
����������
�������

Citation: Hussien, A.G.; Abualigah,

L.; Abu Zitar, R.; Hashim, F.A.; Amin,

M.; Saber, A.; Almotairi, K.H.;

Gandomi, A.H. Recent Advances in

Harris Hawks Optimization:

A Comparative Study and

Applications. Electronics 2022, 11,

1919. https://doi.org/10.3390/

electronics11121919

Academic Editor: Esteban

Tlelo-Cuautle

Received: 3 May 2022

Accepted: 10 June 2022

Published: 20 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Review

Recent Advances in Harris Hawks Optimization:
A Comparative Study and Applications
Abdelazim G. Hussien 1,2,* , Laith Abualigah 3 , Raed Abu Zitar 4 , Fatma A. Hashim 5, Mohamed Amin 6,
Abeer Saber 7 , Khaled H. Almotairi 8 and Amir H. Gandomi 9,*

1 Department of Computer and Information Science, Linköping University, 581 83 Linköping, Sweden
2 Faculty of Science, Fayoum University, Fayoum 2933110, Egypt
3 Faculty of Computer Sciences and Informatics, Amman Arab University, Amman 11953, Jordan;

aligah.2020@gmail.com
4 Sorbonne Center of Artificial Intelligence, Sorbonne University-Abu Dhabi,

Abu Dhabi 38044, United Arab Emirates; raed.zitar@sorbonne.ae
5 Faculty of Engineering, Helwan University, Cairo 4034572, Egypt; fatma_hashim@h-eng.helwan.edu.eg
6 Faculty of Science, Menoufia University, Menoufia 6131567, Egypt; mohamed_amin110@yahoo.com
7 Department of Computer Science, Faculty of Computers and Information, Kafr El-Sheikh University,

Kafr El-Sheikh 6860404, Egypt; abeersaber@gmail.com
8 Computer Engineering Department, Computer and Information Systems College, Umm Al-Qura University,

Makkah 21955, Saudi Arabia; khmotairi@uqu.edu.sa
9 Faculty of Engineering and Information Technology, University of Technology Sydney,

Ultimo, NSW 2007, Australia
* Correspondence: abdelazim.hussien@liu.se (A.G.H.); gandomi@uts.edu.au (A.H.G.)

Abstract: The Harris hawk optimizer is a recent population-based metaheuristics algorithm that
simulates the hunting behavior of hawks. This swarm-based optimizer performs the optimization
procedure using a novel way of exploration and exploitation and the multiphases of search. In this
review research, we focused on the applications and developments of the recent well-established
robust optimizer Harris hawk optimizer (HHO) as one of the most popular swarm-based techniques
of 2020. Moreover, several experiments were carried out to prove the powerfulness and effectivness of
HHO compared with nine other state-of-art algorithms using Congress on Evolutionary Computation
(CEC2005) and CEC2017. The literature review paper includes deep insight about possible future
directions and possible ideas worth investigations regarding the new variants of the HHO algorithm
and its widespread applications.

Keywords: Harris hawks optimization; metaheuristics; optimization problems; variants; applications

1. Introduction

The optimization area has witnessed a wide range of applications in understanding
the solutions of many new problems due to the fast progress of industrial technologies and
artificial intelligence [1–5]. Such rapid progress requires the development of new technolo-
gies for tackling hard and challenging problems in a reasonable time. Many proposals and
research attempts have been introduced by researchers with years of experience based on
two classes of deterministic methods and stochastic-based methods [6–9]. In the first-class,
there is a need for gradient info and details of the search space. The later class does not
need such info and can handle black-box optimization without knowing mathematics
details of the objective function, based on sensing and touching the surface of the problems.
One of the popular classes of these stochastic optimizers is a swarm and evolutionary
method [10–13]. Table 1 shows a list of metaheuristic algorithms belonging to this class and
their algorithmic behavior.
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Table 1. A list of some optimization algorithms based on their components.

Class Algorithmic Behavior Algorithms Ref. Year

Evolutionary

Breeding-based Evolution Genetic Algorithm (GA) [14] 1992
Breeding-based Evolution Genetic programming (GP) [15] 1992
Influenced by representative solutions Differential Evolution (DE) [16] 1997
Breeding-based Evolution Evolution Strategies [17] 2002
Mathematical Arithmetic operators Arithmetic Optimization Algorithm [18] 2021

Swarm

Influenced by representative solutions Particle Swarm Optimization (PSO) [19] 1995

intelligence

Creation and Stimergy Ant Colony optimization (ACO) [20] 1999
Creation–Combination Harmony Search Algorithm (HS) [21] 2001
Influenced by representative solutions Artificial Bee Colony (ABC) [22] 2007
Influenced by the entire population Central Force Optimization (CFO) [23] 2007
Creation–Combination Biogeography-based optimization (BBO) [24] 2008
Influenced by representative solutions Cuckoo Search (CS) [25] 2009
Influenced by neighborhoods Bacterial Foraging Optimization (BFO) [26] 2009
Influenced by the entire population Gravitational Search Algorithm (GSA) [27] 2009
Influenced by the entire population Firefly Optimizer (FFO) [28] 2010
Influenced by representative solutions Teaching–Learning-Based Optimizer (TLBO) [29] 2011
Influenced by representative solutions Fruit Fly Optimization (FFO) [30] 2012
Influenced by representative solutions Krill Herd (KH) [31] 2012
Influenced by representative solutions Grey Wolf Optimizer (GWO) [32] 2014
Influenced by representative solutions Harris Hawks Optimizer (HHO) [33] 2019
Influenced by representative solutions Henry Gas Solubility Optimization (HGSO) [34] 2019
Influenced by representative solutions Slime mold algorithm (SMA) [35] 2020
Influenced by mating behavior of snakes Snake Optimizer [36] 2022

These swarm-based and evolutionary methods seed a random set of solutions as initial
guesses, and then they evolve and improve the initial solutions until convergence to a
high-quality suboptimal or optimal solution [37–41]. The core operators of evolutionary
techniques are crossovers and mutations to generate new gens from parent solutions based
on some ideas inspired by the evolution of nature. The swarm-based solvers may also use
such operations, but they organize initial swarms based on the interaction of two funda-
mental cores for scattering them and then intensifying them into specific high-potential
areas [42–44]. Swarm-based approaches are developed and utilized in many areas of
machine learning and artificial intelligence according to the cooperative intellect life of
self-organized and reorganized coordination, e.g., artificial clusters of randomly generated
agents. This way of problem solving is well-known among the swarm-intelligence commu-
nity; due to such a delicate balance between the exploration and exploitation steps, it is a
hard target to achieve [45–47].

There are many ways to classify these methods as well, but generally, some researchers,
who benefit from a source of inspiration, classify these methods based on their source of
inspiration [48–50]. More scientific classification has been conducted based on the algorith-
mic behavior of these methods by [51–53]. However, this field has some diseases that still
have not healed. First, many population-based methods cannot show a high performance
or novelty in their mathematical rationalities but have a new source of inspiration, and they
are well-known as questioned metaphor-based methods. For instance, the well-known
gray wolf optimizer (GWO) has a structural defect, and it shows uncertain performance
for problems whose optimal solutions are not zero but near-zero points such as epsilon,
as discovered by [54,55]. Moreover, the core equations of many new optimizers can
be constructed using the particle swarm optimizer (PSO) and differential evolution (DE)
methods or other popular swarm-based methods [56]. This means the inspiration and
metaphor-based language made it easy to develop unoriginal or “pseudonovel” solvers
that show “pseudoefficient” efficacy. More and more, the wisdom of new researchers grows,
they understand and reach the conclusion that “performance matters”, not the source of
inspiration. The Harris hawk optimizer (HHO) was an attempt to reach not only better
performance but also low-cost and efficient operators within a new stochastic optimizer.

Another way that exists in the literature is a method that distinguishes each method
based on the source of inspiration. Based on this system of classification, metaheuristic
algorithms (MAs) can be classified into five different categories: Evolutionary Algorithms,
Swarm Intelligence, Physics-based algorithms, Human-based algorithms, and Sport-based
algorithms [57]. The first category, Evolutionary Algorithms (EAs), refers to algorithms
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which are inspired by nature and simulate natural creatures’ behaviors such as mutations,
crossover, selection, elitism, and reproduction. Examples of these algorithms are the Ge-
netic Algorithm (GA) by [14], Genetic Programming (GP) by [58], Differential Evolution
(DE) by [16], Evolutionary Programming (EP) by [59], Evolution Strategy (ES) by [60],
Biogeography-Based Optimizer (BBO) by [24], and Backtracking Search Algorithm (BSA)
by [61]. The second category is Swarm-Intelligence (SI)-based algorithms, which are in-
spired from the social behavior of swarms, birds, insects, fish, and animals. The top three
most popular examples of SI algorithms are Particle Swarm Optimization (PSO) by [19],
Ant Colony Optimization (ACO) by [20], and Artificial Bee Colony (ABC) Algorithm by [62].
Some other SI-based algorithms that have their place in the literature regardless of their
performance and originality include the Cuckoo Search Algorithm (CS) by [25], Firefly Algo-
rithm (FA) by [63], COOT bird [64], Krill Herd (KH) by [31], Cat Swarm Optimization (CSO)
by [65], Bat Algorithm (BA) by [66], Symbiotic Organisms Search (SOS) [67], Grey Wolf
Optimizer (GWO) by [32], Moth–Flame Optimization (MFO) Algorithm checked by [68,69],
Virus Colony Search (VCS) [70], Whale Optimization Algorithm (WOA)checked by [71,72],
Grasshopper Optimization Algorithm (GOA) by [73], Salp Swarm Algorithm by [74,75],
Crow Search Algorithm (CSA) reviewed by [76], Symbiotic Organisms Search (SOS) by [77],
Reptile Search Algorithm (RSA) by [78], Butterfly Optimization Algorithm (BOA) by [79],
Remora Optimization Algorithm (ROA) [80], Wild Horse Optimizer (WHO) [81], Seagull
Optimization Algorithm (SOA) by [82], and Ant Lion Optimizer (ALO) reviewed by [83].
The third category is the Physics-based algorithms, which refers to the algorithms inspired
from chemical rules or physical phenomena. Some examples of this class are Simulated An-
nealing (SA) by [84], Gravitational Search Algorithm (GSA) by [27], Big-Bang Big-Crunch
(BBBC) by [85], Lightning Search Algorithm (LSA) by [86], Electromagnetic Field Optimiza-
tion (EFO) by [87], Thermal Exchange Optimization (TEO) by [88], Vortex Search Algorithm
(VSA) by [89], Electrosearch Algorithm (ESA) by [90], Atom Search Optimization (ASO)
by [91], Chemical Reaction Optimization by [92], and Henry Gas Solubility Optimization
(HGSO) by [34]. The fourth class is Human-based algorithms (HA), which refers to the
algorithms inspired from human behaviors such as Harmony Search (HS) by [21], Teaching–
Learning-Based Algorithm (TLBO) by [29], the ideology algorithm by [93], human mental
search (HMS) by [94], Brain storm optimization (BSO) by [95], Social Emotional Optimiza-
tion Algorithm (ESOA) by [96], Socio-Evolution and Learning Optimization (SELO) by [97],
and Human Group Formation (HGF) by [98]. The last category is Sport-based algorithms
that simulate sport activities and games. Some interesting examples include League Cham-
pionship Algorithm by [99], Golden Ball Algorithm by [100], World Cup Optimization
by [101], Arithmetic Optimization Algorithm (AOA) by [18], and others [81,102,103].

The Harris hawks optimization is a recently developed algorithm that simulates Harris
hawks’ special hunting behavior known as “seven kills”. The HHO algorithm [33] has
some unique features compared with other popular swarm-based optimization methods.
The first is that this optimizer utilizes a time-varying rule which evolves by more iterations
of the method during exploration and exploitation. Such a way of shifting from exploration
to exploitation propensities can make it subsequently flexible when the optimizer is in front
of an undesirable difficulty in the feature space. Another advantage is that the algorithm
has a progressive trend during the convergence process and when shifting from the first
diversification/exploration phase to the intensification/exploitation core. The quality of
results in HHO is relatively higher compared with other popular methods, and this feature
also supported the widespread applications of this solver. Moreover, the exploitation
phase of this method is compelling based on a greedy manner in picking the best solutions
explored so far and ignoring low-quality solutions obtained until that iteration. We review
different applications of this optimizer in the next parts of this survey to see how its features
make it a fitting choice for real-world cases.
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HHO is similar to all metaheurstics algorithms. HHO has many benefits (advantages)
and a smaller number of disadvantages. HHO advantages can be listed as follows:

• Good convergence speed.
• Powerful neighborhood search characteristic.
• Good balance between exploration and exploitation.
• Suitable for many kinds of problems.
• Easy to implement.
• Adaptability, scalability, flexibility, and robustness.

