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A B S T R A C T

Cardiovascular Diseases (CVDs), or heart diseases, are one of the top-ranking causes of death worldwide.
About 1 in every 4 deaths is related to heart diseases, which are broadly classified as various types of
abnormal heart conditions. However, diagnosis of CVDs is a time-consuming process in which data obtained
from various clinical tests are manually analyzed. Therefore, new approaches for automating the detection of
such irregularities in human heart conditions should be developed to provide medical practitioners with faster
analysis by reducing the time of obtaining a diagnosis and enhancing results. Electronic Health Records(EHRs)
are often utilized to discover useful data patterns that help improve the prediction of machine learning
algorithms. Specifically, Machine Learning contributes significantly to solving issues like predictions in various
domains, such as healthcare. Considering the abundance of available clinical data, there is a need to leverage
such information for the betterment of humankind. Researchers have built various predictive models and
systems over the years to help cardiologists and medical practitioners analyze data to attain meaningful
insights. In this work, a predictive model is proposed for heart disease prediction based on the stacking of
various classifiers in two levels(Base level and Meta level). Various heterogeneous learners are combined to
produce strong model outcomes. The model obtained 92% accuracy in prediction with precision score of 92.6%,
sensitivity of 92.6%, and specificity of 91%. The performance of the model was evaluated using various metrics,
including accuracy, precision, recall, F1-scores, and area under the ROC curve values.
. Introduction

Data analytics merged with the power of Machine Learning (ML) has
ttracted a lot of attention across various domains due to its problem-
olving ability. ML has diverse applications throughout these domains,
uch as speech recognition, medicine, business, social media, etc. Many
reakthroughs have been driven by machine learning’s use of neural
etworks, referred to as deep learning, which is a set of algorithms
hat enables the discovery of patterns and insights in large datasets.
hese techniques and frameworks can be deployed for information
xtraction, predictions, representation learning, outcome predictions,
nd de-identification.

In the healthcare sector, there are numerous areas in which ML
as proven to be very beneficial. Considering the exponential growth
f digital real-time information generated by the healthcare sector
e.g., Electronic Health Records(EHRs), wearable devices, diagnostics
eports, etc.) [1], it is pertinent to develop smart systems to process
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such medical data. Encouraging the healthcare sector to adapt to
digitization would help to increase the storage of a lot of useful data.
Such data can cater to a variety of research, such as population aging,
the recent advancement of new treatment plans and their effectiveness,
health habits across age groups, and medical expense reports. In the
bigger picture, these analytics would provide statistics for institutions,
private parties, and governments across the region to make better
medical policies and also refine the existing ones in use [2].

According to recent findings, cardiovascular diseases are the top
listed cause and disease responsible for deaths in individual world-
wide [3]. The World Health Organization (WHO) predicts a steep
increase in deaths due to poor heart health and identifies various factors
that are harmful to the heart [4]. In the USA, heart diseases rank as
the highest cause of adult deaths. Most of the time, individuals are not
even aware of underlying issues that may lead to heart failure, strokes,
or even blocked arteries. Changes in lifestyle and health-related factors,
such as food habits, smoking, consumption of high saturated fat, lack
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of exercise, diabetes, and blood disorders, are some of the contributors.
Patients who may be at risk of heart disease should be referred to car-
diologists to determine the best-fit treatment to prevent any undesired
events as soon as possible [5]. Traditionally, health practitioners have
utilized various tests, such as blood work, electrocardiogram (ECG),
echocardiogram, angiography, testing for diabetes, blood pressure, etc.,
and then screening the results. However, this screening can be a tedious
process if a doctor has to go through hundreds of such reports. Also,
the diagnosis and further treatment are costly and time-consuming. To
reduce the time for manually checking the huge amount of data, we
propose to incorporate ML algorithms to perform the data analytics,
which would cut down the processing time significantly and allow
cardiologists to spend more time preparing treatment plans.

