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The study proposes an improved Harris hawks optimization (IHHO) algorithm by integrating the stan-
dard Harris hawks optimization (HHO) algorithm and mutation-based search mechanism for developing
a high-performance machine learning solution for predicting soil compression index. HHO is a newly
introduced meta-heuristic optimization algorithm (MOA) used to solve continuous search problems.
Compared to the original HHO, the proposed IHHO can evade trapping in local optima, which in turn
raises the search capabilities and enhances the search mechanism relying on mutation. Subsequently, a
novel meta-heuristic-based soft computing technique called ELM-IHHO was established by integrating
IHHO and extreme learning machine (ELM) to estimate soil compression index. A sum of 688 consoli-
dation test data was collected for this purpose from an ongoing dedicated freight corridor railway
project. To evaluate the generalization capability of the proposed ELM-IHHO model, a detailed com-
parison between ELM-IHHO and other well-established MOAs, such as particle swarm optimization,
genetic algorithm, and biogeography-based optimization integrated with ELM, was performed. Based on
the outcomes, the ELM-IHHO model exhibits superior performance over the other MOAs in predicting
soil compression index.
� 2022 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Considering the rapid industrialization and urbanization in to-
day’s modernworld, there is a growing demand for solutions to the
equally increasing problems in the engineering and construction
fields. It is pertinent to mention that the development of a country
wholly depends on the availability of infrastructure facilities such
as road and railway transportation systems, airports, hospitals,
ports, power, etc. These structures are important for faster
ock and Soil Mechanics, Chi-
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by-nc-nd/4.0/).
economic growth and the alleviation of poverty. In the last few
decades, we have witnessed a phenomenal change in the devel-
opment of infrastructure facilities on a fast-track basis, particularly
in transportation systems like railways, roadways, airports, metros
and flyovers. As we know, all these systems are built on the natural
ground surface and during construction, intensive concreting and
earthwork are performed. Also, the installation of a transportation
system requires substantial investment. Hence, to run the entire
system satisfactorily, a detailed analysis of the stability of the
structures is extremely needed. Furthermore, proper safety of the
structures in terms of defects, seismic failure, malfunction of sub-
structures due to differential settlement of soil layers, etc. should
always be ensured during the construction phase and in the post-
completion phase as well.
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Table 1
Previous studies on prediction of Cc of soil for comparison.

Earlier Studies Model used Dataset used R2

Training Testing

Mohammadzadeh et al. (2014) ANN 108 0.8705 0.8593
Benbouras et al. (2019) ANN 373 0.6464 0.5625
Alizadeh Majdi et al. (2019) ANN 150 0.961 0.958
Park and Lee (2011) ANN 947 0.896 0.885
Kashefipour and Daryaee (2014) ANN 137 0.67 0.7
Kurnaz et al. (2016) ANN 246 0.8926 0.8973
Alam et al. (2014) ANN 391 0.76 0.72
Kolay et al. (2011) ANN 700 - 0.5776
Bui et al. (2018) BP-MLPNN 154 0.935 0.862
Kurnaz and Kaya (2018) BRNN 351 0.8887 0.9153
Bui et al. (2018) RBF-NN 154 0.842 0.678
Mohammadzadeh et al. (2019) GEP 108 0.8231 0.8603
Benbouras et al. (2019) GP 373 0.6058 0.0574
Bui et al. (2018) GP 154 0.904 0.797
Mohammadzadeh et al. (2014) GP-MEP 108 0.8742 0.8118
Mohammadzadeh et al. (2016) MGGP 108 0.856 0.84
Samui et al. (2011) LSSVM 257 0.996 0.5329
Samui et al. (2012) RVM 185 0.9683 0.9216
Kurnaz and Kaya (2018) SVM 351 0.8761 0.9147
Shi and Guo (2013) SVM 49 0.9663 0.9448
Bui et al. (2018) SVR 154 0.881 0.777
Kurnaz and Kaya (2018) ELM 351 0.8642 0.883
Samui and Kim (2017) ELM 186 0.9604 0.8649
Mamudur and Kattamuri (2020) EGB 391 0.985 0.98
Bui et al. (2018) RF 154 0.99 0.804
Samui and Kim (2017) MPMR 186 0.992 0.6906

Note: BP-MLPNN e Back-propagation multi-layer perceptron neural network;
BRNN e Bayesian regularization neural network; GEP e Gene expression pro-
gramming; GMDH e Group method of data handling; GP-MEP e GP-based multi-
expression programming; GP e Genetic programming; LSSVM e Least-square
support vector machine; MGGP e Multi-gene genetic programming; RBF-NN e

Radial basis function neural network; RVM e Relevance vector machine; SVR e

Support vector regression.
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In geotechnical engineering, the design of the sub-structure/
foundation is pertinent to determine the compressibility charac-
teristics of soils, such as the compression index ðCcÞ, coefficient of
consolidation ðCvÞ, coefficient of compressibility ðavÞ, and coeffi-
cient of volume compressibility ðmvÞ. These values are critical in
estimating the settlement of the sub-soils under a given load. In
theory, the compressibility of soil is the ease with which a soil
decreases in volume (soil densification) when subjected to a load.
Reduction of the soil volume mainly occurs due to the drainage of
pore water, which is a time-dependent process. For fine-grained
and low permeable soils, the settlement estimation depends on
the aforementioned parameters, i.e. Cc, Cv, av, and mv. Amongst
them, Cc is the main indicator that is often used to calculate the
settlement of the foundation in the design phase. However, the
accurate estimation of compressibility of soils is an arduous task for
fine-grained soils due to their low permeability and the complex
process of expulsion of pore water in such types of soils. As
mentioned by Li (2014), the estimation of post-construction set-
tlement of sub-soil presents an issue for the serviceability of
various structures. In practice, the settlement caused by the in-
crements of loads is derived using e-log10s0 (void ratio versus the
logarithm of compressive stress) curve. Subsequently, the amount
of total settlement (Sc) for a soil layer of normally consolidated clay
(NC-clay) is calculated using the following expression:

Sc ¼ H
Cc

1þ e0
log10

 
s00 þ Ds

s00

!
(1)

where H is the thickness of the soil layer; e0 represents the initial
void ratio; and s00 and Ds are the effective overburden pressure and
applied load, respectively. Now, the task at hand is the determi-
nation of parameter Cc, which is generally obtained by a standard
consolidation test on an undisturbed soil sample collected from
sites at different depths in the laboratory. However, this test is
time-consuming, cumbersome, and expensive, and usually takes
7 d or more to complete. Therefore, the accurate estimation of Cc
would only be possible after a gap of at least 7 d after conducting
the test in the laboratory. This test is not only time-consuming and
expensive but also requires experienced geotechnical engineers,
skilled manpower and specific laboratory equipment to attain
reliable results. As mentioned above, estimation of sub-soil settle-
ment is an indirect measure of the stability and reliability of a
structure. In fact, Cc is awidely used parameter in the design phases
of various structures, including building foundations, bridge piers,
retaining walls, railway embankment and foundations of trans-
mission line towers. Keeping these limitations in mind, it is a
practical need to establish potential alternative methods to deter-
mine soil Cc utilizing its basic physical properties.

Thus, to avoid the operation of conducting actual oedometer test
in the laboratory, several studies have been performed to correlate
Cc with basic soil properties. Numerous statistical analyses
(Skempton and Jones, 1944; Nishida, 1956; Cozzolino, 1961;
Terzaghi et al., 1967; Sower and Sower, 1970) were performed using
single and multiple regression techniques. However, these tech-
niques present notable modeling drawbacks, and in many cases,
satisfactory correlations could not be achieved, according to a
careful examination of these empirical models (Mohammadzadeh
et al., 2014). Also, due to the heterogenic nature of soils and the
uncertainties associated with them, the derived expressions do not
have a high degree of precision or a generalized solution. Hence,
more robust and accurate methods are required to correlate the soil
Cc by utilizing its basic properties.

In order to predict the desired outcome, including real-world
engineering issues, modern research has turned to advanced soft
computing approaches as feasible alternatives (Gandomi et al.,
2013; Kordnaeij et al., 2015; Bui et al., 2018; Acharyya and Dey,
2019; Mirabbasi et al., 2019; Wróbel and Kulawik, 2019;
Armaghani and Asteris, 2020; Cai et al., 2020; Golafshani et al.,
2020; Nhu et al., 2020; Sharifi et al., 2020; Ly et al., 2021;
Mohammed et al., 2021; Wang and Goh, 2021). Soft computing
techniques employ nonlinear modelling as a viable approach for
simulating numerous complicated geotechnical processes (Zhang
and Goh, 2016; Goh et al., 2017, 2018, 2020; Chen et al., 2020;
Wang et al., 2020a, b; Zhang et al., 2017, 2019, 2020a, b, 2021a, b),
including prediction of soil Cc. In the recent past, extensive re-
searches have been performed to develop several soft computing-
based models to predict Cc including artificial neural network
(ANN) (Kolay et al., 2011; Park and Lee, 2011; Alam et al., 2014;
Kashefipour and Daryaee, 2014; Mohammadzadeh et al., 2014;
Kurnaz et al., 2016; Bui et al., 2018; Kurnaz and Kaya, 2018; Alizadeh
Majdi et al., 2019; Benbouras et al., 2019), genetic programming-
based models (Mohammadzadeh et al., 2014, 2016, 2019; Bui
et al., 2018; Benbouras et al., 2019), support vector machine
(SVM)-based models (Samui et al., 2011, 2012; Shi and Guo, 2013;
Bui et al., 2018; Kurnaz and Kaya, 2018), and extreme learning
machine (ELM) (Samui and Kim, 2017; Kurnaz and Kaya, 2018). In
addition, Mamudur and Kattamuri (2020) and Bui et al. (2018) used
extra gradient boosting (EGB) method and random forest (RF), and
Samui and Kim (2017) used minimax probability machine regres-
sion (MPMR) model to correlate Cc with basic soil properties and
attained significant accuracy. Table 1 presents the details of earlier
studies along with the predictive model employed in each study,
and accuracies attained in the training and testing phases for the
different models. For the works mentioned in Table 1, out of the
multiple predictive models, only the models with the highest R2
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(coefficient of determination) values in the training and testing
phases are listed. Detailed review of earlier studies reveals that
higher predicative accuracy was usually achieved in the training
phase, while reduced accuracy was found (Samui et al., 2011; Samui
and Kim, 2017; Bui et al., 2018; Benbouras et al., 2019) in many
cases for the testing dataset, which indicates that the developed
models were not accurate enough outside the training dataset. The
lack of accuracy mainly stems mainly from the black box nature of
the algorithm, overfitting issue, multicollinearity, noise in training
dataset, etc. Although conventional soft computing techniques
provide better accuracy than statistical methods, they only search
for a local optimum solution. Therefore, it is necessary to develop
models for predicting the desired output with high degree of ac-
curacy in both the training and testing phases. It is also endeav-
oured to build models where the differences in the accuracies in
both the training and testing phases are minimal to ensure the
generalization capability as well as robustness of the predictive
models.

