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Abstract: The determination of the compression index (Cc) of clay through oedometer tests is time-consuming 22 
and expensive. To replace the practice of conducting laboratory oedometer tests, this study presents a comparative 23 
analysis of hybrid machine learning models for estimating the soil Cc based on actual laboratory test data. Ten 24 
swarm intelligence algorithms, namely particle swarm optimization, ant colony optimization, artificial bee colony, 25 
grey wolf optimizer, moth flame optimizer, whale optimization algorithm, salp swarm algorithm, Harris hawks 26 
optimization, slime mould algorithm, and marine predator algorithm, were used to optimize the learning 27 
parameters of an artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). 28 
Subsequently, 20 hybrid ANN and ANFIS models were constructed to obtain the best prediction model. A sum 29 
of 700 oedometer test data was acquired from an Indian Railways project to construct and validate the hybrid 30 
models. Besides, 30 new oedometer experiments were performed for external validation of the developed hybrid 31 
models. Experimental outcomes show that the proposed ANFIS and PSO hybrid model (ANFIS-PSO) attained 32 
the most accurate prediction of soil Cc, which is much superior to the developed hybrid ANN and ANFIS models. 33 
Based on the experimental results, the proposed ANFIS-PSO model demonstrates high potential as a robust 34 
alternative to the actual oedometer test to assist geotechnical engineers in the introductory stage of civil 35 
engineering projects. 36 
 37 
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1. Introduction 50 

The accessibility and development of a nation's infrastructural facilities have a substantial impact on its 51 

growth and advancement. These facilities are important drivers of economic growth and aid in the reducing 52 

poverty in the country [1]. As a result of the rapid rise of industrialization and urbanization, there is a constant 53 

demand for engineering and construction research and innovation [2]. The development of infrastructure facilities, 54 

particularly in the field of transportation and related engineering, has seen a spectacular change in recent years. 55 

Generally, these facilities are built on the natural ground surface and require substantial investments. Also, it is 56 

pertinent to mention that the safety of an engineering structure cannot be ensured without considering the stability 57 

of the foundation, which is an element of a structure that transfers loads from the structure into the ground. Hence, 58 

a detailed analysis of the safety and serviceability of structures, such as safe bearing capacity, swelling potential, 59 

and settlement of soils, is required. For these reasons, estimating the settlement beneath any foundations is a 60 

critical aspect of the foundation design in geotechnical engineering discipline [3–5].  61 

In geotechnical engineering, stresses on soils due to structural loads lead to an increment in stress in the soil 62 

layers, causing settlement. The major responsibility of geotechnical engineers is to compute the amount of 63 

expected settlement for the safety and reliability of the foundation [6]. Compressibility characteristics of soil 64 

deposits under the applied load play a key role in settlement analysis. In general, the compressibility of soil is 65 

defined as the volume loss under pressure caused by pore water drainage [7]. The compression index (Cc), 66 

coefficient of consolidation, and coefficient of compressibility are essential parameters of soil compressibility 67 

characteristics; among which, Cc is frequently utilized for direct settlement estimation beneath the foundation. 68 

The determination of compressibility parameters, such as Cc, is usually obtained from the consolidation test 69 

performed on an undisturbed soil sample collected from sites. Subsequently, the amount of settlement of soil/sub-70 

soils is calculated based on the values of Cc [7]. 71 

An oedometer test is performed in the laboratory to determine the soil Cc, but requires a cumbersome and 72 

time-consuming operation [8,9]. Generally, because oedometer tests take at least 7 days to complete, the 73 

estimation of Cc would be possible only after a week. Besides, specific laboratory equipment, experienced 74 

engineers, and highly-skilled lab technicians are required to attain reliable results [7]. In addition, high-quality 75 

and undisturbed clay specimens are required for the oedometer tests. Therefore, to circumvent these difficulties, 76 

numerous attempts have been made to estimate Cc by utilizing basic physical properties of soils, such as liquid 77 

limit (LL), initial void ratio (e0), void ratio (e), natural moisture/water content (NMC/NWC), specific gravity (Gs), 78 

plasticity index (IP), etc. [10–14]. Numerous empirical models have been developed based on conventional 79 

statistical analysis (i.e., simple and multiple linear regressions); however, a close examination of the existing 80 

models reveals that their applicability is limited, highlighting significant modelling drawbacks [7]. On the other 81 

hand, soils are vastly heterogenic in nature and possess nonlinear stress-strain relationships under different loading 82 

conditions [9]. Traditional empirical formulations fall short of describing the predictive relationship between Cc 83 

and physical properties of soil. Hence, smart and intelligent approaches are required to estimate the values of soil 84 

Cc based on soil parameters that are normally determined when the samples are brought into the laboratory.  85 

Recent studies have resorted to advanced soft computing techniques as potential alternatives to predict Cc of 86 

soils. Soft computing techniques, offering competence in nonlinear modelling, capture the structure of a model 87 

by learning from existing data and simulating complicated processes [9,15–19]. In geotechnical engineering, the 88 

use of various soft computing techniques is increasing, such as adaptive neuro-fuzzy inference system (ANFIS), 89 
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artificial neural network (ANN), backpropagation multi-layer perceptron neural network (BP-MLP), radial basis 90 

function neural network (RBF-NN), Bayesian regularization neural network (BRNN), Levenberg-Marquardt 91 

ANN (LM-ANN), gene expression programming (GEP), multi-expression programming (MEP), multi-variate 92 

adaptive regression splines (MARS), genetic programming (GP), multi-gene genetic programming (MGGP), 93 

extreme learning machine (ELM), Gaussian process regression (GPR), random forest (RF), regression tree (RT), 94 

support vector machine/regression (SVM/SVR), and so on [1,7,9,20–35][36].  95 

In geotechnical engineering practice, determining the Cc of soils is an essential criterion for analysing the 96 

settlement of soil and sub-soil layers. Over the last decade, multiple machine learning (ML) models, including 97 

ANFIS [35], ANN/BP-MLP/RBF-NN/BRNN/LM-ANN [1,7,9,21,29,31,34,35,37–39], GP/GEP/MEP/MGGP 98 

[7,20,33,39–41], GPR [9], RF [9,41], and SVM/SVR [9,34,35], have been employed to build prediction models 99 

for soil Cc based on existing experimental datasets. Several researchers [1,7,9,21,29,31,34,35,37–39,42] have 100 

attained varying levels of accuracy using ANN-based models, ranging from 0.6464 to 0.9610 in the training phase 101 

and 0.5625 to 0.9580 in the testing phase, based on R2 (determination coefficient) value. Bardhan et al. [41], 102 

Benbouras et al. [39], Mohammadzadeh et al. [7,33,40], and Bourouis et al. [20] used GP-based models (i.e., 103 

GP/MEP/MGGP/GEP) to predict soil Cc and obtained varied accuracy levels in the range of 0.0574 to 0.9966 104 

(based on R2 value). In addition, regression-based ML models (such as GPR, SVM/SVR, etc.) and tree-based 105 

models (e.g. RF and RT) have also been utilized for predicting soil Cc [34,35,42,43]. The details of earlier studies 106 

on soil Cc prediction are given in Table 1, which includes the types of employed models, number of the dataset 107 

used, and accuracies attained in training and testing phases.  108 

It is worth noting that the majority of these predictive models were developed using conventional ML (CML) 109 

models, including ANFIS, ANN, and regression-based ML models, as shown in Table 1. In many cases, higher 110 

predicted accuracies between 0.6780 and 0.9890 based on R2 value were attained [7,9,21,31,32,35,37]. However, 111 

because the models were constructed and corroborated with small datasets (the cumulative number of samples 112 

was less than 250), these studies cannot be considered particularly credible (see Table 1 for related studies). Also, 113 

the predicted accuracy of CML models decreased with larger datasets (the number of datasets in the range of 700 114 

to 947), and prediction performance ranged between 0.7600 and 0.8850 based on R2 value. Herein, the model’s 115 

performance obtained in the testing phase is examined and reported. The lack of a diverse set of input parameters, 116 

complicated data types, and inappropriate training of ML algorithms could all contribute to the decrease in 117 

accuracy. Overfitting is also a major concern for the success rate of CML methods, which could be one reason for 118 

reduced accuracy.  Due to their inability to reach the exact global optimum, certain CML models, such as ANN, 119 

yield poor outcomes and are more likely to get stuck in local minima, resulting in erroneous results [41,44,45]. 120 

To address these challenges, researchers have employed many hybrid models that combine optimization 121 

algorithms (OAs) and CML techniques to identify the actual global optimum rather than local minima [44,45]. 122 

Integration of OAs and CML techniques balances the exploration and exploitation (E&E) processes and generates 123 

optimum learning parameters, which are then used to improve the performance of CML models. Multiple OAs, 124 

namely particle swarm optimization (PSO) [41,45], biogeography-based optimization (BBO) [46], grey wolf 125 

optimizer (GWO) [47], artificial bee colony (ABC) [48], imperialist competitive algorithm (ICA) [45], genetic 126 

algorithm (GA) [48], and so on [26], have been successfully employed to optimize the learning parameters of 127 

CML algorithms. A study performed by Ojha et al. [49] showed an increasing trend of integrating feed-forward 128 

neural networks and meta-heuristic optimizer in complex process modelling. Moreover, recent literature exposes 129 
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the that hybrid ANN and ANFIS models are highly suitable for predicting the desired output. Successful 130 

application of several ANN and ANFIS-based hybrid models, namely ANN-PSO, ANFIS-PSO, ANN-BBO, 131 

ANFIS-BBO, ANN-GA, ANFIS-GA, ANN-ICA, and ANN-GWO, has been demonstrated in predicting fly-rock 132 

distance resulting from blasting [45], axial load-carrying capacity of concrete-filled steel tubes [46], compressive 133 

strength of normal and high-performance concretes [47], heating and cooling loads on buildings [48], mapping 134 

the spatial distribution of soil texture fractions [50], spatial modelling of soil electrical conductivity [51]. soil 135 

electrical conductivity [52], soil moisture [53], and so on. 136 

Recently, Bui et al. [9] proposed a new approach by integrating the MLP neural nets and PSO (PSO-MLP 137 

neural nets) to estimate Cc of soils, utilizing 154 tests data collected from a high-rise building project in Vietnam. 138 

The authors obtained an accuracy of 95.70% (R2 = 0.9570) in the training phase, which dropped to 88.40% (R2 = 139 

0.8840) in the testing phase with the same input parameters. Samui et al. [42] integrated artificial bee colony 140 

(ABC) and the Levenberg-Marquardt (LM) algorithm of ANN and developed two hybrid models, namely ABC-141 

LM-ANN and ABC-ANN, to estimate the Cc of soils for a housing construction project. Bourouis et al. [20] 142 

applied NN-PSO for predicting the secondary Cc of fine-grained soils. Based on the results, the authors concluded 143 

that the employed NN-PSO could attain a good agreement between the observed and predicted values. Recently, 144 

Bardhan et al. [41] used ANN and ELM-based hybrid models, namely hybrid models of ANN and PSO (ANN-145 

PSO), ANN and equilibrium optimizer (ANN-EO), ANN and Harris hawks optimization (ANN-HHO), ANN and 146 

slime mould algorithm (ANN-SMA), ANN and marine predators algorithm (ANN-MPA), ELM and PSO (ELM-147 

PSO), ELM and EO (ELM-EO), ELM and HHO (ELM-HHO), ELM and SMA (ELM-SMA), and ELM and MPA 148 

(ELM-MPA), to predict the Cc of soils. The details of the above-mentioned studies on soil Cc prediction are also 149 

presented in Table 1.  150 

A detailed review of the literature reveals that none of the previous studies employed hybrid models to predict 151 

Cc of soils, except Bui et al. [9], Samui et al. [42], Bourouis et al. [20], and Bardhan et al. [41]. In addition, in-152 

depth assessment of hybrid ANN and ANFIS models constructed with a specific group of OAs has not been 153 

investigated for predicting the Cc of soils. Also, no comprehensive evaluation of hybrid models has been 154 

performed to address the stochastic nature of OAs in hybrid modelling. Thus, the current study is an attempt to 155 

fill this gap in the literature for predicting Cc of soils utilizing hybrid ANN and ANFIS models optimized with 156 

multiple swarm intelligence (SI) algorithms. Among the developed SI algorithms, ten OAs, namely PSO, ant 157 

colony optimization (ACO), ABC, GWO, moth-flame optimization (MFO), ant-lion optimizer (ALO), whale 158 

optimisation algorithm (WOA), salp swarm algorithm (SSA), SMA, and MPA, were selected and employed to 159 

optimize the learning parameters of ANN and ANFIS. Accordingly, 20 hybrid models, including ANN-PSO, 160 

ANN-ACO, ANN-ABC, ANN-GWO, ANN-MFO, ANN-ALO, ANN-WOA, ANN-SSA, ANN-SMA, ANN-161 

MPA, ANFIS-PSO, ANFIS-ACO, ANFIS-ABC, ANFIS-GWO, ANFIS-MFO, ANFIS-ALO, ANFIS-WOA, 162 

ANFIS-SSA, ANFIS-SMA, and ANFIS-MPA, were constructed to perform a comparative assessment of hybrid 163 

ANN and ANFIS models for predicting the Cc of soils. 164 

To develop and validate the proposed hybrid models, a sum of 700 oedometer test data, including 12 165 

influencing factors, was acquired from an Indian Railways (IR) dedicated freight corridor (DFC) project. In 166 

addition, 30 new experiments were executed at the geotechnical engineering laboratory of the National Institute 167 

of Technology Patna (NIT Patna) for the external validation of the developed models in predicting soil Cc. Per the 168 
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authors’ knowledge, this study is the pioneer work to use both hybrid ANN and ANFIS models to estimate soil 169 

Cc, which is one of the most critical real-time challenges in the field of geotechnical engineering. 170 

 171 
Table 1. A summary of earlier studies. 172 

Earlier studies reference Dataset 

used 

Model 

employed 

R2 (TR/TS) Soil parameters used as input variables 

(full from given in the table footnote)  

Conventional models     

Alam et al. [38] 391 ANN 0.7600/0.7200 In-11, In-13, In-19, In-20 

Bardhan et al. [41] 695 GP 0.9388/0.9305 In-1, In-2, In-4 – In-6, In-11 – In-13, In-26 – In-29  

 695 RF 0.9152/0.9124 In-1, In-2, In-4 – In-6, In-11 – In-13, In-26 – In-29  

 695 GBM 0.8805/0.8679 In-1, In-2, In-4 – In-6, In-11 – In-13, In-26 – In-29 

Benbouras et al. [39] 373 ANN 0.6464/0.5625 In-7, In-11, In-13, In-14 – In-16 

 373 GP 0.6058/0.0574 In-11, In-13, In-14 – In-16 

Bourouis et al. [20] 203 MGGP 0.9966** In-19, In-20, In-25 

Bui et al. [9] 154 BP-MLP 0.9350/0.8620 In-1 – In-3, In-5, In-7, In-9, In-11 – In-14, In-23, In-24 

 154 RBF-NN 0.8420/0.6780 In-1 – In-3, In-5, In-7, In-9, In-11 – In-14, In-23, In-24 

 154 RF 0.9900/0.8040 In-1 – In-3, In-5, In-7, In-9, In-11 – In-14, In-23, In-24 

 154 GPR 0.9040/0.7970 In-1 – In-3, In-5, In-7, In-9, In-11 – In-14, In-23, In-24 

 154 SVR 0.8810/0.7770 In-1 – In-3, In-5, In-7, In-9, In-11 – In-14, In-23, In-24 

Pham et al. [35] 189 ANFIS 0.9980/0.9570 In-1 – In-13  

 189 ANN 0.9080/0.9390 In-1 – In-13  

 189 SVM 0.9800/0.9890 In-1 – In-13  

Pham et al. [21] 189 ANN 0.9010* In-1 – In-9  

Kashefipour and Daryaee [31] 137 ANN 0.6700/0.7000 In-7, In-11, In-13, In-17, In-18 

Kolay et al. [1] 700 ANN -/0.7600 In-2, In-4 – In-7, In-11, In-13, In-19, In-26 – In-28, In-33 

Kurnaz et al. [32] 246 ANN 0.8926/0.8973 In-11, In-13, In-19, In-20 

Kurnaz and Kaya [34] 351 BRNN 0.9153/0.8887 In-11, In-13, In-19, In-20 

 351 ELM 0.8642/0.8898 In-11, In-13, In-19, In-20 

 351 SVM 0.9147/0.8761 In-11, In-13, In-19, In-20 

Majdi et al. [37] 150 ANN 0.9610/0.9580 In-2, In-6, In-11, In-13, In-19 – In-22  

Mohammadzadeh et al. [7] 108 ANN 0.8705/0.8593 In-11, In-12, In-20 

 108 MEP 0.8742/0.8118 In-11, In-12, In-20 

Mohammadzadeh et al. [33] 108 MGGP 0.8560/0.8400 In-11, In-12, In-20 

Mohammadzadeh et al. [40] 108 GEP 0.8231/0.8603 In-11, In-12, In-20 

Park and Lee [29] 947 ANN 0.8960/0.8850 In-6, In-7, In-11, In-13, In-19, In-30 – In-32 