The disadvantages of HHO, as with all other algorithms, is that it may stick in local
optima, and there is no theatrical converging study frame.

This paper is organized as follows. Section 2 presents the original procedure of the
studied HHO. Section 3 presents the variants of the HHO. Section 4 presents the application
of the HHO. Section 5 presents a brief discussion about the HHO with its advantages.
Finally, the conclusion and future works are given in Section 6.

2. Review Methodology

The aims of this study are to present a comprehensive review of all HHO aspects
and how the researchers and scholars are encouraged and motivated to use it in various
disciplines. Since the suggestion of this algorithm, it has received huge attention from
scholars all over the world. According to Google Scholar (https://scholar.google.com/
scholar?cites=16912266037349375725&as_sdt=2005&sciodt=0,5&hl=en (accessed on 31 De-
cember 2021)), it has been cited more than “1231” times. Moreover, the original study is also
selected as a hot paper and one of the most ranked studies in both Scopus (https://www.
scopus.com/record/pubmetrics.uri?eid=2-s2.0-85063421586&origin=recordpage (accessed
on 31 December 2021)) and Web of Science (https://www.webofscience.com/wos/woscc/
full-record/WOS:000469154500064 (accessed on 31 December 2021)). Firstly, a preliminary
study was conducted, after that, we performed a search on studies that referred to the HHO
original study to make a list of keywords we must use to perform the search. Secondly,
skimming and scanning methods were used to select relevant studies. Thirdly, a checking
and screening process was performed to extract data. Finally, we sorted the data and
classified ideas (papers).

3. Harris Hawks Optimization (HHO)

The Harris hawks optimization is a recently introduced population-based optimization
method suggested by Heidari et al. [33] in which the authors tried to simulate the Harris
hawk’s cooperative behavior in nature. Some hawks try to surprise prey using some
techniques (tracing and encircling–approaching and attacking). The HHO pseudocode can
be founded in Algorithm 1. The authors simulated hawks’ behavior in 3 steps.

The logical diagram of the HHO can be given in Figure 1.
(i) The first step (exploration phase) can be formulated as follows:

X(t + 1) =
{

Xrand(t)− r1|Xrand(t)− 2r2X(t)| q ≥ 0.5
Xrabbit(t)− Xm(t)− r3(LB + r4(UB− LB)) i f r4 < 0.5

(1)

where X(t) and X(t+ 1) refer to hawk location in the current iteration and next iteration, re-
spectively, r1, r2, r3, r4, and q are stochastic numbers in the interval [0, 1], Xrabbit and Xrand(t)
refer to rabbit location (best position) and randomly selected hawk location, respectively,
and Xm(t) can be calculated from the following Equation (2).

Xm(t) =
1
N

N

∑
i=1

Xi(t) (2)

where Xi(t) refers to each hawk position and N is the maximum iteration number.

https://scholar.google.com/scholar?cites=16912266037349375725&as_sdt=2005&sciodt=0,5&hl=en
https://scholar.google.com/scholar?cites=16912266037349375725&as_sdt=2005&sciodt=0,5&hl=en
https://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-85063421586&origin=recordpage
https://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-85063421586&origin=recordpage
https://www.webofscience.com/wos/woscc/full-record/WOS:000469154500064
https://www.webofscience.com/wos/woscc/full-record/WOS:000469154500064
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(ii) Transition from exploration to exploitation

E = 2Eo(1−
t
T
) (3)

where Eo and E are the initial energy and the escaping energy, respectively. If Eo ≥ 1,
then exploration occurs. Otherwise, exploitation happens. This step can be identified in
4 scenarios:

Soft besiege: occurs if r ≥ 0.5 and |E| ≥ 0.5, which can be obtained from the following
equation:

X(t + 1) = ∆X(t)− E|JXrabbit(t)− X(t)| (4)

∆X(t) = Xrabbit − X(t) (5)

∆X(t) refers to the difference between location of current hawk and location of prey.
J = 2(1− r5) where r5 ∈ [0, 1].

Hard besiege occurs if r ≥ 0 and |E| < 0. This scenario is formulated as:

X(t + 1) = Xrabbit − E|∆X(t)| (6)

Advanced rapid dives while soft surround: if r < 0 and |E| ≥ 0. The next hawk move is
obtained by Equation (7).

Y = Xrabbit(t)− E|JXrabbit(t)−X(t)| (7)

Z = Y + S× LF(D) (8)

where S is a random vector and D refers to dimension. LF is levy flight, which can be
obtained from the following equation:

LF(x) =
u× σ

|ν|
1
β

, σ = (
Γ(1 + β)× sin(πβ

2 )

Γ( 1+β
2 × β× 2

β−1
2 )

)
1
β (9)

where β is fixed and equal to 1.5, u and ν refer to random numbers ∈ (0, 1). The final
equation can be given as

X(t + 1) =
{

Y F(Y) < F(X(t))
Z F(Z) < F(X(t))

(10)

Advanced rapid dives while hard surround: occurs if r < 0.5 and |E| < 0.5. This behavior
can be shown as follows:

X(t + 1) =
{

Y′ F(Y′) < F(X(t))
Z′ F(Z′) < F(X(t))

(11)

where Y′ and Z′ are calculated from the following equations:

Y′ = Xrabbit(t)− E|JXrabbit − Xm| (12)

Z′ = Y + S× LF(D) (13)
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Algorithm 1 Harris Hawks Optimization Algorithm.

Initialize the parameters (Popsize (N), MaxIter (T), LB, UB, and Dim
Initialize a population xi i = 1, 2, . . . , n.
while (iter ≤ MaxIter) do

Compute the fitness function for each hawk xi
Xrabbit = the best search agent
for each hawk (xi) do

Update initial energy Eo, Jump Strength J Equation (3)
if (|E| ≥ 1) then

Update hawk position using Equation (1)
end if
if (|E| < 1) then

if (r ≥ 0.5 and |E| ≥ 0.5) then
Update hawk position by Equation (4)

else if (r ≥ 0.5 and |E| < 0.5) then
Update hawk position by Equation (6)

else if (r < 0.5 and |E| ≥ 0.5) then
Update hawk position by Equation (8)

else if
then Update hawk using Equation (9)

end if
end if

end for
end while
Return Xrabbit.

4. Experimental Results
4.1. Parameter Setting

In all these experiments, we used the same parameter setting, which is given in Table 2,
which gives the number of dimensions, number of individuals, and maximum number of
iterations. These experiments were carried out using Matlab 2021b on Intel(R) Core(TM)
i5-5200 machine with 6 GBs of RAM. The setting of compared algorithms in both CEC2005
and CEC2017 can be found in Table 3.
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Table 2. Experiments parameters settings.

No. Parameter Name Value

1 Population Size 30
2 Dim 30
3 Max number of iteration 500

Table 3. Metaheuristic algorithms parameters settings.

Alg. Parameter Value

GOA GMaX 1
GMin 0.004
f l 2

TEO u 1
v 0.001

SCA a 2
EHO Elephants number 50

Clans number 5
Kept elephants number 2
The scale factor α 0.5
The scale factor β 0.1

SSA c1, c2, c3 rand
WOA a 2
HHO β 1.5
AEO r1, r2, and r rand

h 2 × rand − 1
L-SHADE Pbest 0.1

Arc rate 2
LSHADE-EpSin Pbest 0.1

Arc rate 2
CMAES α 2

4.2. Experimental Results of CEC 2005

CEC 2005 is a classical benchmark mathematical functions that contains many mathe-
matical function types (Unimodal, multimodal, hybrid, and composite). Here, we compared
HHO with the Genetic Algorithm (GA) [104], Covariance Matrix adaptation Evolution
Strategy (CMAES) [105], Linear population size reduction-Success-History Adaptation for
Differential Evolution (L-SHADE) [106], Ensemble Sinusoidal incorporated with L-SHADE
(LSHADE-EpSin) [107], Sine Cosine Algorithm (SCA) [108], Grasshopper Optimization
Algorithm (GOA) [73], Whale Optimization Algorithm (WOA) [48], Thermal Exchange
Optimization (TEO) [88], and Artificial Ecosystem Optimization (AEO) [109].

Table 4 shows the results of these algorithms. It is easy to notice that the HHO has
a good performance compared with the others. Moreover, Figures 2 and 3 show the
convergence curves of these algorithms, whereas Figures 4 and 5 show their boxplot. The
Wilcoxon Rank Sum (WRS) test was carried out with a 5% percentage between the HHO
and the other algorithms to prove its superiority. The results of the Wilcoxon test can be
found in Table 5.
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Figure 2. Convergence curve for HHO against other competitors from F1–F12 CEC2005.
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Figure 3. Convergence curve for HHO against other competitors from F13–F23 CEC2005.
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Figure 4. Boxplot of some functions from F1–F12 for all algorithms.
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Figure 5. Boxplot of some functions from F13–F23 for all algorithms.

4.3. Experimental Results of CEC 2017

To prove the powerfulness and effectiveness of the HHO, we performed a com-
parison between HHO and the number of metaheurstic algorithms using CEC 2017.
These algorithms are the Genetic Algorithm (GA) [104], Linear population size reduction-
Success-History Adaptation for Differential Evolution (L-SHADE) [106], Ensemble Si-
nusoidal incorporated with L-SHADE (LSHADE-EpSin) [107], Sine Cosine Algorithm
(SCA) [108], Grasshopper Optimization Algorithm (GOA) [73], Whale Optimization Al-
gorithm (WOA) [48], Thermal Exchange Optimization (TEO) [88], Artificial Ecosystem
Optimization (AEO) [109], and Henry Gas solubility optimization (HGSO) [34].

The results of such a comparison are shown in Table 6 in terms of average and standard
deviation for fitness value. From this table, it is clear that the HHO has a good performance.
Moreover, Figures 6–8 show convergence curves of the HHO compared with the above-
mentioned algorithms, where we conclude that the HHO has a good speed convergence.
Moreover, Figures 9–11 show the boxplot of the HHO compared with the other algorithms.



Electronics 2022, 11, 1919 12 of 50

Table 4. The comparison results of all algorithms over 23 functions.

F GA CMAES L-SHADE LSHADE-EpSin SCA GOA WOA TEO AEO HHO

F1 Avg 2.79× 103 9.74× 10−6 3.52× 104 2.57× 104 8.87 1.10× 104 4.38× 10−74 1.58× 10−87 6.64× 104 8.61× 10−95

STD 2.20× 103 4.55× 10−6 6.18× 103 2.62× 103 1.24× 101 4.15× 103 1.56× 10−73 7.38× 10−88 6.18× 103 4.50× 10−94

F2 Avg 1.53× 102 4.98× 10−3 6.03× 103 4.50× 103 1.24× 10−2 8.48× 102 1.06× 10−74 6.57× 10−51 1.44× 1010 2.24× 10−51

STD 8.70 2.28× 10−3 1.68× 104 1.26× 104 1.56× 10−2 3.53× 103 5.82× 10−74 1.27× 10−50 3.03× 1010 8.46× 10−51

F3 Avg 5.66× 10−1 4.60× 10−1 6.45× 104 3.70× 104 8.80× 103 3.91× 104 4.79× 104 1.08× 10−63 9.11× 104 3.26× 10−67

STD 3.55× 10−1 2.38× 10−1 9.94× 103 5.70× 103 5.10× 103 2.81× 104 1.06× 104 5.89× 10−63 1.44× 104 1.78× 10−66

F4 Avg 1.02 2.34× 10−2 2.05× 101 5.83× 101 4.01× 101 4.40× 101 5.57× 101 8.53× 10−52 8.58× 101 1.22× 10−48

STD 1.22× 10−1 5.16× 10−3 1.37 3.89 1.36× 101 8.62 2.94× 101 3.09× 10−52 3.59 4.49× 10−48

F5 Avg 9.04× 101 8.08× 101 5.03× 106 4.02× 107 8.70× 104 1.01× 107 2.79× 101 2.90× 101 2.24× 108 9.37× 10−3

STD 1.16× 102 1.88× 102 1.19× 106 9.55× 106 2.50× 105 6.05× 106 5.39× 10−1 3.36× 10−2 3.71× 107 1.36× 10−2

F6 Avg 2.91× 103 1.13× 10−5 3.15× 104 2.51× 104 3.63× 101 1.15× 104 4.53× 10−1 6.71 6.49× 104 2.28× 10−4

STD 2.03× 103 4.74× 10−6 4.19× 103 3.34× 103 7.15× 101 4.43× 103 2.31× 10−1 7.18× 10−1 6.69× 103 2.94× 10−4

F7 Avg 2.65 2.88× 10−2 1.25× 101 1.87× 101 1.21× 10−1 6.26× 10−1 3.15× 10−3 8.50× 10−5 1.11× 102 1.05× 10−4