Many researchers are currently engaged in enhancing the per-
formance of conventional soft computing techniques (such as ANN
and adaptive neuro-fuzzy inference system (ANFIS)) by incorpo-
rating meta-heuristic optimization algorithms (MOAs) and found
notable results. MOAs provide a balanced approach in the explo-
ration and exploitation process, which in turn raises the search
capabilities and the performance of the conventional machine
learning models. Among the several MOAs, particle swarm opti-
mization (PSO), genetic algorithm (GA), and biography-based
optimization (BBO) algorithms have been used extensively in
recent time. Several ANN- and ANFIS-based meta-heuristic hybrid
models have been developed, including the ANN-PSO (Armaghani
et al., 2014; Hajihassani et al., 2014; Hasanipanah et al., 2017;
Asmawisham Alel et al., 2018; Bui et al., 2018; Koopialipoor et al.,
2019; Le et al., 2019; Moayedi et al., 2020; Roy and Singh, 2020),
ANN-GA (Le et al., 2019; Moayedi et al., 2020; Rad et al., 2020),
ANN-BBO (Roy and Singh, 2020), ANN-GWO (grey wolf optimiza-
tion) (Golafshani et al., 2020), ANFIS-PSO (Roy and Singh, 2020; Ly
et al., 2021), ANFIS-GA (Ly et al., 2021), ANFIS-BBO (Roy and Singh,
2020; Ly et al., 2021), and ANFIS-GWO (Golafshani et al., 2020)
models. By the use of the ANFIS-PSO model, Ly et al. (2021) pre-
dicted the load-bearing capacity of concrete-filled steel tubes and
concluded that the ANFIS-PSO outperformed the ANFIS-GA and
ANFIS-BBO models. Golafshani et al. (2020) used GWO to enhance
the performance of classical ANN and ANFIS models and stated that
implementation of MOA can reduce the weakness of classical ma-
chine learning algorithms. Le et al. (2019) performed a comparative
study of ANN-PSO, ANN-GA, ANN-ICA (imperialist competitive al-
gorithm), and ANN-ABC (artificial bee colony). The authors
concluded that the ANN-GA outperformed the other models in
predicting the heating load of buildings’ energy. Bui et al. (2018)
proposed a hybrid model of multi-layer perceptron (MLP) neural
networks and PSO (PSO-MLP neural networks) to estimate soil Cc.
Experimental results demonstrated that the proposed model out-
performed the other conventional machine learning models at all
levels. Additionally, many other studies used ANN- and ANFIS-
based hybrid model to estimate the desired output(s) in different
disciplines of civil engineering (Armaghani et al., 2014; Hajihassani
et al., 2014; Hasanipanah et al., 2017; Asmawisham Alel et al., 2018;
Bui et al., 2018; Golafshani et al., 2020; Koopialipoor et al., 2019; Le
et al., 2019; Moayedi et al., 2020; Rad et al., 2020; Roy and Singh,
2020; Ly et al., 2021). However, a thorough examination of these
studies indicates that the performance of meta-heuristic hybrid
models is problem-specific as most of the authors reported mixed
accuracy levels in their studies. Also, the authors used the standard
version of MOA to perform the optimization tasks in their respec-
tive studies. Nonetheless, as per no free lunch (NFL) theorem
(Wolpert and Macready, 1995), no algorithm provides perfect so-
lutions for all optimization problems. Therefore, implementing a
standard version of MOA in hybrid modeling does not ensure the
optimum hybrid model generation. Researchers reported modified
versions of several MOAs and demonstrated that the performance
of standard MOA could be improved by implementing different
strategies (Jia et al., 2003; Zhou et al., 2009; Farswan et al., 2016;
Mittal et al., 2016; Tian and Shi, 2018). However, existing literature
does not show sufficient implementation of the enhanced versions
of MOAs and comparative assessment of standard and enhanced
version of MOA in predicting the desired output in different fields
of engineering.

In light of the aforementioned gaps and limitations, the goal
of this research was to develop an effective hybrid model for
predicting one of the most challenging real-world problems in
civil engineering, i.e. estimation of Cc of soils. A recently devel-
oped MOA, namely Harris hawks optimization (HHO), was
employed by coupling it with ELM, as a novel hybrid meta-
heuristic model, i.e. ELM coupled HHO (ELM-HHO) is proposed.
ELM is a simple and efficient machine learning technique that
mimics the structure of ANN. ELM, on the other hand, operates
on a different principle. ELM achieves good generalisation per-
formance with a single layer of hidden neurons while learning at
an incredibly fast learning pace (Huang et al., 2006). On the other
hand, HHO is a newer (Heidari et al., 2019) MOA, which shadows
the behavior of Harris hawk birds in searching for and chasing
prey in nature. It is not only fast and powerful (Heidari et al.,
2019; Sihwail et al., 2020) but also a high-performance popula-
tion-based MOA. Based on the experimental outcomes, the
founded researches suggest that HHO outperforms other well-
established algorithms (such as PSO, GA, BBO, etc.) and has
very competitive results. Considering these advantages, HHO was
employed in this work to build an efficient computational model
for the prediction of Cc of soils.

However, HHO does present some limitations, such as the limited
solution in the initialization phase, local minima trapping issue, and
premature convergence. The algorithm also depends on the rabbit
energy, which starts at 2 and progressively concentrates to 0 with
iteration count. Until the rabbit energy is more than 1, this algorithm
only does a global search in the first half of iterations, meaning that it
does not perform a global search in the second half of iterations.
Furthermore, early convergence results in a local solution rather than
a global solution (Jia et al., 2019; Ridha et al., 2020). Hence, based on
these shortcomings, this study was motivated to improve the stan-
dard HHO algorithm by incorporating a mutation-based search
technique to sidestep the above-mentioned issues and enhance the
performance of the standard HHO algorithm. Afterward, the
improved HHO (IHHO) was used to construct the hybrid models of
ELM and IHHO (ELM-IHHO) for predicting Cc of soils. Also, to over-
come the overfitting and multicollinearity issues, Principal compo-
nent analysis (PCA) was implemented. Then, the robustness of the
proposed ELM-HHO and ELM-IHHO models was compared with
three widely used MOAs, i.e. PSO, GA, and BBO, coupled with ELM. A
wide range of oedometer test data was acquired for this purpose
from an ongoing dedicated freight corridor (DFC) railway project and
used in the current study to forecast the Cc values of soils.

The rest of the work is structured as follows. The study area and
data collection are presented in Section 2, while the comprehensive
methodology is illustrated in Section 3. Section 4 explains data
processing, analysis, and performance parameters. Section 5 shows
the findings and a detailed discussion on the performance of the
constructed hybrid ELMs. Finally, in Section 6, summary and con-
clusions are presented.
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2. Study area and data collection

The Ministry of Indian Railways (MIR) plans to construct a
10,122-km long heavy-haul railway corridor to address the
increased demand for railway freight in India, especially for the
movement of railway freight (Raghuram and Verma, 2019). TheMIR
has planned to construct six DFCs under the Golden Quadrilateral
Freight Corridor Project. The rail network will join all of the four
largest metropolitan cities of Kolkata, Mumbai, Delhi, and Chennai.
As of now, two DFCs, i.e. Eastern and Western DFC (EDFC and
WDFC), have been planned and are in the construction stage.

In this study, a 308 km long section of WDFC (Iqbalgarh e

Vadodara sectionwith a revised length of 340 km) located between
latitude 22�14058.200N and longitude 73�1104.900E and latitude
24�2004700N and longitude 72�3202.800E (see Fig. 1) was selected as
the study area. The entire 340-km segment will pass through
Gujarat, India. Presently, the work is in progress in the Iqbalgarh e

Vadodara section, from which consolidation test results of the
subgrade soil have been collected. A sum of 688 odometer tests
along with other soil test data, i.e. depth of soil, specific gravity,
bulk density, dry density, water content, gravel content, contents of
coarse, medium and fine sands, silt and clay content, plasticity
characteristics, and the free swell index has been collected from the
project site of Iqbalgarh e Vadodara section and used in this study
for predicting soil Cc.

