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Abstract: We have investigated Machine Learning Interatomic Potentials in application to the prop-
erties of gold nanoparticles through the DeePMD package, using data generated with the ab-initio
VASP program. Benchmarking was carried out on Au20 nanoclusters against ab-initio molecular
dynamics simulations and show we can achieve similar accuracy with the machine learned potential
at far reduced cost using LAMMPS. We have been able to reproduce structures and heat capacities of
several isomeric forms. Comparison of our workflow with similar ML-IP studies is discussed and
has identified areas for future improvement.
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1. Introduction

There is currently a lot of interest in Machine Learning Interatomic Potentials (ML-IP)
as a method showing promise of approaching the high accuracy of ab-initio methods, while
remaining closer to the cost of empirical classical approaches [1,2]. Classical molecular
dynamics (MD) approaches, even though very fast, are not very accurate, and commonly
limited in that the force fields cannot break bonds and thus cannot study reactions. Al-
though some work have been done in order to build potentials that can describe chemical
reactions, the results are not yet satisfactory [3,4]. Furthermore, many interesting proper-
ties, require very long MD runs—much longer than are currently practical with density
functional theory (DFT) methods.

ML-IP have been in existence for several years [5,6] but have gained increased popular-
ity in recent years from the availability of systematic workflows through the development
of various software packages such as DeepMD [7,8], Medea [9] or lammps-polymlp [10].
Recent successes in this direction, include application to problems in phase-change mate-
rials for memory devices [11], nanoparticle for catalysts [12], carbon-based electrodes for
chemical sensing [13] and electrolyte solutions design [14]. This has inspired us to explore
ML-IP methodology, starting with a system we are familiar with, to evaluate the feasibility
of tackling larger problems such as reactions on surfaces and catalysis.

Close colleagues have been interested in gold nanoparticles for many years. There
are a variety of questions regarding their structure and properties. Ford et al. [15] have
previously studied small clusters using DFT , and more recently larger clusters have been
studied with classical MD methods, see e.g., Ref. [16], amongst others. There is scope to
investigate a wider range of structures, for larger systems, and including properties such as
the temperature dependence, which require much longer time scales than can be achieved
with standard DFT methods. The catalytic properties of gold clusters have been known for
some time—a recent volume of Chemical Reviews [17] was devoted to this, and contains
several relevant articles pointing out that the smaller clusters are actually more active
catalysts [18]. An advantage of developing ML-IP potentials is that they can be additive
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i.e., it is not necessary to repeat the work for the gold potential, instead additional terms
describing the molecule being studied can be added.

There are now a few works in the literature looking at ML potentials for gold clusters
it e.g., Refs. [19–23]. However, they all differ in a variety of ways, such as investigating
different properties or using different ML-IP programs and models or slightly different
methodology so part of this study is to compare our approach with these others to evaluate
the best approach. Furthermore, as this methodology is still relatively new there are
still many unknowns, such as the number of points or underlying methods required for
training. To this end we have thus carried out a series of exploratory investigations to gain
an understanding of the methodology for use in future more complex studies.

2. Method

The ML-IP package chosen for this study was DeePMD [7,8] developed by Wang and
co-workers to build potential energy models through deep learning. It is a Python/C++-
based package interfaced to the TensorFlow deep learning framework [24]. The potential is
developed using the local environment of each atom described in terms of distances and
angles to all other atoms within a given radius. This chemical environment is described
mathematically as a descriptor [25], and definition of the descriptor is something that
distinguishes the various ML-IP packages. These descriptors are then fitted to provided
data through some machine learning mechanism, which in the case of DeePMD is a neural
network. Details of the neural network are given in their paper [7]. In short, DeePMD
leverages the standard tensor operations provided by TensorFlow through a feedforward
network using atomic positions, energies and forces as input. The neural network structure
consists of 5 hidden layers and is trained by the Adam stochastic gradient descent method
to output energy and forces. An example of the parameter file used for training is provided
in the Supplementary Information.