Samui et al. [42] 441 LM-ANN 0.8730/0.8110 In-1 – In-3, In-5, In-7, In-9, In-11 – In-14, In-23, In-24 

 441 RT 0.9550/0.8100 In-1 – In-3, In-5, In-7, In-9, In-11 – In-14, In-23, In-24 

Hybrid models     

Bardhan et al. [41] 695 ANN-PSO 0.7454/0.6907 In-1, In-2, In-4 – In-6, In-11 – In-13, In-26 – In-29  

 695 ANN-EO 0.9504/0.9426 In-1, In-2, In-4 – In-6, In-11 – In-13, In-26 – In-29  

 695 ANN-HHO 0.6651/0.6361 In-1, In-2, In-4 – In-6, In-11 – In-13, In-26 – In-29  

 695 ANN-SMA 0.8995/0.9010 In-1, In-2, In-4 – In-6, In-11 – In-13, In-26 – In-29  

 695 ANN-MPA 0.9530/0.9352 In-1, In-2, In-4 – In-6, In-11 – In-13, In-26 – In-29  

 695 ELM-PSO 0.9543/0.9412 In-1, In-2, In-4 – In-6, In-11 – In-13, In-26 – In-29  

 695 ELM-EO 0.9720/0.9468 In-1, In-2, In-4 – In-6, In-11 – In-13, In-26 – In-29  

 695 ELM-HHO 0.9736/0.8749 In-1, In-2, In-4 – In-6, In-11 – In-13, In-26 – In-29  

 695 ELM-SMA 0.8232/0.9461 In-1, In-2, In-4 – In-6, In-11 – In-13, In-26 – In-29  

 695 ELM-MPA 0.9702/0.9475 In-1, In-2, In-4 – In-6, In-11 – In-13, In-26 – In-29  

Bourouis et al. [20] 203 NN-PSO 0.9980** In-19, In-20, In-25 

Bui et al. [9] 154 PSO-MLP 0.9570/0.8840 In-1 – In-3, In-5, In-7, In-9, In-11 – In-14, In-23, In-24 

Samui et al. [42] 441 ABC-LM-ANN 0.8600/0.8400 In-1 – In-3, In-5, In-7, In-9, In-11 – In-14, In-23, In-24 

 441 ABC-ANN 0.8210/0.7920 In-1 – In-3, In-5, In-7, In-9, In-11 – In-14, In-23, In-24 

Note: In-1 = Depth of sample; In-2 = clay content; In-3 = moisture content; In-4 = bulk density; In-5 = dry density; In-6 = specific gravity; In-7 = void ratio; 

In-8 = porosity; In-9 = liquidity index; In-10 = degree of saturation; In-11 = liquid limit; In-12 = plastic limit; In-13 = plasticity index; In-14 = wet density; In-

15 = water content; In-16 = fine content; In-17 = primary soil water content; In-18 = relative density; In-19 = natural water/moisture content; In-20 = initial void 

ratio; In-21 = natural unit weight; In-22 = shear wave velocity; In-23 = sand percentage; In-24 = loam percentage; In-25 = vertical stress; In-26 = gravel content; 

In-27 = sand content; In-28 = silt content; In-29 = free swell index; In-30 = weight percentage of grain size larger than 0.075 mm; In-31 = weight percentage of 

grain size between sieve 0.075 mm and 0.005 mm; In-32 = weight percentage of grain size less than 0.005 mm; and In-33 = Pre-consolidation pressure. 

* Reported average value; ** overall/partly/performance reported; TR = training phase; TS = testing phase 

 173 
The rest of this paper is structured as follows. Section 2 describes the literature review and the research 174 

significance. The study area is described in section 3, which is followed by a discussion on the background of 175 

meta-heuristic OAs and brief overview of the employed OAs in section 4. The theoretical background of ANN, 176 

ANFIS, and optimization procedure are presented in section 5. Section 6 presents the descriptive statistics of the 177 

collected dataset, and section 7 discusses the data processing, analysis, and performance parameters. Section 8 178 

reports the experimental results, comparative analysis, external validation, and monotonicity analysis, which is 179 

followed by a summary and conclusion in the final section. 180 

 181 

  182 
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2. Literature review and research significance 183 

Over the decades, various attempts have been undertaken to establish empirical relationships between Cc and 184 

various soil parameters [10–14]. These empirical equations are widely used by practitioners to save the time of 185 

actual oedometer tests. Nonetheless, as stated above, these empirical models possess notable modelling drawbacks 186 

since soils exhibit extremely complicated behaviour due to their non-linear stress-strain relationships and 187 

elastoplastic performance under diverse loading conditions. Thus, such empirical equations cannot be considered 188 

very suitable for determining soil Cc utilizing index properties of soils [7,9]. 189 

Several conventional/standalone ML techniques for estimating soil Cc have been developed in the last decade. 190 

For instance, Alam et al. [38] used ANN to model the Cc soil using 391 datasets with LL, IP, NWC, and e0. Bardhan 191 

et al.  [41] used GP, RF, and GBM to relate Cc of fine-grained soils utilizing 695 experimental results and attained 192 

accuracy in the range of 86.79% – 93.88%, based on R2 value. The authors [41] used depth of soil sample, particle 193 

sizes, bulk and dry density, Gs. LL, PL, IP, and free swell index as the input parameters. Benbouras et al. [39] 194 

applied ANN and GP for 373 datasets and Bourouis et al. [20] used MGGP for 203 datasets. Bui et al. [9] used a 195 

total of 154 datasets featuring 12 influencing factors and developed BP-MLP, RBF-NN, RF, GPR, and SVR 196 

models for soil Cc. The authors achieved accuracy levels ranging from 67.80% – 99%. Using 189 consolidated 197 

test data, Pham et al. [21,35]  employed ANN, ANFIS, and SVM to estimate soil Cc and reported greater accuracy 198 

levels in both the training and testing phases. Kashefipour and Daryaee [31] investigated fine-grained soils and 199 

found that the ANN predicted Cc better than the Rendon-Herrero formula. Kolay et al. [1], Kurnaz et al. [32], 200 

Majdi et al. [37], and Park and Lee [29] employed ANNs to relate Cc of various soils depending on their physical 201 

properties. Kurnaz and Kaya [34] compared the ELM, SVM, and BRNN approaches and found that the BRNN 202 

method predicts Cc better than the ELM and SVM methods. Mohammadzadeh et al. [7,33,40] used ANN and GP-203 

based approaches (such as MEP, MGGP, and GEP) for relating soil Cc based on LL, PL, and e0. Samui et al. [42] 204 

used a total of 441 datasets and developed LM-ANN and RF models. The authors achieved 87.30% – 95.50% and 205 

81.1% – 81% accuracy in the training and testing phases, respectively, based on the findings. 206 

On the other hand, Bardhan et al. [41] used a combination of Principal component analysis (PCA)-based 207 

hybrid ANN and ELM models to develop a high-performance soil Cc prediction model. To train and validate the 208 

hybrid ANNs and ELMs, Bardhan et al. [41] used a total of 695 consolidation test results featuring different soil 209 

properties. The authors concluded that the ELM-MEO is a promising alternative for predicting soil Cc based on 210 

the findings. Bourouis et al. [20] and Bui et al. [9] used PSO to develop hybrid NNs. Samui et al. [42] selected a 211 

large-scale real-life urban project (Hai Phong city, Vietnam) as a case study and produced two hybrid models, 212 

namely ABC-LM-ANN and ABC-ANN. Based on the findings, the authors [42] showed that the developed ABC-213 

LM-ANN attained 86% and 84% (R2 = 0.86 and 0.84) accuracy in the training and testing phases, respectively. 214 

The aforementioned discussion has been summarized in Table 1. 215 

In recent years, hybrid computational modelling has exploded in popularity among researchers from various 216 

engineering fields. However, the use of hybrid models constructed with a specific group of OAs has not been 217 

examined for estimating the Cc of soils. In addition, the accuracy of hybrid models has not been thoroughly 218 

assessed to estimate the desired outcomes, including soil Cc. Taking this into consideration, this work was driven 219 

by a desire to fill gaps in the literature. A comparative analysis of hybrid ANN and ANFIS models constructed 220 

with swarm intelligence algorithms was performed followed by experimental validation. Moreover, two distinct 221 

combinations of soil parameters (based on grain size distribution analysis) were investigated to ensure the 222 
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effectiveness of silt and clay particles on soil Cc. At the end, the most efficient hybrid model was identified for 223 

predicting the Cc of soils. 224 

 225 

3. Study area 226 

To meet the volume of freight demand in India, the Ministry of IR has planned to build over a 10,122-km 227 

DFC route under the Golden Quadrilateral Corridor (GQC) [54]. There are currently 6 DFCs under the GQC, and 228 

the proposed rail networks will join the four largest cities of Chennai, Delhi, Kolkata, and Mumbai, along with 229 

two diagonals North-South DFC (Delhi-Chennai) and East-West DFC (Kolkata-Mumbai). Presently, two DFCs, 230 

the western DFC (WDFC) and eastern DFC (EDFC), are under construction. In this work, the Iqbalgarh-Vadodara 231 

section, a 340-km long (final length may be changed at the time of completing the project) portion of WDFC, was 232 

selected as the study area. Fig.  1 shows the geographical location of the study area along with the route layout of 233 

the Iqbalgarh-Vadodara section. The entire Iqbalgarh-Vadodara section will pass through the state of Gujarat, 234 

India (see Fig.  1). 235 

 236 

  
Fig.  1. Geographical layout of the study area. 

 237 
WDFC is a 1506-km long (final length may be changed at the time of completing the project) railway freight 238 

corridor that will begin in Dadri in the state of Uttar Pradesh and will terminate in Jawaharlal Nehru Port near 239 

Navi Mumbai, India. As mentioned, the Iqbalgarh-Vadodara section, which is currently under construction, was 240 

selected for this study. A sum of 700 oedometer test results was acquired from the mentioned section for predicting 241 

soil Cc. Besides consolidation test data, sub-soil data, grain size analysis results, plasticity characteristics, and 242 

other basic soil parameters were also collected. 243 

 244 
4. Overview of optimization algorithms 245 

The rising complexity and difficulty of real-world issues has necessitated the use of optimization techniques, 246 

particularly meta-heuristic OAs, in recent decades. These methods are primarily stochastic and are utilized to 247 

estimate optimal solutions to a variety of linear and non-linear optimization problems. By reducing or maximizing 248 

the objective function of a problem, the optimization method identifies the optimal decision variables. Because of 249 

their simplicity and ease of implementation, meta-heuristic OAs have been devised and used as competing 250 

alternative solvers for the problem at-hand [55,56]. 251 

In general, there are two sorts of meta-heuristic OAs: population-based (p-based) and single solution-based. 252 

As the name implies, the p-based OA evolves a set of solutions in each iteration of the optimization process, 253 

whereas the single solution-based OA processes only one solution during the course of optimization. The majority 254 

of p-based meta-heuristic algorithms are centred on natural occurrences. These algorithms begin the optimization 255 
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process by creating a population of individuals, each of which represents a potential solution to the optimization 256 

problem. The population will iteratively evolve by replacing the present population with a freshly created 257 

population using stochastic operators. The optimization process is carried out until the stopping criteria are met. 258 

 259 
Fig.  2. 

Classification 

of meta-

heuristic 

OAs. 

 
 260 
The p-based meta-heuristic OAs can be divided into four categories based on their inspiration: (a) 261 

evolutionary algorithms (EAs), (b) human-based algorithms, (c) physics-based algorithms, and (d) swarm 262 

intelligence (SI) algorithms. Among these groups, the EAs mimic biological evolutionary behaviours, such as 263 

recombination, mutation, and selection. The GA [57] is the most common EA, as it models Darwin's theory of 264 

evolution. The BBO [58], differential evolution (DE) [59], evolutionary programming (EP) [60], evolution 265 

strategy (ES) [61], and GP [62] are examples of EAs. The second category of OA is human-based approaches, 266 

which are inspired by human collaboration and community behaviour. The ICA [63], which is inspired by human 267 

socio-political growth, is one of the most widely utilized algorithms in this group and includes soccer league 268 

competition (SLC) [64], teaching-learning-based optimization (TLBO) [65], and volleyball premier league (VPL) 269 

[66]. The physical laws motivate physics-based algorithms, such as Big-Bang Big-Crunch (BBBC) [67], central 270 

force optimization (CFO) [68], gravitational search algorithm (GSA) [69], gradient based optimizer (GBO) [70], 271 

and simulated annealing (SA) [71]. The SI algorithms are the final category of p-based meta-heuristic algorithms 272 

that mimic the social behaviours of organisms living in swarms, flocks, and herds. Examples of SI algorithms 273 

include ABC [72], ALO [73], GWO [74], HHO [75], MFO [76], MPA [77], PSO [78], SSA [79], SMA [80], 274 

WOA [81], and so on . Fig.  2 displays the different groups of meta-heuristic OAs as discussed above. 275 

In the present study, ten different SI algorithms, namely PSO, ACO, ABC, GWO, MFO, WOA, SSA, HHO, 276 

SMA, and MPA, have been used to construct hybrid ANN and ANFIS models. In the following sub-sections, a 277 

short discussion on these OAs is presented. 278 

 279 
  280 
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4.1. Particle swarm optimization (PSO) 281 

Kennedy and Eberhart [78] presented PSO as a member of the swarm-based community in 1995, which was 282 

motivated by the flocking and schooling habits of fish and birds. The main objective of PSO is to discover global-283 

optimal solutions in a multidimensional environment. PSO starts by implementing the random speeds and 284 

locations of objects, which each adjusts its position to pick the appropriate status in a multidimensional 285 

environment depending on its speed, personal best position, and global best position. The best position obtained 286 

by individual particles is proven to be the ideal global status, while the preferred option attained by the particle is 287 

found to be the ideal personal position. The position of the particle becomes modified based on its best personal 288 

position and the orientation of the best global location. Meanwhile, the speeds of the objects are adjusted 289 

depending on the discrepancy between their best personal position and the best global place. Through a 290 

combination of E&E, the particles converge together around the optima. The acceleration coefficients, c1 291 

(cognitive coefficient) and c2 (social coefficient) with fixed values of 1 and 2, respectively, are dependent on the 292 

issue and demonstrate the confidence level of an element compared to its personal and global status. The detailed 293 

working principle of PSO can be obtained from previous studies [9,48]. 294 

 295 

4.2. Ant colony optimization (ACO) 296 

ACO is a meta-heuristic method for solving NP-hard problems that, as the name implies, mimics the genuine 297 

and natural behaviour of ants in nature [82]. When ants discover food, they leave chemical trails called 298 

pheromones on the path back to their colony, which aids other inhabitants of the colony to locate food resources. 299 

Other members are more inclined to pursue the trail rather than searching for food at random, then also spread 300 

pheromones upon locating the food supply. The pheromones dissipate over time, and the trail vanishes, whereby 301 

the longer the route, the more difficult it is to maintain the route to the food. As a result, the strength of the 302 

pheromone deposits on the shortest route is progressively increased to the degree that is regulated with 303 

evaporation. This rise and reduction in pheromone quantity on a certain route entice the ants to follow that path. 304 

This natural behaviour is exploited in the ACO algorithm by taking into account a set of parameters that represent 305 

the continually adjusting pheromone values dependent on the merit of the obtained solutions. ACO's basic 306 

approach is to discover a method that proceeds by building an incremental solution according to the algorithm's 307 

specified route, whereby the pheromone's probabilistic solution choice determines the route. 308 

 309 

4.3. Artificial bee colony (ABC) 310 

Karaboga and Basturk [72] created the ABC optimization algorithm with the social structure of bees in mind. 311 

In ABC, every bee is seen as a basic component that are combined to create a bee colony. The resulting colony 312 

displays a coherent and sophisticated behaviour and provides an interconnected system to find and investigate 313 

flowers' nectar. A colony is comprised of three types of bees: scouts, employed workers, and observer bees, each 314 

with a specific function. Scout bees are in charge of discovering new sources and will search the surrounding area 315 

at random. When they find to a new food source, they remember it. When scout bees return to the hive, they 316 

perform a waggle dance with the other bees to communicate the food supply information, then some scout bees 317 

are recruited to seek the source. Employed bees are responsible for reusing old sources of food. Onlooker bees 318 

wait for other bees to communicate information with them via the waggle dance and then choose a source based 319 

on the bees' exploratory response efficiency. 320 
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 321 