3. Methodology

In this section, the methodological development of the ELM
model along with the methodologies of PSO, GA, BBO, and HHO is
discussed. This is followed by the methodological development of
the IHHO algorithm with ELM-based MOAs in optimizing the
weights and biases of ELM. Before the discussion of ELM andMOAs,
the theoretical background of the PCA is described.

3.1. PCA

PCA is a common technique to derive characteristics as well as
for the dimension reduction of data (Nhu et al., 2020). This tech-
nique is well-known for obtaining smaller numbers of uncorrelated
Fig. 1. Geographical layout of Iqb
elements from more extended predictor variables. To do so, ei-
genvectors are calculated from the covariance matrix. For a set of p
dimensional predictor variable:

ui ¼ ½uið1Þ;uið2Þ;uið3Þ;.;uiðpÞ�T ði ¼ 1; 2;.; qÞ (2)

PCA transforms it into a new vector vi which is presented as
follows:

vi ¼ UTui (3)

where U stands for the p � p orthogonal matrix whose jth column
cj represents the jth eigenvector of the example covariance matrix
M given by

M ¼ 1
q

Xq
i¼1

uiu
T
i (4)

The solution of PCA is given by

lirj ¼ Mrj ðj ¼ 1;2;.;pÞ (5)

where li stands for an eigenvalue of the covariance matrix (M), and
rj shows the corresponding eigenvector. In Eq. (3), the orthogonal
element of the predictor variable vi can be calculated by changing
ui, where the principal component stands for the resultant part. At
first, the eigenvalues sort the eigenvector fromhigh to lowand then
choose the main element. In turn, the predictor variable causes the
reduction of the main component. PCA is used to reduce the di-
mensions of various variables down to the main element so that
they are not related and their variance is at a continuous maximum.
3.2. Details of soft computing techniques

3.2.1. ELM
ELM is a single-layer feed-forward network (SLFNN) that uses a

closed-form solution to generate weights through a least-squares
method. A continuous probability distribution function is also
used rather than an iterative method of conventional feed-forward
ANNs. The strengths of ELM include design simplicity, high speed of
algarh e Vadodara section.
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solving regression or classification problems associated with the
randomized nature of the bias and weights in hidden neurons, and
the uniqueness of the least-square solution of the output obtained
using the Moore-Penrose pseudo inverse. These properties obviate
the requirement for an iterative training technique, such as ANN-
based models, which are vulnerable to being trapped in local
minimums in predictor datasets.

The steps to construct the procedure for data modelling based
on ELM include: (i) randomly constructing the weights and biases
of the hidden layer neurons in contrast to the iterativemethod used
in ANNs; (ii) assembling the hidden layer’s weights by progressing
the inputs through the hidden layer’s parameters; and (iii) esti-
mating output weights through matrix operations, where the
generalized Moore-Penrose inverse matrix is utilized followed by
calculating its product with the response variable, i.e. solving a
collection of linear equations. After hidden neuron nodes are
identified, they must undergo randomization. Hidden neurons can
be normally detected by trial-and-error approaches. The benefits of
ELM compared to other models in real-time applications include
high convergence rate, great potential for generalizability, not be-
ing trapped in local minimal solutions, no data overfitting, and no
need for iterative tuning. In addition, the high-speed and promoted
performance of ELM is highly beneficial, especially in a real-time
setting.

ELM is generally used to train the predictor-target pairs of data
in the present study, as shown in Fig. 2. Let xi denote the predictors
and yi be the target. The following mathematical representation
was used for the SLFNN with L hidden neurons for a collection of d-
dimensional vectors defined with i (i¼ 1, 2,., N) training samples:

fLðxÞ ¼
XL
i¼1

hiðxÞbi ¼ hðxÞb (6)

where hi(x) represents the ith hidden neuron; b ¼ [b1, b2, ., bL]T is
the output weight matrix between the hidden and output neurons;
and h(x)¼ [h1, h2,., hL] is the hidden neuron output that shows the
hidden randomised properties of the predictor xi. The following
equation was used to express the output function of hidden
neurons:

hiðxÞ ¼ Gðai;bi; xÞ
�
ai ˛Rd; bi ˛R

�
(7)

where Gðai; bi; xÞ is defined as a piecewise continuous nonlinear
function using hidden neuronparameters (ai and bi) that is required
to meet the ELM approximation theorem. The commonly used
Fig. 2. A general structure of ELM.
sigmoid equation in ANN-based models was employed to develop
the ELM model as follows:

Gða; b; xÞ ¼ 1
1þ expð�axþ bÞ (8)

Huang et al. (2006) minimized the estimation error by
employing least-square fitting when deriving the weights linking
output and hidden layers:

min
b˛RL�m

jjHb� T jj2 (9)

where jjHb� T jj represents the Frobenius norm; and H is a ran-
domized hidden layer output matrix and defined as

H ¼
24 gðx1Þ«
gðxNÞ

35 ¼
24 g1ða1x1 þ b1Þ . gLðaLx1 þ bLÞ
« 1 «
g1ðaNxN þ b1Þ . gLðaLxN þ bLÞ

35 (10)

The following target matrix is used during the data training:

T ¼

2664 t
T
1

«

tTN

3775 ¼
24 t11 . t1m
« 1 «
tN1 . tNm

35 (11)

The linear equation system b* ¼ HþT was solved to obtain an
optimal solution, in which Hþ represents the generalized Moore-
Penrose inverse function. Moreover, the optimal solution was
inserted into this equation tomake predictions for x as a given input
vector.
3.2.2. PSO
The PSO is considered the first of the segment of the swarm-

based MOA (Kennedy and Eberhart, 1995). The principal origin of
impulse for the PSO algorithm is to gather and school patterns
among birds and fish, so that the central goal of this algorithm is to
provide a universal best resolution in multidimensional space. The
PSO initializes the particle’s random speeds and status. After
updating the situation, every particle based on the rates identifies
the best position in the multidimensional period for the individual
and the global most suitable positions. The universal most suitable
status is regarded as the best positions in every particle and the
best status of a particle stands for the most suitable state. The in-
dividual most suitable position and the direction of the global most
suitable state play a role in the updating process of a particle. The
distinction between the universal most suitable state and their
individual most suitable position is critical to update the particle
speed. As shown in Fig. 3, one can observe that through a blend of
exploitation and investigation during k and kþ 1 iterations, the
particles gather everywhere around the best resolution:

vkþ1
i ¼ uvki þ c1r1

�
pbesti � xki

�
þ c2r2

�
gbesti � xki

�
(12)

xkþ1
i ¼ xki þ vkþ1

i (13)

where x and v stand for the position and velocity, respectively;
pbest and gbest represent the best particle position and best group
position, respectively; r1 and r2 are the randomnumbers between 0
and 1; and c1 and c2 are the cognitive and social coefficients. These
parameters are problem-oriented; thus, their main goal is to
distinguish the level of reliance of a particle upon its personal and
global positions. u stands for the inertia weight parameter, which
has a direct relation with the time:



Fig. 3. Movement of ith particle in the search space during k and kþ 1 iterations.
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uk ¼ umax � umax � umin
kmax

k (14)

where umin and umax are the minimum and maximum inertia
weights, respectively; and kmax is determined according to the
highest number of iterations. Similar to GA, particles in the PSO do
not bid against each other, rather they support. The number of
particles in PSO is an important characteristic of the model,
differentiating it from other optimization approaches, which allows
the identification of global optima. The detailed steps involved in
PSO are presented in the flowchart in Fig. 4.
3.2.3. GA
The biological evolution of human beings can be thought of as a

GA in the sense that optimal results, or the fittest human, are the
desired output. In 1992, Holland (1992) used GA in various appli-
cations and achieved significant results. Combining the correct
responses in the GA, in correlationwith the survival of the strongest
of evolution, leads to an optimized resolution. In each step, selected
chromosomes from present populations are used to construct the
next generation by employing three types of genetic operators,
namely selection, crossover, and mutation.

The selector operator initially selects a generation to participate
in the reproduction process based on fitness parameters, which are
heavily influenced by the presence or absence of a chromosome.
Then, the crossover operator randomly selects a locus between two
Fig. 4. Steps showing the p
chromosomes, whereby the crossover suggests different solutions
for the present population. The range of the crossover point varies
from 1 to minðLAP1 ; LAP2 Þ� 1, where LAP1 and LAP2 are the
numbers of location areas in parent resolutions P1 and P2, respec-
tively. The re-permutation in the sequence of the bits in chromo-
somes does not affect the topology but does change the
placements. These three processes (i.e. selection, crossover, and
mutation) continue until the terminating criterion is reached.
These criteria include the number of iterations, number of gener-
ations, changes in fitness, etc., which are important in GA. In each
iteration, each individual is assessed based on fitness. The most
fitted generation with the least fitness value is considered in the
developed model. The typical flowchart of GA in Fig. 5 shows the
steps along with different genetic operators and their operations.
3.2.4. BBO
The BBO algorithm, first suggested by Simon (2008), was

motivated by biogeography, or the development of steady ecosys-
tems containing different species and the impacts of immigration
and emigration. The study used this algorithm to investigate the
biological organisms regarding geographical patterns (over time
and space) of various landscapes, islands, and continents over de-
cades or even millennia. Specifically, the migration and mutation
between the diverse species of many different ecosystems and
habitats were investigated. The principal characteristic of BBO is
defined as the migration from high to low characteristics and the
mutation of low characteristics to high. Repeating this procedure
led to an optimized resolution, where some descriptions of
migration and mutation were employed as the base operators of
the above algorithm.