To generate the ML-IP it is necessary to produce the forces for a variety of small clusters
in a selection of configurations. A total of a few hundred representative configurations,
which means several thousand individual forces, should be adequate. We started from
non-equilibrium structures of Au20. The reason for having non-equilibrium structures is
that the eventual aim is to study the melting of gold clusters, and this will require that
the potential describes regions that may be well away from the most stable geometries.
Accordingly, we used the structures of Au21, referred to as isomers I, III and IV, given in
Ref. [26] but removing one atom, and we refer at them as structure I, II and III. This gave the
structures shown in Figure 1 (coordinates provided in Supplementary Information). One
of these closely resembles the tetrahedral global minimum of Au20, but with distortions
from the purely tetrahedral geometry. The other two structures have a cage-like form and a
more open flatter form, respectively. Note that related studies have mostly looked at larger
clusters [20–23], primarily at structures only, but as we wanted to benchmark against an
ab-initio MD run we chose this cluster as being computationally manageable but still able
to cover the properties of interest.

Structure I Structure II Structure III

Figure 1. Structures of Au20 used as starting geometries for generating data to train the machine
learning potential.

Molecular Dynamics calculations were then performed on each structure to generate a
series of geometries and their associated forces to parameterise the force field. We used
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Density Functional Theory (DFT) calculations within the framework of the Vienna Ab
Initio Simulation Package (VASP) [27,28]. The projector augmented-wave (PAW) potentials
are used to describe the core–valence interaction, with the valence electrons described
by periodic plane waves with cut-off energy of 520 eV. The cubic supercell with lattice
parameter of 30 Å contains the 20-atom clusters of the three structures. We used the general-
ized gradient approximation (GGA) for the exchange–correlation functional as formulated
by Perdew-Burke-Ernzerhof (PBE) [29]. The energy and forces tolerance for structural
relaxation are 10−6 eV and 10−2 eVÅ−1 respectively. Equations of motion were integrated
using the velocity Verlet algorithm, with a time step of 2.5 fs. The temperature of the system
was stabilized using a Nosé–Hoover thermostat with the temperature-damping parameter
of 10 time steps. The Nosé-Hoover thermostat is a deterministic method (no random forces
or velocities) that is based on the extended system idea, in which an additional degree
of freedom s is introduced to represent the thermal reservoir, which ensure an ergodicity
within the canonical ensemble [30].

The data in the required format (energies, forces, geometries) is extracted from the
VASP OUTCAR file using the DeePMD module dpdata [31]. This data is randomly split
into training and validation sets in the ratio of 80:20. The DeePMD training program dp
is run on the training set using the descriptor se_e2_a and parameters based on those
provided in the DeePMD examples [31]. This process can be run on all the structures
individually or all combined.

3. Results and Discussion
3.1. Generating the Data

Using VASP molecular dynamics simulations, we collected data for a maximum of
∼8500 timesteps for structure I and to ∼7500 for structure II and III, corresponding to
21,250 fs, and 18,750 fs respectively. The quality of the simulation is indicated by the
excellent conservation of the constant of motion and the negligible drift in the fictitious
kinetic energy of the electrons for simulations of that duration (Figure 2). The average
temperature is ∼800 K for each structure, and the relatively large deviation due to the
coupling with the Nosé thermostat, ensure an extensive sampling over the potential energy
surface at large atomic distances (see Table 1). The large temperature fluctuations, indicated
in Figure 2 and Table 1 correspond to a large nuclei’s velocities which lead to a large
fluctuations in atomic distances during the simulations, ensuring an extensive sampling
over the potential energy surface at large atomic distances. Table 1 reports the statistical
analysis of the temperature distribution over time, indicating the amount of simulation-time
where the system is away from the average temperature.

Table 1. Statistical analysis of thermal fluctuations in VASP MD simulations.