ML algorithms are efficient in terms of detecting patients who might
be at risk from an early stage, which will then help to reduce the overall
costs of treatment [6]. Various machine learning classifiers are used
for prediction as well as regression tasks. In the healthcare industry,
they need to be reliable and show good performance with respect
to medical data [7]. The main objective of these algorithms is the
timely detection of cardiovascular disease before severe complications
arise. Misclassifying a patient with heart disease as negative has much
higher complications compared to misclassifying a healthy patient as
having a disease [8]. Several studies report the use of machine learning-
driven methods in achieving predictions and significantly reducing
the cost of healthcare. With the amount of electronically available
medical data, we aim to deliver better quality of healthcare service. As
the world gradually moves towards complete digitization, computing
devices are used to take notes and perform documentation, and the data
availability issue is suspected to be gone in a few years. Therefore, it is
pertinent to develop the proper tools to address the need for analytics
with ML to improve the quality of human health.

Various studies have implemented ML techniques for the diagnosis
of heart diseases. Traditional classifiers have been shown to perform
well with proper model generation. The performance of such classifiers
can be improved by implementing various techniques [9]. In the work
described in this paper, the performance of various algorithms is im-
proved by the implementation of the stacking technique. Specifically, in
the concept of stacking, training is performed in level 1 with traditional
ML classifiers, and then the output is fed to the next level, also known
as a meta-level [10–12].

In subsequent sections of this paper, we discuss the proposed work-
flow, pre-processing of data, model generation, and the performance
evaluation of the proposed workflow followed by a conclusive discus-
sion and future work.

2. Literature review

Numerous studies have demonstrated the effective application of
ML models in the detection of heart diseases. The UCI Heart Disease
Dataset from UCI Machine Learning Repository is open to the public
and is one of the most used datasets in this research area [13]. The
Statlog dataset is also widely used [14]. In the clinical detection of
diseases, such ML models aim to improve accuracy and reduce the
total cost of the computation. For example, Verma et al. [15] proposed
a hybrid model using particle swarm optimization (PSO) and two
machine learning classifiers, namely K-nearest neighbor and multi-layer
perceptron (MLP), for the prediction of heart disease, which achieved
a 90.28% accuracy. Aakash Chauhan et al. (2018) introduced a model
that extracts data from EHRs based on association rule generation and
utilizes ML association mining for frequent pattern growth in a dataset.
The model helps to achieve an overall outlook of a patient’s data and
underlying patterns in the dataset [16].

Saqlain et al. [17] developed a model using the Fisher score al-
gorithm for feature selection and SVM classifier for the prediction
model, which achieved an accuracy of 81.91%, sensitivity of 72.92%,

and specificity of 88.68%. Latha and Jeeva [18] designed a hybrid

2

model that implements four ML classification algorithms, namely NB,
BN, RF, and MP, and incorporates various ensemble learning meth-
ods, obtaining an accuracy of 85.48%. Beunza et al. (2019) used a
machine learning approach to how machine learning methods can be
of great use for diagnosis with small datasets. They used R studio
for the computations. Various methods such as decision tree, boosted
decision trees (DTs), random forest, support vector machine (SVM),
neural networks(NN), and logistic regression were tested. The highest
accuracy obtained was 85% by boosted decision trees [19]. Subrat
Kumar Nayak et al. (2020) emphasize the use of feature selection.
The work includes 23 datasets, one of which is the heart disease
dataset. Using filter methods, 13 feature subset was chosen followed
by 10-fold cross-validation [20]. Liyuan Gao et al. (2020) proposed
sampling and substitution methods for the Bayesian hyper-parameter
optimization technique. Then compared various ML classifiers to detect
irregularities. For breast cancer, 94% accuracy and for heart disease,
73.40% of accuracy was obtained [21]. Ivan Miguel Pires et al. (2021)
experimented with multiple classifiers such as SVM KNN, DT, neural
networks, combined nomenclature (CN2) rule inducer. All the selected
classifiers underwent 5-fold cross-validation, 10-fold cross-validation,
and 20-fold cross-validation. The best accuracy score of 87.69% was
obtained by DT, SVM and SGD at 20,10, and 5 fold respectively [22].