(1) Migration. In this case, the operator transfers data between
resolutions. The movement and migration parameters below
specify this parameter:

lk ¼ lmax

�
1� k

kmax

�
(15)

mk ¼ mmax
k

kmax
(16)

where lk is the immigration rate, mk is the emigration rate, and k
stands for the rank of resolution. Here, for the largest number of
species (Smax), we obtained identical rates of immigration and
rocess involved in PSO.



Fig. 5. Flowchart of GA.
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emigration. Fig. 6 shows the relationship between emigration rate
and immigration rate in BBO.

(2) Mutation. Since catastrophes or infections change the co-
efficients of the resolution, the sudden change in species shows
the notion of mutation. The calculation of transformation
among species is as follows:

mk ¼ mmax

�
1� Pk

Pmax

�
(17)
Fig. 6. Relationship between emigration rate and immigration rate.
where mk and mmax are the representative transformation rates;
and Pk and Pmax are the possible species, in which k shows the rank
of resolution. Pk is expressed as follows:

Pk ¼
8<:�ðlk þ mkÞPk þ mkþ1Pkþ1 ðk ¼ 0Þ

�ðlk þ mkÞPk þ lk�1Pk�1 þ mkþ1Pkþ1 ð1 � k � kmax � 1Þ
�ðlk þ mkÞPk þ lk�1Pk�1 ðk ¼ kmaxÞ

(18)

Previous reports on the application of this meta-heuristic al-
gorithm in predicting real-world problems (Zheng et al., 2016; Roy
et al., 2021) indicate that this optimization algorithm can enhance
the performance of conventional machine learning models with
significant success. However, a typical flowchart of BBO in pre-
sented in Fig. 7.
3.2.5. HHO
Heidari et al. (2019) introduced the HHO as a novel optimization

algorithm based on the teamwork among hawks in pursuing the
prey, which was motivated by the natural behavior of Harris’s
hawk. In HHO, a group of hawks attempts to take an identified prey
by surprise through collaboratively striking from different di-
rections and simultaneously converging on it. Harris’s hawks
employ a variety of pursuit strategies according to the circum-
stances and the prey’s escape patterns. As the best hawk, the leader
of the group abruptly disappears from sight after attacking and
following the prey for a while. The next member of the group then
carries on the chase. The exhausted and vulnerable prey can be
ultimately hunted using this switching tactic. Applicability to



Fig. 7. Flowchart showing the steps of BBO.
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constrained problems constitutes a strength of the HHO algorithm.
The HHO, as a global optimizer, may also establish a balance be-
tween the exploitation and exploration stages. The HHO is
comprised of three main phases. The first phase to model the
exploration is as follows:

xðtþ1Þ ¼
�
xrandðtÞ � r1jxrandðtÞ � 2r2xðtÞj ðq � 0:5Þ
xrabbitðtÞ � xmðtÞ � r3½LBþ r4ðUB� LBÞ� ðq < 0:5Þ

(19)

where xðtÞ and xðtþ1Þ are the current and next iterations, respec-
tively; xrandðtÞ represents a randomly selected hawk from the
present population; xrabbitðtÞ is the prey’s position; r1; r2; r3; r4
and q are uniformly distributed in ½0; 1�; UB and LB are the upper
and lower bounds, respectively; and xm describes the average
location of the hawks as follows:

xmðtÞ ¼ 1
N

XN
i¼1

xiðtÞ (20)

where xiðtÞ is the location of each hawk in the tth iteration, and N is
the total number of hawks. Moreover, the transition between the
exploration and exploitation constitutes the next (second) phase of
the algorithm. The prey’s energy is modeled using the following
equation, which continuously decreases due to the chasing and
escaping behavior:

E ¼ 2E0

�
1� t

T

�
(21)

where E0 is the prey’s initial energy, T represents the maximum
iteration number, and E is its escape energy. In each iteration of the
HHO algorithm, E0 can be randomly altered in the range of ½ � 1; 1�.
Accordingly, the exploitation is performed when jEj < 1 and the
exploration occurs when jEj � 1, and the exploitation constitutes
the final (third) phase that primarily seeks to derive a local solution
from previously obtained solutions. In the final phase, hawks
perform the surprise attack and strike the prey that was identified
in the previous phase. In summary, the following four strategies are
presented to model the attacking phase based on the hawks’
chasing model and the prey’s escaping behavior:

(1) Soft besiege. Soft besiege occurs when the prey has sufficient
energy and hawks are trying to make the prey tired. If the prey
successfully escapes as shown by r, this strategy can be valid for
jEj � 0:5 and r � 0:5, and can be modeled according as
xðtþ 1Þ ¼ DxðtÞ � EjJxrabbitðtÞ� xðtÞj (22)
DxðtÞ ¼ xrabbitðtÞ � xðtÞ (23)

where J ¼ 2ð1� r5Þ is the prey’s jump strength, in which r5 de-
notes a uniformly distributed number in [0; 1]; and DxðtÞ is the
difference between the locations of the prey and hawk in the tth
iteration.

(2) Hard besiege. This strategy is taken when the prey is
exhausted with inadequate energy (r � 0:5 and jEj < 0:5) and is
represented as

xðtþ 1Þ ¼ xrabbitðtÞ � EnjDxðtÞj (24)
(3) Soft besiege. This is coupled with a progressive rapid dive by
the hawks and occurs when the prey’s energy is still for r < 0:5
and jEj � 0:5, and the hawks determine the next move, which is
described by the following equations:

x ¼ xrabbitðtÞ � EjJxrabbitðtÞ� xðtÞj (25)

Z ¼ Y þ Sþ LFðDÞ (26)

where D denotes the dimension, LF is the levy flight function, and Z
is a 1 � D random vector. The following model was therefore used
to update the hawks’ positions:

xðtþ 1Þ ¼
�
Y ðf ðYÞ < f ðyðtÞÞÞ
Z ðf ðZÞ < f ðyðtÞÞÞ (27)

(4) Hard besiege. This is coupled with a progressive and rapid
dive and is valid when jEj < 0:5 and r < 0:5, as described by the
following equation:

xðt þ 1Þ ¼ fxrabbitðtÞ�
EjJxrabbitðtÞ � xmðtÞj ðf ðYÞ < f ðyðtÞ Þ Þ
fZ ¼ Y þ Sþ LFðDÞ ðf ðZÞ < f ðyðtÞÞ

(28)

The different phases of the HHO proposed by Heidari et al.
(2019) are shown in Fig. 8, and the detailed process of HHO is
presented in Fig. 9.



Fig. 8. Different phases of HHO (Heidari et al., 2019).
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3.2.6. IHHO
HHO is typically a robust and high-performance MOA used to

solve real-world engineering problems. However, according to the
NFL theorem, no algorithm delivers perfect solutions to all opti-
mization problems (Wolpert and Macready, 1995). Thus, in order to
avoid the limitations of the HHO algorithm and to enhance its ca-
pabilities in handling real-world engineering problems, a
mutation-based process is incorporated to construct the IHHO. To
augment the algorithm’s local and global search abilities, a
mutation-based mechanism was incorporated to update the cur-
rent position of each rabbit by generating diverse solution spaces in
each iteration. For this, PSO velocity was used, which can be
expressed as

vmþ1 ¼ wvm (29)

where w represents the inertia weight; and vm and vmþ1 are the
velocity of mutants in m and mþ 1 iterations, respectively. In each
iteration, the velocity of mutants is updated using the expression
given in Eq. (29). Subsequently, the updated velocity is utilized to
upgrade the position of the best rabbit using the following
expression:
Fig. 9. Flowcha
Xrabbit ¼ Xrabbit þ vmþ1 (30)

If the fitness of the new location is better than that of the
present rabbit location, the new position is set as a possible
location and the mutation approach is used to improve its loca-
tion. Subsequently, the best rabbit location is set as the potential
rabbit location. In the next iteration, the locations of the current
and potential rabbits are compared to select the best location.
The entire process of IHHO is given in the form of a pseudo-code
in the Appendix.
3.2.7. Hybridization of ELM and MOAs
Several studies have been performed in engineering applica-

tions to improve the performance of traditional machine learning
models, such as ANN, ANFIS, etc. by integratingMOAs (Koopialipoor
et al., 2019; Le et al., 2019; Cai et al., 2020; Golafshani et al., 2020;
Roy and Singh, 2020; Ly et al., 2021; Roy et al., 2021). It is pertinent
to mention that most real-time data do not follow any specific rules
or distributions; rather, they are primarily nonlinear in nature with
mixed noise. Hence, it is difficult to handle real-time data for
constructing predictive models by utilizing classical machine
learning models. In particular, the weakness in finding the exact
global minima affects the performance of the classical machine
learning models (Bui et al., 2018; Cai et al., 2020; Golafshani et al.,
2020), which yield undesirable results and overfitting issues in
predicting a new set of data. Also, the local minima trapping issue of
ANN leads to erroneous results. Therefore, to sidestep these issues,
researchers prepare hybrid models by integrating MOAs with
traditional machine learning models to search for the exact global
minimum instead of local minima by updating their learning
parameters.