Structure I Structure II Structure III

mean 799.50 799.73 799.42
std 143.91 146.47 144.87
min 362.59 438.78 367.98
25% 696.80 691.54 699.67
50% 792.57 790.09 793.40
75% 890.36 898.34 888.90
max 1470.42 1318.70 1471.67
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Figure 2. Temperature and energy (potential vs total) fluctuations during VASP MD simulation
structure I, II and III, In the figure, EKS and Etot indicate the electronic energy and total energy,
respectively, whereas T fluctuations indicate the temperature fluctuations during the simulations due
to the Nosé thermostat coupling. Panel (a) and (b), (c) and (d), and (e) and (f) correspond to structure
I, II and III, respectively.

A low average energy and small deviation during the simulation suggest the larger
stability of structure II compared to the other configurations (see Table 2).

Table 2. Statistical analysis of energy fluctuations in VASP MD simulations.

Structure I Structure II Structure III

mean −49.13 −50.05 −48.91
std 0.40 0.30 0.44
min −50.71 −51.10 −50.25
25% −49.39 −50.35 −49.23
50% −49.12 −50.98 −48.94
75% −48.85 −49.81 −48.63
max −47.95 −49.25 −47.34

3.2. Evaluating the Potential

The training procedure in DeepMD reports RMS errors on both the force and the
energy for the training and validation sets. The errors reported were similar for both
training and validation, meaning that any overfitting had been avoided. The resulting
potential from the training was tested on the validation set. Not all structures could be
represented equally well. For example, for structure I, using the potential trained only
on the energies and forces resulting from calculations on structure I, taking 1000 random
points from the validation set produces the following results:
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#1000 points randomly chosen from the validation set
#DEEPMD INFO # number of test data : 1000
#DEEPMD INFO Energy RMSE : 8.219273e-02 eV
#DEEPMD INFO Energy RMSE/Natoms : 4.109637e-03 eV
#DEEPMD INFO Force RMSE : 6.739765e-02 eV/A
#DEEPMD INFO Virial RMSE : 3.285809e+00 eV
#DEEPMD INFO Virial RMSE/Natoms : 1.642904e-01 eV

and plotted in Figure 3.

Structure I Structure II Structure III

Figure 3. Predicted vs VASP-calculated energies (in eV) for structures I, II and III.

It shows quite a good fit with RMSE of 0.082 eV and a coefficient of determination, R2,
of 0.960. The correlation plots for structures II and III also given in the Figure. These figures
were produced using potentials obtained by training only on data from structure II and
structure III respectively. Note that the fit for structure II is the best of the three. This may
be because structure II closely resembles the pyramidal form of Au20 which is the global
minimum and more rigid than the others.

It is possible to use all the data simultaneously and train to produce a more general
potential which can describe all three structures. The fit for all structures trained simul-
taneously is shown in Figure 4a. The fit remains excellent with an R2 coefficient of 0.975,
which is not quite as good as structure II on its own but bear in mind this covers a larger
conformation space. A scatter plot (Figure 4b) of the errors in the energy shows that the
vast majority of the errors are between ±0.1 eV but there are a few outliers deviating by as
much as 0.4 eV.

In molecular dynamics the forces are as important as the energy. Most machine
learning studies in the area of potential fitting tend to discuss the energy more than the
forces but as we believe the accuracy of the forces is meaningful we also include these
graphs (Figure 4c,d). Figure 4c gives the ratio of the magnitude of the predicted force to the
VASP-calculated force. In an ideal world this would be unity. Looking at the graph it is
reassuringly very strongly peaked at 1. Furthermore, the magnitude of the angle between
the computed and the predicted force, which should be zero, is similarly strongly peaked
at zero. There are a small number of forces which have an error in angle greater than
100 degrees but these are too rare to show up in the histogram.

