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Abstract

Applications of machine learning (ML) methods have been used extensively to solve various complex
challenges in recent years in various application areas, such as medical, financial, environmental, marketing,
security, and industrial applications. ML methods are characterized by their ability to examine many data
and discover exciting relationships, provide interpretation, and identify patterns. ML can help enhance the
reliability, performance, predictability, and accuracy of diagnostic systems for many diseases. This survey
provides a comprehensive review of the use of ML in the medical field highlighting standard technologies
and how they affect medical diagnosis. Five major medical applications are deeply discussed, focusing on
adapting the ML models to solve the problems in cancer, medical chemistry, brain, medical imaging, and
wearable sensors. Finally, this survey provides valuable references and guidance for researchers, practitioners,
and decision-makers framing future research and development directions.
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1. Introduction

Machine learning (ML) refers to the tools, methods, and techniques employed in various fields (e.g.,
medical). It can help solve diagnostic problems in different medical domains [1], such as medical imaging,
cancer diagnosis, and wearable sensor. ML is used to examine significant clinical parameters, such as
extracting medical information and predicting diseases and development stages. Therefore, it helps in
planning and supporting the patient’s status. Furthermore, it ensures efficient healthcare monitoring by
helping in data analysis and sending intelligent warnings if necessary [2].

In specialized hospitals, the data of diagnoses for patients are considered medical records [3]. Executing
a learning algorithm requires accurate encoding of patients’ information. Encoding is a simple step, but
ML must start adequately; it should analyze information automatically and match it with similar problems
solved previously. Thus, it helps the physician achieve an accurate, easy, and quick diagnosis of new cases.
Nonspecialists and students can also use it to diagnose patients.
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This review presents an overview of ML methods, techniques, and tools. Articles on approaches and
theories supporting ML’s medical field application have been collected. The following sections discuss
medical diagnosis via ML techniques, ML in medical applications, and utilizing ML methods in a medical
context. The paper is organized as shown in Figure 1.

Figure 1: The structure of the review paper

2. Overview of Machine Learning

Here we introduce a background for ML types, methods, and techniques, followed by a discussion of
ML’s application in the medical area.

2.1. Types of Machine Learning

Some variations exist as to how the types of ML methods are defined (i.e., based on the problem and
content of the results required). Table 1 illustrates and briefly describes the most common methods and
techniques. Figure 2 shows the detailed relationships among ML types, methods, and techniques.
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Table 1: Machine Learning
Type Method Technique Description Publication

Supervised

Classification

Support Vector Machine (SVM)
Find a hyperplane in N-dimensional space that

distinctly classifies the data points
[4][5][6][7]

Naive Bayes (NB)
Based on Bayes’ theorem with the

independence assumptions between predictors
[8][9][10][11]

Artificial Neural Network (ANN)

Group of linked input/output units
where each link is weighted by psychologists

and neurobiologists to improve and examine computational
analogs of neurons

[12][13][14][15]

k -Nearest Neighbor (k -NN)
Find the data points that are spread
into a number of classes to recalculate
the classification of a next sample point

[16][17][18][19]

Decision Tree (DT)
Divides the dataset into smaller units

while a related decision tree is accumulatively
built in parallel

[20] [21] [22] [23]

Regression

Back-Propagation Neural
Network (BPNN)

Finding the gradient of the cost function
in a neural network with short for the

backward propagation of errors
[24] [25] [26] [27]

Support Vector Regression(SVR)
Same principles as the SVM for

classification, with only a few minor differences
[28] [29] [30] [31]

Multiple Linear Regression(MLR)

Utilizing several explanatory variables
to predict the outcome of a response variable

for modeling the linear relationship between the response
(dependent) variable and explanatory (independent) variables

[32] [33] [34] [35]

Partial Least Squares (PLS)
Bears some relation to principal components regression;
instead of finding hyperplanes of maximum variance
between the response and independent variables

[36] [37] [38] [39]

Unsupervised

Clustering

k -Means
Spots the centroids for k data points in

order to allocate them to the nearest cluster,
while minimizing the number of centroids

[40] [41] [42] [43]

Hierarchical Algorithm (HA)
A method of cluster analysis which seeks to

build a hierarchy of clusters. Where it
includes of two types; agglomerative and divisive

[44] [45] [46] [47]

Mean-Shift
Nonparametric clustering technique which does not
require prior knowledge of the number of clusters,
and does not constrain the shape of the clusters

[48] [49] [50] [51]

Density-Based Spatial Clustering of
Application with Noise (DBSCAN)

groups points together which are close to
each other based on a distance measurement

and a minimum number of points
[52] [53] [54] [55]

Dimensionality
Reduction

Feature Selection

Find a subset of the original variables (features).
There are three strategies: the filter strategy, the
wrapper strategy, and the embedded strategy (i.e.,
features are selected to add or be removed while
building the model based on the prediction errors)

[56] [57] [58] [59]

Feature Extraction
Transforms the data in the high-dimensional space to

space of fewer dimensions, which may be linear, but many
nonlinear dimensionality reduction techniques also exist

[60] [61] [62] [63]

Reinforcement
Reinforcement

Learning

Q-learning

Provides agents with the capability of
learning to act optimally in Markovian domains by
experiencing the consequences of actions, without

requiring them to build maps of the domains

[64] [65] [66] [67]

Temporal Difference
An unsupervised technique in which the learning
agent learns to predict the expected value of

a variable occurring at the end of a sequence of states
[68] [69] [70] [71]

Value Iteration
Progressively enhancing the value function

every iteration until it converges
[72] [73] [74] [75]

Markov Decision
Dynamic programming, with two variants

seen in RL: Policy Iteration and Value Iteration
[76] [77] [78] [79]
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Figure 2: Types of Machine Learning

2.2. Machine Learning Applications

As mentioned above, ML is considered a popular AI application in which devices, software, and computers
perform via cognition (i.e., very close to the principal of the human brain). Recently, almost all fields contain
at least one of the ML methods, such as email spam and malware filtering, that we deal with every day
without realizing it. Additional examples of ML applications are shown in Figure 3. This review discusses
ML’s employment in the medical field, including healthcare, image processing, and diagnosis.

Figure 3: Machine Learning Applications

Several papers on ML’s application in the medical field have been widely published. Figure 4 demon-
strates published articles amount in the period between 2000 and December 2021. The materials are gathered
depending on the keyword ”machine learning in the medical field” First, published articles were collected
from well-known publishers, including Springer, Elsevier, IEEE, and some other journals via Google Scholar
search. Second, the search outcomes were classified per publishing date to show the growth of ML usage in
the medical field.
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Figure 4: Number of publications for the ML in medical field from 2000 till Dec/2021

3. Medical Diagnosis by Using Machine Learning Techniques

ML algorithms were utilized in computer-aided diagnosis (CAD) applications. Such algorithms learn
from many diagnosed samples collected from medical test reports in company with the experts’ diagnoses
to support medical experts in predicting and diagnosing diseases in the future. The use of ML can assist in
enhancing the reliability, performance, and accuracy of diagnosing systems for specific diseases [80, 81, 82].

Wei et al. investigated ML models’ applicability for automatically categorizing clustered microcalcifica-
tions in digital mammograms. The classifiers were used in computer-aided diagnosis to support radiologists
in making precise breast cancer diagnoses on mammograms. They were trained and examined depending on
a database of 697 clinical mammograms to determine whether a cluster of microcalcifications is malignant
or benign based on quantitative image features extracted from the MCs [83].

Shoeb and Guttag proposed a support vector machine method as a patient-specific classifier to precisely
recognize the onset of an epileptic seizure by studying scalp electroencephalogram (EEG) signals [84]. How-
ever, such detection is challenging due to the brain’s electrical activity. Thus, the critical resolution involves
identifying the key features that distinguish a seizure from other types of brain activity.

Li and Zhou proposed a co-training style method called Co-Forest, which can be utilized in computer-
aided diagnosis systems. As an ensemble algorithm, random forest is used to deal with the problem of
learning a hypothesis from a few samples diagnosed by medical experts. Experiments on three medical
datasets confirm the usefulness of the Co-Forest algorithm in building computer-aided diagnosis systems
[80].

Ye et al. proposed using a supervised ML method named compound covariate predictor to classify
metastatic Hepatocellular carcinoma (HCC) patients, and they recognized genes related to metastasis and
patient survival. The algorithm was applied to mixed pairs of 50 HCC tests gathered from 30 patients and
proved to produce accurate classification results [85].

Guvenir et al. developed a supervised feature projection-based algorithm for diagnosing cardiac arrhyth-
mia [86]. The training dataset comprises 452 patient records with 279 defined features. Each record contains
the decision of an expert cardiologist and clinical measurements, including electrocardiogram (ECG) signals,
gender, weight, and age. The authors used pre-classified examples in the learning stage of the algorithm.
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A cross-validation model was used to assess the proposed algorithm, and the results were compared with
those of other standard classification algorithms.

A predicted model of heart failure using ML techniques was presented by Wu et al. [87]. The authors
aimed to provide the right diagnosis of heart failure at least six months before it occurs. 536 data records
were collected from 41 outpatient clinics in Pennsylvania from 2001 to 2006. The authors used three ML
methods for prediction, logistic regression, support vector machine (SVM), and boosting. Comparative
analysis was performed to investigate the performance of each method using 10-fold cross-validation.

4. Machine Learning in Medical Applications

ML is broadly applied to medical and healthcare problems [88]. The next sections will present some areas
in which CSA was applied, including cancer (i.e., types and diagnosis), brain problems, medical imaging,
and wearable sensors. The classifications in this section are adopted from the contributions of previous
works (i.e., showing data based on the problems and, in other cases, based on the ML techniques) [89, 90].

4.1. Cancer

4.1.1. Prediction of cancer

Cancer research is a significant area with considerable societal impact. The use of ML in cancer stud-
ies shows high potentials in various aspects, including cancer-related problems’ benchmark, such as the
classification and prediction of cancer types, drug response, and treatment strategies [91, 92].

Shi et al. presented a hybrid ML method that incorporates the k top-scoring pair (TSP) feature ranking
algorithm with SVM and the k-nearest neighbors (KNN) algorithms [93]. The proposed method was moti-
vated by the capabilities of feature selection approaches in improving the performance of the categorization
and prediction of complex diseases throughout gene analysis. The hybrid approach is validated using the
simulated and the four real cancer prognostic datasets, and it has shown good accuracy performance.

ML models may also be used for predicting the clinical effectiveness of specific medicine and appropriate
treatment techniques for particular patients. Accordingly, Menden et al. developed ML models, particularly
ANNs, to calculate the reaction of cancer cell lines to medical treatment, which measured throughout IC50
values [94]. The prediction process is based on the chemical properties and the genomic properties of
the cell lines of the drugs under consideration. The genomic background of each cell was considered in
predicting IC50 profile. Based on their study, the potential efficacy of thousands of drugs can be tested
through silico, as anti-tumor agents depending on their formation. This finding can lead to the discovery
of innovative drug repositioning opportunities, and it will eventually be valuable for tailored medicine by
connecting the sensitivity of the drug to the patients’ genomic traits. Likewise, Borisov et al. presented a
new methodology for drug scoring and/or tailored medication in which three ML algorithms, namely, SVM,
binary tree (BT), and random forest (RF), are used to predict the clinical effectiveness of cancer drugs by
transferring attributes attained using the expression-based data from cell lines [95]. The algorithms were
tested on different datasets of cancer-like diseases, including lung adenocarcinoma, renal carcinoma, and
chronic myeloid leukemia.