In ELM, the learning parameters such as hidden weights and
biases are randomly initialized, which may also yield undesirable
and inefficient performance due to local minima trapping issues. To
alleviate this issue, MOAs can be integrated for finding the exact
global minimum. In the present study, the recently proposed HHO
algorithm has been utilized to optimize ELM’s learning parameters.
The methodological development of the hybrid model of ELM and
HHO (ELM-HHO) algorithm can be described as follows. The initial
stage requires choosing the parametric setting (i.e. number of
hidden neurons) and random generation of weights and biases.
This is followed by the generation of optimized weights and biases
through HHO. Finally, the HHO optimized weights and biases are
used for validating the model. To obtain the optimum weights and
biases for the remaining hybrid models, including ELM-IHHO, the
rt of HHO.



Fig. 10. Steps for constructing hybrid ELMs.
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same technique was used. However, the parametric configuration
of MOAs (HHO, IHHO, PSO, GA, and BBO) is tuned in each stage, the
details of which are given in the results and discussion section. The
hybridization process presented in Fig. 10 shows the steps for
developing hybrid ELMs in the present study.

4. Processing and analysis of data

4.1. Data preparation

To develop the predictive model for the compression index of
soil, consolidation test data containing 688 experimental test re-
cords were obtained from an ongoing project site of WDFC. The
Table 2
Statistical summary of the input soil parameters (as per soil types).

Soil Parameters D Gs BD DD WC
(m) (g/cm3) (g/cm3) (%)

CI (204 soils) Min 1 2.65 1.66 1.48 10.07
Avg 9.2 2.68 1.82 1.58 14.74
Max 32.75 2.7 1.98 1.71 24.67

CL (418 soils) Min 1.00 2.64 1.61 1.46 8.1
Avg 6.29 2.67 1.79 1.59 12.94
Max 23.75 2.69 1.99 1.7 21.04

ML (2 soils) Min 5.75 2.65 1.82 1.65 10.35
Avg 7.25 2.65 1.84 1.65 11.11
Max 8.75 2.65 1.85 1.65 11.87

ML-CL (3 soils) Min 5.75 2.65 1.77 1.62 9.29
Avg 9.75 2.65 1.84 1.65 11.56
Max 14.75 2.66 1.94 1.68 15.35

SC (45 soils) Min 1 2.64 1.61 1.46 8.36
Avg 7.78 2.66 1.78 1.59 12
Max 23.75 2.67 1.94 1.68 17.2

SM-SC (16 soils) Min 1 2.64 1.65 1.5 7.45
Avg 4.41 2.65 1.74 1.58 9.93
Max 8.75 2.65 1.82 1.64 15.67

Table 3
Values of coefficient of correlation between soil parameters and Cc.

Soils D Gs BD DD WC G CS

All soils -0.1 0.08 -0.66 -0.89 -0.07 -0.09 -0
CI -0.18 0.09 -0.7 -0.91 -0.12 -0.18 -0
CL -0.06 -0.02 -0.7 -0.89 -0.11 -0.01 -0
ML - - - - - - -
ML-CL -1 -0.93 -0.98 -1 -0.96 -0.14 0.7
SC -0.73 -0.25 -0.88 -0.99 -0.39 -0.57 -0
SM-SC -0.18 -0.34 -0.66 -0.99 0.33 -0.2 -0
collected dataset contained information about the depth of soil (D),
specific gravity (Gs), bulk density (BD), dry density (DD), water
content (WC), gravel content (G), coarse sand content (CS), medium
sand content (MS), fine sand content (FS), silt and clay content (MC),
liquid limit (LL), plastic limit (PL), free swell index (FSI) and
compression index (Cc) of different types of soils classified as CI
(inorganic clay with intermediate plasticity), CL (inorganic clay
with low plasticity), ML (low plasticity silt), ML-CL (clayey silt with
low plasticity), SC (clayey sand), and SM-SC (silty sand with clayey
sand), respectively. The statistical description of soil parameters is
provided in Table 2, specifying the minimum (Min), average (Avg),
andmaximum (Max) values separately for each type of soil. In total,
there are 204 CI soils, 418 CL soils, 2 ML soils, 3 ML-CL soils, 45 SC
G CS MS FS MC LL PL FSI Cc
(%) (%) (%) (%) (%) (%) (%) (%)

0 0 0 1 52 35 15 10 0.07
3.46 2.16 3.49 18.18 72.73 38.08 19.72 22.46 0.125
17 11 15 44 97 49 26 73 0.1622
0 0 0 3 50 25 12 7 0.062
2.96 1.95 3.83 27.06 64.2 31.14 18.12 17.68 0.1183
18 10 25 48 97 42 22 35 0.1676
4 2 3 11 78 31 23 8 0.1008
4.5 2 3.5 11.5 78.5 31.5 23.5 8 0.1008
5 2 4 12 79 32 24 8 0.1008
1 4 3 31 54 26 19 7 0.094
1.67 4.33 4 34 56 26.67 19.67 7.33 0.1025
2 5 5 37 58 27 20 8 0.1097
0 0 0 24 36 25 17 7 0.094
5.36 2.4 4.38 43.31 44.56 28.4 19.29 11.60 0.1209
17 8 15 62 49 31 21 18 0.1656
0 0 0 38 28 23 17 7 0.1038
2.5 1.81 4.06 50 41.63 25.69 18.88 10.81 0.1232
12 8 20 59 49 28 21 29 0.149

MS FS MC LL PL FSI Cc

.18 -0.3 0.19 -0.06 0.09 0.48 -0.05 1

.23 -0.29 0.06 0.14 -0.04 0.19 0.01 1

.15 -0.31 0.35 -0.24 -0.03 0.63 -0.22 1
- - - - - - -

9 0.62 -0.99 0.99 0.93 0.93 -0.93 1
.38 -0.36 0.59 -0.33 -0.23 -0.11 0.44 1
.33 0.05 0.19 -0.04 0.13 -0.01 0.01 1



Fig. 11. 2D scatter density plots of (a) D vs. Cc, (b) Gs vs. Cc, (c) BD vs. Cc, (d) DD vs. Cc, (e) WC vs. Cc, (f) G vs. Cc, (g) CS vs. Cc, (h) MS vs. Cc, (i) FS vs. Cc, (j) MC vs. Cc, (k) LL vs. Cc, (l) PL
vs. Cc, (m) FSI vs. Cc, and (n) Cc vs. Cc. Values are in normalized form.
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Fig. 12. Correlation matrix.
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soils, and 16 SM-SC soils. As can be seen, the Cc value of soil ranges
from 0.062 to 0.1676, which indicates that the experimental data-
base contains a wide range of oedometer test results. However, for
more clarity, detailed information pertaining to each soil parame-
ters is presented in Table 2.
4.2. Statistical analysis

In this sub-section, the Cc values are correlated with the basic
soil properties, i.e. D, Gs, BD, DD,WC, G, CS,MS, FS,MC, LL, PL and FSI,
the details of which are presented in Table 3. It can be observed that
the degree of correlation between Cc and other soil parameters is
smaller when all soils are considered. The degree of correlation for
CI, CL, SC, and SM-SC soils also small, while no correlation was
observed between Cc andML soil parameters. This suggests that the
experimental dataset contained a diverse assortment of uncorre-
lated data. However, a higher correlation was observed between Cc
and BD and DD in each case. Also, the parameters of ML-CL soil
show higher correlations with Cc. The entire descriptive statistics
are presented in Table 3 and the details of the collected dataset are
presented in the form of a two-dimensional (2D) scatter density
plot (Fig. 11) and correlation matrix (Fig. 12) below.
4.3. Dimension reduction using PCA

The experimental high-dimensional dataset was comprised of 13
soil parameters of 688 observations. The degree of correlation be-
tween the attributes was found to be on the lower side in many
cases. Therefore, to handle the dimensionality effect, PCA was
implemented in this study to reduce the number of input variables
and dimensionality effect through principal components (PCs). To
Table 4
Realization of PCA.

Parameter PC1 PC2 PC3 PC4 PC5 PC

SD 2.02 1.63 1.29 1.18 0.87 0.8
POV 0.32 0.2 0.13 0.11 0.06 0.0
CP 0.32 0.52 0.65 0.76 0.81 0.8
Considered in analysis Y Y Y Y Y Y

Note: Y ¼ Yes, N ¼ No.
predict the desired output, PCA generates a new combination of PCs,
i.e. input variables, based on the concept of entropy (Nhu et al., 2020)
that explains the most variance in the dataset. All new variables are
orthogonal to each other, which in turn avoids the effect of multi-
collinearity and overfitting. From the statistical analysis presented
above, it is evident that the degree of correlation between the at-
tributes varies, whereby the mixed correlation leads to a multi-
collinearity effect in the model. Although the number of PCs
generated through PCA is equal to the number of input variables, the
optimal number of PCs can be selected based on the cumulative
proportions of the variance. The descriptive details of PCs are pre-
sented inTable 4 including the standard deviation (SD), proportion of
variance (POV) and cumulative proportion (CP) of all 13 PCs.

Further, the statistical details of each PC along with their load-
ings are given in Tables 5 and 6, respectively. The optimal number of
PCs was selected (PC1ePC9) based on the Scree plot (Fig. 13a),
which shows the percentage of explained variances by each PC. It is
observed from the analysis that the first 9 PCs (PC1ePC9)
contributed approximately 98% of total variance, while the contri-
bution of the remaining PCs (PC10ePC13) was very nominal in
terms of proportion of variance, which are likely unimportant. The
graphical representation of PCs in terms of their SD, POV and CP is
presented in Fig. 13b, in which the amount of contribution of the
last 4 PCs can be visualized as well. There are no selection criteria
for PCs, which mainly depend upon the choice of the individual
researcher and the amount of cumulative variance needed to
incorporate in the analysis.