4.4. Grey wolf optimizer (GWO) 322 

GWO [74] is a nature-inspired optimization algorithm that mimics the strict plural hierarchy of grey wolves 323 

whose main behaviour is hunting. GWO includes a couple of males and females, whereby the best solution is 324 

recognised as the α (alpha) group that makes main decisions like hunting. The β (beta) wolves are the second 325 

level, which participate in making a decision and following the alpha wolves. The beta can be females, help in 326 

flock adjustment, and are the best candidates for substitution of a dead or old alpha wolf. The third level of wolves 327 

is δ (delta) wolves, which are responsible for sentinels and scouts and employ in the hunt. The final group of 328 

individuals, ω (omega), is recognized as the weakest level and is responsible for watching younger wolves. Muro 329 

et al. [83] presented grey wolf hunting method of three levels: (a) identifying, pursuing, and closing in on the 330 

target; (b) surrounding the target; and (c) rushing the target. These two various social behaviours are regarded in 331 

the GWO algorithm. In the modelling step of the mentioned algorithm, α (alpha) is the fittest solution, then β 332 

(beta), δ (delta), and ω (omega) are suitable solutions in the next steps. The original study of Mirjalili et al. [74] 333 

can be referred for detailed descriptions of GWO. 334 

 335 

4.5. Moth flame optimization (MFO) 336 

MFO is a nature-inspired meta-heuristic algorithm used to solve optimization problems [76], which is 337 

inspired by the travelling behaviour of moths at night with their backs to the moon. Throughout their flight, moths 338 

are frequently caught by artificial lights like a flame, lamp, or bulb. To solve this challenge, moths use a spiral 339 

approach to approach the flame, known as the optimization technique of moths. They can traverse in 1D, 3D, and 340 

hyper-plane dimensional space by varying locations. As a population-based approach, MFO uses 3-tuple to 341 

estimate the global optimum of the issue at-hand. The first step is to initialize the population, followed by the 342 

primary function, which transfers the moths across the search area, and finally the halting the function yields true 343 

if the ending condition is fulfilled and yields false otherwise. Because the moth must find fame in the search area, 344 

the moth's location concerning fame is critical. 345 

 346 

4.6. Whale optimization algorithm (WOA) 347 

WOA is a newly developed optimization algorithm that mimics the natural hunting behaviour of humpback 348 

whales [81]. Based on Watkins and Schevill [84], the most remarkable aspect of humpback whales is their unique 349 

hunting strategy, known as the bubble-net feeding method. The little fish near the surface are known as humpback 350 

whales. As shown in Figure 4, the hunting process is finished when several unique bubbles are formed along a 351 

nine-shaped or a circular route. The behaviour mentioned above was investigated in 2011 and prior to that, based 352 

on surface observations. Nonetheless, Goldbogen et al. [85] performed a distinct study using tag sensors. In the 353 

novel inquiry approach, they gathered 300 tag-derived bubble-net feeding episodes of nine distinct humpback 354 

whales and developed two new bubble motion plans, namely upward spirals and double loops. Specifically, 355 

humpback whales generate bubbles in a spiral form all around prey then swim toward the top in the preceding 356 

movement plan. The novel movement plan consists of three distinct steps: coral loop, lobtail, and capture loop, 357 

about which further information and behaviour descriptions can be found in the literature [81,85]. It is vital to 358 

emphasise that bubble-net feeding is a distinct activity seen exclusively in humpback whales. 359 

 360 
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4.7. Salp swarm algorithm (SSA) 361 

Mirjalili et al. [79] proposed SSA by mimicking translucent water invertebrates called salps, or salp chain, 362 

that forage in a swarming fashion. The algorithm is built on a leader-follower connection, where the leader adjusts 363 

its position depending on the position of the best food. The mathematical model of SSA is divided into three 364 

sections: salps are allocated in random places in the first phase; the salp with the lowest fitness value and closest 365 

to the food supply is designated as the leader in the next step, while the others are designated as followers; then 366 

the position is updated in the following step. The leader shifts its position in relation to the best global solution 367 

and explores better options. The follower salps update their location in rank towards the leader, and the iterations 368 

continue until the termination condition, or the maximum number of iterations is met. 369 

 370 

4.8. Harris hawks optimization (HHO) 371 

HHO is a unique SI-based optimization approach presented by Heidari et al. [75] that relates the hunting 372 

behaviour of Harris hawks to mathematical computer systems. A community of Harris hawks assaults the prey 373 

(typically rabbits) in numerous directions and adopts various dynamic and sophisticated strategies adapting to the 374 

prey's fleeing pattern, resulting in bewildered and tired prey. The algorithm is divided into three steps. The 375 

exploring phase is the initial step of waiting, searching, and discovering, in which the birds represent potential 376 

solutions to the chosen challenge. The second step is the change from exploration to exploitation, which is 377 

determined by the type and energy of the prey. During the exploitation process, the third step, the identified prey 378 

is assaulted by surrounding and laid besieged from numerous directions. Depending on the prey's energy 379 

determined in the second stage, the besiege could be mild or severe. 380 

 381 

4.9. Slime mould algorithm (SMA) 382 

SMA is a recently-developed nature-inspired meta-heuristic OA [80] that considers the mathematical 383 

simulating modelling of slime mould propagation waves while making the best path for connecting foods. Owing 384 

to their unique characteristic and pattern, slime mould, a eukaryotic organism found in nature, simultaneously 385 

uses several food sources in order to create a venous network for their connection. Slime mould can grow up to 386 

lengths greater than 900 cm2 if sufficient food exists in the environment. When a vein obtains a source of food, 387 

the bio-oscillator creates a spreading wave, which enhances the cytoplasmic flow into the vein, causing the vein 388 

to become thicker by increasing the speed of cytoplasm flow. Regarding these positive and negative responses, 389 

the slime could form the optimal path for food connection in a relatively greater way. Thus, slime mould has also 390 

been modelled mathematically and used in path networks and graph theory, in which the procedure of creating 391 

positive and negative responses through the wave propagation is simulated. Slime mould also could adjust their 392 

patterns of dynamic search based on the provenience of foodstuff quality. This procedure is implemented in 393 

various engineering optimization problems. The two major levels in the slime mould algorithm are: (a) obtaining 394 

food following that the behaviour of slime to acquire food according to its odour in the air; and (b) warp foodstuff 395 

in which the slime behaviour in performing contraction of its venous configuration. Detailed information and the 396 

working principle of SMA can be found in the original work of Li et al. [80]. 397 

 398 

  399 
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4.10. Marine predators algorithm (MPA) 400 

In MPA, the optimization process can be divided into three major stages based on the velocity ratio as well 401 

as imitating patterns of prey and predator [77]. These stages depend on the velocity of movements of prey to flee 402 

from predators: high-velocity ratio, unit velocity ratio, as well as a low-velocity ratio. Every phase in MPA is 403 

outlined and allocated a certain iteration interval and are characterized by the laws that govern predator and prey 404 

movement. Throughout phase 1, the prey moves quicker than the predator, resulting in a greater velocity ratio, 405 

which generally happens during the first iteration when experimentation is more crucial. Even though the velocity 406 

ratio is more than 10, the optimum option for the predator in this scenario is to remain motionless. In phase 2, 407 

both the predator and prey travel simultaneously to find their food, thus this phase is often referred to as the unit 408 

velocity ratio. The move from E&E happens during this stage, which is considered the intermediate phase of 409 

optimization. Therefore, E&E occur during this period, whereby half of the population is assigned for exploration 410 

and the remaining population is designated for exploitation. Significantly, the prey is in charge of exploitation, 411 

while the predator is in charge of exploration. Per the unit velocity ratio (v ≈ 1), if the prey exhibits Lévy motion, 412 

the Brownian movement would be optimal for the predator to attack the prey. The low-velocity ratio is visible in 413 

phase 3 because the predator travels faster than the prey to attack it. This low-velocity ratio (v = 0.1) demonstrates 414 

the predator's excellent exploitation capabilities, wherein Lévy is the optimal tactic. The prey moves in Brownian 415 

motion during the first stage of the movement, then in Lévy motion during phase two. Each phase receives one-416 

third of the iterations, resulting in better-optimized outcomes than switching or repeating the approach. 417 

 418 

5. Theoretical background of ANN and ANFIS 419 

This section describes the theoretical background of ANN and ANFIS used in this research work. This is 420 

followed by the methodological development of the proposed hybrid ANN and ANFIS models for predicting Cc 421 

of soils. 422 

 423 

5.1. Artificial neural network (ANN) 424 

As a computational approach that is inspired by the structure of the human brain, ANN is comprised of small 425 

and simple processing units known as artificial neurons or nodes. By harnessing this structure, ANN has become 426 

an effective mathematical tool for different purposes, such as pattern recognition and function approximation. 427 

ANN is made up of three layers in which neurons are located (see Fig.  3). The first layer and last layer of ANNs 428 

are called the input and output layers in which the number of neurons is equal to the number of the input and 429 

output variables of the problem, respectively. Between these two layers, there are one or more layers known as 430 

hidden layers, which are the computational engine of the network. Two essential parameters in the ANN are 431 

weights and biases. Interconnected relationships between neurons of a layer are indicated by weights, and the 432 

degree of freedom for the networks is determined by biases. With the exception of the input nodes, each node uses 433 

a nonlinear activation function term as a transfer function in order to determine the output of that node, providing 434 

a set of inputs.  435 

Then, these outputs are employed as input for the next node, and so on, until a suitable solution is found to 436 

the original problem. The most predominant types of activation functions are the sigmoid, linear, and hyperbolic 437 

tangent functions. In order to compute the error of comparing the actual outcome, i.e., the target of the problem, 438 

and the predicted outcome, i.e., the network’s outcome, a backpropagation algorithm is employed. This error is 439 
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then propagated back one layer at a time across the ANN structure, and the weights are changed based on their 440 

contribution to the error. Successful applications of ANNs can be found in the literature [19,48,86–92]. 441 

 442 

 
Fig.  3. Basic structure of ANN. 

 443 
5.2. Adaptive neuro-fuzzy inference system (ANFIS) 444 

ANFIS is a combination of ANN and a fuzzy inference system (FIS) introduced by Jang and Lee [93] for 445 

the purpose of surmounting the impediments of ANN and FIS. The ANFIS is based on fuzzy logic and rules, 446 

which are produced during the training process. As demonstrated in Fig.  4, FIS is comprised of five layers, 447 

whereby nodes in layers 1 and 5 are typical of the inputs and output, respectively. In the hidden layers, membership 448 

functions (MFs) and rules are represented as fixed and flexible nodes. The relation between the input and output 449 

is specified by ‘if-then fuzzy’ rules. The model then contains two fuzzy rules based on the form of ‘Takagi and 450 

Sugeno’ that can be represented as follows: 451 

 452 

 𝑹𝒖𝒍𝒆 𝟏: 𝑖𝑓 𝑥1 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑥2 𝑖𝑠 𝐵1, 𝑡ℎ𝑒𝑛 𝑓1 = 𝑝1𝑥1 + 𝑞1𝑥2 + 𝑟1 (1) 

 453 

 𝑹𝒖𝒍𝒆 𝟐: 𝑖𝑓 𝑥1 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑥2 𝑖𝑠 𝐵2, 𝑡ℎ𝑒𝑛 𝑓2 = 𝑝2𝑥1 + 𝑞2𝑥2 + 𝑟2 (2) 

 454 

where 𝑥1 and 𝑥2 are the two input variables; 𝑓 is the output variable; 𝐴1, 𝐵1, 𝐴2 and 𝐵2 stand for the linguistic 455 

labels; and 𝑝1, 𝑞1, 𝑟1 and 𝑝2, 𝑞2, 𝑟2 are the consequent and antecedent parameters. A brief discussion of each layer 456 

is presented below, while further details of ANFIS can be obtained from the literature [47,86]. 457 

Fuzzifying layer: Layer 1, in which neurons are considered as adaptive nodes that comprise premise 458 

parameters. 459 

Implication layer:  Layer 2, in which the neurons are labelled as Π1 and Π2 (see Fig.  4). In this layer, the 460 

output nodes (i.e., 𝑊1 and 𝑊1), which indicate the firing strength of a rule, are formed based on incoming signals. 461 

Normalizing layer: Layer 3, in which every neuron (labelled as N1 and N2) is a fixed neuron. The output is 462 

achieved according to the ratio of the 𝑖th rule’s firing strength over the summation of firing strength of all rules. 463 
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Defuzzifying layer: Layer 4, in which the neurons are categorized as adaptive neurons that contain 464 

consequence parameters. 465 

Combining layer: Layer 5, contains a single neuron adding up all the inputs. 466 

 467 

5.3. Methodological development of hybrid ANN and ANFIS models 468 

Recent studies in the engineering field have focused on augmenting the performance of CML algorithms 469 

through OAs, such as PSO, GA, GWO, ABC, etc. [45,94]. The amalgamation of CML and OAs aids in the search 470 

for the exact global minimum by optimizing the learning parameters of CML algorithms, which in turn produces 471 

more consistent results, especially in the testing phase [41,48]. The learning parameters of ANN include input 472 

weights, hidden biases, output biases, and output weights [86], while those of ANFIS are consequent and 473 

antecedent (C&A) parameters [48]. In this study, ten swarm intelligence OAs were used to optimize the learning 474 

parameters of ANN and ANFIS, and twenty hybrid models, namely ANN-PSO, ANN-ACO, ANN-ABC, ANN-475 

GWO, ANN-MFO, ANN-WOA, ANN-SSA, ANN-HHO, ANN-SMA, ANN-MPA, ANFIS-PSO, ANFIS-ACO, 476 

ANFIS-ABC, ANFIS-GWO, ANFIS-MFO, ANFIS-WOA, ANFIS-SSA, ANFIS-HHO, ANFIS-SMA, and 477 

ANFIS-MPA, were constructed to predict soil Cc. The optimization procedure includes the following steps: (a) 478 

initialization of ANN/ANFIS and selection of their hyper-parameters, i.e., activation function and the number of 479 

hidden neurons (NH) for ANN, and the number of FIS parameters for ANFIS (NFIS); (b) generation of learning 480 

parameters; (c) incorporation of OAs; (d) set terminating criteria; (e) training of algorithm using training dataset 481 

and generation of learning parameters through OAs; (f) final training of ANN/ANFIS; (g) check fitness value; 482 

and (h) selection of optimum values of optimized learning parameters based on the fitness value. After the 483 

development of optimized learning parameters, the constructed hybrid models were employed to predict the 484 

testing dataset. Note that, apart from the hyper-parameters of ANN and ANFIS, the deterministic parameters of 485 

OAs, such as number of swarm/particle size (NS), iteration count (k), inertia weight (w), upper and lower bounds 486 

(ub and lb), E&E parameters, and other parameters also play a vital role in constructing the hybrid models [45]. 487 

Therefore, they must be carefully calibrated during the optimization process [41,94]. The entire aforementioned 488 

hybridisation process is presented in Fig.  5, showing the steps for constructing hybrid ANN and ANFIS models 489 

in predicting soil Cc.  490 

 491 

 
Fig.  4. Basic structure of ANFIS. 
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6. Descriptive statistics of the collected dataset 493 

As stated above, a sum of 700 oedometer test data was acquired from a DFC project and used for estimating 494 

soil Cc. At the construction site, the investigation process was carried out at a depth of 0.5-32.75 m, and necessary 495 

soil samples were collected and tested by the executing agency. In total, there were 215 boreholes, from which 496 

samples of 6 different types of soils were collected and tested. Therefore, the collected dataset consists of 497 

oedometer test data of 6 different soils, namely CI (inorganic clay with intermediate plasticity), CL (inorganic 498 

clay with low plasticity), ML (low plasticity silt), ML-CL (clayey silt with low plasticity), SC (clayey sand), and 499 

SM-SC (silty sand with clayey sand) as per the Indian Standard Soil Classification System (ISSCS). Apart from 500 

the oedometer test results, i.e., the values of soil Cc, the depth of soil samples (D), details of grain size analysis, 501 

basic soil properties, and plasticity characteristics of soils, were also collected. The information extracted from 502 

the details of grain size analysis includes gravel content (G), content of coarse sand (CS), medium sand (MS), fine 503 

sand (FS), total sand (S), silt (M), clay (C), and total silt and clay (M&C). The basic soil parameters include bulk 504 

density (BD), dry density (DD), and specific gravity (Gs) of soils, whereas the plasticity characteristics of soils 505 

are PL and LL of soils. These parameters were used as the input information to predict the Cc of soils. Descriptive 506 

statistics of all the variables used in this study are given in Table 2. The frequency histograms as well as data 507 

distribution of the input soil parameters and soil Cc are shown in Fig.  6, from which the nature of experimental 508 

dataset i.e., type of distribution, skewness, etc., can be observed. In addition, to better highlight the diversity of 509 

soil Cc, the minimum, average, and maximum values of soil Cc are presented in Table 3 separately for all six soil 510 

types. 511 

 512 
Fig.  5. Flow 

chart showing 

the process of 

hybrid ANN 

and ANFIS 

modelling. 

