the GNN model can
achieve high accuracy only using a molecular graph as the input and is
significantly better than traditional machine learning models.

In 2021, Nguyen et al.>* collected 10,521 molecules using data
cleaning in CSD and trained density prediction models using four
different machine learning algorithms, i.e., SVR, RF, PLSR, and MPNN—a
GNN framework named by message passing neural network. When
choosing data representation, they found that the SMILES was unsuitable
for density valuation. Therefore, they chose three other different char-
acterization methods (i.e., Extended 3D Fingerprint, 2D Molecular
Descriptor Sets from RDKit, and Graph representation with Atom and
Bond Descriptors from RDKit) for density prediction and evaluated the
optimal computational scheme (Fig. 4).

Various molecular features in RDKit for different machine learning
models were separately tested and ranked by their effects on density. Six
feature descriptors (in order of VSA EState8, SlogP_VSA5, TPSA,
SMR_VSAS5, MolLogP, and NO Count) were found to have more signifi-
cant effects on density prediction. Moreover, MPNN with a learnable
molecular representation had the highest computational accuracy (co-
efficient of determination up to 0.914) compared to manually-selected
descriptors constructed by RDKit (Table 1), and the MPNN model has a
relatively constant error less than 0.05 g cm™2 in most density intervals.

The aforementioned studies suggest that machine learning can
effectively carve potential nonlinear relationships between molecular
structure and density. Furthermore, it can alleviate the prediction error
caused by models underfitting simplified parameters. Hence, machine
learning can yield higher prediction accuracy than traditional empirical
methods.?” Additionally, Nguyen et al. and Yang et al. found that GNN
models had a higher prediction accuracy. Though they adopted similar
machine learning algorithms, e.g., GNN, the data sets used in the two
studies were different. The different data distributions may influence the
models and lead to differences in accuracy and generalization.

2.2. Detonation velocity

Detonation velocity is another important energetic property related to
the structural properties and composition elements of energetic mate-
rials. As early as 2007, Ma et al.>® combined neural networks with ge-
netic algorithms for training detonation velocity prediction models.
Accordingly, relevant parameters of explosives such as oxygen balance,
molecular weight, and density were used as input. They compared the
predicted values with experimental values of each compound, yielding
errors within 7%. Although the calculation scheme they devised achieved
rapid prediction with fewer relevant parameters, the accuracy cannot
reach the valuation accuracy of the thermodynamic method based on the
VLW equation of state.>® Even so, the study carried out by Ma et al.>® is
instructive for the property prediction of energetic materials at that time.

In 2019, Chandrasekaran et al.*” extracted data from over 65 com-
pounds and developed an ANN-based detonation velocity prediction
model that considered the effects of density, molecular structure,
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Table 1
The R? and RMSE values of energetic material density predicted by combining different characterization methods with different models.>*.

Feature Input information Feature processing Model R? RMSE
E3FP Atomic, 3D positions precomputed SVR 0.683 0.085
RDKit(molecular) physicochemical/mathematical precomputed RF 0.878 0.053
RDKit(molecular) physicochemical/mathematical precomputed PLSR 0.900 0.048
RDKit(atom/bond) atomic/bond, molecule graph learned MPNN 0.914 0.044

chemical composition, and other characteristics. In this study, the ANN
architecture consisted of one input layer, two hidden layers, and one
output layer (Fig. 5a), and they fed enthalpy of formation, density,
physical state, carbon, hydrogen, oxygen, and nitrogen atomic numbers
into the input layer of neurons. The training data were composed of
energetic materials with different characteristics and structures. The
correlation coefficient between the training set and the test set of the
model was up to 0.978-0.985, revealing that using ANN to predict the
detonation velocity and taking highly correlated chemical information as
input can achieve relatively high accuracy on a small data set.

2.3. Heat of formation

Regarding the thermodynamic properties of energetic compounds,
the enthalpy of formation is an indispensable parameter in predicting the
detonation performance of energetic materials. As early as 2004, Wang
et al.®® from Shenzhen University collected 58 aromatic polysonitro
compounds and predicted the enthalpy of formation of polynitroaromatic
compounds using a two-layer neural network of error back propagation
(BP). They also discovered that multiple linear regression using the
molecular map method had a significant effect and that most of the
relative errors were controlled within 10%. The correlation coefficient of

180

its regression equation was up to 0.9967. Meanwhile, they concluded
that the molecular structural description code and network parameters
greatly influence the prediction of the heat of formation.