The most basic test for a potential is what it predicts as the minimum energy structure.
To do this we compared the structures as predicted by a geometry optimisation in VASP
with the 0K equilibrium structures as predicted by LAMMPS [32] using the machine
learned potentials (Figure 5). The VASP minimum energy structures, starting from the
initial structure described above, are in Figure 6.
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(a) (b)

(c) (d)

Figure 4. Plots of (a) Fits of energies, (b) scatter in energy error, (c) error in magnitude of forces and
(d) error in direction of forces for all the gold cluster structures trained simultaneously.

0.944 0.0 0.671
Structure I Structure II Structure III

Figure 5. LAMMPS optimised structures using the machine learned potential. Energies (in eV) given
relative to the lowest energy structure.

1.845 0.0 0.744
Structure I Structure II Structure III

Figure 6. VASP optimised structures from a regular VASP geometry optimisation. Energies (in eV)
given relative to the lowest energy structure.

Structure II is the global minimum structure. The coordinates of these final structures
are also given in the Supplementary Information. Relative to the pyramidal structure,
structure III is 0.744 eV higher, and structure I 1.845 eV higher.

For the structures produced by LAMMPS, structure II again optimises to the global
minimum, and structure III gives a geometry the same as VASP. Isomer I, from the same
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starting geometry as used with VASP, optimises to a structure very similar to VASP’s local
minimum, but with a smaller energy difference relative to the ground state. Structure
III is now 0.671 eV above the global minimum, which is in reasonable agreement with
the VASP result. These results were all obtained with a potential derived using data
from all structures simultaneously, i.e the one whose statistics are shown in Figure 4.
Cao et al. [23] studied structures of several small gold clusters including Au20, and found a
local minimum which resembles the one shown here. Ford et al. [15] also found a similar
structure at approximately the same energy above the global minimum.

3.3. Using the Potential

We computed the vibrational density of states from the velocity auto-correlation
function in the three structures (see Figure 7). Each spectrum shows a single pronounced
peak at ∼1–1.5 THz, reproducing one of the main peaks measured experimentally. This
is due to the small size of the nanoparticle considered here, that favours low frequency
phonon modes due to the large surface-bulk ratio, as suggested by Bertoldi et al. [33].
However, here we focus on the accuracy of DeePMD models in reproducing ab-initio
calculations, and the absence of high frequency phonon modes is a negligible detail.

Figure 7. Vibrational density of states computed from the velocity auto-correlation function in VASP
simulations.

Using the energy fluctuation of the system with respect to the temperature described
by Labastie et al., we calculated the heat capacity as follows [34]:

Cv =
< δE2 > − < δE >2

kBT2 , (1)

where E is the energy of the system, kB is the Boltzmann constant and T is the average
temperature.

Using equation Equation (1), the specific heat capacity has been calculated using time
windows of 2000 steps starting from different points of MD simulations. For structure II,
Cv value oscillates between 33.89 J/K/mol, or 0.34 meV/K/Atom, and 36.66 J/K/mol, or
0.38 meV/Atom (around 10%), with an average of 35.12 J/K/mol or 0.36 meV/K/Atom.
Similar results are obtained for structure I and III with a relatively larger fluctuation in the
values (around 20%) and the results are summarized in Table 3.

The specific heat values are higher than the corresponding bulk and decrease with the
size of the nanoparticle [35]. Also, a second high peak frequency becomes less pronounced
for small cluster size [36]. The literature report values of Cp ∼ 30, when calculated by
modified tight-binding second-moment approximation [37], and ∼16.6 J/K/mol when
calculated by Density Functional based Tight Binding method [38]. Small fluctuations in the
Cv value during the ab-initio simulation timeline, confirm the ergodicity of the systems, and
the small deviation from the experimental value indicate the accuracy of the simulations.