By contrast, Huang et al. introduced an open-source software platform that can anticipate the responses
of a customized drug from gene expression profiles by utilizing SVM algorithm in conjunction with recursive
feature elimination (RFE) model [96]. Specific models were built based on drug response and gene expression
data from the panel of cell lines of NCI-60. The models accurately predict the drug receptiveness of a range
of cancer cell lines. The prediction results of applying the models were consistent with previously observed
responses in the literature. The proposed open-source software platform is expected to undergo tests in
various cancer types.

A critical challenge in employing ML in cancer studies is the selection of appropriate software packages
to be applied to mitigate cancer-related problems. Wozniak et al. proposed a framework called CAN-
DLE/Supervisor, which deals with hyper-parameter exploration in deep NNs. The proposed framework
provides several features to maintain ML in cancer research. First, it allows users to substitute the opti-
mizer or ML problem. Second, it allows the use of diverse-scale datasets. Finally, it allows users to benefit
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from numerous computational concurrencies on several leadership-class systems. The software evaluation on
clusters and individual workstations revealed good results in terms of scaling and multiplatform execution
[91].

Way et al. presented the employment of an ML method to detect faulty genes and pathway activity in
cancer tumors, which can help in the identification of hidden responders as their transcriptome may expose
responsive molecular states [97]. The algorithm combines copy number, RNA-seq, and mutations from 33
cancer to recognize abnormal molecular states in tumors. The proposed algorithm detects Ras activation
throughout cancer types and recognizes phenocopying variations by applying it to the tRas pathway. The
algorithm has an unsteady performance across different types of cancer, but it can be generally applied to
other pathways and genes. Du et al. proposed a two-phase approach to classify patients’ level of fatigue
[98]. A limited subset of genes reckoned most predictive by a standardized linear regression approach known
as elastic net is selected in the first phase. The second phase distinguishes patients with high from low
fatigue using the RF, a broadly used classifier. The proposed approach was trained with cancer patients
receiving external beam radiotherapy (T1) and one-month post external beam radiotherapy (T2). Numerous
genes were selected, including GPX4, FHL2, and PRDX5, which provided clues concerning the reason of
radiotherapy-related fatigue.

Deep learning (DL) considers using conventional ML methods to achieve the goal of learning from data
representations. With CT scan pictures and histology, DL has been routinely utilized to detect and classify
a malignancy. Thus, Gupta and Malhi used multilayer feedforward NN as a DL technique included in the
H2O framework, which is a fast, scalable open-source DL framework, using CT scan pictures to identify
the neck and head cance areasr. About 26,000 CT scan images were gathered from the National Cancer
Institute’s Cancer Imaging Archive (TCIA). The images were preprocessed using the Weiner filter technique
and then segmented using the fuzzy c means algorithm; and finally, the gray level co-occurrence matrix
technique was used to extract relevant characteristics to train and test the DL classifier [99]. Additionally,
to cope with the challenges of feature dimensionality and the limited size of available datasets, Fakoor et al.
introduced an approach to improve the diagnosis and classification of cancer types using unsupervised and
deep learning methods on gene expression data [92]. The ability to use data from multiple types of cancer
to automatically delineate features is a real benefit of the suggested strategy. It helps enhance the diagnosis
and categorization of a particular one. The proposed strategy can enhance the classification accuracy in
cancer problems, but it can also propose a scalable approach to deal with gene expression data obtained
from diverse cancer types.

The development of a computer-aided detection system aimed at diagnosing breast cancer has been
receiving increasing interest in recent years. Shaikh and Ali used four classifiers, k-NN, SVM, NB, and
J48, on two different cancer datasets: the Wisconsin breast cancer diagnosis and the Breast Cancer Digital
Repository. A dimensionality reduction method called WrapperSubsetEval was applied on both datasets
before the classification process to improve the classification performance. The experiments were carried
out using the well-known Weka tool [100].

Pati employed ML techniques, including multilayer feedforward ANN, random subspace, and minimal
sequential optimization, to analyze the gene expressions of cancerous samples and discover the set of genes
considered the main possible cause of cancer. The techniques were applied to gene expression data of lung
cancer. The author argued that adding ecological context to the advanced ML techniques on the enormous
gene expression data available on the Internet may help improve our understanding of the causes of cancer
[101]. Table 2 summarizes the ML techniques for prediction the cancer.
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Table 2: Summary of cancer’s Prediction using ML techniques

Description Technique Author(Ref)
Improving the performance of the

classification and prediction of intricate
diseases throughout gene expression analysis

SVM and KNN Shi et al. ([93])

determine the reaction of cancer
cell lines to medicine treatment

ANNs Menden et al. ([94])

determine the clinical effectiveness of anti-cancer drugs SVM, BT, and RF Borisov et al. ([95])
determine personalized drug restrain from

gene declaration description
SVM and RFE Huang et al. ([96])

Proposed framework provides several features to
maintain machine learning in cancer research

ANNs Wozniak et al. ([91])

recognize the genetic trouble using
pattern the disease diagnosis

and DNA copy number variation
BHM and GM Manogaran et al. ([102])

Detect faulty genes and pathways
activity in cancer tumors

Gene expression Way et al. ([97])

Classify patients having high fatigue
from low fatigue

regularized random
forest

Du et al. ([98])

Identify the locations of the
head and neck cancer from

the CT scan images
ANN Gupta and Malhi ([99])

Enhancing the diagnosis and classification
of cancer types

ANN Fakoor et al. ([92])

Developing computer-aided detection/diagnosis
system for the diagnosis of

breast cancer

k-NN, SVM,
and NB

Shaikh and Ali ([100])

Analyze the gene expression of
cancerous samples and predict the

subset of genes which are the
most possible of causing cancer

ANN Pati ([101])

4.1.2. The Cancer’s types
1. Lung cancer:

Lung cancer remains one of the most well-known cancers in the world in regards of new cases (about
0.13 of a year) and mortality (nearly 0.2 cancer death). Errors in lung cancer sample or deadly
growth judgment lead to the ineffective operations because the anticancer approach depends on tumor
morphology. An attempt to assess the performance of ML methods in the duty of lung cancer analysis
and classification based on gene expression stages was performed in [103]. In that work, four publicly
accessible datasets were processed (i.e., datasets from the Dana-Farber Cancer Institute, the University
of Michigan, the University of Toronto, and Brigham and Women’s Hospital, which included 203, 96,
39, and 181 units, respectively). The k-nearest neighbor technique, naive Bayes with the assumption
of a couple of normal attribute distribution, and distribution through histograms, SVM, and decision
tree were used. The performance of ML techniques was assessed, and SVM showed the best results
among all datasets. All algorithms except the decision tree showed the highest possible performance.
However, the decision tree showed the best outcomes for the datasets of the University of Toronto. In
sum, ML techniques can be employed for lung cancer morphology analysis and related jobs based on
gene expression level validation. The problem of distinguishing between 24 diseased and 15 healthy
individuals based on protein mass colors was addressed in [104]. To preprocess the data, the volume of
charge ratio (m/z) normalization, baseline removal, and conversion of certain peak height ratios to top
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ratios were performed. After preprocessing the data, the major challenge faced was a large number of
variables (1676 m/z values) opposite the number of cases (forty-one). Dimension reduction technique
was employed as an essential part of the analysis. Decision selection was linked with model production
in one 10-fold cross-validation circle. Different experimental setups were explored, including two peak
top representations, couple decision selection methods, and six selection methods-all on the original
1676-mass and the 124-mass dataset. Important prediction correctness was obtained by a multilayer
perceptron and NB, with the latter representing harmonious effectiveness across different experimental
options. They attempted to distinguish the most distinct proteins based on rates indicated by the
pair variable selection methods and by NN based sensibility judgment. These three plans listed the
following four peaks as the more important discriminators: 11683, 1403, 17350, and 66107.
A big data tool for clinical decisions was proposed in [105] to diagnose pneumonitis after stereotactic
frame emission treatment (SBRT). A total of 61 characteristics were reported for 201 following cases
with SBRT, in which 8 cases (4.0%) were broadcast pneumonitis (RP). Utilizing decision projections,
pneumonitis ratios were determined independently for every feature. The effectiveness of three various
algorithms was evaluated. On multivariate investigation, the 3 various essential features chosen were
the dose 15 of the heart, dose 4 of the bronchus, and culture. Heightened precision was obtained if the
proposed algorithm was employed with standardization. To determine the distribution pneumonitis
within an error of less than 10%, they predicted that an individual size of 800 cases was needed. The
correctness of the classification was restricted by the number of cases in the investigation and not by
the opinions collected.