STD 7.81× 10−1 9.43× 10−3 2.61 3.91 1.20× 10−1 6.74× 10−1 3.83× 10−3 6.77× 10−5 1.85× 101 9.05× 10−5

F8 Avg −2.29× 103 −1.19× 105 −9.60× 102 −4.28× 103 −3.79× 103 −4.52× 103 −9.99× 103 −3.63× 103 −7.46× 103 −1.26× 104

STD 5.31× 102 1.10× 105 5.71× 101 2.55× 102 4.11× 102 5.50× 102 1.76× 103 9.25× 102 5.94× 102 1.40

F9 Avg 5.68× 101 9.64× 101 3.34× 101 2.98× 102 3.39× 101 2.74× 102 0.00 0.00 4.29× 102 0.00
STD 2.45× 101 7.02× 101 1.94 1.74× 101 3.07× 101 4.03× 101 0.00 0.00 2.48× 101 0.00

F10 Avg 8.22× 101 9.78× 10−4 1.53× 101 1.85× 101 1.43× 101 1.59× 101 4.09× 10−15 8.88× 10−16 2.05× 101 8.88× 10−16

STD 3.65× 101 2.01× 10−4 3.11× 10−1 3.77× 10−1 8.79 1.45 2.70× 10−16 0.00 1.64× 10−1 0.00

F11 Avg 2.47× 101 1.31× 10−4 4.06× 102 2.24× 102 7.81× 10−1 1.01× 102 6.97× 10−3 0.00 5.73× 102 0.00
STD 2.07× 101 5.06× 10−5 6.57× 101 3.63× 101 3.78× 10−1 2.85× 101 2.69× 10=2 0.00 6.20× 101 0.00

F12 Avg 4.89× 107 1.23× 10−6 8.70× 107 4.46× 107 3.38× 102 6.18× 106 2.58× 10−2 1.33 5.33× 108 1.10× 10−5

STD 4.40× 107 5.97× 10−7 3.63× 107 1.86× 107 9.13× 102 7.74× 106 1.49× 10−2 2.64× 10−1 9.99× 107 1.64× 10−5

F13 Avg 9.06× 107 1.89× 10−5 1.21× 107 1.18× 108 1.24× 105 2.87× 107 4.75× 10−1 3.00 9.85× 108 1.00× 10−4

STD 7.53× 107 6.95× 10−6 2.91× 106 2.84× 107 4.31× 105 3.03× 107 3.02× 10−1 2.79× 10−3 1.35× 108 2.29× 10−4
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Table 4. Cont.

F GA CMAES L-SHADE LSHADE-EpSin SCA GOA WOA TEO AEO HHO

F14 Avg 4.02× 10−1 4.33 9.07× 10−1 1.00 1.66 9.9× 10−1 2.77 9.78 1.15 1.20
STD 3.75× 10−3 2.45 8.47× 10−3 9.36× 10−3 9.48× 10−1 4.30× 10−16 2.65 3.73 2.47× 10−1 4.04× 10−1

F15 Avg 3.19× 10−3 2.49× 10−3 3.38× 10−3 2.17× 10−3 9.25× 10−4 3.80× 10−3 7.30× 10−4 6.71× 10−2 2.86× 10−3 3.75× 10−4

STD 1.38× 10−3 1.65× 10−3 1.47× 10−3 9.40× 10−4 3.53× 10−4 5.57× 10−3 5.05× 10−4 5.22× 10−2 1.16× 10−3 1.67× 10−4

F16 Avg −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −9.70× 10−1 −1.02 −1.03
STD 1.43× 10−3 6.78× 10−16 1.43× 10−1 1.43× 10−3 4.76× 10−5 3.21× 10−13 2.53× 10−9 1.20× 10−1 1.08× 10−2 5.55× 10−9

F17 Avg 3.98× 10−1 3.98× 10−1 3.98× 10−1 3.98× 10−1 4.01× 10−1 3.98× 10−1 3.98× 10−1 3.98× 10−1 4.01× 10−1 3.98× 10−1

STD 8.87× 10−6 8.87× 10−6 8.87× 10−6 8.87× 10−6 4.24× 10−6 8.87× 10−6 8.87× 10−6 8.87× 10−6 2.86× 10−3 3.88× 10−5

F18 Avg 6.21× 101 3.00 3.04 3.04 3.00 5.70 3.00 2.75× 101 3.18 3.00
STD 6.18× 101 1.13× 10−15 4.38× 10−2 4.38× 10−2 1.00× 10−4 1.48× 101 1.46× 10−4 2.91× 101 1.68× 10−1 5.56× 10−7

F19 Avg −3.86 −3.86 −3.86 −3.86 −3.85 −3.86 −3.86 −3.44 −3.85 −3.86
STD 2.83× 10−3 2.71× 10−15 2.83× 10−3 2.83× 10−3 3.63× 10−3 2.83× 10−3 1.00× 10−2 2.87× 10−1 5.09× 10−3 3.78× 10−3

F20 Avg −3.07 −3.27 −3.07 −3.07 −2.86 −2.87 −3.21 −2.19 −2.93 −3.10
STD 5.62× 10−2 5.99× 10−2 5.62× 10−2 5.62× 10−2 3.83× 10−1 3.00× 10−1 1.80× 10−1 4.42× 10−1 1.12× 10−1 1.31× 10−1

F21 Avg −4.30 −6.39 −4.30 −4.30 −2.46 −2.81 −8.36 −4.08 −2.78 −5.38
STD 1.41 3.65 1.41 1.41 1.96 1.73 2.59 1.12 9.83× 10−1 1.27

F22 Avg −4.71 −1.01× 101 −4.71 −4.71 −3.79 −3.88 −7.03 −4.29 −2.84 −5.4137
STD 1.69 1.39 1.69 1.69 1.72 1.94 3.11 1.29 1.01 1.261067

F23 Avg −4.70 −9.77 −4.70 −4.70 −3.44 −3.91 −6.51 −4.33 −3.04 −5.21
STD 1.30 2.34 1.30 1.30 1.70 2.32 3.12 1.31 1.07 1.10



Electronics 2022, 11, 1919 14 of 50

Table 5. Wilcoxon rank sum test results for HHO against other algorithms CEC2020 Dim = 20.

F GA L-SHADE LSHADE-EpSin SCA GOA WOA TEO HGSO AEO

F1 3.01986× 10−11 3.01986× 10−11 3.01986× 10−11 3.01986× 10−11 3.01986× 10−11 3.01986× 10−11 3.01986× 10−11 3.01986× 10−11 3.01986× 10−11

F2 3.01986× 10−11 3.01986× 10−11 3.01986× 10−11 3.01986× 10−11 3.01986× 10−11 3.01986× 10−11 0.673495053 9.53321× 10−11 3.01986× 10−11

F3 1.21178× 10−12 3.01986× 10−11 3.01986× 10−11 3.01986× 10−11 3.01986× 10−11 3.01986× 10−11 3.01986× 10−11 5.57265× 10−11 3.01986× 10−11

F4 1.72025× 10−12 3.01986× 10−12 3.01986× 10−11 3.01986× 10−11 3.01986× 10−11 3.01986× 10−11 3.01986× 10−11 0.853381737 3.01986× 10−11

F5 1.21178× 10−12 3.01986× 10−11 3.01986× 10−11 3.01986× 10−11 3.01986× 10−11 3.01986× 10−11 3.01986× 10−11 3.01986× 10−11 3.01986× 10−11

F6 3.019× 10−11 6.356× 10−5 3.019× 10−11 3.019× 10−11 3.019× 10−11 3.019× 10−11 3.019× 10−11 3.019× 10−11 3.019× 10−11

F7 3.019× 10−11 3.019× 10−11 3.019× 10−11 3.019× 10−11 3.019× 10−11 3.019× 10−11 2.921× 10−11 0.559230536 3.019× 10−11

F8 3.019× 10−11 3.019× 10−11 3.019× 10−11 3.019× 10−11 3.019× 10−11 3.019× 10−11 1.776× 10−10 3.019× 10−11 3.019× 10−11

F9 1.211× 10−12 1.211× 10−12 1.211× 10−12 1.211× 10−12 1.211× 10−12 1.211× 10−12 NaN NaN 1.211× 10−12

F10 1.193× 10−12 1.211× 10−12 1.211× 10−12 1.211× 10−12 1.211× 10−12 1.211× 10−12 1.024× 10−7 NaN 1.211× 10−12

F11 1.211× 10−12 1.211× 10−12 1.211× 10−12 1.211× 10−12 1.211× 10−12 1.211× 10−12 0.160802121 1.211× 10−12

F12 3.017× 10−11 0.005322078 3.019× 10−11 3.019× 10−11 3.019× 10−11 3.019× 10−11 3.019× 10−11 3.019× 10−11 3.019× 10−11

F13 8.480× 10−9 0.818745653 3.019× 10−11 3.019× 10−11 3.017× 10−11 3.017× 10−11 3.017× 10−11 3.017× 10−11 3.019× 10−11

F14 3.019× 10−11 9.755× 10−10 3.019× 10−11 6.76501× 10−5 1.107× 10−6 2.110× 10−11 0.000556111 5.494× 10−11 6.765× 10−5

F15 3.019× 10−11 6.695× 10−11 3.019× 10−11 4.504× 10−11 5.072× 10−10 4.077× 10−11 3.157× 10−5 3.019× 10−11 3.338× 10−11

F16 3.019× 10−11 1.211× 10−12 3.019× 10−11 3.019× 10−11 3.019× 10−11 1.697× 10−8 0.773119942 2.389× 10−8 3.019× 10−11

F17 0.311053163 0.311053163 0.311053163 0.311053163 5.427× 10−11 0.311053163 0.311053163 0.311053163 5.427× 10−11

F18 3.019× 10−11 4.107× 10−12 3.019× 10−11 3.019× 10−11 8.993× 10−11 2.002× 10−6 1.956× 10−10 3.019× 10−11 3.019× 10−11

F19 0.000268057 1.211× 10−12 0.000268057 0.000268057 2.601× 10−8 0.000268057 0.157975689 8.152× 10−11 9.832× 10−8

F20 0.045146208 8.885× 10−9 0.045146208 0.045146208 0.000158461 0.000149316 0.00033679 9.918× 10−11 6.282× 10−11

F21 0.000178356 0.725538189 0.000178356 0.000178356 5.967× 10−9 6.045× 10−7 3.081× 10−8 5.967× 10−9 4.615× 10−10

F22 0.006097142 1.943× 10−10 0.006097142 0.006097142 5.967× 10−9 0.000178356 0.003182959 4.744× 10−6 4.615× 10−10

F23 0.003848068 2.251× 10−8 0.003848068 0.003848068 3.964× 10−8 0.002052334 0.000356384 3.157× 10−5 3.351× 10−8
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Table 6. The comparison results of all algorithms over 30 functions.

F GA L-SHADE LSHADE-EpSin SCA GOA WOA TEO HGSO AEO HHO

F1 Avg 4.83× 1010 1.11× 1010 5.36× 1010 2.10× 1010 6.68× 1010 5.29× 109 6.32× 1010 2.31× 1010 1.13× 1011 5.13× 108

STD 9.34× 108 4.83× 109 8.13× 109 3.75× 1010 1.16× 1010 1.56× 109 8.36× 109 4.77× 108 1.37× 1010 3.09× 108

F2 Avg NA NA NA NA NA NA NA NA NA NA
STD NA NA NA NA NA NA NA NA NA NA

F3 Avg 6.28× 109 1.77× 105 1.28× 105 7.87× 104 3.29× 105 2.85× 105 9.12× 104 7.15× 104 2.50× 105 5.57× 104

STD 2.66× 1010 5.49× 104 1.88× 104 1.29× 104 1.51× 105 7.90× 104 7.33× 103 6.75× 103 4.56× 104 6.11× 103

F4 Avg 2.54× 104 1.94× 103 1.33× 104 3.29× 103 1.61× 104 1.32× 103 2.37× 104 4.54× 103 3.53× 104 7.31× 102

STD 8.39× 103 6.54× 102 2.63× 103 8.81× 102 6.18× 103 4.43× 102 4.20× 103 1.34× 103 5.98× 103 1.43× 102

F5 Avg 8.34× 102 8.19× 102 9.42× 102 8.30× 102 1.00× 103 8.61× 102 9.38× 102 8.60× 102 1.14× 103 7.57× 102

STD 2.91× 101 2.16× 101 1.89× 101 2.40× 101 5.82× 101 5.06× 101 3.59× 101 2.00× 101 5.19× 101 3.45× 101

F6 Avg 6.60× 102 6.53× 102 6.91× 102 6.65× 102 7.07× 102 6.84× 102 6.97× 102 6.79× 102 7.27× 102 6.69× 102

STD 9.87 8.04 7.11 6.21 1.64× 101 1.30× 101 6.63 6.38 7.30 6.94

F7 Avg 1.36× 103 1.24× 103 2.07× 103 1.23× 103 1.78× 103 1.32× 103 1.45× 103 1.26× 103 3.40× 103 1.32× 103