When Cv is calculated by frozen phonon models in (1 × 1 × 1) expansion of the
supercell. Due to the low symmetry of the clusters, the 126 single point calculations
needed to evaluate the Cv require CPU Time: 01:00:57. However, the value obtained is one
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order of magnitude larger (∼450–500 J/K/mol), due to the presence of intense fictitious
low frequency phonon modes. The large error may be partially recovered using a larger
expansion of the supercell, which, however, will lead to a very heavy calculation due
to the low symmetry configuration of the clusters. The phonon DOS is included in the
Supplementary Information.

Table 3. Specific heat capacity (Cv) at 800 K calculated using equation Equation (1) for VASP and
LAMMPS simulations (values are given in J/K/ mol).

Structure (Cv) (VASP) (Cv) (LAMMPS)

I 29.12 19.92
II 35.12 20.63
III 39.12 24.44

Using the DeePMD calculated interatomic potentials, we repeat the nanocluster molec-
ular dynamics with the same setup used for VASP MD. We use the interatomic potentials
extrapolated by using all the three structures as training/test sets, which naturally include
a generalised description of the of the energy surface. The deviation from average values
of temperature and energy are comparable to the ones calculated in VASP MD for the
same structure within 0.25% for the temperature and 6% for the energy, respectively (see
Figure 8 and Table 4). The calculated Cv value using energy fluctuations is around 40%
smaller that the ones calculated using VASP. However, this deviation is comparable with
the distribution of values using different theoretical/computational approaches reported in
the literature [37,38]. Furthermore, the vibrational DOS calculated using ML-IP, reproduce
the low frequency peak calculated by VASP MD (see Figure 9).

Figure 8. Energy (potential vs total) (left panel) and Temperature (right panel) fluctuations during
LAMMPS MD simulation structure II.

Figure 9. Vibrational density of states computed from the velocity auto-correlation function in
LAMMPS simulations.
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Table 4. Statistical analysis of energy fluctuations in structure II during LAMMPS MD simulations.

Temperature (K) Total Energy (eV)

mean 797.08 −46.70
std 152.98 0.67
min 371.95 −49.78
25% 688.94 −47.16
50% 786.95 −46.72
75% 894.24 −46.25
max 1424.30 −43.92

The computational time necessary for a simulation to reach 8500 timesteps using
VASP is (CPU Time: 10,301:11:16) on 48 CPUs, whereas the same number of timesteps uses
only (CPU Time: 00:03:20) on 4 CPUs using the Machine Learning Potential in LAMMPS,
confirming the huge resource-wise benefit of ML approach if compared to conventional
quantum mechanical models, preserving accuracy.

4. Conclusions

Using the DeePMD program we have shown that Machine Learned potentials are
a feasible way of calculating the properties of gold nanoclusters at similar accuracy but
reduced computational cost to standard ab-initio molecular dynamics methods. Our po-
tential correctly reproduces the global minimum of Au20 and one of the local minima. We
have calculated the heat capacity using both ab-initio and machine-learned MD and they
agree satisfactorily with each other and related studies from the literature. In the course of
the investigation further scope for improvement became apparent, such as reducing the
number of data points while retaining accuracy, using alternative methods to generate the
training data, better descriptors for the ML model and so on. These are currently under
investigation. In particular, recent works [20,39] using new techniques that build on and
enhance existing data to produce more general data, such as in active or delta learning,
look promising for future work.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12213891/s1, Table S1: Initial geometry of structure I, Table S2:
Initial geometry of structure II, Table S3: Initial geometry of structure III, Table S4: Geometry of struc-
ture I optimised by VASP, Table S5: Geometry of structure II optimised by VASP, Table S6: Geometry
of structure III optimised by VASP, Table S7: Geometry of structure I optimised by LAMMPS, Table S8:
Geometry of structure II optimised by LAMMPS, Table S9: Geometry of structure III optimised by
LAMMPS, Figure S10: Phonon Density of States computed with the frozen phonon model. Example
of the training parameters used in the DeePMD fitting of the potential.
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