2. Breast cancer:
Breast cancer is the most common cancer in the world [106] and the leading cause of cancer mortality
in women [107]. It develops in the cells of the breasts. Early recognition and precise diagnosis, on the
other hand, can aid to improve the chance of survival [108].
Breast disease cancer (BDC) is the second biggest problem of cancer deaths among women. Simultane-
ously, it is also one of the most temporary cancer types if diagnosed early [109]. The authors attempted
to have reported, with growing confirmation, that SVM has numerous accurate diagnosis experiences.
It attempts to confirm that SVM has accurate analytical ability [110]. This paper proposed breast
cancer analysis based on the SVM combined with feature selection technique. Experiments were car-
ried out on different common datasets, including the Wisconsin breast cancer dataset (WBCD). These
kinds of datasets are often used in ML techniques for breast cancer analysis. . Specificity, sensitiv-
ity, classification performance, positive, negative predictive values, and receiver running characteristic
confusion matrix and curves are used to evaluate the efficacy of the proposed algorithm. The results
revealed that the greatest classification accuracy is 99.5%, which is obtained from the SVM model
containing five selected features. This algorithm is more encouraging than the previously published
one.
[111] proposed that investigating breast cancer information order assistant can improve processing and
save more patients by knowing the genes biomarker to promote the proper treatment model. Thus,
producing additional breast cancer studies is now a big problem for researchers, particularly with the
great improvement in the fields of bio-informatics, data mining, medical image, and ML techniques,
which are a modern reconstruction in cancer therapy.
A growing volume of data demonstrate the importance of patient-oriented communication in the
control of healthcare. The decrease in the incidence of denying emotions improves patient well-being
and increases primary results. The Verona coding donations of emotional sequences (VR-CoDES)
is a strong scheme for classifying and coding patient effects and the corresponding HCP answers.
Coded transcripts can be utilized to teach and guide health concern experts (HCPs) and trainees in an
aimful and evidence-driven way. Notwithstanding this highest potential, the use of VR-CoDES is still
limited for working reasons. The coding system itself is confused, and training is needed to guarantee
consistent transcript explanation. Furthermore, the method of explanation is time consuming and
difficult even for a demoted expert. Recent progress in ML, especially its use in text examination,
could be an essential benefit [112]. This paper explained the literature that examined this instance, and
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used 200 discussions between radiotherapists and adult female breast cancer cases. It evaluated various
state-of-the-art classifiers in terms of their capacity to predict the answers of HCPs to sensitive cues
and attention. The results confirmed a highly encouraging performance, with the greatest classifiers
performing forecast efficiencies of over 82%.
The ML method was adopted in [113] for classification. Using feature selection technique, the al-
gorithms supplied data with normal dimensionality and provided precise results. In this paper, ex-
periments were conducted using four distinct feature selection techniques and four classifiers on four
datasets. Artificial NNs increase the classification efficiency of breast cancer when utilizing feature
selection. The highest improvement in efficiency after using feature selection Entropy was 51%. The
precision obtained by artificial NNs did not present any relationship with a particular feature selection
approach. With NB, SVM, and decision trees, no development in efficiency using feature selection was
statistically determined to respect all datasets. However, in several regards, these classifiers showed
heightened classification precision with feature selection as opposed to utilizing all features of the
dataset.
[114] proposed 13 cytokine predictors in breast cancer survivors (BCS). This study was concerned with
chemotherapy-related cognitive impairment (CRCI), chemotherapy conclusion via multivariate after 6
months to 10 years, and nonparametric procedure. A cross-sectional dataset involved the achievement
of a review, cognitive examination, and nonfasting plasma from 66 cases.Data were investigated by
utilizing irregular cover modeling to recognize the far more relevant variables for every one of the
cognitive analysis rates. A distinct cytokine form divined each cognitive examination. For each
reduction, the adjusted R2 ranged from 0.71-0.77 (p’s < 9.50-10). All of the cytokine predictors
and cognitive analysis scores had nonlinear similarities. The results showed a novel CRCI field and
recommended nonlinear cytokine specificity to NNs cognitive functions evaluated in this investigation.
The performance of adjuvant chemotherapy tools for BDC has been compared to variations in the
genomic characterization of tumors in [115]. That work investigated equivalence between, increased
inhibitory compounds of paclitaxel and gemcitabine (GI50), and gene model number, variety, and
expression first in BDC cell lines and then in the specific cases. Genes encoding the immediate aims of
these medications, metabolizing proteins, transporters, and those beforehand correlated with chemo
resistance to paclitaxel (n = 31 genes) or gemcitabine (n = 18) were also examined. Multifactorial,
principal component investigation showed character was the powerful pointer of consciousness for
paclitaxel, and copy amount and expression were useful for gemcitabine. The agents were mixed
using SVM. A composition of 15 genes divined cell line irritability to paclitaxel with 82% precision.
Copied whole profiles of three genes concurrently with an expression of 7 genes divined gemcitabine
acknowledgment with 85% precision. The diagnosis and copy number investigations of two autonomous
collections of cases with known acknowledgments were then investigated with these patterns. These
injected tumor segments from 21 cases used paclitaxel and gemcitabine and 319 cases used paclitaxel
and anthracycline treatment. However, a unique paclitaxel SVM obtained from an 11-gene subset
for data for 4 of the primary genes was unavailable. The precision of this SVM was comparable in
cell lines and tumor blocks (70%-71%). The gemcitabine SVM showed 62% forecast precision for the
tumor blocks due to the occupation of individuals with weak nucleic acid honor. Nevertheless, the
paclitaxel SVM divined sensation in 84% of cases with no or smallest remaining infection.
An interactive machine system assesses and makes diagnoses based on cytologic characteristics obtained
straight from a digital scan of fine-needle aspirates (FNA) slides in [116]. A continuous chain of 569
cases contributed data to improve the system, and the additional 54 cases were connected. These
new cases presented examples to examine the system. The proposed planned precision of the system
determined by 10-fold cross-validation was 97%. The real precision of 54 unique samples was 100%.
A digital image report linked with ML procedures can help develop the diagnostic precision of breast
fine director aspirates.
Missing data accusation is an essential task in situations, where all accessible data and not divorce
records with avoiding values must be utilized. This work assessed the effectiveness of various statistical
and ML techniques that were employed in [117] to prophesy recurrence in cases in huge physical breast
cancer dataset. The correctness of prophecies on early cancer recurrence was estimated using ANNs,
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in which several ANNs were evaluated by using datasets with assigned absent values. The allegation
systems based on ML algorithms improved accusation statistical techniques in the prophecy of reliable
result. Friedman’s test exhibited a good variety (p = 0.0091) in the respected area, and the pairwise
correlation examination revealed that the AUCs for MLP, KNN, and SOM were exceeding the AUC
from the LD-based prediction paradigm. The techniques derived from ML systems were commonly
employed to fix the issue of avoiding values and achieve the significant development of prognosis
precision related to allegation systems based on statistical systems.
In [118], the suggested paradigm is the compound of controls and various ML procedures. ML
paradigms can assist physicians in decreasing the number of wrong judgments. They utilized models
and associations among numerous problems and predicted the result of a disease by utilizing historical
problems collected in datasets. This study aimed to introduce a rule-based analysis system with ML
procedures for the prophecy of various types of BCD. A dataset was studied with eight cases that
involve the reports of 900 cases, in which 876 (97.3%) and 24 (2.7%) cases were women and men,
respectively. ML procedures include 10 cross-fold systems were performed together with the intro-
duced paradigm for predicting BCD. The effectiveness of ML procedures was assessed with efficiency,
correctness, sensibility, specificity, and area under the ROC circuit. This investigation showed that
TRF, a rule depends on analysis paradigm, was the greatest model with the largest stage of efficiency,
among others. Therefore, this paradigm is suggested as a helpful agent for BCD prophecy as well as
medical judgment construction.
A mechanical Allred Scoring methodology is introduced in [119] for estrogen receptors (ER). Clear
equation was utilized to stamp the color photo receiving into evidence color modification through
smearing in various laboratory. The Markov stochastic domain paradigm with expectancy-most op-
timization was applied to the division of the ER cells. The suggested classification approach was
determined to produce F-measure 0.95. ANN was consequently utilized to achieve an intensity-based
rate for ER cells of pixel color depth characteristics. Concurrently, the relationship rate (i.e., the rate
of ER-positive cells) was calculated by numbering of cells. The last ER rate was calculated using
the power and dimension scores followed by pathologists. The analysis precision for the analysis of
cells through the categorizing in regards of F-measure was 0.9626. The difficulty of individual inter-
observer knowledge was discussed by quantifying ER number from a couple of specialist pathologists
and suggested method. The interclass relationship performed was higher than 0.90. The investiga-
tion has the possible benefit of supporting the pathologist in determination making over standard
method. It could be developed as a portion of an electronic judgment backing method and another
sense achieving/summary scheme.
The use of ML mechanisms in medical analysis is growing continuously. This growth is largely due to
the fact that the performance of analysis and recognition methods has improved in terms of helping
therapeutic specialists in diagnosing infections [120]. In [121], the BCD study was carried out by
applying the Least Park Support Vector Machine (LS-SVM) classifier method. The robustness of
the LS-SVM was examined utilizing analysis precision, analysis of sensibility and specificity, k-fold
cross-validation approach, and confusion model. The achieved analysis precision of 98.53% is very
encouraging, especially when compared with the earlier detailed analysis methods. Consequently, by
LS-SVM, the received outcomes revealed that the applied system can create an active discussion and
showed the head of the purpose of a distinct creative support diagnosis method.
[122] used gene modification profiles to analyze, identify, and predict the subgroups of BCD. The full
exome sequencing data were examined using 358 ethnically comparable BCD in the TCGA design.
The physical and nonsynonymous particular nucleotide modifications distinguished through all cases
were used to determine a quantitative result. Applying these rates with positive template factorization
approach, they grouped the cases into three subsets. This investigation showed that gene modification
profiles can be efficiently applied with unsupervised ML techniques to recognize clinically distinct BC
subgroups. The analysis model improved in this design could supply a fair prediction of the degree
of cancer based solely on the mutation characterizations. This research represented the primary
employment of only somatic modification form data to recognize and predict the BCD subgroups.
This generic approach can also be used to other cancer populations.
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Microarray breast cancer data were utilized in [123] to classify the cases that applied ML systems.
First, eight various ML methods were employed to the data, without using any feature selection tech-
nique. A couple of various feature selection techniques were then employed. The results of the analysis
were matched with one another and with the completion of the first state. After implementing the
feature selection techniques using the best 50 features, SVM yielded the best outcomes. MLP used
numerous layers and neurons to investigate the impact of the number of layers and neurons on the
analysis precision. However, the improvement in the number of layers was only slight and precision
was not enhanced in some cases.

3. prostate cancer:

Diagnosing cancer using computer capabilities has grown rapidly in recent years. ML is one of the
techniques broadly used to diagnose and predict prostate cancer. In this section, we discuss the
methods that applied ML to improve diagnosing prostate cancer.
First, Nguyen et al. proposed an automated Gleason scoring system for diagnosing prostate cancer.
The proposed method combined Quantitative Phase Imaging (QPI) techniques to report the unlabeled
samples and ML methods to classify the tissues and diagnose tissue biopsies [124]. Gu et al. aimed to
utilize the capabilities of the ML method to achieve the timely diagnosis of prostate cancer right after
prostatectomy [125].
Zhu et al. proposed an online adaptive radiotherapy tool for evaluating adaptive intensity-modulated
radiotherapy (IMRT) using the capabilities of ML methods. Their proposed method aimed to identify
quality standard and requirements of prostate adaptive IMRT [126].
Another prostate cancer diagnosing method using ML techniques was proposed by Hussain et al. [127].
Multi-ML techniques, such as SVM and Bayesian, were used to efficiently diagnose prostate cancer.
Some feature extraction methods were also used for further efficiency enhancement.
An analysis for magnetic resonance radiomics to enhance the performance of PI-RADS v2 was pro-
posed by Wang et al. [128]. The major purpose of the work was to test the capabilities of ML methods
in enhancing the performance of detecting prostate cancer.

4. Pancreatic cancer:

Circulating exosomes include a wealth of proteomic and transmitted information, which highly benefit
cancer diagnostics. While microfluidic methods are employed to strongly divide cells from multiple
samples, estimating these procedures for exosome separation has been defined by the mean throughput
and susceptibility to clogging of nanofluidics. Furthermore, the study of exosomal biomarkers features
large heterogeneity between patients and within a growth itself. To tackle these challenges and in
order to investigate crude clinical individuals, a multichannel nanofluidic method was developed in
[129]. Using these principles, exosomes from healthy, infected murine, clinical groups, and profiled the
RNA cargo inside of these exosomes were isolated. ML algorithm was employed to generate predictive
boards that could recognize samples obtained from various cancer-bearing people. This method was
applied on cancer and precancer mice from healthful handles as well as pancreatic cancer cases from
healthy handles in blinded reports.
Pancreatic cancer is one of the primary terminal cancers, ranking 4th among all cases of cancer-
related mortalities. Pancreatic cancer cases suffer from bad prognosis with a 5-year remnant rate
of just 6%. Predicting remaining pancreatic cancer is tested due to various tumor characteristics,
therapies, and patient groups. Certain predictions helped in improving personalized attention and
control. The effectiveness of ML was tested in [130] to foretell pancreatic cancer durability. Pancreatic
cancer cases were classified through the Monitoring, Epidemiology and End Outcomes database (2010-
2014). Clinical data, such as age, sex, and culture, were selected for the cases. Patients’ studies were
incidentally broken into parts for training (80%) and testing sets (20%) to foretell durability at 6, 12,
and 24 months. Several supervised ML paradigms were examined to classify the patterns with best
forecasts. A total of 14,631 cases had a median survival of 13 months. Forest algorithm obtained better
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outcomes in comparison with other examined models. The trained paradigm admitted AUCs of 85.3%,
84.6%, and 83.2% at six, 12, and 24 months, respectively. The most critical features that inspired
prediction were age at diagnosis (19.9%), surgery (14.6%), tumor size (18.5%), and tumor extension
(8.4%). Thus, ML was better able to predict the survival of cases with pancreatic cancer compared
with other methods. Improved survival prediction helped improve decision handling and social and
care demand organization. Table 3 shows the different types of cancer with the ML techniques which
have been used for each type.