 
 513 
From the descriptive statistics presented in Table 2, it can be observed that the present database contains test 514 

data of soil samples collected from depths ranging 0.50 m – 32.75 m. The G and S contents vary 0% – 18% and 515 

3% – 68%, respectively, while the M&C content in the soil range between 28% and 97%. The content of CS, MS, 516 

and FS lies in the range of 0% – 11%, 0% – 25%, and 1% – 62%, respectively. Moreover, the LL and PL of soils 517 
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range 22% – 49% and 12% – 26%, respectively. The soil Cc is scattered in the range of 0.0700 to 0.1676, which 518 

shows that most of the samples have large M&C content. The details of Cc of each soil are presented in Table 3, 519 

revealing that, except ML soil, all other soils have a wide range of Cc values and, hence, can be considered 520 

significant for modelling the soil Cc. Also, the distribution of different soil parameters shown in Fig.  6 indicates 521 

that the parameter D. G, CS, and MS are not normally distributed and they are skewed to the left. The S, M, M&C, 522 

BD, DD, and Gs are some of the soil parameters that are normally distributed. The output parameter, Cc, is found 523 

to be skewed to the right and hence, not normally distributed. The skewness of each soil parameters can be 524 

obtained from Table 2. 525 

 526 
Table 2. Descriptive statistics of the collected dataset. 527 

Parameters and description Statistical particulars 

Min. Avg. Max. Stnd. error Stnd. dev. Kurtosis Skewness 

D Depth of soil samples (m) 0.50 7.48 32.75 0.21 5.55 1.48 1.18 

G Gravel content (%) 0.00 3.42 18.00 0.14 3.67 1.58 1.32 

CS Coarse sand content (%) 0.00 2.15 11.00 0.07 1.89 2.35 1.21 

MS Medium sand content (%) 0.00 3.90 25.00 0.13 3.41 7.18 2.21 

FS Fine sand content (%) 1.00 26.40 62.00 0.47 12.45 -0.42 0.45 

S Total sand content (%) 3.00 32.45 68.00 0.46 12.24 -0.49 0.13 

M Silt content (%) 19.00 48.01 75.00 0.36 9.65 0.15 0.26 

C Clay content (%) 5.00 16.11 37.00 0.19 4.99 0.05 0.45 

M&C Silt and clay content (%) 28.00 64.13 97.00 0.46 12.28 -0.39 0.03 

BD Bulk density (gm/cm3) 1.61 1.80 1.99 0.00 0.07 -0.30 0.15 

DD Dry density (gm/cm3) 1.46 1.59 1.71 0.00 0.05 0.12 -0.06 

Gs Sp. Gravity (-) 2.64 2.67 2.70 0.00 0.01 0.07 -0.08 

LL Liquid limit (%) 22.00 32.86 49.00 0.17 4.39 0.57 0.69 

PL Plastic limit (%) 12.00 18.84 26.00 0.07 1.76 1.97 -0.55 

Cc Compression index (-) 0.0700 0.1208 0.1676 0.0007 0.0198 0.1321 -0.4492 

 528 
Table 3. Range of Cc for different soil types. 529 

Particulars Different soil types as per ISSCS 

CI CL ML ML-CL SC SM-SC 

Min. 0.0700 0.0700 0.1008 0.0940 0.0857 0.0904 

Avg. 0.1238 0.1201 0.1008 0.1025 0.1171 0.1186 

Max. 0.1622 0.1676 0.1008 0.1097 0.1656 0.1490 

 530 
7. Data processing and analysis 531 

This section presents the data processing and analysis procedure for predicting soil Cc. It is worth noting that 532 

soils are made up of small particles, which were produced by the weathering of large rocks of various mineralogy 533 

into smaller rock fragments and finally soil particles. Thus, soils are categorized as heterogeneous materials and 534 

show nonlinear elastoplastic behaviour due to the presence of different size particles, such as gravel, sand, silt, 535 

and clay. The plasticity of soils is greatly affected by the mineralogy, size, and shape of their particles. Soils with 536 

a large content of G and S possess no plasticity because of their large particles, while soils containing high 537 

proportions of clay manifest a large plasticity. In addition, the proportions of different soil particles affect the 538 

consolidation behaviour of soils. Therefore, to precisely explain the mapping relationship between soil parameters 539 

and Cc, this study investigated two different combinations of input parameters, i.e., Case-1 and Case-2, to assess 540 

the influence of different soil particles, such as S, M, and C particles, in modelling the Cc of soils. Specifically, 541 

Case-1 included 9 input parameters, while Case-2 considered 12 input parameters. The details of two different 542 

input combinations are presented in Table 4. Note that the contents of CS, MS, FS, M, and C were not considered 543 

separately in Case-1; instead, S and M&C contents were included for predicting soil Cc. 544 

 545 
Table 4. Details of input parameters of two different combinations. 546 

Combination Input parameters considered Input data size 

Case-1 D, G, S, M&C, BD, DD, GS, LL, and PL 9 × 700 

Case-2 D, G, CS, MS, FS, M, C, BD, DD, GS, LL, and PL 12 × 700 
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 547 
To construct and validate the hybrid ANN and ANFIS models, the main dataset was randomly separated into 548 

training and testing subsets. In the field of ML, the most critical step for any type of problem is considered to be 549 

the processing of data. Generally, the normalization of data is a pre-processing task that is performed in the 550 

primary stage to nullify the dimensional effect of the input variables. Thus, prior to the model development, the 551 

entire dataset was standardized between 0 and 1, utilizing {(𝑥 − 𝑥𝑚𝑖𝑛)/(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)}, in which, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 552 

represent the minimum and maximum values of the parameter under consideration (i.e., 𝑥), respectively. 553 

 554 
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Fig.  6. Frequency histograms of input (a - n) and output (o) variables. 
 555 

In this work, 80% of the total dataset was randomly selected for the training subset, while the remaining 20% 556 

was used as the testing subset. It is pertinent to mention here that, although there are no set standards or criteria 557 

for the number of samples to be used in a prediction model, it is of the researchers’ choice; however, a model built 558 

with a large dataset can be deemed more reliable than one built with a small dataset. In addition, a model that has 559 

been validated with a large dataset is more trustworthy. Thus, in this work, 560 and 140 samples were used for 560 

the training and testing subsets to develop and validate the hybrid ANN and ANFIS models, respectively.  561 

In the subsequent step, eight widely-used performance parameters, including Nash-Sutcliffe efficiency (NS), 562 

R2, performance index (PI), Willmott`s index of agreement (WI), mean absolute error (MAE), root mean square 563 

error to observation’s standard deviation ratio (RSR), root mean square error (RMSE), and weighted mean 564 

absolute percentage error (WMAPE), were used to assess the performance of the proposed hybrid models. The 565 

expressions of the above-mentioned indices are as follows: 566 
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 567 
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∑ (𝑦𝑖 − 𝑦̂𝑖)
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 568 

 
𝑅2 =

∑ (𝑦𝑖 − 𝑦𝑚𝑒𝑎𝑛)2 − ∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑛

𝑖=1
𝑛
𝑖=1
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 569 

 𝑃𝐼 = 𝑎𝑑𝑗. 𝑅2 + 0.01𝑉𝐴𝐹 − 𝑅𝑀𝑆𝐸 (5) 

 570 
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 575 
where 𝑦𝑖 and 𝑦̂𝑖 are the actual and estimated 𝑖𝑡ℎ values; 𝑛 is the number of data samples under consideration 576 

(irrespective of training and testing samples); and 𝑦𝑚𝑒𝑎𝑛 indicates the mean of the experimental values. Fig.  7 577 

illustrates the entire steps of data analysis and computational modelling. 578 

 579 

 
Fig.  7. Steps of data processing, analysis and computational modelling. 
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8. Results and discussions 580 

The results of the developed hybrid models in predicting soil Cc are presented and discussed in this section. 581 

To construct and validate the hybrid ANN and ANFIS models, the main dataset was divided into training and 582 

testing subsets, as previously described. For predicting the Cc of soils, two alternative combinations of input 583 

parameters (i.e., Case-1 and Case-2) were explored in this study. Note that the training subset was used to construct 584 

the hybrid ANN and ANFIS models, whilst the testing subset was utilized to corroborate their predictive abilities 585 

for internal validation of the constructed models. In addition, the generalization capabilities of the constructed 586 

hybrid models were evaluated using a completely new dataset, referred to as external validation. It is important to 587 

note that a model with a better predictive accuracy achieved during the validation phase should be accepted with 588 

greater conviction; therefore, both internal and external validation were performed. Firstly, the testing dataset was 589 

used for internal validation, while separate oedometer tests were performed for external validation. Thirty new 590 

experiments were conducted in the geotechnical laboratory at NIT Patna, India, to generate separate datasets, 591 

which were then used for external validation of the developed models. 592 

In the following sub-sections, a detailed comparative assessment of the outcomes of the developed hybrid 593 

models for the training dataset is presented, followed by validation of the prediction models. Before reporting the 594 

outcomes of proposed models, the parametric configurations of the OAs for constructing optimum hybrid models 595 

are presented and discussed. 596 

 597 

8.1. Parametric configurations of the OAs 598 

As mentioned earlier, to construct optimum hybrid models, it is compulsory to pre-specify the hyper-599 

parameters of ANN and ANFIS. In this work, NH in the hidden layer, ranging from 5 to 20, was investigated for 600 

the hybrid ANN models. Moreover, the Levenberg-Marquardt backpropagation and tan-sigmoid activation 601 

functions were examined to obtain the optimum structure of hybrid ANNs. The values of Ns and k were set as 50 602 

and 200, respectively, and kept constant across all analyses. The performance of hybrid ANNs in the validation 603 

phase was employed to evaluate the appropriateness of NH, the type of activation function, and values of other 604 

parameters of the OAs. Following a trial-and-error approach, the most appropriate values of NH were obtained as 605 

10 and kept constant for other hybrid ANN models. The most effective choice of hyper-parameters and other 606 

deterministic parameters of the optimised ANN models are given in Table 5 and Table 6 for Case-1 and Case-2 607 

input combinations, respectively. Based on the optimum NH value, i.e., NH = 10, the total number of optimized 608 

weights and biases (Ow+b) was calculated as 111 (i.e., 9×10+10+10+1) for Case-1 and 141 (i.e., 12×10+10+10+1) 609 

for Case-2 of Cc prediction. 610 

Analogous to hybrid ANN models, the value of NFIS was set to 10 for constructing the hybrid ANFIS models. 611 

Subsequently, PSO, ACO, ABC, GWO, MFO, WOA, SSA, HHO, SMA, and MPA were incorporated to optimize 612 

the C&A parameters of ANFIS. After a preliminary experimental process, the Gaussian membership function was 613 

used in the input layer, while a linear membership function was used in the output layer. Thus, a sum of 190 C&A 614 

membership functions of ANFIS were optimized for the nine-dimensional input space, i.e., for Case-1 of Cc 615 

prediction (refer Table 5 for other parameters). Note that, these optimised parameters were chosen after trial-and-616 

error tests regarding both input space dimensionality and the performance of the testing dataset. 617 

It may be noted that the parametric configurations of the hybrid models discussed above are only for the first 618 

input combination, i.e., Case-1. Also note that, although the procedure for developing the ANN and ANFIS-based 619 
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hybrid models is the same, the values of optimized learning parameters of the developed models are different in 620 

each case. Nonetheless, the optimum configuration of hyper-parameters of ANN and ANFIS and deterministic 621 

parameters of OAs obtained during the modelling of the first input combination were used to construct the 622 

predictive models for the second input combination, i.e., for Case-2 with 12 input parameters (as listed in Table 623 

4). This was done to make a fair comparison and assess the effect of different-sized particles (i.e., CS, MS, FS, 624 

M, and C) on predicting the Cc of soils. Details of the developed hybrid models along with their parametric 625 

configurations are given in Table 6 for the Case-2 input combination of soil Cc prediction. 626 

 627 
Table 5. Configuration of OAs of optimum hybrid ANN and ANFIS models (for Case-1). 628 

Parameters PSO ACO ABC GWO MFO WOA SSA HHO SMA MPA 

NH 10 10 10 10 10 10 10 10 10 10 

NFIS 10 10 10 10 10 10 10 10 10 10 

NS 50 50 50 50 50 50 50 50 50 50 

k 200 200 200 200 200 200 200 200 200 200 

w  0.40 - - - - - - - - - 

ub, lb +1, -1 +1, -1 +1, -1 +1, -1 +1, -1 +1, -1 +1, -1 +1, -1 +1, -1 +1, -1 

C1 1 - - - - - - - - - 

C2 2 - - - - - - - - - 

z  - - - - - - - - 0.2 - 

No. of Ow+b 111 111 111 111 111 111 111 111 111 111 

No. of C&A 190 190 190 190 190 190 190 190 190 190 

 629 
Table 6. Configuration of OAs of optimum hybrid ANN and ANFIS models (for Case-2). 630 

Parameters PSO ACO ABC GWO MFO WOA SSA HHO SMA MPA 

NH 10 10 10 10 10 10 10 10 10 10 

NFIS 10 10 10 10 10 10 10 10 10 10 

NS 50 50 50 50 50 50 50 50 50 50 

k 200 200 200 200 200 200 200 200 200 200 

w  0.40 - - - - - - - - - 

ub, lb +1, -1 +1, -1 +1, -1 +1, -1 +1, -1 +1, -1 +1, -1 +1, -1 +1, -1 +1, -1 

C1 1 - - - - - - - - - 

C2 2 - - - - - - - - - 

z  - - - - - - - - 0.2 - 

No. of Ow+b 141 141 141 141 141 141 141 141 141 141 

No. of C&A 250 250 250 250 250 250 250 250 250 250 

 631 
It is mandatory to mention here that the stochastic nature of OAs often prevents them from observing the 632 

characteristics predicted by the hybrid model directly. In general, a stochastic model employs random variables 633 

to generate the intended output, which results in a wide variety of outcomes under different parametric 634 

configurations. Therefore, it requires multiple runs to guarantee that the best solution will be obtained. Taking 635 

this point into consideration, each hybrid model was tested 10 times and the model with the best performance was 636 

chosen based on the results acquired during the testing phase. Table 7 lists the error details of the constructed 637 

models for 10 run times. Herein, the best, worst, mean and the standard deviation of RMSE values for the training 638 

subset were obtained after performing 10 runs of each hybrid model. As can be seen, the ANN-GWO and ANFIS-639 

PSO achieved a very high accuracy for inferring values of soil Cc with low average values of 0.0565 and 0.0410 640 

in the Case-1 input combination, whereas the low average values of RMSE for the same models were 0.0494 and 641 

0.0349, respectively, in the Case-2 input combination. In both cases, the ANN-GWO and ANFIS-PSO models 642 

attained a higher prediction accuracy, which can be evident by lowest RMSE values of 0.0527 and 0.0353 in Case-643 

1 and 0.0465 and 0.0325 in Case-2 of soil Cc prediction, respectively. 644 

 645 

 646 
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Fig.  8. (a-j) Convergence behaviour and (k) computational cost of the hybrid ANN models (Case-1). 
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Fig.  9. (a-j) Convergence behaviour and (k) computational cost of the hybrid ANN models (Case-2). 
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It is also worth noting that the convergence behaviour of any OAs is critical in assessing its performance as 655 

it reveals the ability of OAs to escape from local minima and reach the faster solution. The convergence curves 656 

of the developed hybrid models for Case-1 and Case-2 are presented in Fig.  8(a-j) and Fig.  9(a-j), respectively. 657 

Herein, the best and worst convergence behaviours of all the developed models are presented. The details of 658 

computational costs are provided in Fig.  8(k) and Fig.  9(k) for the Case-1 and Case-2 input combinations, 659 

respectively. In both phases, the ANFIS-PSO achieved the desired convergence faster than other developed hybrid 660 

models. The minimum and maximum computational times were recorded as 25.180488 and 26.046925 s in Case-661 

1 and 36.141250 and 36.345923 s in Case-2, respectively. It can also be observed that the hybrid ANFIS models 662 

achieved faster convergence than the hybrid ANN models in all cases (best hybrid ANFIS models are shown in 663 

green dotted line), indicating higher generalization ability. However, the computational times of the ANN-HHO, 664 

ANN-MPA, and ANN-ABC models were found to be on the higher side. On the other hand, the developed ANFIS-665 

PSO and ANFIS-MFO models were found to have lower computing costs. Note that, all hybrid models were 666 

developed in MATLAB 2015a version with i5-8400 CPU @ 2.80 GHz, 8 GB RAM, and the computational costs 667 

were recorded in a non-parallel computing environment. 668 

 669 
Table 7. Error details (RMSE value) of the hybrid ANN and ANFIS models after 10 runs. 670 

Models Particulars PSO ACO ABC GWO MFO WOA SSA HHO SMA MPA 

ANN Best 0.0797 0.0597 0.1140 0.0527 0.0687 0.0695 0.0612 0.0960 0.0589 0.0539 

(Case-1) Worst 0.0890 0.0729 0.1655 0.0611 0.0908 0.1123 0.0754 0.1783 0.0701 0.0587 