As stated above, 5 ELM-based hybrid meta-heuristic models,
namely ELM-HHO, ELM-IHHO, ELM-PSO, ELM-GA, and ELM-BBO,
have been developed in this study. Before data processing, a
dimension reduction technique i.e. PCA, was implemented to
reduce the number of input variables through PCs. Based on the
results of PCA, the first 9 PCs were selected considering the cu-
mulative proportion of PCs, as the last 4 PCs contribute a very small
fraction of the variability (about 1% and less) and are most likely
insignificant.

4.4. Data processing and artificial intelligence-based analysis

Right after the selection of PCs, the entire dataset was normal-
ized using the ‘min-max’ technique (Bardhan et al., 2021a). The
most crucial stage in the field of soft computing is considered to be
data normalization, which is a pre-processing activity in any
problem. Generally, normalization of data is performed to nullify
the dimensional effect of the variables. Thus, in the pre-processing
phase, the ‘min-max’ normalization technique is used to normalize
the data within a range defined by the upper limit of 1 and lower
limit of 0. The main dataset was then partitioned into subsets for
training and testing. For this, 75% (i.e. 516 samples) of the main
dataset was randomly selected as the training subset, while the
remaining 25% (i.e. 172 samples) was used as the testing subset. The
75:25 splitting ratio was chosen to implement 4-fold cross-
validation and the development of a robust prediction model. The
entire process presented in Fig. 14 shows the steps of the model,
including dimension reduction of input parameters using PCA, se-
lection of PCs, data normalization, data partitioning, and processing
6 PC7 PC8 PC9 PC10 PC11 PC12 PC13

0.76 0.69 0.64 0.42 0.37 0.03 0
5 0.04 0.04 0.03 0.01 0.01 0 0
6 0.91 0.94 0.98 0.99 1 1 1

Y Y Y N N N N



Table 5
Statistical summary of PCs.

Parameter PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13

Min -5.61 -5.42 -3.84 -3.34 -3.07 -4.68 -1.86 -2.25 -2.95 -2.13 -1.14 -0.08 0.00
1st quartile -1.3 -1.16 -0.88 -0.75 -0.46 -0.44 -0.47 -0.44 -0.38 -0.22 -0.22 -0.03 0.00
Median -0.08 -0.01 -0.14 0.01 -0.06 0.02 -0.03 0.02 0.05 0.02 0.01 0.00 0.00
Mean 0 0 0 0 0 0 0 0 0 0 0 0.00 0.00
3rd quartile 1.35 1.03 0.81 0.75 0.36 0.45 0.49 0.42 0.41 0.28 0.22 0.03 0.00
Max 5.8 5.22 5.01 3.74 6.18 2.4 3.13 3.6 2.12 1.01 1.75 0.07 0.00
Standard error 0.08 0.06 0.05 0.05 0.03 0.03 0.03 0.03 0.02 0.02 0.01 0.00 0.00
SD 2.02 1.63 1.29 1.18 0.87 0.8 0.76 0.69 0.64 0.42 0.37 0.03 0.00
Variance 4.1 2.65 1.67 1.4 0.76 0.65 0.57 0.48 0.41 0.17 0.14 0.00 0.00
MAD 1.98 1.64 1.21 1.11 0.6 0.66 0.7 0.63 0.56 0.37 0.33 0.04 0.00
Trimmed -0.01 -0.01 -0.05 0 -0.05 0.01 -0.01 -0.01 0.03 0.02 0 0.00 0.00
Skewness 0.04 0.07 0.4 -0.01 1.2 -0.49 0.25 0.27 -0.52 -0.86 0.05 -0.08 -0.31
Kurtosis 0 -0.02 0.21 0.22 5.96 2.62 0.63 1.53 1.63 2.71 0.92 -1.05 -0.08

Table 6
Details of loadings of PCs.

Parameter PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13

D 0.3 0.31 0.38 e 0.12 e 0.23 e e 0.49 0.6 e e

Gs 0.36 �0.23 e e e �0.24 e �0.52 �0.56 0.33 �0.23 e e

BD 0.35 0.36 e 0.32 e e �0.12 e e �0.18 �0.22 �0.74 e

DD 0.19 0.39 �0.17 0.37 �0.22 �0.15 �0.54 e e e e 0.52 e

WC 0.38 0.15 0.3 0.1 0.18 e 0.46 e e �0.42 �0.35 0.43 e

G e 0.29 �0.17 �0.49 �0.47 �0.22 0.26 �0.32 0.38 e e e �0.2
CS 0.11 0.36 �0.26 �0.41 e e e 0.57 �0.54 e e e �0.1
MS e 0.25 �0.45 �0.1 0.76 e e �0.23 0.23 e e e �0.18
FS �0.38 0.11 0.35 0.12 0.13 �0.42 e e �0.18 �0.11 e e �0.68
MC 0.34 �0.33 �0.14 0.12 �0.19 0.47 e 0.12 0.12 e e e �0.67
LL 0.37 �0.26 e �0.22 0.18 �0.15 �0.35 �0.11 e �0.55 0.51 e e

PL e e 0.51 �0.49 e e �0.47 e 0.23 0.22 �0.38 e e

FSI 0.25 �0.31 �0.17 e 0.11 �0.65 0.1 0.45 0.32 0.2 �0.1 e e
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and development of computational models, followed by a predic-
tion of output at the end.

Ten widely used performance parameters were utilized to
investigate the performance of the developed hybrid ELMs (Raja
and Shukla, 2020, 2021a, b; Asteris et al., 2021a, b; Bardhan et al.,
2021a, b, c; Ghani et al., 2021; Kaloop et al., 2021; Kardani et al.,
2021a, b, c, d; Kumar et al., 2021; Raja et al., 2021), namely
adjusted coefficient of determination (Adj:R2), R2, performance
index (PI), variance account for ðVAF), Willmott’s index of agree-
ment (WI), root mean square error (RMSE), mean absolute error
(MAE), mean absolute percentage error (MAPE), mean bias error
(MBE) and weighted mean absolute percentage error (WMAPE),
which were determined and compared in every possible way. The
mathematical equations of these indices are given below:

Adj:R2 ¼ 1� n� 1
n� p� 1

�
1�R2

�
(31)

R2 ¼
Pn

i¼1ðyi � ymeanÞ2 �
Pn

i¼1ðyi � byiÞ2Pn
i¼1ðyi � ymeanÞ2

(32)

PI ¼ adj:R2 þ 0:01VAF � RMSE (33)

VAF ¼
�
1� varðyi � byiÞ

varðyiÞ
�
� 100% (34)

WI ¼ 1�
Pn

i¼1ðyi � byiÞ2Pn
i¼1ðjbyi � ymeanj þ jyi � ymeanjÞ2

(35)
RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðyi � byiÞ2
vuut (36)

MAE ¼ 1
n

Xn
i¼1

jðbyi � yiÞj (37)

MAPE ¼ 1
n

Xn
i¼1





yi � byiyi





� 100% (38)

MBE ¼ 1
n

Xn
i¼1

ðbyi � yiÞ (39)

WMAPE ¼
Pn

i¼1




yi�byi
yi




yiPn
i¼1yi

(40)

where n indicates the number of observations of the respective
parameter; p represents the number of input parameters consid-
ered in developing the predictive model; yi and byi are the actual
and modeled ith values of the desired output, i.e. Cc; and ymean is
the average of the input variables. The values of these indices
should be identical to their ideal values for a perfect prediction
model (Table 7).

In addition to the above performance indices, a new index
called performance strength (PS) is introduced in this study which
is an integration of four performance parameters, namely adj:R2,



Fig. 13. (a) Scree plot of PCs showing the percentage of explained variances; and (b)
Plot of PCs vs. SD, POV, and CP.

Table 7
Ideal values of different statistical parameters.

Adj:R2 R2 PI VAF ð%Þ WI RMSE MAE MAPEð%Þ MBE WMAPE

1 1 2 100 1 0 0 0 0 0
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R2, VAF and RMSE. The idea behind the implementation of this
index is to evaluate the relative efficiency of the predictive model
considering the values of Adj:R2, VAF and RMSE for the total
dataset to the values of Adj:R2 and R2 in the training and testing
subsets. In general, Adj:R2 aids in determining how much the
predictive association with the index is due to the inclusion of
those factors, i.e. it compensates for the addition of variables and
only increases if the new predictor enhances the model when it is
above the value obtained by probability. Conversely, it will
decrease if a predictor improves the model when it is less than
that predicted by chance. Therefore, Adj:R2 plays an important
statistical role in artificial intelligence-based analysis and should
Fig. 14. Flowchart showing steps in the app
be considered by researchers for comparative assessment of the
training and testing outcomes. In this work, the new PS index can
be defined as follows:

PS ¼

�
Adj:R2

�
total

þ ð0:01VAFÞtotal � ðRMSEÞtotal�
Adj:R2

R2

�
training

þ
�
Adj:R2

R2

�
testing

(41)

Importantly, PS can estimate the strength of performance of a
predictive model by comparing the values of Adj:R2 and R2 for both
training and testing datasets along with the values of VAF and
RMSE for the total dataset. The ideal value of PS is 1.