In 2021, Mathieu®® predicted electronic energy and vibration fre-
quency using two deep-learning models (ANI-1X and ANI-1ccx),
discovering that the enthalpy of formation for organic compounds
can be calculated using the standard atom equivalent scheme along
with predicted energy and frequency. He demonstrated that the accu-
racy of deep learning models was comparable to that of costly density
functional theory calculation, especially for general CHON compounds.
However, considering the decrease in model accuracy for energetic
compounds, he concluded that current models were not ready to be
applied to energetic compounds (Fig. 5¢). This result may be due to the
lack of explosophore-containing compounds in the GDB-11 database,
which was used to fit the current ANI model. Further refitting models on
data containing more energetic compounds may improve the models’
applicability to energetic compounds. Meanwhile, there is an urgent
need to develop extensive ab initio databases, including energetic
molecules.
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2.4. Heat of explosion

The heat of explosion is closely related to the detonation velocity and
detonation pressure of energetic materials. Based on training data set
composed of 41 energetic compounds, Kang et al.*' trained machine
learning models for predicting the heat of explosion. They found that
oxygen balance and atomic average cohesive energy were the two most
influential descriptors for predicting the heat of explosion. ML algorithms
were applied for training models, including linear regression, logistic
regression, random forest, and support vector machine. The error anal-
ysis showed that the lowest mean absolute error (MAE) for the models
trained using RF was 142.12 kJ kg ! and that the corresponding R* was
up to 0.93 (Fig. 5b). Using the machine learning models, 2732 candidate
molecules in the PubChem and ICSD databases were screened using the
heat of explosion of TNT as the standard.

2.5. Sensitivity

Sensitivity marks the difficult degree of energetic materials to burn or
explode under the impact, friction, flame, and electrostatic stimuli.
Higher sensitivity is associated with lower safety of energetic materials.
Therefore, it is necessary to obtain sensitivity in research on energetic
molecules. Keshavarz et al.*’ conducted in-depth studies of the sensi-
tivity prediction of energetic materials using artificial neural networks. In
their study, they adopted 291 energetic compounds containing C, H, O,
and N elements and divided the data set into training and test sets. ANN
models used descriptors consisting of the number of aromatic characters,
heteroaromatic characters, N-NO, bonds, and the C, H, O, and N ele-
ments as input. The reliability of models was further tested using 14

181

different explosives with various chemical structures. The predictions
using the constructed ANN models yielded root means square errors of
the training and test data of 41 cm and 56 cm, respectively.

3. Multi-property prediction

It is established that the comprehensive analysis of an energetic
compound requires the prediction of its different properties. Thus, pre-
dicting multiple properties by “one run” is more attractive because this
prediction mode is more efficient and friendly. In recent years, some
scientists have conducted related research on multi-property prediction
under a unified model architecture (e.g., using the same input and al-
gorithm for predicting different properties). Meanwhile, some re-
searchers are engaged in evaluating various combinations of
featurization methods and ML algorithms, aiming to find the optimal
combination for the simultaneous prediction of multiple attributes.

In 2018, Elton et al.?? investigated machine learning techniques for
predicting multiple properties of energetic materials. They worked on a
data set containing 109 molecules with 10 different chemical structures.
They predicted the properties of energic compound (e.g., enthalpy of
formation, density, detonation velocity, detonation pressure, and deto-
nation energy) using various featurization methods (e.g., bag of bonds,
coulomb matrices, sum over bonds, and custom descriptor set) and ML
algorithms (e.g., ridge regression, kernel ridge regression, random forest,
k-nearest neighbors, and support vector regression). The results revealed
that the characteristic values, such as oxygen balance, nitrogen-carbon
ratio, sum over bonds, and the number of functional groups were
essential parameters affecting the computation accuracy. Among them,
sum over bonds was the most favorable feature descriptor for improving
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prediction accuracy, and kernel ridge regression was the optimal algo- the case of less available data. Elton et al. focused on a small data set that
rithm (Fig. 5d). They proposed that feature selection was more important contributed to fields with few available research results or limited public
than model selection when making property predictions on small data- databases (such as energetic materials*?). The study carried out by Elton

sets and that sample diversity was vital for achieving better accuracy in et al. can help researchers obtain performance prediction values with less

182






X.-l. Tian et al.