 Mean 0.0818 0.0627 0.1484 0.0565 0.0749 0.0839 0.0658 0.1379 0.0634 0.0568 

 Stnd. dev. 0.0031 0.0041 0.0184 0.0026 0.0069 0.0141 0.0044 0.0309 0.0033 0.0016 

ANN Best 0.0670 0.0530 0.1402 0.0465 0.0616 0.0740 0.0593 0.0867 0.0555 0.0505 

(Case-2) Worst 0.0981 0.0728 0.1911 0.0543 0.0883 0.1317 0.0741 0.1895 0.0688 0.0556 

 Mean 0.0792 0.0570 0.1614 0.0494 0.0719 0.0910 0.0634 0.1333 0.0601 0.0522 

 Stnd. dev. 0.0104 0.0065 0.0157 0.0025 0.0093 0.0171 0.0047 0.0340 0.0044 0.0015 

ANFIS Best 0.0353 0.0613 0.0655 0.0669 0.0541 0.0526 0.0595 0.0571 0.0591 0.0523 

(Case-1) Worst 0.0461 0.0990 0.1085 0.1585 0.0592 0.0657 0.0615 0.0592 0.0592 0.0592 

 Mean 0.0410 0.0805 0.0892 0.0785 0.0573 0.0571 0.0603 0.0586 0.0592 0.0582 

 Stnd. dev. 0.0037 0.0115 0.0136 0.0282 0.0018 0.0034 0.0007 0.0007 0.0000 0.0021 

ANFIS Best 0.0325 0.0638 0.0920 0.0502 0.0476 0.0465 0.0510 0.0483 0.0508 0.0478 

(Case-2) Worst 0.0382 0.0960 0.1762 0.1787 0.0602 0.0488 0.0692 0.0873 0.0658 0.0516 

 Mean 0.0349 0.0826 0.1288 0.0756 0.0508 0.0476 0.0573 0.0541 0.0524 0.0503 

 Stnd. dev. 0.0018 0.0088 0.0252 0.0373 0.0038 0.0009 0.0059 0.0117 0.0047 0.0011 

 671 
8.2. Performance of the developed models 672 

The predictive outcomes of the developed hybrid ANN and ANFIS models for estimating soil Cc are 673 

presented in Table 8, Table 9, Table 10, and Table 11 for both Case-1 and Case-2 input combinations. Herein, the 674 

models’ performance in predicting the training outputs is reported. It should be noted that each model's 675 

performance with the training subset was used to express the goodness of fit of the constructed models. Based on 676 

the experimental results, ANN-GWO and ANFIS-PSO attained the highest R2 and lowest RMSE values in both 677 

the Case-1 and Case-2 input combinations of soil Cc prediction. Among the developed hybrid ANN models, ANN-678 

GWO attained the most desired accuracy with R2 = 0.9326 and RMSE = 0.0527 in Case-1 and R2 = 0.9475 and 679 

RMSE = 0.0465 in Case-2 of Cc prediction. On the other hand, ANFIS-PSO achieved the best prediction 680 

performance with R2 = 0.9698 and RMSE = 0.0353 in Case-1 and R2 = 0.9745 and RMSE = 0.0325 in Case-2 of 681 

Cc prediction. These findings demonstrate that the proposed hybrid models, ANN-GWO and ANFIS-PSO, have 682 

a good predictive performance in both cases of Cc prediction.  683 

In addition, MAE and WMAPE values of the developed ANFIS-PSO model in the training phase were 684 

determined to be 0.0217 and 0.0396 in Case-1 and 0.0225 and 0.0412 in Case-2, respectively. For the ANN-GWO 685 

model, these performance indices were 0.0369 and 0.0676 in Case-1 and 0.0309 and 0.0563 in Case-2, 686 
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respectively. The values of R2 are higher than 0.90 in both the Case-1 and Case-2 input combinations, which 687 

indicates that the proposed ANN-GWO and ANFIS-PSO obtained a good fit to the collected dataset. Overall, the 688 

developed ANN-GWO and ANFIS-PSO attained the most accurate prediction accuracy in both the Case-1 and 689 

Case-2 input combinations of Cc prediction, as evidenced by the score analysis; in both cases, the total score was 690 

determined to be 80.  691 

Among the developed ANNs, ANN-MPA (total score = 72, R2 = 0.9296 and RMSE = 0.0539) and ANN-692 

SMA (total score = 63, R2 = 0.9159 and RMSE = 0.0589) showed to be the second and third best models in Case-693 

1, respectively, while ANN-MPA (total score = 72, R2 = 0.9382 and RMSE = 0.0505) and ANN-ACO (total score 694 

= 64, R2 = 0.9319 and RMSE = 0.0530) are the second and third best models in Case-2 of Cc prediction, 695 

respectively. Among the developed ANFIS models, ANFIS-MPA (total score = 71, R2 = 0.9342 and RMSE = 696 

0.0523) and ANFIS-WOA (total score = 65, R2 = 0.9330 and RMSE = 0.0526) are the second and third best 697 

models in Case-1, respectively, while ANFIS-WOA (total score = 72, R2 = 0.9478 and RMSE = 0.0465) and 698 

ANFIS-MFO (total score = 62, R2 = 0.6452 and RMSE = 0.0476) are the second and third best models in Case-2 699 

of Cc prediction. Observably, ANN-ABC achieved the lowest predictive performance with total score of 8 in both 700 

cases, whereas ANFIS-ABC was found to be least accurate model among the developed ANFIs models with total 701 

scores of 12 and 8 in Case-1 and Case-2 of soil Cc prediction, respectively. Fig.  10 and Fig.  11 show the 702 

experimental and predicted outcomes of the top three hybrid ANN (ANN-GWO, ANN-MPA and ANN-703 

SMA/ANN-ACO) and ANFIS models (ANFIS-PSO, ANFIS-MPA/ANFIS-WOA, and ANFIS-WOA/ANFIS-704 

MFO) based on total score value for Case-1 and Case-2 input combinations, respectively. It is worth noting that 705 

majority of the samples used in the training phase have a deviation less than ± 10% (points between the two red 706 

dotted lines in Fig.  10 and Fig.  11), implying that the developed models can reliably predict soil Cc. 707 

 708 
Table 8. Performance of hybrid ANN models (training phase for Case-1). 709 

Models/Particulars NS R2 PI WI MAE RSR RMSE WMAPE Total 

score 

ANN-PSO Value 0.8468 0.8525 1.6166 0.9604 0.0557 0.3913 0.0797 0.1038 24 

 Score 3 3 3 3 3 3 3 3   

ANN-ACO Value 0.9143 0.9143 1.7672 0.9767 0.0441 0.2928 0.0597 0.0808 57 

 Score 7 7 7 7 8 7 7 7   

ANN-ABC Value 0.6871 0.6863 1.2520 0.9025 0.0843 0.5594 0.1140 0.1564 8 

 Score 1 1 1 1 1 1 1 1   

ANN-GWO Value 0.9330 0.9326 1.8113 0.9824 0.0369 0.2588 0.0527 0.0676 80 

 Score 10 10 10 10 10 10 10 10   

ANN-MFO Value 0.8863 0.8860 1.7009 0.9697 0.0523 0.3372 0.0687 0.0980 38 

 Score 5 5 5 5 4 5 5 4   

ANN-WOA Value 0.8838 0.8830 1.6946 0.9679 0.0506 0.3409 0.0695 0.0926 34 

 Score 4 4 4 4 5 4 4 5   

ANN-SSA Value 0.9098 0.9091 1.7556 0.9759 0.0456 0.3004 0.0612 0.0836 48 

 Score 6 6 6 6 6 6 6 6   

ANN-HHO Value 0.7783 0.7781 1.4560 0.9322 0.0720 0.4709 0.0960 0.1334 16 

 Score 2 2 2 2 2 2 2 2   

ANN-SMA Value 0.9164 0.9159 1.7715 0.9776 0.0443 0.2891 0.0589 0.0806 63 

 Score 8 8 8 8 7 8 8 8   

ANN-MPA Value 0.9301 0.9296 1.8042 0.9816 0.0390 0.2643 0.0539 0.0712 72 

 Score 9 9 9 9 9 9 9 9   

 710 
  711 



Page | 25  
 

 712 
Table 9. Performance of hybrid ANFIS models (training phase for Case-1). 713 

Models/Particulars NS R2 PI WI MAE RSR RMSE WMAPE Total 

score 

ANFIS-PSO Value 0.9700 0.9698 1.9039 0.9924 0.0217 0.1732 0.0353 0.0396 80 

 Score 10 10 10 10 10 10 10 10   

ANFIS-ACO Value 0.9095 0.9257 1.7722 0.9726 0.0426 0.3009 0.0613 0.0768 34 

 Score 3 6 5 3 5 3 3 6   

ANFIS-ABC Value 0.8967 0.8975 1.7279 0.9718 0.0485 0.3214 0.0655 0.0894 12 

 Score 2 1 1 2 1 2 2 1   

ANFIS-GWO Value 0.8923 0.9074 1.7305 0.9670 0.0465 0.3282 0.0669 0.0833 12 

 Score 1 2 2 1 2 1 1 2   

ANFIS-MFO Value 0.9295 0.9315 1.8056 0.9823 0.0395 0.2656 0.0541 0.0725 56 

 Score 7 7 7 7 7 7 7 7   

ANFIS-WOA Value 0.9333 0.9330 1.8121 0.9827 0.0374 0.2582 0.0526 0.0685 65 

 Score 8 8 8 9 8 8 8 8   

ANFIS-SSA Value 0.9148 0.9145 1.7678 0.9769 0.0433 0.2919 0.0595 0.0790 30 

 Score 4 3 3 4 4 4 4 4   

ANFIS-HHO Value 0.9215 0.9213 1.7840 0.9796 0.0421 0.2801 0.0571 0.0770 46 

 Score 6 5 6 6 6 6 6 5   

ANFIS-SMA Value 0.9158 0.9152 1.7699 0.9775 0.0436 0.2902 0.0591 0.0798 34 

 Score 5 4 4 5 3 5 5 3   

ANFIS-MPA Value 0.9342 0.9342 1.8147 0.9824 0.0348 0.2566 0.0523 0.0631 71 

 Score 9 9 9 8 9 9 9 9   

 714 
Table 10. Performance of hybrid ANN models (training phase for Case-2). 715 

Models/Particulars NS R2 PI WI MAE RSR RMSE WMAPE Total 

score 

ANN-PSO Value 0.8920 0.8952 1.7176 0.9725 0.0486 0.3287 0.0670 0.0907 32 

 Score 4 4 4 4 4 4 4 4   

ANN-ACO Value 0.9323 0.9319 1.8092 0.9823 0.0381 0.2602 0.0530 0.0698 64 

 Score 8 8 8 8 8 8 8 8   

ANN-ABC Value 0.5265 0.6499 1.0410 0.8860 0.1107 0.6881 0.1402 0.2073 8 

 Score 1 1 1 1 1 1 1 1   

ANN-GWO Value 0.9479 0.9475 1.8474 0.9865 0.0309 0.2283 0.0465 0.0563 80 

 Score 10 10 10 10 10 10 10 10   

ANN-MFO Value 0.9086 0.9081 1.7524 0.9757 0.0459 0.3024 0.0616 0.0844 40 

 Score 5 5 5 5 5 5 5 5   

ANN-WOA Value 0.8681 0.8683 1.6594 0.9627 0.0524 0.3632 0.0740 0.0954 24 

 Score 3 3 3 3 3 3 3 3   

ANN-SSA Value 0.9152 0.9151 1.7685 0.9779 0.0417 0.2912 0.0593 0.0769 48 

 Score 6 6 6 6 6 6 6 6   

ANN-HHO Value 0.8192 0.8222 1.5537 0.9480 0.0625 0.4252 0.0867 0.1166 16 

 Score 2 2 2 2 2 2 2 2   

ANN-SMA Value 0.9259 0.9256 1.7939 0.9801 0.0393 0.2723 0.0555 0.0703 56 

 Score 7 7 7 7 7 7 7 7   

ANN-MPA Value 0.9386 0.9382 1.8245 0.9840 0.0343 0.2478 0.0505 0.0623 72 

 Score 9 9 9 9 9 9 9 9   

 716 
Table 11. Performance of hybrid ANFIS models (training phase for Case-2). 717 

Models/Particulars NS R2 PI WI MAE RSR RMSE WMAPE Total 

score 

ANFIS-PSO Value 0.9746 0.9745 1.9159 0.9936 0.0225 0.1595 0.0325 0.0412 80 

 Score 10 10 10 10 10 10 10 10   

ANFIS-ACO Value 0.9020 0.9294 1.7653 0.9692 0.0424 0.3130 0.0638 0.0751 16 

 Score 2 2 2 2 2 2 2 2   

ANFIS-ABC Value 0.7961 0.8309 1.5485 0.9487 0.0671 0.4515 0.0920 0.1231 8 

 Score 1 1 1 1 1 1 1 1   

ANFIS-GWO Value 0.9394 0.9391 1.8266 0.9840 0.0335 0.2462 0.0502 0.0605 40 

 Score 5 5 5 5 5 5 5 5   

ANFIS-MFO Value 0.9455 0.9452 1.8416 0.9857 0.0325 0.2334 0.0476 0.0588 62 

 Score 8 8 8 8 7 8 8 7   

ANFIS-WOA Value 0.9479 0.9478 1.8477 0.9867 0.0312 0.2282 0.0465 0.0568 72 

 Score 9 9 9 9 9 9 9 9   

ANFIS-SSA Value 0.9375 0.9372 1.8219 0.9834 0.0343 0.2501 0.0510 0.0621 24 

 Score 3 3 3 3 3 3 3 3   

ANFIS-HHO Value 0.9439 0.9436 1.8376 0.9852 0.0331 0.2369 0.0483 0.0599 48 

 Score 6 6 6 6 6 6 6 6   

ANFIS-SMA Value 0.9377 0.9374 1.8226 0.9837 0.0335 0.2495 0.0508 0.0608 32 

 Score 4 4 4 4 4 4 4 4   

ANFIS-MPA Value 0.9449 0.9446 1.8400 0.9856 0.0325 0.2347 0.0478 0.0587 58 

 Score 7 7 7 7 8 7 7 8   

  718 
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 719 
(a) (b) (c) 

   
(d) (e) (f) 

   
Fig.  10. Illustration of results for top three: (a-c) hybrid ANNs and (d-f) hybrid ANFIS models (Case-1 of training 

phase). 

(a) (b) (c) 

   
(d) (e) (f) 

   
Fig.  11. Illustration of results for top three: (a-c) hybrid ANNs and (d-f) hybrid ANFIS models (Case-2 of training 

phase). 
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8.3. Validation of models 722 

It is worth noting that a model with a better predictive accuracy in the validation phase is likely to be more 723 

accurate and robust. Furthermore, a higher predictive accuracy gained during the training phase does not always 724 

imply a better predictive model; therefore, proper model validation is always required. Thus, checking the 725 

correctness of any predictive model for a completely new dataset is practical, because a predictive model validated 726 

with additional datasets gathered from other experiments (executed in diverse conditions/environments) can be 727 

regarded practically significant. Considering these points as a reference, both internal and external validation were 728 

performed on the constructed hybrid models. As stated above, internal validation was carried out using the unused 729 

dataset, i.e., the testing dataset, whereas external validation was conducted via separate oedometer test results. A 730 

total of 30 additional experiments were carried out in the geotechnical laboratory at NIT Patna to generate separate 731 

datasets, which were then utilized to validate the developed models. In the following sub-sections, the 732 

generalization ability and robustness of the constructed hybrid models is presented and discussed. 733 

 734 

8.3.1. Internal validation 735 

As previously stated, internal validation was conducted on the unused dataset, i.e., the testing dataset (a 736 

subset of the main dataset), and the prediction results of the proposed models are presented in Table 12, Table 13, 737 

Table 14, and Table 15. Herein, the models’ performances in predicting the testing output are reported and 738 

analysed. It is pertinent to mention that the performance of models with the testing dataset was used to validate 739 

their predictive ability. The performance indices showing high accuracy can be observed for both input 740 

combinations based on R2 and RMSE criteria. Among the developed hybrid ANNs, ANN-GWO attained the best 741 

outcomes with R2 = 0.9563, RMSE = 0.0447, and MAE = 0.0324 in Case-1 and R2 = 0.9689, RMSE = 0.0368, 742 

and MAE = 0.0276 in Case-2 of Cc prediction. On the other hand, among the developed hybrid ANFIS models, 743 

ANFIS-PSO was determined to be the best performing model with R2 = 0.9667, RMSE = 0.0382, MAE = 0.0265 744 

in Case-1 and R2 = 0.9789, RMSE = 0.0303, and MAE = 0.0212 in Case-2 of Cc prediction. Based on the results 745 

of score analysis, ANN-GWO and ANFIS-PSO secured the highest total scores of 80 in both cases, indicating 746 

superior predictive performance in the internal validation phase. 747 

According to the findings of the score analysis, ANN-MPA is the second-best model in both cases among 748 

the hybrid ANNs developed in this study. The performance of the developed ANN-MPA model was recorded 749 

with a total score = 72, R2 = 0.9519 and RMSE = 0.0468 in Case-1 and total score = 72, R2 = 0.9644 and RMSE 750 