5. Results and discussion

This section presents the results of the proposed hybrid ELMs in
predicting Cc of soils. For this purpose, 13 soil parameters (i.e. D, Gs,
BD, DD, WC, G, CS, MS, FS, MC, LL, PL and FSI) were analyzed. Before
training the models, the dimension reduction technique was
implemented to reduce the number of input features as well as the
multicollinearity effect between the parameters. The number of
input variables was then selected through PCs based on cumulative
proportions of variance. Subsequently, the training dataset (516
observations) and testing dataset (172 observations) were
employed to develop and validate the models, respectively. The
outcomes of all developed models are furnished in the following
sub-sections. Ultimately, the best predictivemodel was determined
through the proposed statistical parameter called PS.

Before reviewing the results of the developed ELMs, the para-
metric configurations along with their optimum values are pre-
sented in Table 8. As mentioned earlier, to construct the optimum
hybrid model, it is necessary to tune the deterministic parameter of
MOAs along with the number of hidden neurons (nh) of ELM. In this
work, nh ranging from 5 to 25 has been examined to obtain the
optimized weights and biases of the connecting neurons. After a
preliminary trial-and-error run, the optimum values of nh was
determined to be 15. Also, other deterministic parameters, such as
particle/swarm/population size (np), maximum number of itera-
tions (t), C1 and C2, wmax and wmin, upper and lower bounds (UB
lication of artificial intelligence models.



Fig. 15. Bar plot of 4-fold cross-validation (CV-1 to CV-4) results (based on R2 values).
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and LB), and other parameters of MOAs, were tuned during simu-
lations. The most effective choices of these parameters obtained in
each case with their optimal value are provided in Table 8. When
the training of hybrid ELMs was completed, the final structure of
each model was finalized. The number of learning parameters
optimized in ELM-based modeling is equal to 150 (i.e. 15 � 9 þ 15).
To compare the suggested models fairly, the optimum nh achieved
in the ELM-HHO model was applied for the other models and kept
constant throughout the investigation. Note that, to choose the
most significant testing datasets, 4-fold cross-validation was used.
Thus, the main dataset was partitioned into 4 equal parts. Among
them, a single subset was chosen as the testing dataset, while the
others were used as the training dataset. The goal of using cross-
validation was to build the model more efficiently so that the
highest prediction accuracy could be reached during the validation
phase. The most effective testing dataset discovered through ELM-
HHO modeling was utilized to model other hybrid models
including ELM-HHO, ELM-IHHO, ELM-PSO, ELM-GA, and ELM-BBO,
the detailed procedures of which are discussed below.

The ELM was initially initialized in ELM-HHO modeling, and
then the HHO algorithm was incorporated to optimize the weights
and biases of ELM for predicting Cc of soils. During the optimization,
the RMSE and sigmoid function were used as the fitness function
and activation function, respectively, in each iteration. The
searching operation was performed in 5000 iterations with
np ¼ 10e25, to ensure the most efficient search for the weights and
biases, as well as other parameters of the chosen ELM-HHO model.
To achieve stable convergence, the value of t was set to 5000. Ul-
timately, the optimum value of deterministic parameter of ELM
obtained from trial-and-error run is nh ¼ 15. np ¼ 25 was obtained
as the optimum. The optimized values of weights and biases of
connecting neurons were then used to predict a new set of data, i.e.
testing dataset. The performance of 4-fold cross-validation (based
on R2 value) is also presented in Fig. 15. In addition, the predictive
performances of both training and testing subsets of the ELM-HHO
model are illustrated in Figs. 16a and 17a, respectively.

Similar to the ELM-HHO model, after the initialization of ELM,
the mutation-based IHHO was used to optimize ELM’s learning
parameters. Using the same optimum values of HHO parameters,
the ELM-IHHO model was trained. The mutation parameters of
IHHO algorithm were set to: mutation ¼ 0.05%, mutation
probability ¼ 0.001, nh ¼ 15, np ¼ 25, and t ¼ 5000. Subsequently,
the optimized values of weights and biases of the connecting
neurons were used for predicting a new dataset, i.e. the testing
dataset. The predictive results of Cc prediction in the training and
testing phases are illustrated in Figs. 16b and 17b, respectively. Note
that, although the values of nh, np, and t are the same, the optimum
values of weights and biases of the ELM-IHHO model are different.

The steps applied for ELM-HHO and ELM-IHHO modeling were
followed to optimize the weights and biases of ELM using PSO, GA,
Table 8
Details of different parameters of the MOAs.

Optimization parameters HHO IHHO PSO GA BBO

nh 15 15 15 15 15
t 5000 5000 5000 5000 5000
np 25 25 25 25 25
UB, LB �1 �1 �1 �1 �1
C1, C2 e e 1, 2 e e

wmax, wmin e e 0.9, 0.4 e e

Gamma e e e 0.8 e

Sigma e 0.5 e 0.5 e

Kept habitats (Elitism) e e e e 0.5
Immigration (I), Emigration (E) e e e e 1, 1
Mutation (%) e 0.5 e e e

Mutation probability e 0.001 e 0.001 0.001
and BBO. For this, the parameters of PSO, GA, and BBO were tuned
by the trial-and-error method to obtain the best predictive model
of ELM-PSO, ELM-GA, and ELM-BBO in each case. The values of nh,
np, and t were kept constant for all cases. In PSO, the optimum
values of parameters were determined as: C1 ¼ 1, C2 ¼ 2,
wmax ¼ 0.9, and wmin ¼ 0.4. In GA, the optimal parameters were:
mutation probability ¼ 0.001, gamma ¼ 0.8 and sigma ¼ 0.5. In
BBO, the required parameters before optimizing the ELM were:
kept habitats (Elitism)¼ 0.5, immigration (I)¼ 1, emigration (E)¼ 1,
and mutation probability ¼ 0.001. Finally, the optimized ELM-PSO,
ELM-GA, and ELM-BBO models with optimal values of weights and
biases were chosen based on the lowest RMSE. The predictive re-
sults for the training and testing datasets are shown in Fig. 16cee
and 17cee, respectively. In addition, the error histogram (for the
whole dataset) of the developed models is shown in Fig. 18.

Furthermore, the convergence curve of MOAs is very important
in assessing their performance, which indicates the ability of the
optimization algorithm to escape from local optima. Local optima
are more likely to occur in algorithms with an unbalanced
exploration and exploitation issue. A comparison between ELM-
IHHO convergence and the other algorithms, i.e. ELM-HHO,
ELM-PSO, ELM-GA, and ELM-BBO, is shown in Fig. 19. The
convergence curves show that IHHO achieved a better solution
faster than ELM-based MOAs, proving the IHHO algorithm’s su-
periority in ELM-IHHO modeling. The effectiveness of the pro-
posed ELM-IHHO model can be assessed based on the bar plot
shown inside Fig. 19, in which the computational time of all the
algorithms is presented in graphical form. After completion of
5000 iterations, the computational time was calculated as
365.22 s for HHO, 138.98 s for IHHO, 316.88 s for PSO, 649.87 s for
GA, and 570.33 s for BBO. Furthermore, considering that the
proposed IHHO algorithm consumed 61.94% less computational
time compared to the HHO algorithm, it offers a more efficient and
robust algorithm.

In the following sub-sections, the realizations of the developed
models in predicting Cc are assessed in detail. The predictive
assessment based on performance indices is presented and dis-
cussed first. This is followed by visual interpretation and accuracy
analysis of the results, including the Taylor diagram, accuracy ma-
trix and analysis of the newly proposed index, PS. In the end, a
discussion on the generalization capability of the proposed models
is presented.

5.1. Statistical details of results

After the development of the models, their efficiency and
generalization capability were assessed through several perfor-
mance indices, as listed above. Specifically, the values of 10



Fig. 16. Illustration of experimental vs. estimated values of the proposed ELMs in the training (TR) phase.

Fig. 17. Illustration of experimental vs. estimated values of the proposed ELMs in the testing (TS) phase.
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performance indices (Adj:R2, R2;PI, VAF ,WI, RMSE,MAE,MAPE,MBE,
andWMAPE) for all the five models were determined separately for
the training and testing datasets, as shown in Tables 9 and 10,
respectively. The results show that all of the models capture the
relationship between soil parameters and consolidation parame-
ters in estimating soil Cc. As can be seen, the proposed models
achieved more than 95% accuracy in the training stage based on R2

values, which indicates that the models fit well with the experi-
mental results. These outcomes demonstrate that the proposed
ELM-based meta-heuristic models exhibit good predictive perfor-
mance. Also, the values of other indices, i.e. Adj:R2 PI, MAPE, MBE
and WMAPE, indicate good predictive accuracy. However, a
comprehensive review of the results reveals that the ELM-IHHO
and ELM-HHO models, achieved almost equal predictive perfor-
mance in the training stage, while the performances of ELM-PSO
and ELM-BBO were reduced significantly in the testing phase.