New structures

LIS
o

A small L )
atabase withgl ...~ ??Tf.r.'.?..,
less samp Training

Neural network model

\

A

y

Energetic Materials Frontiers 3 (2022) 177-186

New molecules
436 CHON-
molecules

structure-properties

\
A~

\

Screening

y

o =

Fig. 8. Flow chart showing the machine learning for performance prediction and molecular screening.

Table 2
MAE and r for the property prediction results obtained using the neural network
model.*>.

Properties Unit r MAE

» gem ™3 0.9860 0.0259
D km s7! 0.9279 0.3456
P GPa 0.9664 1.4933

error in the case of a small amount of available information.

In 2020, Casey et al.'* predicted the detonation temperature, deto-
nation velocity, detonation pressure, heat of formation, and density of
energetic materials using 3D convolutional neural networks (CNN). By
screening molecules with energetic properties using oxygen balance as a
parameter, they identified more than 20,000 molecules from the GDB
database. Furthermore, they calculated electronic and energetic proper-
ties using Gaussian and Cheetah while utilizing the results as training
data for a convolutional neural network. R? of the models they used
exceeded 0.9, reaching the ideal error range (Fig. 6). These models
achieved impressive accuracy, possibly proving that high-quality data
and model architecture with adequate complexity can pave the way for
high accuracy prediction. However, owing to the scarcity of energetic
compounds in the GDB database, the applicability of these models for
energetic compounds is yet to be verified.

In 2021, Chen et al.** demonstrated two new feature extraction
methods, namely heat contribution spatial matrix and volume occupation
spatial matrix. They built the machine learning model with a data set of
451 energetic molecules, with one-fifth of the molecules used as a testing
set and the rest serving as the training data. Furthermore, 56 candidate
energetic molecules with reasonable chemical structures and excellent
detonation properties were screened. The spatial matrix descriptors used
in the machine learning model considered the heat contribution and
volume occupation from monoatomic (1-body) and interatomic (2-body)
aspects. The machine learning model built by Chen et al.** could become
more powerful if it focused on more physicochemical features and a
higher level of many-body aspect.

Rein et al.?® predicted the impact sensitivity and decomposition
temperature of high energetic materials using a multiple linear regression
model (MLR). From various literature, they collected experimental
crystal structures and sensitivity properties of more than 400 energetic
materials, including materials that are mainly developed nowadays, thus
obtaining sufficient data for MLR modeling. Subsequently, they suc-
cessfully predicted the properties of nitrogen-rich tetrazoles and azides
using used the established MLR.

Sifain et al.>’ proposed a method for predicting molecules' melting
and boiling points using ridge regression (UPPER-RR) and gradient
boosting (UPPER-GB). They found that the prediction accuracy of
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enthalpy and entropy was not improved using the UPPER-GB and
UPPER-RR. Meanwhile, they discovered that the predicted results of
ARL-UPPER were more accurate than those of the first two methods.
They split all data into training and test sets in a ratio of 9:1 and
compared the prediction error of ARL-UPPER with that of Extreme
Gradient Boosting (XGBoost), which was combined with 1024-bit Mor-
gan, 1024-bit Avalon fingerprints, and 166 MACCS. The results indicated
that the ARL-UPPER had significantly higher accuracy than other
methods. The cross-validation RMSE of boiling and melting points pre-
dicted using ARL-UPPER was 20K and 36K, respectively, making
ARL-UPPER framework a potential materials screening tool.

Xie et al.>* developed a Property-Oriented Adaptive Design Frame-
work (PADF) to rapidly design energetic molecules with excellent per-
formance. They selected 88 compounds as training data and predicted
the heat of explosion and heat of formation using used the PADF. In their
study, they considered four feature descriptors (i.e., Sum Over Bonds
(SOB), Extended Connectivity Fingerprint (ECFP), E-State Fingerprint
(E-state), and Custom Descriptor Set (CDS)) and six ML algorithms (i.e.,
Least Absolute Shrinkage and Selection Operator (LASSO), Linear
Regression (Lin), Support Vector Regression with a Linear Kernel
(SVR.lin) and a Radial Basis Kernel (SVR.rbf), Kernel Ridge Regression
(KRR), and a Gaussian Process Regression (GPR) model). In the PADF,
they also considered five optimizers and selected the best performing
one. Through experiments, they finally concluded that SVR.lin/Trade-off
combined with E-state + SOB was the best model for calculating the heat
of formation, with the R? and MAE of the test set up to 0.93 and 61.7,
respectively. Moreover, KRR/KG coupled with CDS + E-state + SOB was
the best for predicting the heat of explosion.