Table 3: Summary of Cancer’s types using ML techniques

Types of Cancer Techniques Authors(Ref)

Breast Cancer

SVM Akay ([110])
Feature Selection Abou Tabl et al. ([111])

VR-CoDES Barracliffe et al. ([112])
ANN Reinbolt et al. ([131])

Feature Selection Lindqvist and Price ([113])
RF Kesler et al. ([132])

RF and ANN Henneghan et al. ([114])
SVM Dorman et al. ([115])

Feature Selection Wolberg et al. ([116])
ANN Jerez et al. ([117])
TRF Montazeri et al. ([118])
ANN Mungle et al. ([119])

LS-SVM Polat and Günes ([121])
RF, SVM, NB,

and k -NN
Vural et al. ([122])

SVM Turgut et al. ([123])

Lung Cancer
Gene expression Podolsky et al. ([103])
SVM and DT Hilario et al. ([104])
DT and RF Valdes et al. ([105])

Prostate Cancer

RF Nguyen et al. ([124])
SVR Zhu et al. ([126])

SVM and NB Hussain et al. ([127])
SVM Wang et al.([128])

Urinary Bladder Cancer
SVM Garapati et al. ([133])

BPNN, NB, KNN, SVM,
RBFN, ELM, and RELM

Wang et al. ([134])

Pancreatic Cancer
LDA Ko et al. ([129])
RF Osman ([130])

4.1.3. Machine learning techniques used in cancer

1. Classification

As the applicability of ML methods in medical research field is growing rapidly, they are used as an
alternative to traditional methods for diagnosing a wide range of diseases. For example, Chan et al.
proposed a method to diagnose oral cancer using ML. The proposed method presents a combination
between feature selection and ML methods. To test the proposed feature selection methods, they were
applied on four proposed classifiers. Experiments showed the superiority of the traditional methods if
clinicopathologic and genomic markers were taken in consideration [135].
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Furthermore, Liu et al. proposed gene classification method to eradicate gene redundancy and increase
classification quality [136]. The proposed method is divided into two main stages: gene selection and
finding optimal gene group. To manage the gene selection stage, they proposed a method called
recursive feature addition, where statistical similarity measures and ML were merged to improve the
selection process. Another algorithm called Lagging Prediction Peephole Optimization was proposed
to identify the best gene group for disease prediction and categorization.
Another classification method using ML techniques was proposed by Fuery et al. [137]. Their proposed
method aimed to analyze gene expressions to find and classify harmful tissues using SVM. The analysis
considered mislabeled and abnormal tissue outcomes and classified experimented tissues.
Parmar et al. evaluated feature selection ML methods to find the most accurate method for anticipating
head and neck cancer. The selected methods were tested in terms of performance efficiency and
robustness [138]. In addition, Cho and Won examined studies that aimed to assess cancer classification
and feature selection methods. The assessment was conducted using three dataset benchmarks for
evaluating efficiency. In addition, a hybrid between several classification methods was proposed to
enhance classification performance [139].
To efficiently classify epithelial ovarian cancer (EOC), Klein et al. proposed a preliminary study that
aimed to utilize the capabilities of ML algorithms and MALDI-Imaging mass spectrometry. The main
purpose of the proposed hybridization was to detect EOC histological subtypes in the hope that such a
step would lead to the discovery of new factors to predict and diagnose EOC [140]. Furthermore, Way
et al. presented a method to anticipate and classify cancer with low neurofibromin 1 (NF1) activity
depending on RNAseq data acquired from TCGA (The Cancer Genome Atlas) [141].

2. Gene expression

Gene expression data are vast due to the emergence of recent powerful methods in gene level data
extraction. Accordingly, gene expression data classification for precisely detecting correspondent pat-
terns, such as cancer species, has become a research hotspot. Recently, several ML algorithms have
been employed to build precise classification models. In particular, the cancer classification based
on gene expression data using ML techniques has attracted much attention recently as a promising
research field [142, 143, 144, 145].
Guyon et al. proposed a gene selection method by using SVM based on recursive feature elimination
in order to address the problem of selecting a small subset of genes, recorded on DNA micro-arrays,
from broad patterns of gene expression data [146]. The authors built a classifier that was appropriate
for genetic diagnosis and drug discovery. The experimental results proved the effectiveness of the
proposed selection method in gene selection because it yielded improved classification performance.
Tan and Gilbert proposed the use of supervised ML techniques in correctly classifying cancerous and
normal tissues from the gene expression profiles [147]. The authors performed classification tasks
using the C4.5 decision tree, after which they bagged and boosted decision trees on seven publicly
available cancerous microarray. They confirmed that ensemble ML often performed better than single
ML techniques in classifying gene expression data on cancer classification problems.
To reduce the dimensionality and extract valuable gene information from cancer microarray data,
Wang et al. proposed the use of a set of feature selection algorithms for the extraction of significant
information in microarray data analysis [148]. The use of feature selection algorithms, namely, wrap-
pers, correlation-based feature selection, and filters together with ML algorithms, such as naive Bayes,
decision trees, and SVM, has led to their promising applications in choosing relevant genes that are
highly correlated to cancers with high confidence.
Jin et al. focused on classifying binary and multicategory cancer types. The authors first dealt with
the high-dimensional problem using the Chi-square method for tag selection of the serial analysis of
gene expression before building the classification model. They then applied five different ML algo-
rithms (C4.5, SVM, nearest neighbor, naive Bayes, and RIPPER) for classifying cancer types. The
experimental results confirmed that the gene selection can enhance the performance of all classifiers
[149].
Chen et al. demonstrated a novel supervised ML model based on Monte Carlo methods, local field, and
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SVM theory. The proposed model was applied to accurately find patterns in high-dimensional gene
datasets of colon cancer [142]. Meanwhile, Ghanat Bari et al. proposed a hybrid ML-assisted network
inference that exploited the capability of ML and network biology to improve the understanding
of the existence of Class II cancer genes by uncovering it in cancer networks [143]. The authors
constructed more than 2×108 SVM models for reforming a cancer network using 8807 expression
arrays, corresponding to 9 cancer types.
Ayyad et al. proposed two efficient classification techniques for gene expression data, namely, smallest
modified k-nearest neighbors and largest modified k-nearest neighbors [144]. Both techniques were
developed to enhance the performance of nearest neighbors by employing robust neighbors via new
weighting strategy.
Xu et al. proposed a deep flexible neural forest model to classify cancer subtypes for the diagnosis and
treatment of cancer. Their model aimed to transform a multiclassification problem into several binary
classification problems. In order to remove redundancy and noise from the gene expression dataset, the
authors proposed a dimensionality reduction method that used the fisher ratio and the neighborhood
rough set to select the most informative genes among a given gene expression, thus attaining good
classification performance [145].

4.2. Medicinal Chemistry

There are many studies have been introduced about utilizing organic chemistry to discover the drug.
Some of the efficient studies used machine learning models which aid to introduce predictions. However,
the results may not accurate and fuzzy (i.e., outcomes of black-box). Thus, Kovacs et al. [150] introduced
new mechanism to retrieve the expected results and send them to specific locations in reactants. Also, the
authors determined Clever Hans predictions which based on dataset bias (i.e., use the wrong reason to find
the correct prediction).

In [151], Patsilinakos et al. utilized machine learning on the chemical compositions of essential oils (EOs)
to explain the achieved experimental results. Moreover, the authors developed accurate ML models which
contributed to determining the Staphylococcus aureus and Staphylococcus epidermidis which are responsible
to produce, stimulate, or inhibit biofilm.

Examining the reproductive toxicity on the human directly to assess the health risks is very important.
However, it face many challenges such as time consuming, expensive, and need a large number of animals.
Therefore, Jiang et al. [152] used six machine learning approaches and 1823 chemicals for reproductive
toxicity characterized. The experimental results illustrated that SVM model achieved best performance.
As well as, rational boundary has been determined which classified the accurate predictions and inaccurate
predictions.

Drevinskas et al. [153] used machine learning methods (classification and regression tree and deep neural
network classification) to find antiviral properties of medicinal plant extracts. The authors introduced three
chemical analysis on 16 medicinal plants have been chosen and investigated their antiviral properties and
chemometric characteristics. The experimental results showed that the possibility of ensure chemometric
attributes that affect antiviral activity in medicinal plant extracts.

4.3. Brain

The brain is the most complex organ in the human body because it consists of about 100 billion neurons
and one million billion (1015) interconnections [154]. It controls sensorimotor functions, such as walking and
breathing; cognitive functions, such as talking, reasoning, and memorizing; and other complex functions,
such as emotions and feelings. The brain is also subjected to many diseases requiring surgery, which could
result in either the deterioration of the cited functions or even in permanent disability. Therefore, functional
magnetic resonance imaging (fMRI) has emerged as a powerful new instrument for collecting vast quantities
of data about activity in the human brain.

Davatzikos et al. applied high-dimensional nonlinear pattern classification methods to fMRI images in
order to distinguish between the spatial patterns of brain activity associated with lie and truth [155]. The
authors performed a forced-choice deception task on 22 participants. The predictive accuracy was 88% from
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99% of the true and false responses were discriminated correctly. Nonlinear ML techniques were used in lie
detection and other possible clinical applications of fMRI in individual subjects. The results indicated that
accurate clinical tests could be based on measurements of brain function with fMRI.

The paper of Zacharaki et al. [156] focused on MRI texture and shape by using the classification of brain
tumor type and grade. Given that the automated computer analysis tool proved to be better than human
readers, the reliability and reproducibility of brain tumor diagnostic procedures were improved. Thus, a
computer-assisted classification method combining conventional and perfusion MRI was used and developed
for differential diagnoses. The authors applied the feature extraction of the tumor shape and intensity
characteristics and then utilized feature selection through SVM with recursive feature elimination.

EEG is a noninvasive tool that deals with ML approach. It is an electrophysiological monitoring method
for recording the electrical activity of the brain. Consequently, [157] focused on biometrics to understand
and distinguish humans based on their behavioral characteristics [158]. A framework was established for
the Visual Evoked Potential-based biometrics, and all the results passed through classification and feature
extraction stages.

In [84], Shoeb and Guttag introduced and evaluated the ML approach (i.e., SVM) by analyzing the scalp
EEG to detect the onset of an epileptic seizure by constructing patient-specific classifiers. The proposed
approach included shaping the problem into an appropriate ML framework, then separating seizure from
other types of brain activity by identifying the critical features. The proposed approach was applied on
two or more seizures per patient and tested on 916 hours of continuous EEG from 24 patients. The results
showed that the proposed approach detected 96% of 173 test seizures with a median detection delay of 3
seconds and a median false detection rate of two false detections per each 24-hour period.