STD 6.94× 101 6.71× 101 9.70× 101 5.82× 101 1.67× 102 7.93× 101 5.77× 101 5.13× 101 2.64× 102 6.23× 101

F8 Avg 1.08× 103 1.10× 103 1.20× 103 1.10× 103 1.24× 103 1.07× 103 1.16× 103 1.10× 103 1.36× 103 9.85× 102

STD 3.58× 101 3.45× 101 2.60× 101 1.98× 101 4.93× 101 6.39× 101 2.48× 101 1.99× 101 4.66× 101 1.96× 101

F9 Avg 1.63× 104 8.37× 103 1.68× 104 8.52× 103 2.13× 104 1.06× 104 1.08× 104 9.02× 103 3.32× 104 8.94× 103

STD 3.73× 103 2.57× 103 1.86× 103 1.91× 103 6.80× 103 3.48× 103 1.27× 103 9.62× 102 4.37× 103 7.75× 102

F10 Avg 7.91× 103 9.39× 103 8.83× 103 8.88× 103 8.99× 103 7.51× 103 9.22× 103 7.71× 103 9.02× 103 5.93× 103

STD 5.12× 102 6.82× 102 3.02× 102 4.0× 102 6.72× 102 7.13× 102 4.89× 102 4.55× 102 2.99× 102 7.74× 102

F11 Avg 2.19× 105 7.38× 103 9.12× 103 3.58× 103 2.87× 104 1.05× 104 4.02× 104 6.01× 103 2.29× 104 1.65× 103

STD 3.42× 105 3.92× 103 1.85× 103 1.11× 103 1.16× 104 4.64× 103 7.88× 104 7.81× 102 5.70× 103 1.58× 102

F12 Avg 1.37× 1010 8.41× 108 8.03× 109 2.90× 109 9.36× 109 5.23× 108 1.94× 109 3.77× 109 1.64× 1010 9.86× 107

STD 3.05× 109 3.82× 108 1.53× 109 7.99× 108 3.60× 108 3.82× 108 3.20× 108 1.13× 108 3.09× 108 6.97× 107
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Table 6. Cont.

F GA L-SHADE LSHADE-EpSin SCA GOA WOA TEO HGSO AEO HHO

F13 Avg 1.99× 1010 2.56× 108 3.64× 109 1.15× 108 5.93× 108 1.47× 107 2.17× 1010 1.70× 109 9.16× 109 1.07× 106

STD 6.87× 109 2.73× 108 9.23× 108 5.04× 108 3.28× 109 1.93× 107 7.87× 109 8.10× 108 2.62× 109 6.62× 105

F14 Avg 8.26× 107 1.00× 106 1.66× 106 7.71× 105 6.71× 106 2.26× 106 3.47× 107 1.46v 3.61× 106 1.70× 106

STD 5.40× 107 1.13× 106 7.57× 105 8.49× 105 5.18v 2.55× 106 3.77× 107 6.04× 105 1.61× 106 1.69× 106

F15 Avg 4.01× 109 1.96× 107 4.42× 108 6.70× 107 7.82× 108 6.64× 106 1.99× 108 1.15× 107 1.15× 109 1.27× 105

STD 1.67× 109 2.10× 107 1.74× 108 5.54× 107 4.90× 108 7.77× 106 9.49× 108 6.46× 106 4.44× 108 8.11× 104

F16 Avg 7.76× 103 4.17× 103 4.97× 103 4.07× 103 5.07× 103 4.52× 103 8.20× 103 4.30× 103 5.98× 103 3.71× 103

STD 1.37× 103 3.11× 102 2.42× 102 3.05× 102 5.74× 102 6.95× 102 2.17× 103 2.58× 102 3.87× 102 5.04× 102

F17 Avg 5.87× 104 2.97× 103 3.29× 103 2.82× 103 3.79× 103 2.78× 103 1.56× 104 2.97× 103 4.28× 103 2.75× 103

STD 5.39× 104 2.23× 102 1.38× 102 1.76× 102 4.24× 102 3.41× 102 1.54× 104 1.79× 102 4.47× 102 2.49× 102

F18 Avg 6.24× 108 1.12× 107 2.39× 107 1.43× 107 8.22× 107 1.34× 107 3.95× 108 1.18× 107 5.33× 107 3.37× 106

STD 4.07× 108 9.78× 106 1.08× 107 9.37× 106 7.69× 107 1.53× 107 3.66× 108 5.69× 106 3.47× 107 3.79× 106

F19 Avg 4.48× 109 2.26× 107 6.65× 108 8.85× 107 1.08× 109 2.17× 107 2.65× 109 5.60× 107 2.58× 109 1.58× 106

STD 2.27× 109 2.25× 107 2.89× 108 3.94× 107 6.25× 108 3.15× 107 1.59× 109 3.52× 107 8.11× 108 1.44× 106

F20 Avg 3.24× 103 3.23× 103 2.97× 103 2.96× 103 3.25× 103 2.93× 103 3.28× 103 2.84× 103 3.20× 103 2.83× 103

STD 1.53× 102 1.70× 102 1.24× 102 1.53× 102 1.15× 102 2.31× 102 2.28× 102 1.27× 102 1.15× 102 1.92× 102

F21 Avg 2.66× 103 2.59× 103 2.71× 103 2.60× 103 2.77× 103 2.62× 103 2.81× 103 2.64× 103 2.87× 103 2.61× 103

STD 7.17× 101 3.12× 101 2.28× 101 2.38× 101 6.02× 101 6.05× 101 5.82× 101 3.05× 101 3.13× 101 6.02× 101

F22 Avg 8.87× 103 6.67× 103 8.68× 103 1.01× 104 9.70× 103 8.19× 103 1.00× 104 5.02× 103 1.02× 104 7.05v
STD 1.54× 103 2.62× 103 6.30× 102 1.02× 103 1.28× 103 1.73× 103 7.17× 102 8.07× 102 4.15× 102 2.03× 103

F23 Avg 3.42× 103 3.00× 103 3.34× 103 3.08× 103 3.23× 103 3.15× 103 4.03× 103 3.23× 103 3.41× 103 3.32× 103

STD 1.25× 102 4.88× 101 4.35× 101 3.41× 101 1.08× 102 7.73× 101 2.33× 102 6.06× 101 5.20× 101 1.92× 102
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Table 6. Cont.

F GA L-SHADE LSHADE-EpSin SCA GOA WOA TEO HGSO AEO HHO

F24 Avg 3.59× 103 3.15v 3.55× 103 3.25× 103 3.28× 103 3.23× 103 4.48× 103 3.44× 103 3.51× 103 3.46× 103

STD 1.37× 102 4.37× 101 5.89× 101 4.67× 101 5.97× 101 9.13× 101 2.27× 102 6.22× 101 4.62× 101 1.68× 102

F25 Avg 1.15× 104 3.54× 103 6.81× 103 3.62× 103 6.89× 103 3.26× 103 6.78× 103 3.68× 103 1.56× 104 3.01× 103

STD 3.54× 103 1.96× 102 8.53× 102 2.44× 102 1.71× 103 8.79× 101 9.49× 102 2.18× 102 2.27× 103 3.43× 101

F26 Avg 1.30× 104 7.34× 103 1.04× 104 8.03× 103 1.02× 104 8.41× 103 1.31× 104 8.40× 103 1.25× 104 8.10× 103

STD 1.78× 103 4.72× 102 5.16× 102 3.66× 102 1.19× 103 1.31× 103 1.16× 103 6.20× 102 7.50× 102 1.23× 103

F27 Avg 4.47× 103 3.38× 103 3.97× 103 3.56× 103 3.66× 103 3.48× 103 5.66× 103 3.20× 103 3.70× 103 3.61× 103

STD 3.75× 102 4.85× 101 1.25× 102 7.56× 101 2.39× 102 1.37× 102 5.72× 102 8.63× 10−5 9.64× 101 1.96× 102

F28 Avg 9.66× 103 4.22× 103 6.96× 103 4.52× 103 7.55× 103 3.89× 103 8.33× 103 4.65× 103 8.82× 103 3.50× 103

STD 1.75× 103 3.56× 102 5.10× 102 4.34× 102 1.24× 103 2.27× 102 8.61× 102 6.86× 102 8.00× 102 1.34× 102

F29 Avg 1.09× 105 5.23× 103 5.98× 103 5.35× 103 6.57× 103 5.66× 103 1.71× 104 5.28× 103 6.76× 103 5.06× 103

STD 1.15× 105 3.13× 102 3.76× 102 3.78× 102 8.11× 102 6.46× 102 9.77× 103 4.97× 102 6.18× 102 4.11× 102

F30 Avg 3.25× 109 3.64× 107 4.81× 109 2.03× 108 7.21× 108 6.96× 107 3.63× 108 2.07× 108 9.92× 108 1.52× 107

STD 1.25× 109 2.41× 107 1.29× 108 8.22× 107 5.21× 108 6.95× 107 1.79× 109 6.29× 107 2.79× 108 1.32× 107
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Figure 6. Convergence curve for HHO against other competitors from F1–F10 CEC2017.
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Figure 7. Convergence curve for HHO against other competitors from F11–F20 CEC2017.
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Figure 10. Boxplot of some functions from F11–F20 for all algorithms.
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Figure 11. Boxplot of some functions from F21–F30 for all algorithms.

5. HHO Variants
5.1. Enhancement to HHO

In the literature, there exist many studies which enhanced the HHO using many
mathematical operators. These studies can be summarized, as shown in Table 7.
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Table 7. Summary of literature review on variants and modified HHO algorithms.

SN. Modification Name Ref. Authors Journal /Conf. Year Remarks

1 Binary HHO (BHHO) [110] Too et al. Electronics 2019 Authors introduced two binary versions of HHO called (BHHO)
and Quadratic Binary HHO (QBHHO).

2 Opposite HHO (OHHO) [111] Hans et al. Journal of Interdisciplinary Mathematics 2020 Authors applied OHHO in feature selection in breast cancer
classification.

3 EHHO [112] Jiao et al. Energy 2020 Authors combined OBL and (OL) in HHO.
4 NCOHHO [113] Fan et al. Evolutionary Intelligence 2020 Authors improved HHO by two mechanisms: neighborhood

centroid and opposite-based learning.
5 IHHO [114] Song et al. Energy Sources 2020 Two techniques were employed: Quasi-Oppositional and

Chaos theory.
6 LMHHO [115] Hussain et al. IEEE Access 2019 Long-term HHO algorithm (LMHHO) in which information

share of multiple promising areas is shared.
7 CMDHHO [116] Golilarz et al. IEEE Access 2020 3 techniques are used with HHO, namely: Chaos theory,

Multipopulation topological structure, and DE operators:
mutation and crossover.

8 GCHHO [117] Song et al. Knowledge-based Systems 2020 Gaussian mutation and Cuckoo Search were employed in HHO.
9 AHHO [117] Wunnava et al. Applied Soft Computing 2020 Authors used mutation strategy to force the escape energy in the

interval [0, 2].
10 (DHHO/M) [118] Jia et al. Remote Sensing 2019 A dynamic HHO algorithm with mutation strategy is proposed.
11 vibrational HHO (VHHO) [119] Shao et al. Measurement 2020 VHHO is proposed by embedding SVM into HHO and using a

periodic mutation.
12 GBHHO [120] Wei et al. IEEE ACCESS 2020 Authors developed an improved HHO approach by using

Gaussian barebone (GB)
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5.1.1. Enhanced HHO

Li et al. [121] tried to speed the HHO convergence by introducing an enhanced the
HHO version using two strategies: (1) enhancing the HHO exploration by using opposite-
based learning and logarithmic spiral and (2) the Modify Rosenbrock Method (RM) to
fuse HHO in order to improve convergence accuracy and enhance the HHO local search
capability. The authors tested their algorithm, which is called (RLHHO), using 30 IEEE
CEC 2014 and 23 traditional benchmark functions. They compared their results with eight
standard metaheurstic algorithms and six advanced ones. In [122], Ariui et al. developed
an enhanced version of the HHO by hybridizing the JOS operator with the HHO. JOS
consists of two other operators: Dynamic Opposite (DO) and Selective Leading Opposition
(SLO). The authors assumed that JOS increases the HHO exploration capabilities, whereas
DO increases HHO exploration capabilities.