Huang et al.** applied machine learning to 153 high-energy density
materials. All data were obtained through high-throughput crystal-level
quantum mechanics calculations and were divided into training data and
test data at a ratio of 4:1. They conducted the model training using KRR,
RF, XGBoost regression tree, adaptive boosting (AdaBoost) regressor, and
multilayer perceptron (MLP) and compared the predicted results with the
experimental values. The comparison results indicated that the XGBoost
model yielded excellent performance in the prediction of nearly all prop-
erties. Huang et al. collected 109 experimental values of decomposition
temperature (Tg) and 612 calculated data on detonation velocity (D),
detonation pressure (Pc.j), heat of explosion (Qmayx), and lattice energy (LE)
as well as 203 experimental values to validate the model's predictions. As
shown in Fig. 7, the determination coefficients of all properties (except for
decomposition temperature) on the test set were up to more than 0.8.

Hou et al.*® developed a neural network model that can be used to
effectively predict the properties of energetic molecules, including
detonation velocity, pressure, and density. They placed many typical
explosives (e.g., TNT, CL-20, HMX, and RDX) in their initial dataset and
screened candidate molecules from 436 molecules using NN models
(Fig. 8). The properties of compounds in the training data were evaluated
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error distribution for the melting point.

using theoretical methods, such as the density equation developed by
Politzer et al. and the Kamlet-Jacobs equation for detonation properties.

Hou's machine learning model only took 0.038 s to predict the per-
formance of three kinds of detonation for all molecules, thereby
demonstrating the high-throughput characteristics of machine learning.
Table 2 shows that the predicted values of the detonation performance
were significantly reduced by applying the model developed by Hou et al.
indicating that their neural network model can yield excellent perfor-
mance and can accurately predict the detonation characteristics of en-
ergetic molecules.

In addition to the above studies, this review combined machine
learning with high-throughput virtual screening (HTVS) and experiments
to advance the exploration of energetic materials.*>*” In 2021, Song
et al.”” used the machine learning model to assist the HTVS system in
high-throughput molecular screening. As a result, they quickly selected
136 molecules with a satisfactory performance from more than 3800
molecules and finally obtained eight new melt casting materials through
experimental research. The specific experimental process is shown in
Fig. 9a—c. Furthermore, they manually collected more than 1000 pieces
of data from existing literature to construct the database required for the
machine learning model. Molecular structures were represented by
feature vectors using E-state fingerprints and custom descriptors. They
applied the kernel ridge regression algorithm to performance prediction,
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yielding high prediction accuracy of density and detonation properties.
However, the predicted results of the melting point © and Ty did not
fulfill the expectations. By comparison with feature weights from the RF
model, they concluded that the descriptors related to intermolecular
interactions, such as Topological Polar Surface Area (TPSA), Number of
Rings (nR), and Min/Max Partial Charge, had a crucial influence on the
melting point calculations. Therefore, the descriptors customized by
Song et al.*” are instrumental in predicting melting points.

Since density, enthalpy of formation, detonation velocity, and deto-
nation pressure of energetic compounds are generally concerned, this re-
view summarized metrics of related models, as shown in Table 3. Through
continuous endeavor, predicting the density of energetic compounds using
machine learning has significantly developed and can achieve high pre-
diction accuracy compared to other properties. The coefficient of deter-
mination for density in these studies has exceeded 0.9, with the MAE not
higher than 0.06 g cm 3. Meanwhile, the high prediction accuracy of
detonation velocity has also been achieved, with coefficients of determi-
nation all higher than 0.8 in these studies. Casey's 3D CNN models have
prediction accuracy of detonation velocity of up to 0.991 on the training
set and up to 0.974 on the test set (Table 3). Additionally, these 3D CNN
models enjoy advantages in predicting other properties such as density and
enthalpy of formation. The synergistic contribution of larger data, a more
complex model, and reasonable featurization synergistic yields higher
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Table 3
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Key information from the above literature, including the amount of data, machine learning algorithm, chemical information tools, and some properties prediction

accuracy (the best machine learning method is in bold).