= 0.0401 in the Case-2 input combination. On the other hand, ANFIS-MPA was found to be the second-best model 751 

in both cases with a total score = 70, R2 = 0.9575 and RMSE = 0.0431 in Case-1 and total score = 72, R2 = 0.9734 752 

and RMSE = 0.0354 in the Case-2 input combination. In both cases, MPA's performance in constructing hybrid 753 

ANN and ANFIS models was found to be quite excellent. However, ANN-ABC (total score of 8) and ANFIS-754 

ABC (total scores of 9 in Case-1 and 9 in Case-2) achieved poor prediction performance in both cases of Cc 755 

prediction.  756 
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 757 
Table 12. Performance of hybrid ANN models (internal validation phase for Case-1). 758 

Models/Particulars NS R2 PI WI MAE RSR RMSE WMAPE Total 

score 

ANN-PSO Value 0.8182 0.8489 1.5727 0.9574 0.0609 0.4263 0.0852 0.1115 19 

 Score 2 3 2 2 3 2 2 3   

ANN-ACO Value 0.9350 0.9374 1.8173 0.9837 0.0387 0.2550 0.0510 0.0704 54 

 Score 7 7 7 7 6 7 7 6   

ANN-ABC Value 0.7111 0.7560 1.3574 0.9268 0.0822 0.5375 0.1075 0.1484 8 

 Score 1 1 1 1 1 1 1 1   

ANN-GWO Value 0.9500 0.9563 1.8594 0.9880 0.0324 0.2237 0.0447 0.0592 80 

 Score 10 10 10 10 10 10 10 10   

ANN-MFO Value 0.8955 0.9105 1.7360 0.9752 0.0484 0.3233 0.0646 0.0889 32 

 Score 4 4 4 4 4 4 4 4   

ANN-WOA Value 0.9311 0.9331 1.8085 0.9823 0.0386 0.2626 0.0525 0.0696 44 

 Score 5 5 5 5 7 5 5 7   

ANN-SSA Value 0.9355 0.9403 1.8214 0.9842 0.0371 0.2540 0.0508 0.0683 64 

 Score 8 8 8 8 8 8 8 8   

ANN-HHO Value 0.8384 0.8439 1.5911 0.9578 0.0641 0.4020 0.0804 0.1180 21 

 Score 3 2 3 3 2 3 3 2   

ANN-SMA Value 0.9331 0.9365 1.8150 0.9832 0.0405 0.2586 0.0517 0.0729 46 

 Score 6 6 6 6 5 6 6 5   

ANN-MPA Value 0.9453 0.9519 1.8488 0.9868 0.0345 0.2339 0.0468 0.0639 72 

 Score 9 9 9 9 9 9 9 9   

 759 
Table 13. Performance of hybrid ANFIS models (internal validation phase for Case-1). 760 

Models/Particulars NS R2 PI WI MAE RSR RMSE WMAPE Total 

score 

ANFIS-PSO Value 0.9635 0.9667 1.8906 0.9911 0.0265 0.1911 0.0382 0.0477 80 

 Score 10 10 10 10 10 10 10 10   

ANFIS-ACO Value 0.9444 0.9497 1.8438 0.9865 0.0313 0.2359 0.0472 0.0572 65 

 Score 8 7 8 8 9 8 8 9   

ANFIS-ABC Value 0.9238 0.9284 1.7928 0.9811 0.0428 0.2760 0.0552 0.0781 9 

 Score 1 1 1 2 1 1 1 1   

ANFIS-GWO Value 0.9276 0.9372 1.8095 0.9794 0.0403 0.2691 0.0538 0.0718 15 

 Score 2 2 2 1 2 2 2 2   

ANFIS-MFO Value 0.9409 0.9488 1.8376 0.9859 0.0359 0.2431 0.0486 0.0658 48 

 Score 6 6 6 6 6 6 6 6   

ANFIS-WOA Value 0.9428 0.9502 1.8429 0.9863 0.0346 0.2393 0.0478 0.0633 57 

 Score 7 8 7 7 7 7 7 7   

ANFIS-SSA Value 0.9370 0.9408 1.8259 0.9842 0.0386 0.2509 0.0502 0.0705 35 

 Score 5 4 4 4 4 5 5 4   

ANFIS-HHO Value 0.9369 0.9426 1.8272 0.9845 0.0369 0.2512 0.0502 0.0676 37 

 Score 4 5 5 5 5 4 4 5   

ANFIS-SMA Value 0.9341 0.9405 1.8214 0.9839 0.0389 0.2567 0.0513 0.0713 24 

 Score 3 3 3 3 3 3 3 3   

ANFIS-MPA Value 0.9536 0.9575 1.8675 0.9885 0.0325 0.2153 0.0431 0.0592 70 

 Score 9 9 9 9 8 9 9 8   

 761 
Table 14. Performance of hybrid ANN models (internal validation phase for Case-2). 762 

Models/Particulars NS R2 PI WI MAE RSR RMSE WMAPE Total 

score 

ANN-PSO Value 0.9047 0.9112 1.7490 0.9764 0.0466 0.3087 0.0617 0.0856 24 

 Score 3 3 3 3 3 3 3 3   

ANN-ACO Value 0.9536 0.9568 1.8647 0.9887 0.0312 0.2154 0.0431 0.0560 64 

 Score 8 8 8 8 8 8 8 8   

ANN-ABC Value 0.5887 0.6729 1.1132 0.8995 0.1006 0.6413 0.1282 0.1800 8 

 Score 1 1 1 1 1 1 1 1   

ANN-GWO Value 0.9661 0.9689 1.8966 0.9917 0.0276 0.1842 0.0368 0.0496 80 

 Score 10 10 10 10 10 10 10 10   

ANN-MFO Value 0.9213 0.9311 1.7964 0.9807 0.0425 0.2806 0.0561 0.0774 40 

 Score 5 5 5 5 5 5 5 5   

ANN-WOA Value 0.9164 0.9169 1.7701 0.9780 0.0430 0.2891 0.0578 0.0779 32 

 Score 4 4 4 4 4 4 4 4   

ANN-SSA Value 0.9445 0.9493 1.8432 0.9865 0.0360 0.2356 0.0471 0.0651 48 

 Score 6 6 6 6 6 6 6 6   

ANN-HHO Value 0.8167 0.8276 1.5576 0.9474 0.0642 0.4281 0.0856 0.1152 16 

 Score 2 2 2 2 2 2 2 2   

ANN-SMA Value 0.9507 0.9530 1.8574 0.9876 0.0330 0.2221 0.0444 0.0593 56 

 Score 7 7 7 7 7 7 7 7   

ANN-MPA Value 0.9597 0.9644 1.8817 0.9903 0.0305 0.2007 0.0401 0.0553 72 

 Score 9 9 9 9 9 9 9 9   

 763 
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 764 
Table 15. Performance of hybrid ANFIS models (internal validation phase for Case-2). 765 

Models/Particulars NS R2 PI WI MAE RSR RMSE WMAPE Total 

score 

ANFIS-PSO Value 0.9771 0.9789 1.9246 0.9944 0.0212 0.1514 0.0303 0.0387 80 

 Score 10 10 10 10 10 10 10 10   

ANFIS-ACO Value 0.9461 0.9662 1.8663 0.9841 0.0347 0.2323 0.0464 0.0616 16 

 Score 2 2 2 2 2 2 2 2   

ANFIS-ABC Value 0.8384 0.8943 1.6617 0.9640 0.0639 0.4020 0.0804 0.1142 8 

 Score 1 1 1 1 1 1 1 1   

ANFIS-GWO Value 0.9657 0.9678 1.8952 0.9915 0.0284 0.1852 0.0370 0.0520 30 

 Score 4 3 3 4 4 4 4 4   

ANFIS-MFO Value 0.9667 0.9687 1.8976 0.9917 0.0280 0.1826 0.0365 0.0512 50 

 Score 6 6 7 6 6 6 6 7   

ANFIS-WOA Value 0.9643 0.9703 1.8967 0.9914 0.0288 0.1890 0.0378 0.0527 31 

 Score 3 8 5 3 3 3 3 3   

ANFIS SSA Value 0.9676 0.9694 1.9003 0.9919 0.0280 0.1799 0.0360 0.0512 60 

 Score 8 7 8 8 7 8 8 6   

ANFIS-HHO Value 0.9672 0.9684 1.8974 0.9918 0.0275 0.1812 0.0362 0.0503 54 

 Score 7 4 6 7 8 7 7 8   

ANFIS-SMA Value 0.9657 0.9684 1.8962 0.9915 0.0283 0.1851 0.0370 0.0519 39 

 Score 5 5 4 5 5 5 5 5   

ANFIS-MPA Value 0.9687 0.9734 1.9074 0.9924 0.0273 0.1770 0.0354 0.0499 72 

 Score 9 9 9 9 9 9 9 9   

 766 
To better demonstrate the prediction outcomes of the developed models, the illustrations of experimental 767 

and predicted values are presented in Fig.  12 and Fig.  13 for Case-1 and Case-2 input combinations, respectively. 768 

Herein, the scatterplots of only the top three hybrid ANN (ANN-GWO, ANN-MPA and ANN-SSA/ANN-ACO) 769 

and ANFIS (ANFIS-PSO, ANFIS-MPA and ANFIS-ACO) models (based on total score value) are presented. As 770 

can be seen, the majority of the predicted datasets have less than ± 10% deviation, implying the superiority and 771 

robustness of the developed models. This means that the points between the dotted lines have a ratio of actual to 772 

predicted values between 0.9 and 1.1. In addition, consistent behaviour can be observed in Fig.  12 and Fig.  13, 773 

with predictions closely fitting to experimental values over the entire range of soil Cc. 774 

 775 

8.3.2. External validation 776 

It may be noted that a model with a higher predicted accuracy during the validation phase should be regarded 777 

as robust and adopted with greater confidence. Yet, this statement can be deemed partially correct due to the fact 778 

that a model constructed and validated with the same source dataset (generally, training and testing datasets are 779 

generated from a single source dataset) can perform well in both training and testing phases; however, the 780 

significant performance level of such models must be ensured for a completely new dataset. This means that 781 

evaluating the generalisation potential of a predictive model using only training and testing datasets is unreliable 782 

unless the model's performance is validated using a completely new dataset. This not only ensures robustness a 783 

predictive model, but also demonstrates its generalisation capabilities in predicting the intended output(s) for 784 

future use.  785 

  786 
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 787 
(a) (b) (c) 

   
(d) (e) (f) 

   
Fig.  12. Illustration of results for top three: (a-c) hybrid ANNs and (d-f) hybrid ANFIS models (Case-1 of internal 

validation). 

(a) (b) (c) 

   
(d) (e) (f) 

   
Fig.  13. Illustration of results top three: (a-c) hybrid ANNs and (d-f) hybrid ANFIS models (Case-2 of internal 

validation). 
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Using the preceding point as a reference, this study evaluated the performance of the constructed hybrid 790 

models on a completely new dataset, which is referred to as external validation. Thirty new oedometer tests were 791 

performed at the geotechnical laboratory of NIT Patna for this purpose, and the results were used for external 792 

validation of the established models in estimating soil Cc. The descriptive statistics of the new experimental 793 

datasets are given in Table 16. As can be observed from Table 16, the soils have a G content between 0% and 8%, 794 

while the S content in the soils ranges 15% to 40%. The contents of CS, MS, and FS are scattered in the ranges of 795 

0% - 8%, 2% - 14%, and 5% - 31%, respectively, which indicates that most of the soils have fewer proportions of 796 

G, CS, and FS contents. The content of M&C lies between 57% and 84%, in which the content of M lies in the 797 

range of 23% to 72%. In addition, LL ranges between 29% and 49%, while PL indicates that the plasticity of soils 798 

varies from 12% to 22%. It is also seen that the newly performed laboratory tests have a wide range of Cc values 799 

(between 0.0150 and 0.1152) with a high standard deviation of 0.0191, indicating that the current database covers 800 

a wide range of soil samples and can be considered very reliable for external validation of the developed hybrid 801 

models. Fig.  14 shows photographs of experimental setups for a) grain size analysis, b) plasticity analysis, and c) 802 

samples, sample set up, and oedometer testing. It is important to mention that, all the laboratory experiments were 803 

performed in accordance with the applicable Indian Standards code of practice. 804 

 805 
Table 16. Descriptive statistics of 30 new experimental datasets. 806 

Parameters and description Statistical properties 

Min. Avg. Max. Stnd. error Stnd. dev. Kurtosis Skewness 

D Depth of soil samples (m) 3.00 5.90 9.00 0.39 2.16 -0.95 0.05 

G Gravel content (%) 0.00 2.43 8.00 0.41 2.24 -0.19 0.70 

CS Coarse sand content (%) 0.00 2.60 8.00 0.41 2.22 -0.44 0.73 

MS Medium sand content (%) 2.00 6.37 14.00 0.54 2.98 0.49 0.78 

FS Fine sand content (%) 5.00 17.80 31.00 1.22 6.66 -0.76 0.28 

S Total sand content (%) 15.00 26.77 40.00 1.30 7.12 -1.16 0.09 

M Silt content (%) 23.00 56.07 72.00 1.86 10.21 2.30 -0.89 

C Clay content (%) 9.00 14.73 39.00 1.05 5.77 10.38 2.74 

M&C Silt and clay content (%) 57.00 70.80 84.00 1.42 7.79 -1.10 0.04 

BD Bulk density (gm/cm3) 1.80 1.89 1.96 0.01 0.05 -0.78 -0.33 

DD Dry density (gm/cm3) 1.60 1.66 1.84 0.01 0.04 11.26 2.70 

Gs Sp. Gravity (-) 2.66 2.68 2.69 0.00 0.01 -0.24 -0.16 

LL Liquid limit (%) 29.00 33.80 49.00 0.89 4.85 2.83 1.75 

PL Plastic limit (%) 12.00 16.17 22.00 0.43 2.34 0.28 0.62 

Cc Compression index (-) 0.0150 0.0809 0.1152 0.0035 0.0191 3.9633 -1.1399 

 807 
The prediction performances of all the hybrid models are presented in Table 17, Table 18, Table 19, and 808 

Table 20. As can be observed, the ANN-GWO and ANFIS-PSO models attained the best prediction in all 809 

performance matrices. Based on the R2, RMSE and MAE criteria, ANN-GWO exhibited the best prediction 810 

performance among the constructed hybrid ANN models with R2 = 0.8640, RMSE = 0.0923, and MAE = 0.0666 811 

in Case-1 and R2 = 0.8709, RMSE = 0.0760, and MAE = 0.0594 in the Case-2 input combination. Based on the 812 

score analysis, ANN-SMA and ANN-WOA were found to be the second-best models with R2 = 0.8175, RMSE = 813 

0.1065, and MAE = 0.0848 in Case-1 and R2 = 0.7976, RMSE = 0.0892, and MAE = 0.0729 in Case-2 of soil Cc 814 

prediction. The values of total score were recorded as 66 and 65 in Case-1 and Case-2, respectively. 815 

Analogous to hybrid ANNs, experimental outcomes exhibit that ANFIS-PSO outperformed other models in 816 

both cases with R2 = 0.9133, RMSE = 0.0583, and MAE = 0.0417 in Case-1 and R2 = 0.9286, RMSE = 0.0519, 817 

and MAE = 0.0433 in Case-2 of Cc prediction. The results of score analysis indicate that ANFIS-SSA (total score 818 

= 69) and ANFIS-SMA (total score = 67) are the second-best models in Case-1 and Case-2 of soil Cc prediction, 819 

respectively. However, ANFIS-ABC (total score = 14, R2 = 0.6697 and RMSE = 0.1247) and ANFIS-ACO (total 820 

score = 10, R2 = 0.8737 and RMSE = 0.1452) are the worst performing hybrid ANFIS models. 821 
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To further demonstrate the prediction outputs of the hybrid models, illustrations of actual and estimated 822 

values for Case-1 and Case-2 input combinations are presented in Fig.  15 in the form of scatter (on the left side 823 

of the figure) and line plots. Herein, the performance of only the top-performing models, i.e., ANN-GWO and 824 

ANFIS-PSO, is presented. The closer the line graphs show the difference between the experimental and estimated 825 

values, the more accurate the estimation. As can be observed, the ANFIS-PSO achieved the highest level of 826 

accuracy in both cases of input combinations.  827 

 828 
(a) (b) 

 

   

   
(c) 

Samples Sample setup Testing 

    
Fig.  14. Experiment set up at NIT Patna Laboratory: a) sieve analysis; b) PL test, and c) consolidation test. 