5.1.2. Binary HHO

Many binary variants of the HHO have been introduced. For example, Too et al. [110]
introduced a binary version of the HHO called (BHHO) using two transfer functions: S-
shaped and V-shaped. Furthermore, they proposed another version called Quadratic Binary
HHO (QBHHO). They compared their versions with five different MAs, namely binary
differential evolution, binary flower pollination algorithm, genetic algorithm, and binary
salp swarm algorithm. The same work was conducted by Thaher et al. [123] in which the
authors applied their algorithm to feature selection. Moreover, Thaher and Arman [124]
developed another version of the HHO called enhanced binary HHO (EBHHO) by using
the multiswarm technique, in which the population is divided into three groups. Each
group has a leader, and the fittest leader is able to guide more agents. Furthermore, they
used three classifiers: K-nearest neighbors (KNN), Linear Discriminant Analysis (LDA),
and Decision Tree (DT). Likewise, in [125], Chellal and Benmessahed developed a binary
version of the HHO in order to be able to have an accurate detection of a protein complex.

Dokeroglu et al. [126] developed a binary version of multiobjective HHO to be able
to solve a classification problem. They introduced novel discrete besiege (exploitation)
and perching (exploration) operators. They used four machine learning techniques: Sup-
port Vector Machines (SVM), Decision Trees, Logistic regression, and Extreme Learning
Machines. They used a COVID-19 dataset. Moreover, Chantar et al. [127] developed a
binary HHO version using the Time-Varying Scheme. The new version, which is called
BHHO-TVS, is used to solve classification problems. They used 18 different datasets to
prove the significant performance of BHHO-TVS.

5.1.3. Opposite HHO

Hans et al. [111] proposed a new version of the HHO called (OHHO), based on the
opposition-based learning (OBL) strategy. They applied the OHHO in feature selection in
breast cancer classification. Fan et al. [113] proposed a novel HHO version called NCOHHO,
which improves the HHO by two mechanisms: neighborhood centroid and opposite-based
learning. In NCOHHO, neighborhood centroid is considered a reference point in generating
the opposite particle. Likewise, Gupta et al. [128] used four strategies on the HHO namely:
proposing a new nonlinear parameter for the prey energy, greedy selection, different rapid
dives, and OBL. Other studies that used optimization methods to solve the parameter
extraction problems refer to [129–131].

Jiao et al. [112] introduced a novel HHO called EHHO which employed OBL and
Orthogonal Learning (OL).

Likewise, another improved approach of HHO was made by Song et al. [114] called
IHHO, in which two techniques were employed: (1) Quasi-Oppositional and (2) Chaos
theory.

Amer et al. [132] developed another version of the HHO called Elite Learning HHO
(ELHHO). They used elite opposition-based learning to improve exploration phase quality.



Electronics 2022, 11, 1919 25 of 50

5.1.4. Modified HHO

Akdag et al. [133] developed a modified HHO version by using seven different random
distribution functions in order to show how stochastic search affects HHO performance.
Moreover, Zhang et al. [134] tried to balance the exploration and exploitation phases by
focusing on prey escaping energy (E). They introduced six different strategies to update E.

Yousri et al. [135] proposed an improved version of the HHO by modifying exploration
strategies by using levy flight instead of depending on prey position. Moreover, they
updated the hawks’ position based on three randomly chosen hawks instead of the random
update technique. Likewise, Zhao et al. [136] developed another modified version of the
HHO by using a chaotic method called the Singer mechanism. They also used the levy
flight mechanism in order to enhance HHO convergence.

Hussain et al. [115] developed a long-term HHO algorithm (LMHHO) which shares
multiple promising areas of information. With such information, more exploration capa-
bility is given to the HHO. The authors used CEC 2017 and classical functions to validate
their algorithm.

Liu et al. [137] proposed an improved HHO algorithm that combined the Nelder–Mead
Simplex algorithm and the crisscrossed algorithm crossover technique which is called the
horizontal and vertical crossover mechanism. The authors applied their algorithm, which
is called CCNMHHO, in photovoltaic parameter estimation.

Rizk-Allah and Hassanien [138] developed a hybrid HHO algorithm which com-
bined Nelder–Mead with the Harris algorithm. They validated their algorithm using six
differential equations and four engineering differential equations.

Youssri et al. [139] developed a modified version of the HHO, called Fractional-Order
modified HHO (FMHHO), which used the fractional calculus (FOC) memory concept.
They tested the FMHHO using 23 benchmark functions in addition to the IEEE CEC 2017
ones. They applied it for proton exchange membrance for modeling of fuel cells. Moreover,
Irfan et al. [140] proposed a modified HHO (MHHO) by using crowding distance and
roulette wheel selection. They tested it using the IEEE 8 and 15 bus systems.

Ge et al. [141] suggested another improved HHO version using the predator–rabbit
distributance method.

Singh et al. [142] used opposition-based learning (OBL) to enahnce the HHO. They
applied the novel algorithm which is called OHHO to data clustering and tested it using 10
benchmark datasets.

5.1.5. Improved HHO

Kardani et al. [143] introduced another improved version of the HHO and extreme
learning machine (ELM). Their novel algorithm, which is called ELM-IHHO, tried to
overcome the limitations of the HHO by using a mutation mechanism. The authors applied
ELM-IHHO in the prediction of light carbon permeability. They compared their results
with ELM-based algorithms such as PSO, GA, and SMA. Moreoever, Guo et al. [144] used
the random unscented sigma mutation strategy to improve the HHO. Their novel HHO
version used quasi-reflection learning and quasi-opposite learning strategies in order to
enhance generation diversity. They also implemented logarithmic nonlinear convergence
factor to have a good balance between local and global searches.

Liu [145] developed an improved version of the HHO (IHHO). In the IHHO, a new
search process is added to improve candidate solution quality. They applied it in the
Job-Shop Scheduling problem. Duan and Liu [146] introduced the golden sine strategy
to improve the HHO. The novel algorithm can enhance the diversity of population and
improve its performance.

Hu et al. [147] developed another variant of the HHO called IHHO using two tech-
niques: (1) adding velocity to the HHO from the Particle Swarm Optimization Algorithm
and (2) using the crossover scheme from the artificial Tree algorithm [148]. They used 23
functions to test the IHHO and compared the results with 11 metaheuristics algorithms.
They applied it in stock market prediction.
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Moreover, Selim et al. [149] tried to enhance the HHO by returning hawks to rabbit po-
sition instead of returning them to the maximum and minimum variables’ limits. They also
developed a multiobjective version. Moreover, a novel search mechanism was proposed by
Sihwail et al. [150] to improve HHO performance by mutation neighborhood search and
rollback techniques.

Another enhanced HHO version was proposed in [116], in which the authors tried
to enhance the HHO by using three techniques: (1) Chaos theory, (2) Multipopulation
topological structure, and (3) Differential evolution operators: mutation and crossover. The
authors applied their algorithm, which is known as the CMDHHO, in image applications.

In order to have the right balance between exploitation and exploration search in the
HHO, Song et al. [151] developed an enhanced HHO version called GCHHO, where two
techniques were employed, namely the Gaussian mutation and Cuckoo Search dimension
decision techniques. To test GCHHO, CEC 2017 functions were used in addition to three
engineering problems. The authors compared GCHHO with classical HHO, WOA, MFO,
BA, SCA, FA, and PSO.

Moreover, Yin et al. [152] tried to prevent the HHO from falling in the local optimum
region by developing an improved version of the HHO called NOL-HHO, in which there
are Nonlinear Control Parameter and Random Opposition-based Learning strategies.

Ridha et al. [153] developed a boosted HHO (BHHO) algorithm which employed
the random exploration strategy from the Flower Pollination Algorithm (FPA) and the
mutation strategy from differential evolution. Wei et al. [120] developed another improved
HHO approach that uses Gaussian barebone (GB). They tested their algorithm, which
is called GBHHO, using the CEC 2014 problems. Zhang et al. [154] used the adaptive
cooperative foraging technique and dispersed foraging strategy to improve the HHO. Their
algorithm, which known as ADHHO, was tested using a CEC 2014 benchmark function.

A vibrational HHO (VHHO) was proposed by Shao et al. [119] to prevent the HHO
particles from converging around local optima by embedding SVM into HHO and using a
frequent mutation. VHHO was compared with SCA, PSO, and classical HHO.

5.1.6. Chaotic HHO

Many chaotic HHO variants have been proposed. Menesy et al. [155] proposed
a chaotic HHO algorithm (CHHO) using ten chaotic functions. They compared their
algorithm with conventional HHO, GWO, CS-EO, and SSO. The authors claimed that
the experimental results show the superiority of CHHO over other algorithms. Likewise,
Chen et al. [156] developed a new version termed EHHO, in which the chaotic local search
method is used in addition to OBL techniques. Statistical results show that the EHHO
achieved better results than other competitors. The authors applied EHHO in identifying
photovoltaic cells parameters. Moreover, Gao et al. [157] used tent map with HHO.

Dhawale et al. [158] developed an improved chaotic HHO (CHHO). They tested their
algorithm using 23 benchmark functions and compared it with SSA, DE, PSO, GWO, MVO,
MFO, SCA, CS, TSA, GA, MMA, ACO, and HS. They argued that the CHHO outperformed
all mentioned algorithms.

Basha et al. [159] developed a variant chaotic HHO using quasi-reflection learning.
They applied it in order to enhance CNN design for classifying different brain tumor grades
using magnetic resonance imaging. The authors tested their model using 10 benchmark
functions, and after that they used two datasets. Likewise, Hussien and Amin in [160]
developed a novel HHO version based on the chaotic local search, opposition-based
learning, and self adaption mechanism. They evaluated their model using IEEE CEC 2017
and applied the novel algorithm, which is called m-HHO, in feature selection.

Dehkordi et al. [161] introduced a nonlinear-based chaotic HHO algorithm. The new
algorithm, which known as (NCHHO), is applied to solve the Internet of Vehicles (IoV)
optimization problem.
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5.1.7. Dynamic HHO with Mutation Mechanism

Jia et al. [118] developed a dynamic HHO algorithm with mutation strategy. Instead
of decreasing the energy escaping parameter E from 2 to 0, they introduced a dynamic
control parameter to be able to avoid local optimum solutions. The authors claimed that
this dynamic control would prevent the solution from getting stacked in local optimum as
E in the original cannot take values greater than 1 in the second half of iterations.

5.1.8. Other HHO Variants

An adaptive HHO technique has been proposed by Wunnava et al. [117], which is
called AHHO. The authors used mutation strategy to force the escape energy in the interval
[0, 2]. The AHHO was tested using 23 classical functions and 30 functions obtained from
CEC 2014.

To strengthen HHO performance, two strategies from Cuckoo Search were introduced
to the HHO by Song et al. [151]. They used the dimension decided strategy and Gaussian
mutation. They tested their algorithm, GCHHO, using 30 functions from IEEE CEC 2017.

Jiao et al. [162] proposed a multistrategy search HHO using the Least Squares Support
Vector Machine (LSSVM). They used the Gauss chaotic method as the initialization method.
They also employed the neighborhood perturbation mechanism, variable spiral search
strategy, and adaptive weight. They used 23 functions in addition to CEC 2017 suit test
functions to prove the effectiveness of their algorithm.

Zhong and Li [163] developed a hybrid algorithm called the Comprehensive Learning
Harris Hawks Equilibrium Optimizer (CLHHEO) algorithm. The authors used three
operators: the equilibrium optimizer operator, comprehensive learning, and terminal
replacement mechanism. They used EO operators to enhance the HHO exploration capacity.
Comprehensive Learning was employed in the CLHHEO to share agent knowledge in
order to enhance the convergence capacity. They usedthe terminal replacement technique to
prevent the CLHHEO from falling in local stagnation. The authors compared the CLHHEO
with CLPSO, PSO, GWO, BBBC, WOA, DA, SSA, AOA, SOA, and classical HHO using
15 benchmark functions and 10 constrained problems.

Abd Elaziz et al. [164] developed an algorithm called multilayer HHO based on the
algorithm called multileader HHO, which is based on Differential Evolution (MLHHDE).
They introduced a memory structure that makes hawks learn from the global best positions
and the best historical ones. DE is employed in order to increase the exploration phase.
They used CEC 2017 benchmark functions.

Bujok [165] developed an advanced HHO algorithm that archive each old solution.
He compared his algorithm using 22 real-world problems from CEC 2011.

Al-Batar et al. [166] enhanced the exploration phase of the original HHO by introduc-
ing the survival-of-the-fittest evolutionary principle that helps smooth transitions from
exploration to exploitation. The authors used three, strategies namely proportional, linear
ranked-based, and tournament methods. They tested their algorithms using 23 mathemati-
cal functions and 3 constrained problems.

Qu et al. [167] tried to improve the HHO by employing Variable Neighborhood
Learning (VNL) which is used to balance between exploration and exploitation. They also
used F-score to narrow down selection range and used mutation to increase diversity.

Nandi and Kamboj [168] combined canis lupus and the Grey wolf optimizer to improve
the HHO. The novel algorithm, which is called hHHO-GWO, was tested on CEC 2005,
CEC-BC-2017, and 11 different engineering problems.