Author Data Algorithms Featurization p AHg Dy P
pleces R? MAE R? MAE R? MAE R? MAE
/g-cm_3 /J-mol ! /km-s~! /GPa
Fathollahi®! 26 ANN, MLR Gaussian 09, Dragon 0.992 - - - - - - -
(test)
Yang** 2002 SVM, RF, GNN Materials Studio, RDKit, 0.949 0.040 - - - - - -
OpenBabel (test) (test)
Nguyen>* 10521 SVR, PF, PLSR, RDKit, E3FP 0.914 - - - - - - -
MPNN
Chandras- 65 ANN Custom descriptor set - - - - 0.985([r] - - -
ekaran®” (test)
Elton?? 109 KRR, Ridge, SVR, Custom descriptor set, 0.74[r] 0.060 0.94[r] 71.41 - - - 2.760
RF,KNN Coulomb matrix, RDKit (test) (test) (test)
Casey'* 26265 3D CNNs Grid data for electron 0.943 0.011 0.979 47.09 0.974 0.096 0.965 0.584
charge density and (test) (test) (test) (test) (test) (test) (test) (test)
electrostatic potential
Chen™? 451 LASSO, KRR, BRR,  VOM, HCM - 0.035 - 40.44 - - - -
SVR, RFR, KNN
Xie®® 88 LASSO, Lin, SOB, ECFP, E-state, Custom 0.93 258.28
SVR.lin, SVR.rbf, descriptor set (test) (test)
KRR, GPR
Huang™** 153 XGBoost, Custom descriptor set - - - - 0.912 - 0.910 -
AdaBoost, RF, (test) (test)
MLP, KRR
Hou™® 436 LM Coulomb matrix 0.986 0.026 - - 0.928[r]  0.346 0.966 1.493
[r] [r]
Song"” 1000 KRR E-state fingerprint, custom 0.930 0.042 - - 0.830 0.240 0.820 2.379

descriptors

accuracy. However, the accuracy improvement for Casey's models is at the
expense of a relatively high cost in calculating grid data of electron charge
density and electrostatic potential. Even so, this study has paved the way
for models with high accuracy.

4. Conclusions and outlooks

The above research shows that machine learning has made significant
progress in predicting the properties of energetic materials. Starting with
only molecular structures, machine learning can yield high overall pre-
diction accuracy for density, detonation properties, and enthalpy of
formation at an extremely low computational expense. However, ma-
chine learning cannot yet yield satisfactory prediction accuracy for
decomposition, melting temperature, and sensitivities, which are diffi-
cult to precisely predict using methods based on electronic structures or
molecular dynamics. The reasons include: (1) the noise in the data caused
by experimental conditions, (2) intrinsic multiscale characteristics from
quantum scale to continuum mechanics, and (3) the complex thermo-
chemical coupling process behind these properties. It can be foreseeable
that these problems are difficult to overcome within a short period.

Although it is difficult to precisely predict the properties suffering
difficult prediction while ensuring the model's generalization ability in a
short time, there are many ways worth looking into to improve the
precision. Possible methods include more complicated model architec-
tures trained on large data (e.g., GNN) and more complete and physically
meaningful molecular representation. Additionally, feature engineering
and transfer learning are viable solutions to improve model performance.
However, these methods usually mean an increase in model complexity
and require a large amount of data to avoid over-fitting. Accordingly, the
lack of data is another struggle that limits the application of machine
learning in the field of energetic materials due to military applications
and hazards. Hence, there is an urgent need to establish a standard
database of energetic materials, which may require the collaboration of
the entire energetic materials community.

At present, the application of machine learning techniques in the field
of energetic materials is still at its initial stage. Besides property predic-
tion, machine learning can also be applied in inverse molecular design,
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automatic synthetic route planning, and machine learning force field.
These cutting-edge machine learning applications will promote the
development of energetic materials from design, experiment, and simu-
lation aspects.
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