 829 
Table 17. Performance of hybrid ANN models (external validation phase for Case-1). 830 

Models/Particulars NS R2 PI WI MAE RSR RMSE WMAPE Total 

score 

ANN-PSO Value 0.5423 0.5512 0.7702 0.8273 0.0818 0.6765 0.1299 0.4639 44 

 Score 5 4 4 5 8 5 5 8   

ANN-ACO Value 0.6522 0.6930 1.1054 0.8669 0.0814 0.5898 0.1133 0.4719 64 

 Score 8 8 8 8 9 8 8 7   

ANN-ABC Value -1.2043 0.3088 0.0125 0.5007 0.2400 1.4847 0.2851 1.3870 8 

 Score 1 1 1 1 1 1 1 1   

ANN-GWO Value 0.7692 0.8640 1.4885 0.9126 0.0666 0.4804 0.0923 0.3763 80 

 Score 10 10 10 10 10 10 10 10   

ANN-MFO Value 0.2357 0.3350 0.1278 0.7428 0.1378 0.8743 0.1679 0.9308 16 

 Score 2 2 2 2 2 2 2 2   

ANN-WOA Value 0.5711 0.5957 0.8822 0.8643 0.1022 0.6549 0.1258 0.6942 44 

 Score 6 5 5 7 5 6 6 4   

ANN-SSA Value 0.4933 0.6296 0.9546 0.8347 0.1039 0.7118 0.1367 0.5931 39 

 Score 4 6 6 6 4 4 4 5   

ANN-HHO Value 0.4738 0.5178 0.6766 0.8211 0.1156 0.7254 0.1393 0.7375 25 

 Score 3 3 3 4 3 3 3 3   

ANN-SMA Value 0.6925 0.8175 1.3474 0.8758 0.0848 0.5546 0.1065 0.4876 66 

 Score 9 9 9 9 6 9 9 6   

ANN-MPA Value 0.5859 0.6786 1.0220 0.8195 0.0826 0.6435 0.1236 0.4136 54 

 Score 7 7 7 3 7 7 7 9   

 831 
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 832 
Table 18. Performance of hybrid ANFIS models (external validation phase for Case-1). 833 

Models/Particulars NS R2 PI WI MAE RSR RMSE WMAPE Total 

score 

ANFIS-PSO Value 0.9079 0.9133 1.7291 0.9757 0.0417 0.3035 0.0583 0.3393 80 

 Score 10 10 10 10 10 10 10 10   

ANFIS-ACO Value 0.2202 0.8691 1.4539 0.7911 0.1492 0.8831 0.1696 0.8898 16 

 Score 1 8 2 1 1 1 1 1   

ANFIS-ABC Value 0.5784 0.6697 1.0392 0.8853 0.0917 0.6493 0.1247 0.6836 14 

 Score 2 1 1 2 2 2 2 2   

ANFIS-GWO Value 0.7731 0.8246 1.4770 0.9343 0.0752 0.4764 0.0915 0.5061 35 

 Score 5 2 3 5 5 5 5 5   

ANFIS-MFO Value 0.7532 0.8512 1.5357 0.9294 0.0790 0.4968 0.0954 0.5118 27 

 Score 3 4 5 3 3 3 3 3   

ANFIS-WOA Value 0.7642 0.8444 1.5219 0.9322 0.0780 0.4856 0.0933 0.5103 31 

 Score 4 3 4 4 4 4 4 4   

ANFIS-SSA Value 0.8631 0.8650 1.5980 0.9626 0.0505 0.3700 0.0711 0.3875 69 

 Score 9 7 8 9 9 9 9 9   

ANFIS-HHO Value 0.8223 0.8741 1.6030 0.9477 0.0699 0.4215 0.0810 0.4662 54 

 Score 6 9 9 6 6 6 6 6   

ANFIS-SMA Value 0.8330 0.8618 1.5788 0.9513 0.0661 0.4087 0.0785 0.4560 59 

 Score 8 5 6 8 8 8 8 8   

ANFIS-MPA Value 0.8322 0.8620 1.5794 0.9511 0.0664 0.4096 0.0787 0.4578 55 

 Score 7 6 7 7 7 7 7 7   

 834 
Table 19. Performance of hybrid ANN models (external validation phase for Case-2). 835 

Models/Particulars NS R2 PI WI MAE RSR RMSE WMAPE Total 

score 

ANN-PSO Value 0.5536 0.7225 1.0987 0.8129 0.1003 0.6681 0.1283 0.5397 27 

 Score 3 5 3 2 2 3 3 6   

ANN-ACO Value 0.6932 0.7900 1.3031 0.8784 0.0745 0.5539 0.1064 0.3944 54 

 Score 6 7 7 5 8 6 6 9   

ANN-ABC Value -0.0361 0.4242 0.1700 0.7505 0.1615 1.0179 0.1955 0.9632 8 

 Score 1 1 1 1 1 1 1 1   

ANN-GWO Value 0.8436 0.8709 1.5865 0.9499 0.0594 0.3955 0.0760 0.3833 80 

 Score 10 10 10 10 10 10 10 10   

ANN-MFO Value 0.6432 0.6963 1.1233 0.9028 0.0928 0.5973 0.1147 0.6155 35 

 Score 5 3 4 6 4 5 5 3   

ANN-WOA Value 0.7844 0.7976 1.4041 0.9435 0.0729 0.4644 0.0892 0.5539 65 

 Score 9 8 8 9 9 9 9 4   

ANN-SSA Value 0.5871 0.7080 1.1453 0.8639 0.0964 0.6426 0.1234 0.6156 30 

 Score 4 4 5 4 3 4 4 2   

ANN-HHO Value 0.5428 0.5507 0.7693 0.8317 0.0890 0.6761 0.1299 0.5524 23 

 Score 2 2 2 3 5 2 2 5   

ANN-SMA Value 0.7292 0.8434 1.4734 0.9082 0.0793 0.5203 0.0999 0.4414 61 

 Score 7 9 9 8 6 7 7 8   

ANN-MPA Value 0.7347 0.7589 1.2911 0.9068 0.0750 0.5151 0.0989 0.4850 57 

 Score 8 6 6 7 7 8 8 7   

 836 
Table 20. Performance of hybrid ANFIS models (external validation phase for Case-2). 837 

Models/Particulars NS R2 PI WI MAE RSR RMSE WMAPE Total 

score 

ANFIS-PSO Value 0.9270 0.9286 1.7728 0.9804 0.0433 0.2703 0.0519 0.3323 80 

 Score 10 10 10 10 10 10 10 10   

ANFIS-ACO Value 0.4288 0.8737 1.5294 0.8488 0.1262 0.7558 0.1452 0.7711 10 

 Score 1 2 2 1 1 1 1 1   

ANFIS-ABC Value 0.5841 0.6848 1.0800 0.8872 0.0866 0.6449 0.1239 0.6387 14 

 Score 2 1 1 2 2 2 2 2   

ANFIS-GWO Value 0.8149 0.8993 1.6652 0.9477 0.0690 0.4303 0.0826 0.4289 24 

 Score 3 3 3 3 3 3 3 3   

ANFIS-MFO Value 0.8875 0.9143 1.7218 0.9683 0.0543 0.3355 0.0644 0.3504 41 

 Score 5 5 5 5 5 5 5 6   

ANFIS-WOA Value 0.8659 0.9048 1.6942 0.9627 0.0603 0.3662 0.0703 0.4015 32 

 Score 4 4 4 4 4 4 4 4   

ANFIS-SSA Value 0.9130 0.9195 1.7455 0.9775 0.0465 0.2949 0.0566 0.3651 62 

 Score 7 9 9 9 9 7 7 5   

ANFIS-HHO Value 0.8978 0.9193 1.7383 0.9715 0.0524 0.3196 0.0614 0.3446 51 

 Score 6 8 6 6 6 6 6 7   

ANFIS-SMA Value 0.9138 0.9187 1.7437 0.9765 0.0472 0.2937 0.0564 0.3353 67 

 Score 9 7 8 8 8 9 9 9   

ANFIS-MPA Value 0.9134 0.9187 1.7436 0.9764 0.0473 0.2943 0.0565 0.3355 59 

 Score 8 6 7 7 7 8 8 8   

 838 
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 (a) 

  
(b) 

  
(c) 

  
(d) 

  
Fig.  15. Illustration of experimental vs. predicted results for external validation phase: (a-b) best two models 

for Case-1 and (c-b) best two models for Case-2. 

 840 
8.4. Uncertainty analysis 841 

This sub-section describes the quantitative assessment of the developed hybrid models in estimating the Cc 842 

of soils. Previously, Bardhan et al. [41] used the width of confidence bound (WCB) approach to estimate the 843 

uncertainty of prediction models. In this study, the quantitative evaluation of the developed models was evaluated 844 

via uncertainty analysis (UA). This assessment was carried out for all data in both the internal and external 845 

validation phases, which includes 140 and 30 experimental data, respectively. Thus, these data can be considered 846 

reliable to compare the trustworthiness of the developed models. To perform UA, the MAE and the standard 847 

deviation of absolute error (SDAE) of the predictions were computed initially. The standard error (SE), lower and 848 

upper bounds (LB and UB), and the margin of error (MOE) were evaluated at a 95% confidence interval to 849 

determine WCB. Note that the WCB value reflects an error range in which approximately 95% of the entire data 850 

is located. 851 
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The results of the UA are given in Table 21 (internal validation Case-1), Table 22 (internal validation Case-852 

2), Table 23 (external validation Case-1), and Table 24 (external validation Case-1) with the details of several 853 

indices, including MAE, SDAE, SE, MOE, LB, UB, and WCB values. The index values obtained for UA can be 854 

used to assess the performance of the hybrid ANN and ANFIS models. Specifically, the stronger the model 855 

certainty, the lower the WCB value in these indices, indicating that a model with less error can predict the intended 856 

output with greater confidence. According to the UA results, ANN-GWO and ANFIS-PSO achieved the lowest 857 

WCB in both cases of Cc prediction among the developed hybrid ANN and ANFIS models, respectively. In the 858 

internal validation phase, the WCB values for these two models were 0.0102 and 0.0092 in Case-1 and 0.0082 859 

and 0.0072 in Case-2 of Cc prediction, respectively. On the other hand, in the external validation phase, the WCB 860 

values for ANN-GWO and ANFIS-PSO were 0.0478 and 0.0304 in Case-1 and 0.0354 and 0.0212 in Case-2 of 861 

Cc prediction, respectively. These results clearly demonstrate that the developed ANN-GWO and ANFIS-PSO are 862 

very reliable in predicting soil Cc, which can also be observed in the details of other performance parameters 863 

presented above. 864 

All of the developed models were ranked in groups based on the WCB value. Subsequently, all of the hybrid 865 

ANN and ANFIS models were ranked together to see which one performed best in Case-1 and Case-2 of soil Cc 866 

prediction. As can be observed, the ANFIS-PSO is the most precise predictive model in both phases. Furthermore, 867 

compared to other techniques employed in the study, the lower values of MAE and SDAE display the more reliable 868 

ANN-PSO model. Moreover, in the internal validation phase, the ANFIS-ABC for Case-1 and ANN-ABC for 869 

Case-2 display the maximum uncertainty, while in the external validation phase, the ANN-ABC for Case-1 and 870 

ANFIS-ABC for Case-2 demonstrate the maximum uncertainty. However, the models were ranked according to 871 

the MAE value when the WCB value was the same.  872 

 873 
Table 21. Results of UA (internal validation phase for Case-1). 874 

Models MAE SDAE SE MOE LB UB WCB Sub-

rank 

Overall 

rank 

ANN-PSO 0.0609 0.0597 0.0050 0.0100 0.0509 0.0709 0.0200 9 18 

ANN-ACO 0.0387 0.0332 0.0028 0.0055 0.0332 0.0442 0.0110 4 9 

ANN-ABC 0.0822 0.0693 0.0059 0.0116 0.0706 0.0938 0.0232 10 19 

ANN-GWO 0.0324 0.0308 0.0026 0.0051 0.0273 0.0375 0.0102 1 3 

ANN-MFO 0.0484 0.0429 0.0036 0.0072 0.0412 0.0556 0.0144 7 16 

ANN-WOA 0.0386 0.0356 0.0030 0.0059 0.0327 0.0445 0.0118 6 14 

ANN-SSA 0.0371 0.0347 0.0029 0.0058 0.0313 0.0429 0.0116 5 12 

ANN-HHO 0.0641 0.0484 0.0041 0.0081 0.0560 0.0722 0.0162 8 17 

ANN-SMA 0.0405 0.0322 0.0027 0.0054 0.0351 0.0459 0.0108 3 6 

ANN-MPA 0.0345 0.0316 0.0027 0.0053 0.0292 0.0398 0.0106 2 4 

ANFIS-PSO 0.0265 0.0275 0.0023 0.0046 0.0219 0.0311 0.0092 1 1 

ANFIS-ACO 0.0313 0.0353 0.0030 0.0059 0.0254 0.0372 0.0118 8 13 

ANFIS-ABC 0.4663 0.2273 0.0192 0.0380 0.4283 0.5043 0.0760 10 20 

ANFIS-GWO 0.0403 0.0356 0.0030 0.0059 0.0344 0.0462 0.0118 9 15 

ANFIS-MFO 0.0359 0.0327 0.0028 0.0055 0.0304 0.0414 0.0110 5 8 

ANFIS-WOA 0.0346 0.0330 0.0028 0.0055 0.0291 0.0401 0.0110 4 7 

ANFIS-SSA 0.0386 0.0321 0.0027 0.0054 0.0332 0.0440 0.0108 3 5 

ANFIS-HHO 0.0369 0.0341 0.0029 0.0057 0.0312 0.0426 0.0114 7 11 

ANFIS-SMA 0.0389 0.0335 0.0028 0.0056 0.0333 0.0445 0.0112 6 10 

ANFIS-MPA 0.0325 0.0283 0.0024 0.0047 0.0278 0.0372 0.0094 2 2 

 875 
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 877 
Table 22. Results of UA (internal validation phase for Case-2). 878 