The efficient EEG-based brain-computer interfacing (BCI) and mental state monitoring applications have
been briefly reviewed by preprocessing and classification techniques [159]. BCI allows for communication
that is solely based on brain signals and is independent from muscles or peripheral nerves [160]. Furthermore,
the authors introduced an outline of the Berlin brain-computer interface (BBCI), widely considered to be a
noninvasive tool. The results were presented with a real-time arousal monitoring experiment.

Müller et al. presented linear and nonlinear ML techniques to BCI [161]. These techniques are a salient
ingredient of the BBCI online feedback system. Their work focused on selecting the feature selection and
highlighting the common weaknesses when validating ML methods in the context of BCI. It provided a brief
overview of BBCI, which can be used for helping individuals not trained heavily to enhance and broaden
the spectrum of practical applications in BCI.

Three EEG datasets were employed in [162] to evaluate ML algorithms for use in BCI. Each of these
datasets was collected for a particular task. The first dataset is called EEG self-paced key typing for
detecting explicit left/right (L/R) button press. The second dataset is called EEG synchronized imagined
movement for predicting imagined L/R button press. The third dataset is called closed-loop cursor control
for vertical cursor control. The evaluation was performed by submitting 10 entries to the competition, where
the winning results reported for two of the three datasets (first and second datasets).

In an interesting research, Gravesteijn et al. [163] investigated the added value of various machine learning
algorithms, such as SVM, NN, and random forests (RF), in predicting the outcome of moderate and severe
traumatic brain injury (TBI). In a low-dimensional setting, the results showed that the performance of
ML algorithms is no better than that of traditional regression-based models, and that there was bias when
comparing ML algorithms to other traditional regression approaches in earlier studies that supported ML
performance.

Lv et al. [164] used improved CSP and transfer learning algorithms to enhance the accuracy of classifying
EEG signals and speed up training time. Experiments were performed on real and imaginary movements,
performed by 7 participants, in which five different subjects were applied with the right and left hand. The
results reveal that movements of left and right hand are more precise at varying speeds than those with the
same speed. Furthermore, the proposed algorithm outperforms standard classification algorithms in terms
of data accuracy, as evidenced by the findings.

Khan et al. [165] introduced a multimodal classification approach using deep learning mechanism to
classify the tumors of brain. The proposed approach begins with utilizing the linear contrast stretching.
Following that, conducting feature extraction using deep learning. Thereafter, applying a correntropy-based
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joint learning approach and the extreme learning machine to choose best features. The component features
were then merged into a single matrix. Finally, the matrix is fed into an extreme learning machine to be
classified. The results show high performance in terms of classification accuracy and computational time.

Flanders et al. [166] present a very large and heterogeneous dataset of brain computed tomography
studies to help diagnose intracranial hemorrhages using machine learning applications. There are 874,035
photos in the dataset, which were gathered from a variety of sources, including scanner manufacturers,
organizations, and countries. The dataset includes the classification of intracranial hemorrhages by a broad
number of neuroradiologists volunteers. Finally, this dataset was entered into the 2019 Machine Learning
Challenge organized by the RSNA Radiology Informatics Committee.

4.4. Medical Imaging

The contents of this section are close to those of the previous section (i.e., Brain) because both sections
are based on the same concepts, such as fMRI, MRI, and EEG [167, 168, 169]. The patterns of the medical
images can be recognized patterns through ML technique,allowing radiologists to make informed decisions
based on radiological information, like basic radiography [170], computed tomography (CT) [171], MRI [172],
positron emission tomography (PET) images [173], and radiology reports [174].

Zhang et al. presented a sequential enhancement learning technique for increased performance when using
SVM to detect microcalcification (MC) clusters in digital mammograms.The authors proposed a novel tumor
segmentation method by exploring a one-class SVM, which was capable of learning the nonlinear distribution
of the tumor data without employing prior knowledge [175]. By contrast, El-Naqa et al. employed SVM
to reduce a structural risk [176]. They also turned MC detection into a supervised-learning problem and
utilized SVM to see if the MC was present at each location in the image.

ML and pattern recognition algorithms have a significant impact on brain imaging as they help gain
novel biological insights. However, ML techniques are not usable for nonexperts. This is due to the presence
of pitfalls that can lead to false and illogical interpretations. Meanwhile, Lemm et al. introduced a review
article to provide an easy and straightforward introduction to algorithmic principles by presenting the most
frequent algorithmic topics from both a theoretical and a practical neuroscience data analyst’s perspective
[177].

[178] highlighted six types of applications in ML and radiology. All applications were distributed ac-
curately based on their contents. The authors attempted to provide all possible categories that could be
compared to a well-trained and professional radiologist, such as, diagnosis, computer-aided detection, seg-
mentation of the medical image, and registration. The development of technology in ML areas and radiology
can mutually benefit in the long run. This work benefits patients by improving accuracy, lowering expenses,
or expanding experiences.

A set of interested algorithms have appeared recently while training the deep artificial neural network
(ANN). However, these algorithms faced some limitations in fixing the actual problems because of overfitting
and vanishing gradient, as well as shortage of computing power (i.e., the lack of enough data to train the
computer system) [179].

DL is a branch of ML that deals with algorithms that are inspired by the biological and function of the
brain (i.e., ANN) [180].DL has quickly become the method of choice for assessing medical images in the field
of medical imaging, which has led to the increasing the number of related studies. Litjens et al. collected
around 300 contributions-most of them published in 2016 and the first month of 2017 [181]. The aim of
this study was to show how DL approaches have penetrated the entire field of medical image processing, to
identify barriers in applying deep learning to medical imaging tasks, and to highlight unique contributions
that address or overcome these challenges. Among the applications covered in this study are neuropathology,
abdominal, pulmonary, digital, cardiac, retina, musculoskeletal applications, and breast.

[182] presented the basis of DL methods, such as (i) photo recording successes to find the correspondence
of the model point;; (ii) reveal anatomical/cellular structures by applying the assembly process after each
layer so that features of larger input regions are progressively compressed; (iii) tissue segmentation for quan-
titative brain assessment at all ages; and (iv) computer-aided detection to observe abnormal or suspicious
areas and thus alert clinicians to draw attention.
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A dimensional reduction strategy for medical imaging classification was introduced by [183]. The authors
formulated the task as a constrained optimization problem with generative and discriminative objectives,
show how to extend it to semi-supervised learning (SSL) setting. They also introduced accuracy rates
that overcome other well-known algorithms on different datasets by showing a representation of the set
distinction, which is compatible with the previous clinical studies.

The classification is considered as the most common use of ML. For instance, nonlesions or lesions and
normal or abnormal classifications depend on the features of input (i.e., the features of the segmented
object). Thus, Suzuki collected and compared the pixel/voxel-based ML (PML), which directly utilized the
values of pixel/voxel in the medical images [184]. The contributions of the work are as follows: observing the
PMLs to clarify their classes, defining the differences and similarities between PMLs and the ML features,
determining the merits and weaknesses of PMLs, and illustrating the PML applications in medical imaging.

Wang et al. used medical images and ML techniques to introduce a new method for high-dimensional
pattern regression [185]. The uniqueness of this work is that it estimates continuous (i.e., for pattern
regression) instead of categorical variables, which are considered important in clinical diagnosis. In other
words, the proposed method used the images to predict the disease in the earlier stages. The authors
employed the basic feature extraction with the common feature extraction techniques to determine the
performance of optimal regression. The Relevance Vector Machine was then used to generate regression
models of the selected characteristics in order to simplify model parameter selection and reduce the effects
of outliers.

ML methods for medical imaging frequently perform poorly on important subgroups of the population
that are not discovered during training or testing. As a response, Luke Oakden-Rayner et al. [186] evaluate
the effectiveness of different potential strategies for assessing hidden stratification impacts and define these
impacts using synthetic trials on the CIFAR-100 testing set as well as Adelaide Hip Fracture and MURA
datasets. They explore the findings’ clinical significance and propose that assessing hidden stratification
should be a crucial element of every ML implementation in medical imaging.

Medical imaging data preparation is a time-consuming and expensive procedure that yields algorithms
with low value and poor generalization. As a response and to reap the benefits of ML in medical imaging,
Martin J. Willemink et al. [187] present an overview and clarify the essential methods for arranging and
applying medical imaging data in ML algorithms. They discuss the existing constraints of data management
and propose novel solutions to the challenge of data availability.

In addition, a number of review articles have recently been published to look into various areas of machine
learning in medical imaging [188]. The recent advancement of ML in COVID19 identification and diagnosis
is reviewed by Rokaya Rehouma et al. [189]. In the review, they concentrate on ML methods based on
CT and Xray pictures published in reputable journals, as well as a discussion of the most common aspects
of medical imaging in COVID19 patients. Furthermore, a review article of the employment of AI and
ML in medical imaging is presented by Ana Barrag´an-Montero et al. [190] to introduce the fundamental
technological foundations of AI, as well as cutting-edge ML algorithms and their implementation to medical
imaging. They explore state of the art trends and upcoming directions to aid the reader in comprehending
how AI algorithms are turning into a commonplace component in any medical image analysis process,
paving the road for AI-based solutions to be implemented clinically. In addition, a review article on ML
security, privacy, and unity issues in medical imaging is introduced by Georgios A. Kaissis et al. [191]. The
review concentrates on medical imaging implementations as well as possible attack vectors and upcoming
opportunities in medical imaging.