Gölcük and Ozsoydan [169] developed a hybrid algorithm which combines both the
Teaching–Learning-based Optimization (TLBO) with the HHO. The new algorithm (ITL-
HHO) is design to give a proper balance between exploitation and exploration. The authors
tested theirs using 33 benchmark function (CEC 2006 and CEC 2009) and 10 multidisci-
plinary engineering problems.

Yu et al. [170] proposed a modified HHO called compact HHO (cHHO) in which only
one hawk is used to search for the optimal solution instead of many hawks.
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5.2. Hybrid HHO

The HHO has been hybridized with many other algorithms as shown in Table 8.
Wang et al. [171,172] presented a hybrid algorithm called the Improved Hybrid AO-
HHO (IHAOHHO) that combines the HHO and Aquila Optimizer [173]. They used
the opposition-based learning strategy and Representative-based Hunting (RH) to improve
both the exploitation and exploration phases. They tested their algorithm using 23 bench-
mark functions. They compared their results with classical HHO and AO and five other
state-of-art algorithms.

In order to improve HHO performance, the authors in [174] used SSA as a local search
in HHO. They argued that their algorithm, which is called MHHO, has better performance
than the conventional HHO. Attiya et al. [175] tried to enhance HHO convergence and so-
lutions by employing Simulated Annealing (SA) as a local search strategy. Their algorithm,
which is called HHOSA, was compared with PSO, FA, SSA, MFO, and HHO. The authors
applied HHOSA in a job scheduling problem.

HHO has been integrated with Differential Evolution by Fu et al. [176]. They devel-
oped an algorithm called Improved Differential evolution, and the HHO was termed as
IHDEHHO. They applied it to forecast wind speed using kernel extreme learning and
phase space reconstruction.

Abd Elaziz et al. [177] proposed a hybrid algorithm, which is called HHOSSA, that
combined the HHO with SSA. In HHOSSA, the population is divided into two halves in
which HHO is used to update the first half of solutions and SSA is used to update the other
half. To evaluate their algorithm, they used thirty-six functions from IEEE CEC 2005.

Moreover, a hybrid HHO algorithm called CHHO-CS, which refers to chaotic HHO
cuckoo search algorithm, has been developed by Houssein et al. [178]. The CHHO-CS
is used to control the HHO’s main position vectors, and the chaotic map is employed
for updating the parameters of control energy. Another hybrid algorithm is presented by
Barshandeh et al. [179], called the hybrid multipopulation algorithm. Firstly, the population
is divided into many subpopulations. Then, a hybrid algorithm between HHO and the
Artificial Ecosystem Optimization (AEO) is used. Furthermore, the authors used chaos
theory, levy flight, local search algorithm, and quasi-oppositional learning.

Xie et al. [180] tried to solve the HHO’s shortcomings by proposing a hybrid algorithm
that combined the HHO and Henary Gas Solubility Optimization (HGSO) algorithm. The
authors used two benchmark functions to verify their algorithm: CEC 2005 and CEC2017.
The authors compared HHO-HGSO with Marine Predator Algorithm (MPA), WOA, LSA,
HHO, WCA, and HGSO.

Likewise, in [181], Fu et al. integrated GWO in the HHO by using two layers for
population activity. In the first layer (bottom layer), solutions are updated using mutation-
based GWO. On the other hand, the solutions in the upper layer are updated by employing
the HHO.

Qu et al. [182] introduced an improved HHO approach that used information exchange.
In the novel algorithm, which is termed as IEHHO, hawks can share and realize sufficient
information when exploring preys. They also used a dynamic disturbance term that
depends on sine and cosine in order to enhance the escaping energy.

In [183], an intensified HHO is proposed by Kamboj et al., where a hybrid HHO is
combined with SCA (hHHO-SCA). They verified their model using CEC 2017 and CEC
2018 and compared it with SCA, HHO, ALO, MFO, GWO, GSA, BA, CS, and GOA.

Moreover, an algorithm called hHHO-IGWO was proposed by Dhawale and Kam-
boj [184] which improved GWO with the HHO. Another hybrid algorithm between SCA
and HHO was developed [185] in which a mutation strategy was used.

Suresh et al. [186] developed a hybrid chaotic multiverse HHO (CMVHHO). The
authors used chaotic MV in the first generation and after that the HHO was used to
update positions.
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Table 8. Summary of the literature review on hybrid HHO algorithms.

SN. Modification Name Ref. Authors Journal /Conf. Year Remarks

1 MHHO [174] Jouhari et al. Symmetry 2020 SSA has been used as a local search in
HHO.

2 HHOSA [175] Attiya et al. Computational Intelligence
and Neuroscience

2020 SA is used as a local search strategy. The
authors applied HHOSA in a job
scheduling problem.

3 IHDEHHO [176] Fu et al. Renewable Energy 2020 Improved Differential evolution version is
hybridized with HHO.

4 HHOSSA [177] Abd Elaziz et al. Applied Soft Computing 2020 Population is divided into 2 halves, the first
half using HHO and other half using SSA.

5 CHHO-CS [178] Houssein et al. Scientific Reports 2020 HHO is hybridized with cuckoo search and
chaotic theory.

6 HMPA [179] Barshandeh et al. Engineering with Computers 2020 Population is divided to many
subpopulations. Then, HHO and AEO are
used.

7 HHO-HGSO [180] Xie et al. IEEE Access 2020 HHO is combined with HGSO algorithm.
8 IEHHO [181] Fu et al. Energy Conversion and

Management
2020 2 layers for population activity were

developed. In the first layer a
mutation-based GWO was used, and in the
second one HHO was used.

9 hHHO-SCA [183] Kamboj et al. Applied Soft Computing 2020 HHO is combined with SCA (hHHO-SCA).

ElSayed and Elattar [187] developed a hybrid algorithm which combines HHO with
Sequential Quadratic Programming (HHO-SQP) in order to obtain the optimal overcurrent
relay coordination that relays incorporating distributed generation.

Kaveh et al. [188] developed a hybrid algorithm called Imperialist Competitive HHO
(ICHHO) that used the Imperialist Competitive Algorithm (ICA) [189] to improve the
HHO’s exploration performance. They tested their model using 23 mathematical functions
and many common engineering problems.

Sihwail et al. [190] developed a hybrid algorithm called the Netwon-Harris Hawks
Optimization (NHHO) in which Netwon’s technique second-order is used to correct digits
in order to solve nonlinear equation systems.

Another hybrid algorithm combines Differential Evolution (DE) with HHO and
Gaining-Sharing Knowledge algorithm (GSK) [191]. The new algorithm is abbreviated as
DEGH and was developed using the “rand/1” DE operator and GSK two-phase strategy.
They also used self-adaption crossover probability to strengthen the relationship between
selection, mutation, and crossover. They used 32 benchmark functions and compared
DEGH with 8 state-of-the-art algorithms.

Another hybrid version between DE and HHO has been proposed by Abualigah et al. [192],
where DE is used to enhance the HHO exploitation experience. The novel hybrid algorithm,
known as H-HHO, was used to obtain cluster optimal numbers to each dataset.

Azar et al. [193] developed a prediction model using the Least Square Support Vector
Machine (LS-SVM) and Adaptive Neuro-Fuzzy Inference System (ANFIS). ANFIS was
optimized by the HHO (ANFIS-HHO). The authors argued that the HHO increases the
ANFIS prediction performance.

Firouzi et al. [194] developed a hybrid algorithm which combines both the HHO and
Nelder–Mead Optimization. They used it to determine the depth and location of a mi-
crosystem crack. They compared their algorithm with classical HHO, GOA, WOA, and DA.
Lie et al. [195] developed a hybrid algorithm that combines the Fireworks Algorithm
(FWA) [98] with the HHO based on the mechanism of dynamic competition. The authors
used CEC 2005 to verify the powerfulness of their algorithm, which is called (DCFW-HHO).
They compared it with MPA, WOA, WCA, LSA, FWA, and HHO.

Li et al. [196] developed an enhanced hybrid algorithm called Elite Evolutionary Strat-
egy HHO (EESHHO). They tested their algorithm using 29 functions (6 hybrid functions
from CEC2017 + 23 basic functions).

Ahmed [197] developed a hybrid algorithm between the HHO and homotopy analyti-
cal method (HAM) to solve partial differential equations.
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Yuan et al. [198] developed a hybrid HHO algorithm that combines Harris hawks
with instinctive reaction Strategy (IRS). The novel algorithm (IRSHHO) is tested using five
mathematical functions.

Setiawan et al. [199] developed a hybrid algorithm called (HHO-SVR) in which SVR is
optimized using the HHO.

5.3. Multiobject HHO

Hossain et al. [200] introduced a multiobjective version of HHO based on the 2-hop
routing mechanism. The novel algorithm is applied for the cognitive Radio-Vehicular
Ad Hoc Network. Dabba et al. [201] introduced another multiobjective binary algorithm
based on the HHO. The novel algorithm, MOBHHO, was applied on microarray data gene
selection by using two fitness functions: SVM and KNN. Another binary multiobjective
version was proposed in [126].

Jangir et al. [202] developed a nondominated sorting multiobjective HHO (NSHHO).
They tested their algorithm using 46 multiobjective real-world problems.

Du et al. [203] proposed a multiobjective HHO called (MOHHO) in order to tune
extreme learning machine (ELM) parameters and applied it in air pollution prediction and
forecasting. The authors evaluated their model, MOHHO-ELM, using 12 air pollutant
concentrations recorded from 3 cities. Moreover, Islam et al. [204] tried to solve multiobjec-
tive optimal power flow. Likewise, an improved multiobjective version of the HHO was
introduced by Selim et al. [149], which is termed as MOIHHHO. The authors applied it to
find the optimal DG size and location.

Fu and Lu [205] developed an improved version of the HHO called (HMOHHO),
in which hybrid techniques are integrated with the HHO, including Latin hypercube
sampling initialization, mutation technique, and a modified differential evolution operator.
The authors used UF and ZDT to validate their algorithm.

Piri and Mohapatra [206] presented a multiobjective Quadratic Binary (MOQBHHO)
approach using KNN. The authors used Crowding Distance (CD) to pick the best solu-
tion from nondominated ones. They compared MOQBHHO with MOBHHO-S, MOGA,
MOALO, and NSGA-II.

6. HHO Applications

HHO has been successfully applied to many applications, as shown in Figure 12 and
Table 9.

Figure 12. Distribution of HHO-related papers in many applications, as reported by Scopus.
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Table 9. The applications of HHO algorithm.

Proposed Application Description Results and Conclusion Year and Authors (Ref.)

HHOPSO reactive power planning problem HHo with PSO HHOPSO has better results than
HHO

Shekarappa et al. [207]

CMBHHO distribution generator (DG) crossover and mutation is
used in HHO

CMBHHO outperforms HHO,
LSA, GA, amd TLBO

Mohandas and
Devanathan

[208]

WHHO PV solar Whippy HHO WHHO achieves better results Naeijian et al. [209]
NCOHHO ANN training multilayer

feed-forward ANN
NCOHHO tested using 5
different datasets

Fan et al. [113]

HHO-DE multilevel thresholding image Ostu’s and Kapur’s entropy
method used

outperforms all other algorithms Bao et al. [210]

HHO flow shop scheduling hybrid algorithm based on
HHO is designed

HHO achieved good results
compared with others

Utama and Widodo [211]

MEHHO1 and
MEHHO2

Feature selection saving memory mechanism
and adopting a learning
strategy are used

MEHHO1 achieved good results
compared with HHO

Too et al. [212]

DHGHHD drug discovery HGSO enhanced HHO 2 real-world datasets were used Abd Elaziz and Yousri [213]
CovH2SD COVID-19 HHO was used to optimize

CNN
transfer learning techniques
using 9 convolutional NN

Balaha et al. [214]

6.1. Power
6.1.1. Optimal Power Flow

Recently, electrical energy utilities are increasing rapidly with wide demand [215,216].
To face such a problem, interconnected networks have emerged with differential power
systems [217].

Optimal Power Flow (OPF) can be considered as an optimization problem. Hus-
sain et al. [115] applied their algorithm to solve the OPF problem. They claimed that their
algorithm, which is called LMHHO, achieved better results than classical HHO. Another
attempt to solve OPF was made by Islam et al. [218], in which the HHO was compared
with ALO, WOA, SSA, MFO, and the Glow Warm algorithm. The same authors solved the
same problem in [204] with consideration to environmental emission. Likewise, a modified
HHO introduced in [133] has been applied to solve OPF.

Akdag et al. [133] developed a modified HHO version using seven random distribution
functions, namely normal distribution, F distribution, Rayleigh distribution, chi-square
distribution, exponential distribution, Student’s distribution, and lognormal distribution.
The authors applied their algorithm to Optimal Power Flow (OPF) and applied it to the
IEEE 30-bus test system.

Paital et al. [219] tuned interval fuzzy type-2 lead-lag using the HHO. The novel
algorithm (Dual-IT2FL) was applied to find the enhancement of stability in unified power
flow controllers (UPFC).