Models MAE SDAE SE MOE LB UB WCB Sub-

rank 

Overall 

rank 

ANN-PSO 0.0466 0.0405 0.0034 0.0068 0.0398 0.0534 0.0136 8 17 

ANN-ACO 0.0312 0.0296 0.0025 0.0049 0.0263 0.0361 0.0098 3 11 

ANN-ABC 0.1006 0.0795 0.0067 0.0133 0.0873 0.1139 0.0266 10 20 

ANN-GWO 0.0276 0.0244 0.0021 0.0041 0.0235 0.0317 0.0082 1 8 

ANN-MFO 0.0425 0.0366 0.0031 0.0061 0.0364 0.0486 0.0122 6 15 

ANN-WOA 0.0430 0.0386 0.0033 0.0065 0.0365 0.0495 0.0130 7 16 

ANN-SSA 0.0360 0.0304 0.0026 0.0051 0.0309 0.0411 0.0102 5 13 

ANN-HHO 0.0642 0.0566 0.0048 0.0095 0.0547 0.0737 0.0190 9 19 

ANN-SMA 0.0330 0.0297 0.0025 0.0050 0.0280 0.0380 0.0100 4 12 

ANN-MPA 0.0305 0.0260 0.0022 0.0043 0.0262 0.0348 0.0086 2 10 

ANFIS-PSO 0.0212 0.0216 0.0018 0.0036 0.0176 0.0248 0.0072 1 1 

ANFIS-ACO 0.0347 0.0309 0.0026 0.0052 0.0295 0.0399 0.0104 9 14 

ANFIS-ABC 0.0639 0.0488 0.0041 0.0082 0.0557 0.0721 0.0164 10 18 

ANFIS-GWO 0.0284 0.0238 0.0020 0.0040 0.0244 0.0324 0.0080 7 7 

ANFIS-MFO 0.0280 0.0234 0.0020 0.0039 0.0241 0.0319 0.0078 4 4 

ANFIS-WOA 0.0288 0.0245 0.0021 0.0041 0.0247 0.0329 0.0082 8 9 

ANFIS-SSA 0.0280 0.0226 0.0019 0.0038 0.0242 0.0318 0.0076 3 3 

ANFIS-HHO 0.0275 0.0237 0.0020 0.0040 0.0235 0.0315 0.0080 5 5 

ANFIS-SMA 0.0283 0.0238 0.0020 0.0040 0.0243 0.0323 0.0080 6 6 

ANFIS-MPA 0.0273 0.0225 0.0019 0.0038 0.0235 0.0311 0.0076 2 2 

 879 
Table 23. Results of UA (external validation phase for Case-1). 880 

Models MAE SDAE SE MOE LB UB WCB Sub-

rank 

Overall 

rank 

ANN-PSO 0.0818 0.1010 0.0184 0.0377 0.0441 0.1195 0.0754 9 17 

ANN-ACO 0.0814 0.0788 0.0144 0.0294 0.0520 0.1108 0.0588 5 13 

ANN-ABC 0.2400 0.1539 0.0281 0.0575 0.1825 0.2975 0.1150 10 20 

ANN-GWO 0.0666 0.0639 0.0117 0.0239 0.0427 0.0905 0.0478 1 9 

ANN-MFO 0.1378 0.0959 0.0175 0.0358 0.1020 0.1736 0.0716 8 16 

ANN-WOA 0.1022 0.0733 0.0134 0.0274 0.0748 0.1296 0.0548 3 11 

ANN-SSA 0.1039 0.0889 0.0162 0.0332 0.0707 0.1371 0.0664 6 14 

ANN-HHO 0.1156 0.0777 0.0142 0.0290 0.0866 0.1446 0.0580 4 12 

ANN-SMA 0.0848 0.0644 0.0118 0.0240 0.0608 0.1088 0.0480 2 10 

ANN-MPA 0.0826 0.0920 0.0168 0.0344 0.0482 0.1170 0.0688 7 15 

ANFIS-PSO 0.0417 0.0408 0.0074 0.0152 0.0265 0.0569 0.0304 1 1 

ANFIS-ACO 0.1492 0.0806 0.0147 0.0301 0.1191 0.1793 0.0602 9 18 

ANFIS-ABC 0.0917 0.0845 0.0154 0.0316 0.0601 0.1233 0.0632 10 19 

ANFIS-GWO 0.0752 0.0522 0.0095 0.0195 0.0557 0.0947 0.0390 7 7 

ANFIS-MFO 0.0790 0.0536 0.0098 0.0200 0.0590 0.0990 0.0400 8 8 

ANFIS-WOA 0.0780 0.0510 0.0093 0.0190 0.0590 0.0970 0.0380 6 6 

ANFIS-SSA 0.0505 0.0501 0.0091 0.0187 0.0318 0.0692 0.0374 5 5 

ANFIS-HHO 0.0699 0.0409 0.0075 0.0153 0.0546 0.0852 0.0306 2 2 

ANFIS-SMA 0.0661 0.0423 0.0077 0.0158 0.0503 0.0819 0.0316 3 3 

ANFIS-MPA 0.0664 0.0422 0.0077 0.0158 0.0506 0.0822 0.0316 4 4 

 881 
Table 24. Results of UA (external validation phase for Case-2). 882 

Models MAE SDAE SE MOE LB UB WCB Sub-

rank 

Overall 

rank 

ANN-PSO 0.1003 0.0801 0.0146 0.0299 0.0704 0.1302 0.0598 8 17 

ANN-ACO 0.0745 0.0759 0.0139 0.0283 0.0462 0.1028 0.0566 6 15 

ANN-ABC 0.1615 0.1102 0.0201 0.0411 0.1204 0.2026 0.0822 10 19 

ANN-GWO 0.0594 0.0473 0.0086 0.0177 0.0417 0.0771 0.0354 1 9 

ANN-MFO 0.0928 0.0674 0.0123 0.0252 0.0676 0.1180 0.0504 5 13 

ANN-WOA 0.0729 0.0513 0.0094 0.0192 0.0537 0.0921 0.0384 2 10 

ANN-SSA 0.0964 0.0771 0.0141 0.0288 0.0676 0.1252 0.0576 7 16 

ANN-HHO 0.0890 0.0946 0.0173 0.0353 0.0537 0.1243 0.0706 9 18 

ANN-SMA 0.0793 0.0608 0.0111 0.0227 0.0566 0.1020 0.0454 3 11 

ANN-MPA 0.0750 0.0645 0.0118 0.0241 0.0509 0.0991 0.0482 4 12 

ANFIS-PSO 0.0433 0.0285 0.0052 0.0106 0.0327 0.0539 0.0212 1 1 

ANFIS-ACO 0.1262 0.0716 0.0131 0.0267 0.0995 0.1529 0.0534 9 14 

ANFIS-ABC 0.0866 0.0885 0.0162 0.0330 0.0536 0.1196 0.0660 10 20 

ANFIS-GWO 0.0690 0.0455 0.0083 0.0170 0.0520 0.0860 0.0340 8 8 

ANFIS-MFO 0.0543 0.0346 0.0063 0.0129 0.0414 0.0672 0.0258 6 6 

ANFIS-WOA 0.0603 0.0362 0.0066 0.0135 0.0468 0.0738 0.0270 7 7 

ANFIS-SSA 0.0465 0.0323 0.0059 0.0121 0.0344 0.0586 0.0242 5 5 

ANFIS-HHO 0.0524 0.0319 0.0058 0.0119 0.0405 0.0643 0.0238 4 4 

ANFIS-SMA 0.0472 0.0309 0.0056 0.0115 0.0357 0.0587 0.0230 2 2 

ANFIS-MPA 0.0473 0.0309 0.0056 0.0115 0.0358 0.0588 0.0230 3 3 
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8.5. Monotonicity analysis 884 

This study also investigated the feasibility of different soil particles through monotonicity analysis. Herein, 885 

the best performing model, i.e., ANFIS-PSO, for predicting the Cc of soils is analysed. The purpose of this analysis 886 

is to see how well the proposed hybrid model handles the overfitting problem using the concept of feasibility 887 

modelling of input parameters. For this purpose, a simulated dataset was produced for seven input parameters, 888 

namely S, M&C, C, M, FS, MS, and CS, with one input parameter changing linearly while the others stayed fixed. 889 

However, the principle of grain size analysis was followed, which states that the total proportions of S, M&C, and 890 

G contents or C, M, FS, MS, CS, and G contents cannot exceed 100%. Therefore, to assure the trend between the 891 

input parameter and soil Cc, a linear increase in one parameter was countered by a linear decrease in another, and 892 

vice-versa. To generate the simulated dataset, S and M&C, C and M, FS and MS, and CS and FS were altered as 893 

per the details given in Table 25, and the dataset was generated accordingly. In each scenario, the variable range 894 

of input parameters is also indicated in Table 25. As stated above, the summation of G, S and M&C; M, FS, MS, 895 

CS, and G were kept exactly 100% in all circumstances to imitate the practical case. It is also worth noting that 896 

the values of the other input parameters, as indicated in Table 25, were preserved at their mean values. 897 

 898 
Table 25. Dataset generation for monotonicity analysis. 899 

Variable input parameter  Input parameters with contact mean value Fig. 

reference Param. Range Increased by Set  

S 20.00 – 34.00 +1.00 A D = 7.48, G = 3.42, BD = 1.80, DD = 1.59, Gs = 2.67, LL = 

32.86, PL = 18.84. 

Fig.  16(a) 

M&C 69.10 – 55.10 -1.00  Fig.  16(b) 

S 30.00 – 44.00 +1.00 B D = 7.48, G = 3.42, BD = 1.80, DD = 1.59, Gs = 2.67, LL = 

32.86, PL = 18.84. 

Fig.  16(c) 

M&C 59.10 – 45.10 -1.00  Fig.  16(d) 

C 15.00 – 29.00 +1.00 C D = 7.48, G = 3.42, CS = 2.15, MS = 3.90, FS = 26.40, BD 

= 1.80, DD = 1.59, Gs = 2.67, LL = 32.86, PL = 18.84. 

Fig.  16(e) 

M 49.13 – 35.13 -1.00  Fig.  16(f) 

C 34.13 – 20.13 -1.00 D D = 7.48, G = 3.42, CS = 2.15, MS = 3.90, FS = 26.40, BD 

= 1.80, DD = 1.59, Gs = 2.67, LL = 32.86, PL = 18.84. 

Fig.  16(g) 

M 30.00 – 44.00 +1.00  Fig.  16(h) 

FS 10.00 – 24.00 +1.00 E D = 7.48, G = 3.42, CS = 2.15, M = 48.01, C = 16.11, BD = 

1.80, DD = 1.59, Gs = 2.67, LL = 32.86, PL = 18.84. 

Fig.  16(i) 

MS 6.31 – 20.31 -1.00  Fig.  16(j) 

CS 3.00 – 17.00 +1.00 F D = 7.48, G = 3.42, MS = 3.90, M = 48.01, C = 16.11, BD = 

1.80, DD = 1.59, Gs = 2.67, LL = 32.86, PL = 18.84. 

Fig.  16(k) 

FS 25.56 – 11.56  -1.00  Fig.  16(l) 

 900 
Fig.  16 displays all of the trends with smooth curves and reveals that soil Cc decreased as the content of S 901 

increases, while the completely opposite occurred for M&C content in both cases (Fig.  16(a - d)). In addition, 902 

Fig.  16(e, g) shows the expected increase in Cc with increasing C content, whereas, Fig.  16(f, h) illustrates the 903 

opposite trend, i.e., higher Cc with decreasing M content. The estimated Cc increased as the FS content grew, but 904 

declined as the content of MS increased (see Fig.  16(i,j)). Similarly, the content of CS and FS exhibited (see Fig.  905 

16(k, l)) opposite trends as expected. It is observed that the estimated Cc increases with the increase of C or M&C 906 

contents, whereas the predicted value decreases as the sand content increases. This occurrence implies that soil Cc 907 

is influenced more by M and C contents. The impact of different-sized sand particles can also be observed. It is 908 

worth noting that the ANFIS-PSO model was used to ensure expected trends using simulated datasets, but real-909 

life analysis may provide different results.  910 

It is also significant to mention that, in the majority of cases, the sub-soils of railways, highways, buildings, 911 

bridge foundations, etc. require preliminary treatment to improve their bearing capacity. In general, practitioners 912 

use soil stabilisation, soil mixing, and soil compaction to increase the quality of the subgrade material. Thus, the 913 

notion of the monotonicity analysis described here will allow engineers to change the soil qualities by modifying 914 

the mix of different-sized particles based on construction site requirements. Furthermore, the impact of different 915 

particle sizes on soil Cc at various soil particle proportions can be assessed. 916 
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Fig.  16. Illustration of monotonicity analysis using ANFIS-PSO model. 

 918 
8.6. Discussion 919 

The above sub-sections describe the outcomes and generalization capabilities of the hybrid ANN and ANFIS 920 

models in predicting soil Cc. After the models were developed, multiple performance indices were determined 921 

and analysed. In this study, two different combinations of input parameters i.e., Case-1 and Case-2, were 922 

considered to investigate the mapping relationship between soil parameters and Cc. All the hybrid ANN and 923 

ANFIS models were trained for both input combinations and validated thoroughly. The obtained results suggest 924 

that all developed models can capture the relationship between soil parameters and Cc in both training and 925 

validation phases; however, the prediction performance of the proposed ANN-GWO and ANFIS-PSO models was 926 

found to be significantly better than that of other developed models. In addition, separate laboratory experiments 927 

were conducted to determine the capability of the developed hybrid models for future application. It is also seen 928 

that the proposed ANN-GWO and ANFIS-PSO are the most accurate models in predicting soil Cc 929 

The overall status of the best performing model with the highest prediction accuracy in both Case-1 and 930 

Case-2 input combinations is presented in Table 26. For this purpose, the RMSE and WCB criteria were examined. 931 

As can be seen, ANFIS-PSO performed better than ANN-GWO in every phase. Compared to the Case-1 input 932 

combination, the proposed ANN-GWO and ANFIS-PSO models constructed with the second input combination 933 

(i.e., Case-2) achieved a greater prediction accuracy in both the internal and external validation phases. These 934 

findings demonstrate that both the models attained better performance when the contents of CS, FS, MS, M, and 935 
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C were considered separately in predicting the Cc of soils. In the internal validation phase, ANFIS-PSO achieved 936 

a very high accuracy for inferring values of soil Cc, which is expressed by the relatively low values of RMSE 937 

(0.0382 in Case-1 and 0.0303 in Case-2) and WCB (0.0092 in Case-1 and 0.0072 in Case-2). Comparatively, in 938 

the external validation phase, RMSE values were 0.0583 in Case-1 and 0.0519 in Case-2, and WCM values were 939 

0.0304 in Case-1 and 0.0212 in Case-2. The developed ANN-GWO also attained a higher prediction accuracy in 940 

Case-2 of soil Cc prediction (refer Table 26 for more details). However, the overall performance of the constructed 941 

ANFIS-PSO supports its superior generalization and robustness at all levels. 942 

 943 
Table 26. Summarized performance of the best performing model. 944 

RMSE and WCB values in different phases Case-1 best Case-2 best Final best 

RMSE (internal validation) ANN-GWO = 0.0447 

ANFIS-PSO = 0.0382 

ANN-GWO = 0.0368 

ANFIS-PSO = 0.0303 

ANFIS-PSO 

RMSE (external validation) ANN-GWO = 0.0923 

ANFIS-PSO = 0.0583 

ANN-GWO = 0.0760 

ANFIS-PSO = 0.0519 

ANFIS-PSO 

WCB value (internal validation) ANN-GWO = 0.0102 

ANFIS-PSO = 0.0092 

ANN-GWO = 0.0082 

ANFIS-PSO = 0.0072 

ANFIS-PSO 

WCB value (external validation) ANN-GWO = 0.0478 

ANFIS-PSO = 0.0304 

ANN-GWO = 0.0354 

ANFIS-PSO = 0.0212 

ANFIS-PSO 

 945 
Furthermore, the validity of the proposed ANFIS-PSO model and sensitivity of the input variables on the 946 

predicted results, especially the impact of CS, MS, FS, M, and C contents, were analysed. The monotonicity 947 

analysis demonstrates the overall behaviour of the proposed ANFIS-PSO model with regards to its expected 948 

behaviour in terms of soil Cc and other soil parameters, indicating that overfitting did not occur in either of the 949 

two input combinations for predicting soil Cc. 950 

 951 

9. Conclusion 952 

In the present work, a comparative assessment of hybrid ANN and ANFIS models constructed with ten SI 953 

algorithms for estimating soil Cc has been presented. To this end, a sum of 700 oedometer test results was 954 

employed to create and validate the models, and 30 new laboratory experiments were conducted for external 955 

validation of the proposed hybrid models. Based on the experimental outcomes, the ANN-GWO and ANFIS-PSO 956 

were found to be the best hybrid models in the groups of hybrid ANN and ANFIS models. However, experimental 957 

results exhibit that the proposed ANFIS-PSO obtained the most accurate prediction across all stages (i.e., training, 958 

internal validation, and external validation phases) among the developed hybrid models. Based on the R2 and 959 

RMSE criteria, the proposed ANFIS-PSO outperformed the other hybrid models with R2 = 0.9789 and RMSE = 960 

0.0303 in the internal validation phase and R2 = 0.9286 and RMSE = 0.0519 in the external validation phase. The 961 

validation of the ANFIS-PSO model with a completely new dataset demonstrates its robustness and 962 

generalizability in estimating soil Cc. The performance obtained in the external validation phase indicates that the 963 

proposed ANFIS-PSO can be used to estimate soil Cc in the future. This is one of the major contributions of this 964 

study. 965 

On the contrary, based on grain size distribution analyses, two different combinations of basic soil parameters 966 

(i.e., Case-1 and Case-2) were explored in this study to ensure the effectiveness of silt and clay particles on soil 967 

Cc. Experimental outcomes of the two best models, i.e., ANFIS-PSO and ANN-GWO, exhibit that the Case-2 968 

input combination offers better prediction performance than the Case-1 input combination for Cc prediction. 969 

Therefore, the use of grain size distribution with independent contents of CS, MS, FS, M, and C appears to be 970 

highly effective for modelling the Cc of soils The impact of different-sized particles on soil Cc was also 971 
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investigated via a monotonicity analysis considering different combinations of input parameters. This will allow 972 

researchers and practitioners to customize the soil Cc. by adjusting the mix proportions of S, CS, MS, FS, M&C, 973 

M, and C to meet their specific needs. 974 

The present work proposes a high-performance hybrid model to replace the oedometer tests and provides a 975 

comprehensive literature review of previous studies, including the results of the utilized ML models. Details of 976 

the input soil parameters used in earlier studies to estimate the Cc of soils have also been included, which will 977 

benefit researchers in their future studies. The main advantages of the proposed ANFIS-PSO model include: a) 978 

faster convergence, b) lower computational time, c) use of real-life datasets collected from a large project of IR, 979 

d) higher prediction accuracy in the validation phases, and e) high degree of reliability. With fewer FIS parameters 980 

and a reduced computational cost, the ANFIS-PSO model achieved significant prediction accuracy. highlighting 981 

the effectiveness of the said model. This is another major advantage of the proposed hybrid approach. However, 982 

the confined search space of the OAs (i.e., fixed values of different deterministic parameters) and required multiple 983 

runs can be seen as limitations of this study. Therefore, more research should be conducted to expand the use of 984 

hybrid ANN and ANFIS models for forecasting the desired output in different engineering disciplines. 985 

Nonetheless, the future direction of this work may include: a) a detailed assessment of the accuracy of other 986 

hybrid models, such as hybrid ELMs, hybrid SVMs, etc. via actual data from various areas of geotechnical 987 

engineering; b) evaluation of the ANFIS-PSO model's superiority over other hybrid ANFIS models built using 988 

evolutionary and physics-based OAs; c) implementation of advanced and enhanced of meta-heuristic algorithms 989 

for constructing hybrid ANFIS models; d) soil sample preparation based on the simulated dataset and validation 990 

of results through laboratory experiments; e) large-scale investigation and validation of the developed hybrid 991 

models; and e) study of the impact of soil particles on Cc, especially silt and clay contents for other types of soils. 992 

Nevertheless, considering the effect of different-sized soil particles, the current research proposes a novel 993 

promising strategy for estimating soil Cc that eliminates the undesired oedometer tests for the first time. 994 
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