4.5. Wearable Sensor

Recently, there are many necessary wearable devices in our daily lives, for instance, wearable sensors
to measure physiological and mobile phones. This section illustrates the related works of ML types and
techniques used in the wearable sensors. At the end of the section, Table 4 summarizes and highlights each
type and technique of ML, a brief description of the problem, and the mechanism of collecting the datasets.
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4.5.1. Supervised

A. Deep learning and Artificial Neural Networks

The spread of IoT healthcare, sport, and other mobile devices greatly contributes in collecting massive
amount of data. Many methods have been proposed and investigated to help cope with the rapid growth
of the collected data for their efficient utilization and management.
Ravi et al. proposed a method to classify massive amounts of information collected through IoT wearable
tools using DL. The proposed method merged properties obtained from data of inertial sensor with
information acquired by a collection of shallow properties in order to improve the classification process
especially when on-node calculation was involved [192].
In addition, the DL technique was used by Hammerla et al. to track IoT wearable devices in order to
recognize and capture human daily activities [193]. Deep, convolutional, and recurrent approaches were
investigated and applied on movement datasets that were acquired using wearable devices to capture
human movement. A description of recurrent approach training was provided as well.
Eskofier et al. [194] also used the DL technique to utilize the data collected through wearable sensors. The
proposed method used the DL technique to observe the movement of patients suffering from Parkinson’s
disease (PD). The research mainly aimed to study and reveal the capabilities of DL in managing and
analyzing such data. Furthermore, Kwon et al. proposed an unsupervised learning approach to detect
user movements using data gathered from smart phones. The proposed method came as a response to
solve the weaknesses of former methods, such as creating a training dataset and increasing the number
of recognized movements [195].
Recently, ANN techniques have witnessed rapid development in pattern recognition as a result of their
learning ability to separate nonlinearly separable classes. ANNs can autonomously extract a nonlinear
combination of features by learning the complex mappings [196]. Therefore, ANNs have been widely
explored as an ideal solution to recognize human activity using wearable sensors.
Mantyjarvi et al. proposed a multilayer perceptron classifier to recognize different human motions [197].
The authors first used the principal component analysis (PCA) and independent component analysis with
a wavelet transform for ANN. They then used a multilayer perceptron classifier to recognize the different
activities of wearable device user. The experimental results using acceleration sensors demonstrated the
proper classification accuracy of the proposed method.
Given that multilayer ANNs can produce complex discriminating surfaces for recognition problems, Yang
et al. proposed a systematic framework using ANNs and acceleration data to recognize human activities
[196]. The proposed framework first used the common PCA to minimize the feature sets dimension for
static and dynamic activities. A neural classifier using a constant threshold criterion was then adopted to
differentiate static and dynamic activities. The experimental results proved the strength of the proposed
recognition framework in creating competent classifiers with satisfactory accuracy.
Meanwhile, Zhu and Sheng proposed a human daily activity recognition method that combined hidden
Markov and ANNs models [198]. First, the data of human daily activities from multiple wearable sensors
were fused. Second, the proposed recognition method was applied for the fine-grained classification of
the activity type: strong displacement activity, transitional activity, and zero displacement activity.
Experimental results proved the validation and accuracy of the proposed approach.
In another work, the same authors proposed a resource-aware and lightweight ANN technique for hand
gesture recognition [199]. The proposed method can take into account contextual information as well as
sequential limitations between different gestures. It can also designate the start and end locations of a
gesture automatically.
Motivated by the potential high performance of the deep convolutional ANNs (CNNs) due to its ability
in feature extraction from raw sensor inputs, Jiang and Yin proposed a deep convolutional ANN archi-
tecture that can learn the optimum discriminative features for activity recognition [200]. Low-level to
high-level features must be learned to achieve efficient activity recognition, the proposed architecture
considered a 2D activity image, which is an ensemble of time-series sensor signals of accelerometers and
gyroscopes. The proposed architecture achieved great performance in both computation cost and recogni-
tion accuracy. By contrast, Ordóñez and Roggen proposed a DL framework that combined convolutional
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and long-short-term memory recurrent ANNs [201]. The proposed framework can automatically uncover
features attached to the dynamics of human motion production. The experimental results, which relied
on realistic wearable sensor data collected from periodic and sporadic activities, showed good results in
terms of recognition accuracy and computation time.
Stuntebeck et al. proposed a framework for the automated tagging of health-related events using NNs.
The proposed framework collected patient’s data and sent them to a server for storage and analysis.
Thereafter, the system required users to provide positive classification by asking them about their con-
ditions being examined. The accuracy of the classifier’s decisions was improved by using user feedback.
Apache Derby and Weka data mining applications were supported on the remote server to archive col-
lected data, feature extraction, and perform statistical analysis [202].

B. Support Vector Machine

This section presents studies that use a supervised ML method, called (SVM classifier), which can be
used for classification and regression issues.
In [203], Authors provided a biomedical processor that incorporates a CPU with configurable settings for
ML accelerators for real-time and low-energy recognition algorithms. The proposed accelerators of ML
contained a SVM accelerator (SVMA) and an active-learning data selection accelerator (ALDSA). SVMA
can be adapted to several classification algorithms through several energy-scalable kernels. ALDSA was
used for online active learning of signal models through improving connection with clinical professionals
who are located in different parts of the country. The proposed system minimized the energy consumption
of two applications:ECG-based arrhythmia detection and EEG-based seizure detection.
Mannini et al. presented a probabilistic modeling method to classify different pathological gaits using
SVM classifier along with the derivative information of HMM. The experimental data were acquired
utilizing measuring portions positioned at the shank and waist from two pathological populations: post-
stroke participants and Huntington’s disease, as well as the elderly group.Huntington’s disease and
post-stroke subjects as well as the elderly group using measurement parts located at the shank and
waist. The authors used HMM likelihoods and features of time-frequency domain with post-processing
classification to improve the accuracy of the classification process [204].
Lara and Labrador presented a survey in human activity recognition based on wearable sensors [205].
They evaluated 28 systems in terms of energy consumption, obtrusiveness,recognition accuracy, and
flexibility. Moreover, they categorized learning scheme and response time into two levels of taxonomy,
namely, supervised and semi-supervised learning methods, and offline and online response times.
A fall detector prototype using feature selection and SVM was proposed by Shan and Yuan [206]. The
authors aimed to provide a system that can detect impending falls before they occur. Human motion
data were gathered using a wearable microelectromechanical accelerometer. Thereafter, the data were
sent to a PC via wireless transceivers for analysis. Feature selection was used to observe the majority
discrimination power features and SVM was used for training, resulting in the creation of the classifier,
which can further enable the system to detect falls before it occur.
A detection scheme for mental stress using physiological sensors was proposed by Sun et al. [207].
A total of 20 participants were asked to perform three human activities, namely, sitting, standing,
and walking. The physiological measurements of every participant using ECG, galvanic skin response
(GSR), and accelerometer were collected before they were subjected to mental stressors. The authors
applied three classifier algorithms, namely, the decision tree, naive Bayes, and SVM, to define the
psychological condition under stressed or relaxed states. To evaluate the influence of activity information
on stress inference, the authors then divided the training dataset to two sets. The first set contained
features of ECG and GSR, and the second set contained the accelerometer information. The analysis
results demonstrated that enhancing mental stress detection in a mobile environment required the use
of accelerometer data.
An activity recognition using a wearable acoustic sensor was presented by Yatani and Truong [208].
The authors developed a wearable acoustic sensor to recognize sound activities coming from the user’s
throat. A total of 12 sound activities were observed, including sitting and deep breath, eating, drinking,
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speaking, whistling, and laughing. A total of 10 participants were asked to wear device sensors around
their necks to record the throat sounds, and every participant performed 10 samples for each activity.
After collecting the sound data, the proposed system analyzed the features for each sound sample and
normalized the features across values for all gathered samples. SVM, naive Bayes, and 5-NN were applied
for classification. The authors focused on the results produced by the SVM classifier, which were better
than the results of other classifiers.
Meanwhile, Suutala et al. proposed a learning technique using SVM classifier to recognize different indi-
vidual activities. The data set included signals from 13 subjects engaged in 17 different daily activities.
The authors collected the features of time domain for every sensor device. The proposed algorithm was
based on SVM and combined generative learning with discriminative learning of individual to smooth
sequences of time-dependent activity. After recognizing the human activities using VSM, a forward-
backward algorithm was applied to train the probability matrix of a global transition. In the end, the
final classification was achieved via a Viterbi algorithm that used the probability matrix of transition
and the confidence values [209].
Zhang et al.[210] suggested a one-class SVM-based fall detection system for older individuals. The
authors used a wearable tri-axial accelerometer to record daily human activities. The SVM model was
learned by performing positive falling samples of 12 participants from the younger and older populations.
The observed results show the ability of SVM to classify the fall data and daily activities from the testing
dataset.
Varkey et al. proposed an algorithm to recognize different human activities and movements in a particular
activity using wearable sensors. Three participants were asked to perform six activities (at least eight
times) in their preferred ways. The authors trained SVM by various activities so that they can be
used for recognizing activities and their movements. Once SVM was trained, the proposed algorithm
began recognizing the types of activities or the movement. The proposed algorithm was evaluated across
different cases based on the training way of SVM [211].
Patel et al. employed SVM in their proposed method to evaluate the severity of symptoms and motor
difficulties from accelerometer data collected from PD patients. Twelve participants with a PD diagnosis,
with age range between 46 and 75 years, were asked to complete a series of motor tasks. Five basic
feature types were extracted from the accelerometer data for each motor activity task. SVM with three
different kernels was implemented, and the results showed that, in terms of misclassification cost value,
the third-order polynomial kernel provided satisfactory results in comparison with other kernels [212].
Wearable monitoring system was proposed in [213] to provide early warning of dangerous physiological
conditions. The researchers aimed to integrate observations from healthcare staff with data collected
via wearable sensors. A one-class SVM formulation was applied to detect the free parameters of the
proposed system. SVM was trained with the ”normal” dataset in the training stage. It was then used
to define the ”abnormal” and the ”normal” dataset in the validation stage.
An investigation of the current predictive algorithms for activity recognition was offered by Huỹnh et al.
[214]. The researchers studied the performance of four methods (K-means, nearest neighbor, SVM, and
HMM) for the recognition of high-level activity containing a small-scale set activities. A participant was
asked to wear three sensors on different body parts, including wrist, thigh, and hip. Data were collected
from the accelerometer while performing various high-level activities. When compared to other methods,
the SVM method produced better results in terms of classification accuracy.
A classification study based on SVM for the daily living activities in a smart home was presented by
Fleury et al. [215]. Multiple sensor types, including microphones, accelerometers and magnetometers,
door contact on appliances, temperature and hygrometry, and location sensors, were placed in a flat. The
features for each sensor were extracted and integrated to create a feature vector. A total of 13 participants
were asked to perform seven different things that they do on a regular basis. The acquired data were
utilized to create the training dataset using the SVM method, and the testing step was completed using
the ”leave-one-out” cross-validation model.The preliminary results showed good classification rate for
polynomial and Gaussian kernels with an adapted parameter.
Huỹnh and Schiele proposed an integrated method that combined the discriminative classifiergenerative
model with a discriminative classifier. The generative part used multiple eigenspace approached to find
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a low-dimensional representation of sensor data without supervision, whereas the discriminant part used
the produced eigenspaces to build features for training the SVM classifier. High recognition rate scales
were registered by the offered algorithm although a subset of training dataset was applied for training
[216].
Stikic et al. reported a weakly supervised recognition of human actions using wearable sensors devices.
[217]. The authors proposed two recognition approaches based on graph structure using SVM classifier
and multi-instance learning. The first approach grouped the sensor data to bags-of-activities and labels
were provided at the bag level. Thereafter, numerous multi-instance learning extensions were proposed to
label activity data. The second approach used graph structures to represent activity data and transfer
the provided labels to the unlabeled ones. The presented approaches were applied for training the
SVM classifier using the initial and new obtained labels. The researchers employed the TU Darmstadt
and PLCouple1 datasets, both of which contained long-term records of daily activities for a person in
non-laboratory settings. The results of their proposed approach were close to those of fully supervised
techniques.
Tucker et al. proposed a monitoring system to detect and diagnose patient movements to determine
compliance with their medication procedures. The proposed method used data mining technique with
SVM to classify and analyze the data acquired through nonwearable devices. The main core of the
proposed method was to observe patients while practicing daily walking then compare the observation
with their routine walking, which helped in inferring useful information regarding the patients’ health
condition [218].
Sano et al. studied the behavioral and physiological patterns of 66 students in 30 days. The Mental
Health Composite Score, the Perceived Stress Scale, and the Pittsburg Sleep Quality Index score are
four essential performance variables that affect academic achievement, according to the authors. Wear-
able sensors and mobile phone data were used to identify personality traits, sleep, mood, and stress,
among other things. The best pairings of characteristics were originally seen using sequential forward
feature selection. The results of classification techniques illustrated the relationships between the key
performances that impact the behavioral choices on GPA [219].
Sano and Picard used ML techniques to recognize the stress markers. The data was gathered via mo-
bile phone usage, a wrist sensor and 18 participant surveys. SVM, SVM with Radial basis function,
k-nearest neighbors, PCA and SVM with RBF kernel, PCA and k-nearest neighbors, and PCA and
SVM with linear kernel were among the six classifier types employed. Correlation analysis was carried
out to observe the features that were statistically significantly associated with stress. The ML meth-
ods were then applied to classify the participants into two groups according to their stress postures [220].