Shekarappa et al. [207] used a hybrid algorithm between HHO and PSO called
(HHOPSO) to solvea reactive power planning problem. The HHOPSO was tested us-
ing IEEE 57-bus. Mohanty and Panda [220] adapted the HHO using the Sine and Cosine
Algorithm. Their developed algorithm, which is called (ScaHHO), was utilized in or-
der to tune an adaptive fuzzy proportional integrated (AFPID) for hybrid power system
frequency controller.

6.1.2. Distributed Generation

Abdel Aleem et al. [221] tried to solve the optimal design of C-type resonance-free
harmonic filter in a distributed system using the HHO. The authors claimed that the HHO
has better results than the other compared algorithm.

Moreover, Diaaeldin et al. [222] used the HHO to obtain the optimal reconfiguration
of the network in distributed systems. Abdelsalam et al. [223] presented a smart unit model
for multisource operation and cost management based on the HHO algorithm. Mohandas
and Devanathan [208] used crossover and mutation with the HHO. The novel algorithm,
which is called (CMBHHO), is applied to configure the network by distribution generator
(DG) size and optimal location. They compared it with GSA, ALO, LSA, HSA, GA, FWA,
RGA, GA, TLBO, and HHO.
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Mossa et al. [224] developed a model to estimate proton exchange membrance fuel
cell (PEMFC) parameters based on the HHO.

Chakraborty et al. [225] tried to use the HHO to select the optimum capacity, site, and
number of solar DG. They used two benchmark functions: IEEE 33 and IEEE 69 bus radial.

6.1.3. Photovoltaic Models

Due to continuous and huge increases in energy demand, solar photovoltaic (PV),
which is based on solar cells systems, has gained huge momentum. The HHO has been
successfully applied to solve PV problems. Liu et al. [137] used their algorithm, called
CCNMHHO, in finding the optimal PV model parameters. The authors state that CCN-
MHHO has competitive results when compared with other well-known and state-of-the-art
algorithms. Likewise, Jiao et al. [112] used their developed algorithm (EHHO) in finding
PV parameters and for the construction of its model with high precision. Moreover, in [135],
the authors used their novel approach to find the optimal array reconfiguration PV in
alleviation the influence of partial shading. Likewise, Qias et al. [226] tried to extract the
parameters of 3-diode PV (TDPV).

Chen et al. [156] tried to identify PV cell parameters by an enhanced HHO version
termed EHHO. They compared their algorithm with CLPSO, IJAYA, and GOTLBO. Sahoo
has conducted similar work, as has Sahoo and Panda [227], in which they control solar PV
frequency.

Naeijian et al. [209] used their developed HHO version, which called Whippy HHO
(WHHO), in estimating PV solar cell parameters.

6.1.4. Wind Applications

In [228], Fang et al. developed a multiobject mutation operator (HMOHHO) which is
used to acquire kernel identification voltera parameters. They applied it to forecast wind
speed.

Roy et al. [229] used the HHO to reduce the interconnected wind turbines. They
compared it with PSO, FPA, GWO, MVO, WOA, MFO, and BOA.

6.1.5. Economic Load Dispatch Problem

The Economic Load Dispatch Problem can be considered as one of the most common
and important problems in power systems [230,231].

Pham et al. [232] employed multirestart strategy and OBL to enhance the HHO.
The novel algorithm is applied to solve ELD with nonsmooth cost functions. They argued
that results are superior when compared with previous studies.

6.1.6. Unit Commitment Problem

Nandi and Kamboj [233] tried to hybridize the Sine Cosine Algorithm and Memetic
Algorithm using the HHO. They applied it to solve a unit commitment problem with
photovoltaic applications. SCA is used in power provision, whereas ELD is performed
by HHO.

6.2. Computer Science
6.2.1. Artificial Neural Network

Sammen et al. [234] used the HHO in order to enhance Artificial Neural Network
(ANN) performance and proposed a hybrid model called ANN-HHO. the authors com-
pared their novel model with ANN-GA, ANN-PSO, and classical ANN. They argued that
the ANN-HHO outperformed other compared algorithms. The same work was conducted
by Essa et al. [235], in which their model is compared against the Support Vector Machine
(SVM) and the traditional ANN. They applied the novel model to improve active solar
productivity prediction.

Fan et al. [113] used their novel algorithm, NCOHHO, in training a multilayer feed-
forward neural network using five different datasets. A similar work which combined
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the HHO with ANN was conducted by Moayedi et al. [236] and applied to predict the
compression coefficient of soil. The authors argued that the HHO is better than GOA in
training ANN.

Moreover, in [237] Kolli and Tatavarth developed the Harris Water Optimization (HWO)
based on a deep recurrent neural network (RNN) to detect fraud in a bank transaction.

Artificial Neural Networks (ANNs) are one of the most famous and popular learning
methods that simulate the biological nervous system. The HHO has been used by many
authors to train ANNs. Bacanin et al. [238] tried to adapt the HHO algorithm to train ANNs.
They used two popular classification datasets to test their proposed approach. Moreover,
Atta et al. [239] applied their enhanced version of the HHO in order to train a feed-forward
neural network. They compared their method with eight metaheurstic algorithms using
five classification datasets. A hybrid algorithm between the HHO and Whale Optimization
Algorithm was developed to enhance ANN by Agarwal et al. [240].

Bac et al. [241] developed a hybrid model based on the HHO and Multiple Layers
Perceptron (MLP). They used their developed system, which is called HHO-MLP, to
estimate the efficiency of heavy metal absorption using nanotube-type halloysite.

Alamir in [242] proposed an enhanced ANN using the HHO to predict food liking in
different masking background presence noise levels and types. Simsek and Alagoz [243]
used an ANN learning model and the HHO in order to develop analysis schemes for
optimal engine behavior. Likewise, Zhang et al. [244] estimated clay’s friction angle using
deep NN and the HHO to evaluate slope stability. Murugadoss used Deep Convolution
ANN (DCANN) with the HHO to have an early diabetes prediction.

6.2.2. Image Processing

In [210], Bao et al. applied their hybrid algorithm that combined the HHO with
differential evolution (HHO-DE) in the segmentation of color multilevel thresholding
images by using two techniques: Ostu’s method and Kapur’s entropy. They compared
their results with seven other algorithms using ten images. They argued that HHO-DE
outperforms all other algorithms in terms of structure, similarity index, peak signal-to-noise
ratio, and feature similarity index. Similar work has been conducted by Wunnava et al. [245].
In addition to using DE, they modified the exploration phase by limiting the escape energy
in the interval ∈ [2, 3].

Moreover, Golilarz et al. [246] utilized the HHO for obtaining the optimal thresholding
function parameters for satellite images. Jia et al. [118] employed their algorithm, which is
called dynamic HHO, with mutation (DHHO/M) in order to segment satellite images by
using three criteria: Kanpur’s entropy, Tsallis entropy, and Otsu. Similar work has been
conducted by Shahid et al. [247], in which denoising of the image was presented in the
wavelet domain.

In [248], an efficient HHO variant was introduced by Esparza et al. in which they used
minimum cross-entropy as a fitness function since they applied it to image segmentation.
To validate their method, they compared it with K-means and fuzzy iterAg.

Naik et al. [249] proposed a leader HHO (LHHO) in order to enhance the exploration
of algorithm. They applied it for 2-D Masi entropy multilevel image thresholding. They
used segmentation metrics such as PSNR, FSIM, and SSIM [250].

6.2.3. Scheduling Problem

Machine scheduling can be considered as a decision-making optimization process that
has a vital role in transport, manufacturing, etc.

Jouhari et al. [174] used SSA with the HHO in solving a machine scheduling problem.
Moreover, Attiya et al. [175] used a modified version of the HHO called HHOSA in order
to solve a scheduling job in the cloud environment.

Utama and Widodo [211] developed a hybrid algorithm based on the HHO to solve a
flow shop scheduling problem (FSSP).
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6.2.4. Feature Selection

Feature Selection (FS) is one of the most important preprocessing techniques which
aims to reduce features which may influence machine learning performance [251–253]. The
HHO has been used in solving FS problems. For example, Thaher et al. [123] used a binary
version of the HHO in solving the FS problem. They used nine high-dimensional datasets.

Moreover, the authors in [254] used the HHO with Simulated Annealing and Bitwise
operators (AND and OR). They used 19 datasets of all sizes. They claimed that HHOBSA
has good results when compared with others.

A similar work was conducted by Thaher and Arman [124], where they used five
different datasets. They used the ADASYN technique. Moreover, Sihwail et al. [150] used
IHHO in order to solve the FS problem. They used 20 datasets with different feature
dimensionality levels (low, moderate, and high). They compared IHHHO with seven other
algorithms. Thaher et al. [255] detected Arabic tweets’ false information using the hybrid
HHO algorithm based on ML models and feature selection. Their algorithm, which is called
Binary HHO Logistic Regression (LR), has better results compared with other previous
work on the same dataset. In [254], Abdel-Basset et al. tried to hybridize the HHO with
Simulated Annealing based on a bitwise operator. They applied the novel algorithm, which
is called (HHOBSA), in a feature selection problem using 24 datasets and 19 artificial ones.

Moreover, in [256] Turabieh et al. proposed an enhanced version of the HHO and
applied it to a feature selection problem using K-Nearest Neighbor (KNN). They applied it
in order to predict the performance of students. They evaluated their prediction system
using many machine learning classifiers such as kNN, Naïve Bayes, Layered recurrent
neural network (LRNN), and Artificial Neural Network.

Al-Wajih et al. [257] introduced a hybrid algorithm which combined the HHO with
the Grey Wolf Optimizer. The new algorithm, which is called HBGWOHHO, used sig-
moid function to transfer from the continuous to binary domain. They compared it with
Binary Particle Swarm Optimization (BPSO), Binary Genetic Algorithm (BGA), Binary Grey
Wolf Optimizer (BGWO), Binary Harris Hawks Optimizer (BHHO), and Binary Hybrid
BWOPSO. They assumed that their algorithm had better accuracy and a smaller size of
selected features.

Khurma et al. [258] developed two binary HHO versions based on filter approach
for feature selection. The first one applies mutual information with the HHO for any two
features. The second version applies the HHO with each feature’s group entropy. The
authors assumed that the first approach selects fewer feature subsets, whereas the second
one achieves higher classification accuracy.

Too et al. [212] enhanced the HHO algorithm by saving the memory mechanism
and adopting a learning strategy. The novel algorithms, which are called MEHHO1 and
MEHHO2, were employed to solve a feature selection problem. These approaches were
evaluated using thirteen benchmark datasets with low-dimensional and eight others with
high-dimensional ones.

6.2.5. Traveling Salesman Problem

Yaser and Ku-Mahamud [259] applied their hybrid algorithm called the Harris Hawk
Optimizer Ant Colony System (HHO-ACS) in solving the Traveling Salesman Problem
(TSP). They used many symmetric TSP instances such as bayg29, att48, berlin52, bays29,
eil51, st70, eil76, and eil101. They compared the novel algorithm with Black hole [260], PSO,
DA, GA, and ACO. They argued that the HHO-ACS has a good performance compared
with them.

Ismael et al. [261] developed a new version of the HHO to solve an FS problem using
V-support regression.

6.3. Wireless Sensor Network

The wireless sensor network (WSN) has recently been used in many fields, such as
smart homes, health care, and environment detection, due to its features such as self-
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organizing and being environment friendly [262,263]. Sriniv and Amgoth in [264] used the
HHO with SSA in proposing an energy-efficient WSN.

Likewise, Bhat and Venkata [265] used the HHO in classifying node coverage ranges to
an incoming neighbor and outgoing neighbor. This technique is based on area minimization.
the authors tested the HHO-MA in a 2D square, 2D C-shape, 3D G-shape, 3D cube, and 3D
mountain. In [266], Singh and Prakash used the HHO to find the optimal place of multiple
optical networks. Xu et al. [267] used the HHO in the intelligent reflecting surface by trying
to maximize signal power by optimizing access point beamforming.

Sharma and Prakash [268] developed a model called HHO-LPWSN which used the
HHO to localize sensors nodes in a wireless sensor network.

6.4. Medical Applications

A pulse-coupled neural network (PCNN) based on the HHO called HHO-PCNN has
been developed by Jia et al. [269]. They applied it in image segmentation using many
performance indicators (UM, CM, Recall, Dice, and Precision). The results were compared
with WOA-PCNN, SCA-PCNN, PSO-PCNN, SSA-PCNN, MVO-PCNN, and GWO-PCNN.
They claimed that their method has the best results.

Moreover, In [270], Rammurthy and Mahesh used their hybrid algorithm Whale HHO
(WHHO) with deep learning classifier in detecting brain tumors using MRI images from
two datasets: BRATS and SimBRATS.