5.2. Visual interpretation of results and accuracy analysis

5.2.1. Taylor diagram
The Taylor diagram, invented by Taylor (2001), is a 2D mathe-

matical diagram designed to graphically indicate which of several
models is most realistic. In other words, this diagram provides a
comparative and graphical assessment of different models in a



Fig. 18. Illustration of error histogram (for all datasets): (a) ELM-HHO, (b) ELM-IHHO, (c) ELM-PSO, (d) ELM-GA, and (e) ELM-BBO.
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single figure. The degree of correspondence between the actual and
predicted behaviors is quantified in terms of their values of R, RMSE,
and the ratio of SD, and indicated by a single point. For an ideal
model, the position of the point should be closer to the reference
point (Ref). Relativemerits of themodels proposed in this study can
be inferred from Fig. 20, in which the status of the models is shown
by points (different markers). As can be seen, the ELM-IHHOmodel
appears closer to the reference point (Ref) and, therefore, can be
considered as the most robust model.
Fig. 19. Convergence curve and computational time of the proposed ELMs.
5.2.2. Accuracy matrix
This sub-section presents a novel graphical representation of

the proposed hybrid models in the form of a heat-map matrix
called the accuracy matrix, in which the values of performance
parameters are presented in terms of accuracies (in %) achieved
based on their ideal values. In other words, the amount of accuracy
of the proposedmodels is calculated against the ideal values of each
performance index and presented accordingly. The expressions
given in Eqs. (42) and (43) were used to calculate the amount of
accuracy in the percentage of the predictive model. For the trend
measuring parameters (Adj:R2; R2, PI, VAF and WI), Eq. (42) was
used, while Eq. (43) was employed for the error measuring pa-
rameters (RMSE, MAE, MBE, MAPE and WMAPE), respectively:

At ¼ jpaj
ia

� 100% (42)

Ae ¼ j1� jpejj � 100% (43)

where At and Ae indicate the error terms; ia is the ideal value of
trend measuring parameters; and pa and pe are the values of trend
and error measuring parameters of the developed models,
respectively. The error parameter indicating the percentage of error
(such as MAPE) should be processed on the decimal scale.

One can easily visualize the minimum and maximum values of
accuracy attained in each model. The overall accuracy of the pro-
posed models can also be interpreted from the heat-map matrix. As



Table 9
Performance of the developed ELMs (training phase).

Model Adj. R2 R2 PI VAF (%) WI RMSE MAE MAPE (%) MBE WMAPE

ELM-HHO 0.9664 0.9672 1.8972 96.7194 0.991 0.0364 0.0258 8.418 0.01 0.0466
ELM-IHHO 0.9674 0.9682 1.8997 96.8212 0.9912 0.0359 0.0247 8.7296 0.0101 0.0444
ELM-PSO 0.9531 0.9543 1.8647 95.4283 0.9874 0.0427 0.0307 10.4894 0.011 0.0554
ELM-GA 0.966 0.9669 1.8961 96.6868 0.9907 0.0368 0.026 8.9673 0.0109 0.0468
ELM-BBO 0.964 0.965 1.8913 96.4949 0.9903 0.0377 0.0267 9.2898 0.0106 0.0482

Table 10
Performance of the developed ELMs (testing phase).

Model Adj. R2 R2 PI VAF (%) WI RMSE MAE MAPE (%) MBE WMAPE

ELM-HHO 0.9436 0.9479 1.8461 94.785 0.9853 0.0453 0.0319 10.8494 0.0122 0.0574
ELM-IHHO 0.9527 0.9563 1.8671 95.6279 0.9876 0.0419 0.0286 10.254 0.0126 0.0516
ELM-PSO 0.9218 0.9277 1.796 92.6923 0.9794 0.0527 0.0356 12.7905 0.0104 0.0641
ELM-GA 0.9446 0.9488 1.8477 94.8451 0.9851 0.0454 0.0298 11.0997 0.0132 0.0537
ELM-BBO 0.932 0.9372 1.819 93.6737 0.9819 0.0498 0.0325 12.0347 0.0128 0.0586

Fig. 20. Taylor diagrams for the (a) training and (b) testing phases.

Fig. 21. Accuracy matrix for training results.
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can be seen for Figs. 21 and 22, the minimum value of accuracy
attained was 90% in terms of trend measuring parameters and 87%
in terms of error measuring parameters, while maximum accuracy
of 99% was observed in terms of both trend and error measuring
parameters. Furthermore, the heat-map matrix is useful for quick
assessment of any predictive model, which provides both minimum
and maximum values of accuracy attained in each model and also
pertinent information concerning the amount of error involved.
5.2.3. Analysis of performance strength
Furthermore, the proposed performance index, i.e. PS, was

analyzed at the end of the study. This index was established since,
generally, the performance indices determined separately for the
training and testing datasets do not provide the overall accuracy of
the models. As stated earlier, this index is highly effective in deter-
mining the overall accuracy and robustness of any predictive model.
Using the expression in Eq. (41), the values of PS of all developed



Fig. 22. Accuracy matrix for testing results.

Fig. 23. Bar plot of PS values of the proposed models.

A. Bardhan et al. / Journal of Rock Mechanics and Geotechnical Engineering 14 (2022) 1588e16081606
models were calculated and are provided in Table 11. Also, the PS
values are graphically represented in a bar plot in Fig. 23, which
reveals that the ELM-IHHOmodel outperforms other hybrid ELMs. In
addition, PS ¼ 0.9484 was achieved by the ELM-IHHO model. Also,
the ELM-HHOmodel was found to be the 2nd best model in terms of
PS value, followed by ELM-GA, ELM-BBO and ELM-PSO.

5.3. Discussion of results

This sub-section builds upon the discussion of the outcomes of
the proposed ELMs in the previous sub-section. According to the
experimental results, all the proposed hybrid ELMs capture the
relationship between soil characteristics and consolidation param-
eter in determining soil Cc. The suggested hybrid models showed a
strong fit with the experimental dataset, with R2 > 0.9 in both
training and testing phases. Distinctively, the ELM-IHHO model
achieved superior performance with R2 ¼ 0.9682, RMSE ¼ 0.0359
and MAE ¼ 0.0247 in the training stage, and R2 ¼ 0.9563,
RMSE ¼ 0.0419, andMAE ¼ 0.0286 in the testing phase. Compared to
the ELM-IHHO model, the ELM-GA model achieved almost an equal
degree of fitting in the testing phase. However, the illustration of
actual and predicted values exhibits that the predicted values are
more scattered below the mean of soil Cc than those above mean
value. This is mainly due to the presence of a wide range of experi-
mental data of ML, ML-CL, and SM-SC soils with lower Cc values.

Nonetheless, to better demonstrate the capability of the proposed
models, graphical interpretations of convergence curve, Taylor dia-
gram, and accuracymatrix are described.Moreover, the robustness of
the best predictive model was assessed through PS, a novel perfor-
mance parameter proposed in this study. According to the findings,
the ELM-IHHO model had the best predictive performance with
PS ¼ 0.9484, followed by the ELM-HHO, ELM-HHO, ELM-BBO, and
ELM-PSO. Therefore, the ELM-IHHO model is indeed helpful in pre-
dicting the Cc value of soils and can be considered a robust model.

6. Summary and conclusions

It is well understood that reliable and accurate estimation of the
soil compression index can save the time and cost of analysis
needed before laying the foundation of a structure as well. The
Table 11
Values of PS and rank of the developed models.

Model PS value Rank

ELM-HHO 0.9452 2
ELM-IHHO 0.9484 1
ELM-PSO 0.9279 5
ELM-GA 0.9449 3
ELM-BBO 0.9401 4
present study introduces 5 meta-heuristic hybrid models that
combine MOAs, namely HHO, PSO, GA, BBO and ELM, and the novel
mutation-based ELM-IHHO, to estimate soil Cc. For this purpose,
688 oedometer test data belonging to 6 different groups were ob-
tained from a DFC project in India. ELM was employed to construct
the mapping function that infers the value of Cc from a set of input
parameters, while the other MOAs were used to optimize the
weights and biases of the connecting neurons of ELM. In contrast, to
ameliorate the efficiency of the data analysis process, the dimen-
sion reduction technique, i.e. PCA, was employed before training
the models. The input parameters were then selected based on
cumulative proportions of variance of PCs. In the next stage, the
main dataset was divided into training and testing subsets, which
were used to train and validate the developed models, respectively.
Following the development of the models, several performance
indices were determined to assess their predictive accuracy and
generalization capability. Experimental results show that ELM-
IHHO achieved the most desired accuracy in both phases. In the
testing phase, no substantial variations or undesirable values were
found, indicating that the models’ generalization capabilities and
robustness are satisfactory. In addition, the values of R2 were
greater than 0.9 in both phases, indicating that the proposed
models fit well with the experimental dataset. The ELM-IHHO
model can be deemed a promising technique for predicting soil
Cc based on the results.

The goal of this study was to minimize the need for actual lab-
oratory testing and to provide adequate details of prior artificial
intelligence-based investigations, including their results at all
levels. In order to address the gaps and limitations of earlier studies,
the ELM-based HHOmethod (ELM-HHO) was built using a recently
developed MOA, named HHO. Subsequently, an improvement of
the standard HHO algorithm called IHHO was conducted using the
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mutation-based search mechanism to expand the global and local
searches of standard HHO. The experimental outcomes exhibit that
the proposed ELM-IHHO model yields the most desired predictive
performance in terms of computational time, convergence speed,
and performance indices. The results also show that the ELM-IHHO
model outperforms the other studied models. The main advantages
of the proposed ELM-IHHO model include: higher predictive ac-
curacy, optimized learning parameters, robustness, and accelerated
convergence rate. Considering these advantages, the suggested
ELM-IHHOmodel can be regarded as a potential method for dealing
with real-world engineering problems, including soil Cc.

The future direction of this study may include: implementation
of different dimension reduction techniques (such as kernel PCA,
independent component analysis) for handling multicollinearity
related issues in solving real-world problems of various engi-
neering disciplines, improvement of other meta-heuristic algo-
rithms using the concept (a mutation-based mechanism) proposed
in this study, and further assessment of ELM-IHHO model using
real-world data from different fields. However, as per the authors’
knowledge, this study presents the first-time application of an
ELM-based hybrid meta-heuristic optimization model for pre-
dicting Cc of soils.
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