C. Decision Tree

The elderly are vulnerable to instances of falling, and this has inspired researchers to utilize massive
amounts of information acquired by IoT wearable devices to observe the elderly’s activities. jetola et al.
proposed a human collapse detector depending on the information acquired by healthcare IoT wearable
devices. The proposed method applied and utilized ML methods’ capabilities along with DT to sense
human collapses in four directions [221].
An efficient algorithm was introduced in [222] for the mechanical identification (automated recognition)
of natural activities utilizing a wireless heart scale director and five triaxial wireless accelerometers. The
proposed method was assessed on several datasets containing 30 natural gymnasium exercises obtained
from 21 people at two various labs. The results showed that the proposal obtained an identification
accuracy rate of 94.6% and 56.3% utilizing dependent and independent training, consequently. The
increasing heart scale data increased the accuracy of dependent and independent identifications by 1.2%
and 2.1% respectively. When agreeing to the type of activity without discrimination of intensity levels,
an independent performance of 80.6% was obtained.

D. Gaussian Process
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As IoT has led to the emergence of devices like sensors and E-health devices with the power to com-
municate through networks, several research studies have been conducted to find ways to manage and
utilize the massive information transformation acquired by this technology. A large number of studies
have been carried out in order to extract useful information from the massive amounts of data produced
by E-health devices and sensors. It is a feasible process when working with clear or clean data, but it
is a difficult process when dealing with data uncertainty caused by missing data or device problems. To
fulfill this purpose, Gaussian process (GP) [223] framework has been employed by Clifton et al. [224].
They presented a novel patient-personalized method for physiological data analysis and deduction in the
case of data uncertainty. Furthermore, 200 patients were observed to demonstrate the practicality of
the suggested technique in a real-world clinical setting. For the first time, a systematic, probabilistic
approach to patient vital sign monitoring is used in this study, which is established within a GP frame-
work. The GP paradigm provides a logical approach to inferring from noisy, potentially artifactual data
collected by sensor devices used in e-health monitoring. The concept of the GP as a distribution over
functions, which is well suited to the analysis of time series of patient physiological data, in which the
authors execute inference over functions, is of essential relevance. Later in 2018, Leo L. Duan et al.[225]
proposed a dual level GP joint hierarchical model in order to enhance personalized medical monitoring
data prediction. The model employs three independent GPs: two at the population level and one at the
individual level. The two GPs are employed at the population level to obtain nonlinear variations in
a continuous biological marker and a binary result. The proposed model is used to analyze compelling
medical data on cystic fibrosis progression of the disease, in which lung function measures and the be-
ginning of acute respiratory episodes are both observed at the same time across every patient’s clinical
course.
Furthermore, Li-Fang Cheng et al. [226] presented MedGP, a statistical framework that combines 24
clinical parameters and provides a large reference data set from which correlations between monitored
parameters may be inferred and exploited for high-quality patient state inference across time. To ac-
complish so, they create a highly structured sparse GP kernel that allows for tractable computation
over vast numbers of time points while predicting clinical parameters, patients, and patient observation
periodicity. In addition, a GP-based model is proposed by Jean-Rassaire Fouefack et al. [227]. The
proposed method, which named Dynamic multi feature-class Gaussian process models (DMFCGPM), is
a statistical modeling method for machine learning of several characteristics in medical images.

4.5.2. Unsupervised

A. Feature selection

A variety of feature selection algorithms have been used to detect human movements using the informa-
tion acquired via wearable devices [228, 229]. Zhang and Sawchuk, for example, proposed a method for
detecting human movement based on the analysis of data obtained from wearable devices. The proposed
approach used feature selection to detect the features indicating types of human motion. Physical fea-
tures of human movements were set at early stage of the proposed method, and a framework of feature
selection was implemented to evaluate the effect of physical feature set [230]. Another method that used
feature selection methods to detect human movements was proposed by Lester et al. [231]. The proposed
method combined hidden Markov models (HMMs) and boosting. Boosting was used to filter the features
and detect human movements, whereas HMM was used to recognize the regularities and harmony of the
movements.
Furthermore, Pirttikangas et al. proposed another human movement detector based on Wearable devices
placed in different parts of the human body. The proposed method minimizes the amount of features
required to detect and recognize movement [232]. In addition, a multiuser movement detection platform
was proposed byWang et al. [233]. The proposed platform used Coupled HMM and Factorial Conditional
Random Field to model sensors’ data transformation and communication.
Ugulino et al. investigated the literature of human activity detection methods and proposed a classifier
for human movements [234]. The proposed classifier used Correlation-based Feature Selection algorithm
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as a feature selection method, with the goal of avoiding redundancy and finding the most valuable fea-
tures.

B. Hidden Markove Model

A combination of sensing techniques and computational modeling for behavior recognition was proposed
by Brugarolas et al. [235]. The authors offered a canine body-area-network to give trainers improved
interpretation for dog training. A wireless sensing system was employed on a canine vest to collect data.
The proposed system used decision tree classifiers to detect the static posture of canine, such as standing,
and lying down. By contrast, HMMs were used for dynamic activities, like stairs climbing and walking.
Various dynamical ML approaches were produced and assessed in [236] to trace the appearance and
hardness of shaking and dyskinesia with the 1-s presentation by investigating flags obtained from PD
cases affecting small numbers of heterogeneous sensors with 3D accelerometric and cover electromyo-
graphic modalities. The proposed approaches were examined on a 44-h signal database constructed from
heterogeneous sensors worn by 8 PD cases and 4 healthy controls who conducted daily actions of being in
an apartment-like condition. A comparison of the effectiveness of the 4 ML approaches with independent
annotations of disease behavior and severity showed that, notwithstanding their differing procedures to
effective pattern classification, effective NNs, effective SVM, and HMMs were fairly useful in preventing
error rates of the effective tracking well under 10%. A standard set of experimentally determined signal
characteristics was utilized to externally reduce the algorithm’s demand for particular learning. They
also found that error rates under 10% were obtainable when the proposed algorithms were examined on
data from a sensor area distinct from those applied in algorithm training.
On-body wearable sensors have been extensively used in various educational and mechanical areas. Of
high importance are their treatments in mobile monitoring and pervasive computing methods. In rela-
tion to this, the unusual quantitative investigation of human movement and its electronic classification
are the foremost computational optimization assignments to have proceeded. A discussion of how hu-
man bodily movement can be analyzed was presented in [237]. On-body accelerometers with significant
importance applied to the computational optimization algorithms were used for this scheme. In terms
of the mentioned problem, the foremost steps regarding sensor choice, data recovery, feature selection,
classification, and extraction were analyzed by tracking the diagram of a generic classification scheme
with supervised training. As for the ML systems required for analysis, the special importance of MM
was highlighted in this work. In particular, the proposed method was triggered in classifiers based on
HMMs. An instance was also explained and examined by investigating a dataset of accelerometer time
range.

C. Linear Discriminant and Extreme Learning Machine

Wearable sensors that typically contain accelerometers and/or gyroscopes describe an encouraging tech-
nology for anticipating and decreasing the impacts of falls. At present [238] aimed to address the
aforementioned goal of recognizing the appearance of a fall and alert application providers to this per-
formance. Upcoming systems also give information on the reasons and events of falls in order to assist
clinical investigation and the targeting of interruptions.The goal of the present research was to improve
and test the efficiency of a wearable sensor system for determining the reasons for falls. A total of 16
young people engaged in test trials, including falls due to drops, drugs, and ”other” irregular causes.
Three-dimensional dispatch data collected during the falling actions were used in the linear discriminant
investigation procedure. This system produced 96% sensibility and 98% specificity in identifying the
problems of falls by applying acceleration data from three brands. By contrast, a unique marker pre-
sented 54% sensitivity and two markers produced 89% sensitivity. These results showed the efficiency of
a three-node accelerometer pattern for identifying fall-related problems.
One of the most common causes of injury among the elderly is falling. Utilizing wearable devices for
fall exposure has a large cost and may induce difficulty in the day-to-day lives of the elderly. To help in
resolving this issue, a mechanical fall detection method was proposed in [239], which only required a low-
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cost camera. To recognize falls originating from various daily activities, the proposed method combines
two computer vision algorithms based on form fall identification and a learning model classifier. They
chose the curvature scale space (CSS) characteristics of human silhouettes at each shape from a fall video
clip and recreated the development using a case of CSS words (BoCSS). The classifier was then used to
distinguish the BoCSS illustration of a fall from other activities, depending on ELM. A variable-length
based on PSO was proposed to identify the appropriate amount of shielded neurons, matching input
impacts, and ELM biases in order to reduce the feeling of ELM to its hyperparameters. An activity
dataset was created with 6 types of behaviors (bending, walking, sitting, falling, squatting, and lying)
from Ten cases using a low-cost Kinect depth camera. The results showed that proposed approach
obtained up to 77.14% specificity, 91.15% sensitivity, and 86.83% accuracy. On a general dataset, the
proposed approach showed comparable results to other well-known approaches of fall detection requiring
multiple cameras.