Moreover, Abd Elaziz et al. [177] employed their method, called competitive chain
HHO, in multilevel image thresholding using eleven natural gray scales. An adaptive
HHO, which was proposed by Wunnava et al. [117], has been applied in D gray gradient
multilevel image thresholding. They proved that their algorithm using I2DGG outperforms
all other methods.

Moreover, Golilarz et al. [116] used their algorithm (CMDHHO), which is based on
multipopulation differential evolution, in denoising satellite images.

Suresh et al. [186] used their chaotic hybrid algorithm, which is based on the deep
kernel machine learning classifier CMVHHO-DKMLC, to classify medical diagnoses.

In [271], Kaur et al. employed Dimension Learning-based Hunting (DLH) with the
original HHO. The novel algorithm, known as DLHO, was developed for biomedical
datasets. The authors applied it to detect breast cancer.

Likewise, Chacko and Chacko [272] used the HHO to integrate watermarks on various
strengths. The bits of watermarking were merged with Deep Learning Convolution NN
(DLCNN). DLCNN used the HHO to identify watermarks.

Bandyopadhyay et al. [273] used the altruism concept and chaotic initialization to
improve the HHO. Their novel algorithm was applied to segment brain Magnetic Resonance
Images (MRI) using 18 benchmark images taken from the brainweb and WBE databases.

Iswisi et al. [274] used HHO in order to select the optimal cluster centers in fuzzy
C-means (FCM) and segmentation. They tested their model using many brain MRIs.

Balamurugan et al. [275] tried to classify heart disease using adaptive HHO and deep
GA. Their classified features were clustered using adaptive HHO, whereas enhanced deep
GA was used to process classification processes. They used the UCI dataset to test their
novel algorithm.

Abd Elaziz et al. [164] used their developed algorithm, called multilayer HHO, which
based on DE (MLHHDE), to predict H1N1 viruses.

Qu et al. [167] used their algorithm, called VNLHHO, to be able enhance the classifica-
tion of gene expression by improving the performance of feature selection. They used the
Bayesian Classifier as a fitness function. They tested their model using profile data of the
gene expression of different eight tumor types.
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6.5. Chemical Engineering and Drug Discovery

Cheminformatics or chemical engineering is a field which is interested in discover-
ing, analyzing, and predicting the properties of molecules by combining processes from
mathematics and information science [276].

Houssein et al. [277] used the HHO with two classification techniques: SVM and kNN.
By using two datasets: MonoAmine Oxidase and QSAR Biodegradation, they proved that
the HHO-SVM achieved better results than the HHO-KNN. Moreover, in [178], the same
authors hybridized the HHO with Cuckoo Search (CS) and chaotic maps and used SVM as
an objective function. They proved that CHHO-CS is better than PSO, MFO, GWO, SSA,
and SCA.

Abd Elaziz and Yousri [213] used the Henary Gas Solubility Optimization (HGSO) to
enhance the HHO. They applied their algorithm (DHGHHD) to predict drug discovery
and design using two real-world datasets.

Houssien et al. [278] used genetic algorithm operators (crossover and mutation) in
addition to OBL and random OBL strategies in classical HHO to select chemical descrip-
tors/features and compound activities.

6.6. Electronic and Control Engineering

Proportional–Integral Derivative (PID) controllers are used in order to improve Auto-
matic Voltage Regulator (AVR) performance. Ekinic et al. [279] used the HHO to tune the
PID parameters in AVR systems. Moreover, the same authors used the same algorithm [280]
in tuning a DC motor PID controller by minimizing multiplied absolute error (ITAE) time.
They compared their approach with the Grey Wolf Optimizer, Atom Search Algorithm,
and Sine Cosine Algorithm. Moreover, the same authors [281] applied the HHO to tune the
Fractional Order PID (FOPID) controller. They used it in a DC–DC buck. They compared
their algorithm, which is called HHO-FOPID, with WOA-PID and GA-PID.

Likewise, Fu and Lu [205] developed a multiobjective PID controller based on the HHO
with hybrid strategies (HMOHHO) for Hydraulic Turbine Governing Systems (HTGS).

Yousri et al. [282] used the HHO to evaluate PI parameter controllers which simulate
load frequency control in the multi-interconnected system by using two systems: (1) two
interconnected thermal areas and comprised PV and (2) four PV plants, two thermal plants,
and a wind turbine. They compared the HHO against SCA, MVO, ALO, and GWO.

Barakat et al. [283] developed an interconnected power system LFC using PD-PI
cascade control.

Munagala and Jatoth [284] tried to design a Fractional-order PID (FOPID) using the
HHO for speed control.

6.7. Geological Engineering

The gravity-triggered mass downward movements can be used to define landslides.
Bui et al. [285] applied the HHO to landslide susceptibility analysis. The authors used 208
historical landslides to build a predictive tool using ANN.

Moreover, Moayedi et al. applied the HHO to train multilayer perceptron (MLP). They
used it in the footings bearing capacity assessments over two-layer foundation soils.

Murlidhar et al. [286] introduced a novel version of the HHO based on the multilayer
perceptron neural network to predict flyrock distance induced by mine blasting.

Yu et al. [287] developed an ELM model based on the HHO in order to forecast mine
blasting peak particle velocity.

Payani et al. [288] used the HHO and Bat Algorithm with machine learning tools
(ANFIS/SVR) in order to improve modeling of a landslide spatial.

6.8. Building and Construction or Civil Engineering

Golafshani et al. [289] used the Radial Basis Function neural network (RBFNN) and
multilayer neural network (MLNN) with the HHO in order to measure concrete Compres-
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sive Strength (CS). Parsa and Naderpour [290] tried to estimate the strength of shear of
reinforced concrete walls using the HHO with support vector regression.

Kardani et al. [143] applied ICHHO to structural optimization using five truss structures.

6.9. Coronavirus COVID-19

The new coronavirus, also known as COVID-19, was termed as an infectious disease
by the World Health Organization (WHO). This virus began in China (Wuhan city) and has
affected billions of people’s lives [291,292]. Computer science researchers tried to use the
HHO to analyze and detect this virus.

Balaha et al. [214] tried to propose an approach, called CovH2SD, in order to detect
COVID-19 from chest Computed Tomography (CT) images. They applied transfer learning
techniques using nine convolutional NNs, namely: ResNet101, ResNet50, VGG16, VGG19,
MobileNetV1, MobileNetV2,Xception, DenseNet121, and DenseNet169.

Another work was conducted by Houssein et al. [293] to classify COVID-19 genes
using SVM. They used a big gene expression cancer (RNA-Seq) dataset with 20531 features
to test their model. Hu et al. [294] employed the HHO with the Extreme Learning Machine
(ELM) to detect COVID-19 severity using blood gas analysis. They used Specular Reflection
Learning and named the new HHO algorithm HHOSRL.

Ye et al. [295] developed the fuzzy KNN HHO method to predict and diagnose COVID-
19. They compared their algorithm, which is called HHO-FKNN, with several machine
learning algorithms and argued that it has a higher classification and better stability.
Moreover, Bandyopadhyay et al. [296] used their hybrid algorithm, which combined
chaotic HHO with SA, to screen COVID-19 CT scans.

6.10. Other Applications
6.10.1. Microchannel Heat Sinks Design

Electronic devices’ thermal management has become very important in product de-
signs that require more efficiency and power. Abbasi et al. [297] tried to used the HHO in
the microchannel heat sinks design. The authors compared their results with the Newton–
Raphson method, PSO, GOA, WOA, DA, and the bees Optimization Algorithm.

6.10.2. Chart Patterns Recognition

Golilarz et al. [298] proposed a novel automatic approach based on the HHO and
deep learning (ConvNet) for nine control chat patterns (CCP). In this approach, the CPP
recognition method, the unprocessed data are passed and processed using more than one
hidden layer in order to extract all representation features.

6.10.3. Water Distribution

Khalifeh et al. [299] developed a model based on the HHO in order to optimize the
distribution network of water in a city named Homashahr in Iran from September 2018 to
October 2019. the authors stated that the HHO proved efficiency in finding the optimal
water network design.

6.10.4. Internet of Things

The Internet of Things (IoT) gives the ability to different entities to access the environ-
ment, monitor it, and communicate with other entities [300]. Seyfollahi and Ghaffari [301]
developed a scheme for handling Reliable Data Dissemination in IoT (RDDI) based on the
HHO. The authors evaluated their schemes using three comparative approaches using
five different metrics: reliability, energy consumption, end-to-end delay, packet forward-
ing distance, and computational overhead. Moreover, Saravanan et al. [302] proposed a
PI controller based on the HHO. They tuned BLDC motor parameters in the globe with
IoT establishment.
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6.10.5. Short-Term Load Forecasting

Tayab et al. [303] proposed a novel hybrid algorithm called HHO-FNN by training
feed-forward neural network (FNN) using the HHO. They applied it in predicting load
demand in the electric market in Queensland. They compared HHO-FNN with PSO, ANN,
and PSO based on a support vector machine and a back-propagation neural network.

6.10.6. Cardiomyopathy

Ding et al. [304] developed a fuzzy HHO algorithm (FHHO) to monitor cardiomyopa-
thy patients using wearable devices and sensors. They introduced Wearable Sensing Data
Optimization (WSDO) to have accurate cardiomyopathy data.

6.10.7. Qos-Aware Service Composition

Li et al. [305] tried to solve QoS-aware Web Service (QWSC) problems and drawbacks
using a metaheuristic algorithm by developing a method to construct fuzzy neighborhood
relations and combining the HHO with logical chaotic function.

6.10.8. PEMFC Parameter Estimation

Mossa et al. [224] employed the HHO in order to evaluate the Proton Exchange
Membrane Fuel Cell (PEMFC) unknown parameters. They tested it using three PEMFC
stacks: 500W SR-12 PEM, BCS 500-W PEM, and 250 W. They claimed that based on the
HHO it surpassed other algorithms in convergence speed and accuracy.

6.10.9. DVR Control System

ElKady et al. [306] employed the HHO to develop an optimized, enhanced, and less
complex Dynamic Voltage Restorer (DVR). The results are compared with PSO and WOA.
The authors used MATLAB/Simulink to simulate a system via Typhoon HIL402 real-time
emulator validation.

7. A Brief Discussion

In this paper, we reviewed the most contemporary works and developments in the
improvement and verification of the HHO. As collected works show, there are several
points to be considered for both the conventional HHO and the enhanced variants of HHO.
First, the performance matter. The different studies verified that one of the reasons for
interest in the HHO over other competitors is its performance. Due to several reasons such
as dynamic components, greedy selection, and multiphase searching rules, the HHO can
show high-quality results in the same conditions that other methods are applied. This is one
of the main whys and wherefores that the HHO is utilized in tracked papers. The second
reason is the need for performance optimization. In most of the variants, the authors
mention that the stability of the optimizer needs to be improved to reach higher levels
of the convergence and lower stagnation problems. This requirement is a need in all
population-based methods to make a more stable balance among the local and global
search inclinations.

Second, most of the studies have enhanced the sense of balance among the exploratory
and exploitative propensities of the HHO. The accuracy of results an convergence speed are
the most frequent features enhanced in the literature until now. Hence, we observed in the
studied papers that the authors applied the HHO and its variants to many new problems
and datasets. As per the no free lunch (NFL) [307] theorem, the authors more and more
understood, compared with before 2019, that for tackling new problems, how to adapt
algorithm features and how some of their enhanced operations of each method contribute
to the efficacy of the final results. Hence, they could investigate different performance
aspects of the HHO in dealing with many real-world problems. The last but not least is
to further enhance the quality of the results of the HHO with more deep evolutionary
basis, such as coevolutionary technology, multipopulation approaches, memetic methods,
and parallel computing. Such bases can further assist in harmonizing global and local
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trends, which will result in better variants of the HHO. Another aspect we want to suggest
is that if the literature also attaches the source codes of their enhanced variants, it will be
more productive for future research on the HHO, and they can also compare their variants
with previous ideas.

8. Conclusions and Future Work

In this survey paper, we reviewed the recent applications and variants of the recently
well-established robust optimizer, Harris hawk optimizer (HHO), as blueone of the most
popular swarm-based techniques in recent years. The original HHO includes a set of
random solutions, as a population-based method, which can perform two phases of global
searches and four phases of local searches. The HHO can show high flexibility in the
transition of phases and has several dynamic components that assist it in more efficient
exploratory and exploitative trends. The literature review also contained an in-depth
review of enhanced versions, the way they enhanced, and application domains.

There are several possible future directions and possible ideas worth investigations
regarding the new variants of the HHO algorithm and its widespread applications. First,
the HHO is still one year old and several problems in the machine learning domain, mainly
feature selection, are still not resolved. Moreover, it is expected that authors provide
more balance measures into their analysis and provide more about what resulted in the
computational complexity of variants after modifications. Although the HHO is a relatively
fast method, such analysis can help the literature to be more open regarding the time
of computations.
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