D. Clustering Applications
In recent years, ML algorithms have played an important role in DNA sequencing to resolve various
biomedical and healthcare applications issues [240, 241, 242]. Such algorithms mainly aim to distinguish
the genetic disorder. Accordingly, Manogaran et al. proposed a hybrid approach that includes the
Bayesian Hidden Markov (BHM) model with Gaussian Mixture (GM) clustering algorithms to diagnose
cancer diseases by modeling the DNA copy number change throughout the genome. The proposed
approach was compared with various existing approaches to demonstrate its effectiveness [102].
[132] aimed to conclude whether holding element functional magnetic resonance imaging (fMRI) taken
at the original pretreatment could perfectly determine character cancer. A total of 31 cases were tested
with breast cancer (aged 34-65 years) earlier to any therapy, post-chemotherapy, and one-year succeed-
ing. Cognitive examination rates were normalized based on data obtained from 43 normal woman-like
instruments and then worked to classify cases as injured or not injured based on longitudinal variations.
They included the clustering technique, a measure of insufficient connectivity, by utilizing design theory
to original resting state fMRI and recorded these measures along with significant patient-related and
medical variables into irregular forest analysis. Using these methods, the authors proposed that resting-
state fMRI is an encouraging tool for divining expected cognitive impairment linked with breast cancer.
This knowledge could identify treatment decision-making by recognizing cases at the highest risk for
cognitive impairment.
Rahman et al. utilized ML and statistical similarity matching techniques for introducing a medical
image retrieval framework [243]. The proposed framework included the following: (i) ML, supervised
and unsupervised learning techniques, such as fuzzy c-mean clustering and SVM for image pre-filtering
and classification, and (ii) statistical distance measures and a relevance feedback (RF) for similarity
matching, Where statistical distance measures are used to integrate better perceptive subjectivity and RF
to dynamically update query parameters. The simulation results revealed that the proposed framework
has improved in terms of efficiency and effectiveness.
Wang et al. argued that the majority of the existing classification techniques lacked incremental learning
ability because the monitoring of human activities, in many real-life scenarios, may last for a long time
[244]. In such a case, the reliability and accuracy of the classifiers are far from convincing as they are only
trained once from sensor data gathered over several days or weeks. In order to address the practical needs
of sensor-based human activity recognition, the authors proposed an incremental learning technique. The
proposed technique was designed based on an adjustable fuzzy clustering algorithm and probabilistic
ANNs. it can simply learn more information from new training data to improve accuracy of recognition
process. It also has the ability to freely remove or add new activities to be detected. In addition,
the process of updating the presented technique does not need previous training data. The proposed
method was based on realistic wearable sensor data been collected from various daily life activities, and
the experimental results indicated a reasonable ability to incrementally learn, in addition to the high
precision of recognition.
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Table 4: Summary of using ML techniques in wearable sensors
Type Technique Description Data set Author(Ref)

Supervised

DL
and
ANN

Classify the massive amount of information
collected through IoT wearable tools

Raw signal
First derivative

Ravi et al. ([192])

Track IoT wearable devices to
recognize human daily activities

Opp, PAMAP2
and DG

Hammerla et al. ([193])

Observe the movement of patients who
suffer from Parkinson’s syndrome

IMU Eskofier et al. ([194])

Solve the weaknesses of former methods for
increasing the number of recognized user movements

smartphone* Kwon et al. ([195])

Extracting a non-linear combination of
features by learning the complex mappings

MMA7260Q* Yang et al. ([196])

Classification the recognition of different human motion ADXL202* Mantyjarvi et al. ([197])
Classification the activity type: strong displacement,

transitional, and zero displacement activities
IMU Zhu and Sheng ([198])

Focusing on the hand gesture recognition
and daily activity recognition

IMU Zhu and Sheng ([199])

Meet the practical requirements of sensor-based
human activity recognition and improve its accuracy

S-HAR Wang et al. ([244])

Automatically identify the most effective
discriminative characteristics for activity recognition, automatically

UC1, USC
and SHO

Jiang and Yin ([200])

Uncovering the features that are attached to
the dynamics of human motion production, automatically

OPPORTUNITY Ordóñez and Roggen ([201])

SVM

Used for online active learning of signal models
through enhancing the communications with remote clinical experts

CHB-MIT and
MIT-BIH

Lee and Verma ([203])

Classify different pathological gaits using SVM
classifier along with the derivative information of HMM

IMU Mannini et al. ([204])

Evaluated twenty-eight systems in terms of
obtrusiveness, recognition accuracy, flexibility, and energy consumption

Accelerometer* Lara and Labrador ([205])

Provide a system that is able to detect
the impending falls before it occurs

NEC 78K0547* Shan and Yuan ([206])

Define the psychological condition to stressed or relaxed states
and evaluate the influence of activity information on stress inference

Accelerometer* Sun et al. ([207])

Analyzed and classified the features for each sound sample,
and normalize the features across values for all gathered samples

Wearable
Acoustic*

Yatani and Truong ([208])

Recognize different individual activities and to
smooth temporal time-dependent activity sequences

Wearable
acceleration*

Suutala et al. ([209])

Performing positive falling samples of
twelve participants of younger and elder

MMA7260Q* Zhang et al. ([210])

Recognize different human activities and movements
in a particular activity using wearable sensors

Gyroscopes* Varkey et al.([211])

Evaluate the severity of symptoms and motor difficulties
from accelerometer data for Parkinson disease patients

wearable sensor* Patel et al. ([212])

Determine the free parameters of the early
warning of serious physiological determination

wearable sensor* Clifton et al. ([213])

Recognition of high-level activity that
contained a set of small scale activities

wearable sensor* Huỹnh et al. ([214])

Identify daily live activities in a smart home
and used the features for each sensor were extracted

and put together to create a feature vector

Smart Home’s
TU sensors*

Fleury et al. ([215])

Construct a low-dimensional model of sensors
data without supervision, whereas the discriminant part

uses the produced eigenspaces to build features
IPAQ* Huỹnh and Schiele ([216])

Apply two recognition approaches based
on multi-instance learning and graph structure

PLCouple1 and
TU Darmstadt

Stikic et al. ([217])

Recognize several factors including personality traits, sleep,
mood, and stress and compare how these features performed

flight sensors* Tucker et al. ([218])

Detect and diagnose patient movements in order to check
whether they are following their medication procedure or not

smartphone* Sano et al. ([219])

Observe significant features associated
with stress and classify the participants into two

groups according to their stress posture
smartphone* Sano and Picard ([220])

DT

Using the massive amount of information
to observe old people activities

SHIMMER Ojetola et al. ([221])

Recognition the natural activities in some instances,
their strengths, using wireless heart scale director

wearable
accelerometers*

Tapia et al. ([222])

GP
Managing and using the massive information transformation

for observing the patients’ health condition
wearable sensor* Clifton et al. ([224])

Unsupervised

Feature
selection

Detecting the features which indicate
to a human motion

IMU Zhang and Sawchuk ([230])

Filtering the features, detecting human
movements, and recognizing its regularities

wearable sensor* Lester et al. ([231])

Reduce the number of features that
required to recognize and detect the movement

wearable
accelerometers*

Pirttikangas et al. ([232])

Using a new platform to model sensors’
data transformation and communication

ITS400* Wang et al. ([233])

Minimize features redundancy and
determining the most useful features

wearable
accelerometers*

Ugulino et al. ([234])

HMM
Detect the static posture of canine such as standing and lying
down, and dynamic activities, like stairs climbing and walking

inertial sensors* Brugarolas et al. ([235])

Trace the appearance and hardness of shaking and dyskinesia
and investigating flags obtained from PD cases

EMG* Cole et al. ([236])

Analyze feature selection, classification, and extraction
by tracking the diagram of a generic classification scheme with supervised training

MEMS* Mannini and Sabatini ([237])

ELM Classify and recognize falls from different daily activities SDUFall Ma et al. ([239])
*The authors didn’t use the traditional data set, they collected the data using different devices (As mentioned above)
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4.5.3. Other ML Techniques

This section presents different studies that analyze the performance of classification methods for detecting
human daily living activities.

Akhavian and Behzadan proposed a system to explore the prospect of using mobile phone sensors and
transferring nodes to identify detailed activities of construction equipment [245]. The authors employed
data logger apps for Android and iOS devices to give time-stamped data, making it easier to record data
and video in synchronization. The fast Fourier transform was used in feature extraction to convert time
domain signals to frequency domain signals, whereas ReliefF and Correlation-based Feature Selection were
used in the feature selection process. Moreover, the authors applied five classification methods, namely,
logistic regression, k-nearest neighbor, SVM, NN, and decision tree, to recognize the action of equipment.

A detection fall system using ML methods was proposed by Özdemir and Barshan. The proposed system
required fitting motion sensors (accelerometer, gyroscope, and compass) on six positions on the body. The
raw data used in this research contained 2,520 activities of daily living trials. The authors applied six
classifier methods to recognize falls from daily living activities, including the least-squares method, k-nearest
neighbor, Bayesian decision-making, SVM, ANNs, and dynamic time warping [246].

Zhang and Sawchuk proposed a framework to recognize daily human activity via wearable sensors [247].
Six equally divided axes of accelerometer and gyroscope were used for sensing nine types of human activities,
such as forward walking, going upstairs, jumping up, and sitting. The study contained 110 input feature
spaces extracted from the accelerometer and gyroscope, such as average velocity, skewness, and mean crossing
rate, to name a few. The proposed sparse representation-based approach achieved better performance than
other methods, including NN, SVM, and naive Bayesian classifier, when the feature dimensions were more
significant than or equal to 40.

Attal et al. studied classification techniques used to identify human activities in daily life using three
wearable sensors placed at three points on the body: the right thigh, left ankle, and chest. The process
of identifying human activity is comprised of three steps, including sensor placement, data pre-processing,
and classification. The study compared the performance of four supervised classification methods and three
unsupervised classification methods to recognize 12 activities, including transition, dynamic, and static
activities. The comparative experiments showed that the supervised methods provided more accurate results
than the unsupervised methods when applying extracted traits or source data. However, the unsupervised
methods were more computationally efficient than the supervised methods and did not need any label.
The experimental results demonstrate that the k-nearest neighbor and HMM classifiers achieved the best
performance among other supervised and unsupervised classification methods, respectively [248].

A comprehensive study on the classification methods for human activities was performed by Barshan
and Yüksek [249]. Three orientation tracker units were used. Each has a triaxial accelerometer, gyroscope,
and magnetometer. The data sensors were positioned at five places on the body: both knees’ sides, chest,
and wrists. The authors classified 19 body activities, including lying, standing, sitting, ascending, and
descending stairs. Eight participants were asked to perform the classified activity in their way. The PCA
classification mechanism was applied to minimize the feature set extracted from the sensors from 1,170
to 30 features. Comparisons among eight classifier methods were performed in terms of rates of correct
differentiation, computational cost, and confusion matrices. Other beneficial swarm intelligence techniques
can be used in this domain refer to [250, 251, 252, 253, 254].

5. Conclusion and Future works

This paper focuses in depth on the application of machine learning in medical diagnosis and covers
recent developments. Therefore, more than 200 research publications were gathered, studied, and analyzed,
from January 2000 to December 2022, to highlight the strengths, limitations, benefits, and drawbacks of
employing machine learning applications for various medical challenges. According to the raised challenges
studied in this review, we provide potential research possibilities and future initiatives in the field as follows:

• The majority of studies used supervised ML for cancer detection because it is sufficient for classifying
future inputs [91, 92, 100]. However, there are some limitations, such as the possibility of receiving
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incorrect class labels after classification [255], and the challenge of big data classification [111, 113].
Thus, feature selection should be included to aid in the improvement of these challenge issues [256, 113].

• ML algorithms are employed to detect the onset of some brain issues, such as trauma and epilep-
tic seizures. To improve ML performance, AI techniques can be employed in conjunction with ML
techniques to aid in adequately tracking regions of interest [257].

• To improve the diversity of component classifiers, we recommend using fuzzy classifiers in medical
diagnosis, which have not yet been utilized before [258].

• Due to a large number of medical images, such as in [259], we strongly recommend adopting un-
supervised learning approaches due to their ability to acquire and retain massive amounts of data
[260, 261].

• Finally, the massive amount of data acquired by wearable sensors necessitates an effective method
for extracting the most relevant data and dealing with massive online data processing requirements
quickly and efficiently.

Overall, this survey is intended to serve as a resource for researchers and industry professionals, and decision-
makers in their potential research and application projects in the coming years. This survey also supports
future works by presenting the most comment researches in the medical field using the learning methods.
Finally, creating a website that includes up-to-date publications is the future work to avoid outdated quickly
and keep abreast of scientific developments.
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