3. Materials

Fig. 1 presents the workflow of the model, where data are initially
acquired from the source, converted into a dataset, and then pre-
processed. The model generation subsequently occurs, followed by
analysis of the results. Each step of the model is discussed in detail
in subsequent sections.

3.1. Dataset description

In this research, the UCI Heart Disease Dataset from the UCI Ma-
chine Learning Repository was selected as the open dataset taken,
named which is available online. It is a combination of 4 datasets col-
lected from Cleveland Clinic Foundation, Medical Centre Long Beach,
Hungarian Institute of Cardiology and University Hospital Switzerland.

The dataset is comprised of 303 instances of records, out of a total of
76 attributes. In this study, only 13 attributes and one target attribute
were taken into consideration. Table 1 describes the attributes of the
UCI dataset, specifically 8 categorical and 6 numeric attributes. The
dataset s a combination of different clinical test result data, such as
serum cholesterol, fasting blood sugar, vessel count, and thalassemia
detected from blood work. ST depression and slope of ST-segment were
obtained from the electrocardiogram.

4. Methods

4.1. Pre-processing of the dataset

In this study, for the initial step of data pre-processing, we per-
formed outlier detection. To improve the model’s performance, Z-score
outlier detection was used. Based on the empirical rule, the data point is
considered to be an outlier in a distribution where the z-score is greater
than 3. A z-score, or standard score, is the value that represents how
far a data point is from the mean value, indicating the variability of an
attribute’s value in a dataset.

𝑍𝑠𝑐𝑜𝑟𝑒 =
𝑥 − 𝜇
𝜎

(1)

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥 − 𝑥min

𝑥max − 𝑥min
(2)

For categorical attributes, such as sex, chest pain (cp), resting
electrocardiograph(restecg), and slope of the st segment(slope), one
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Fig. 1. Workflow of the model.
Table 1
Attribute description of the UCI heart disease dataset.

Sr no. Attribute Description

1 Age(age) Age of the patient (in years)
2 Sex(sex) Gender (0 = Female and 1 = Male)

3 Chest pain(cp) 1 = Typical angina, 2 = Atypical angina, 3:Non-anginal pain,
4:Asymptomatic pain

4 Resting blood pressure(trestbps) Resting blood pressure (in mm Hg)
5 Serum cholesterol(Chol) Serum cholesterol level (in mg/dl)
6 Fasting blood sugar(fbs) Fasting blood sugar (>120 mg/dl 0 = False, 1-True)

7 Rest electrocardiograph(restecg) Resting ECG (0 = Normal, 1 = ST-T wave abnormality, 2 =
LV Hypertrophy)

8 Maximum heart rate(thalach) Maximum heart rate achieved
9 Exercise-induced angina(exang) Exercise-induced angina (0 = No, 1 = Yes)
10 ST depression(oldpeak) ST depression induced by exercise relative to rest

11 Slope of ST segment(slope) Slope of peak exercise ST segment (1 = up sloping, 2 = flat,
3 = down sloping)

12 Vessel count(ca) Number of major vessels colored by fluoroscopy (range 0–3)
13 Thalassemia(thal) Thalassemia type (normal, fixed defect, reversible defect)
14 Heart disease(target) 0 = negative of disease, 1 = positive for heart disease
hot encoding was applied [23]. In this method, the attribute is con-
verted into a numerical interpretable form for better adaptability and
performance with machine learning algorithms.

For feature scaling, two datasets were pre-processed for preliminary
analysis. For the first dataset, attribute values were standardized using
the standard scaler. For the second dataset, values were normalized
using the min–max scaler. In the min–max scaler, the values are in the
range of 0 to 1, where 0 is the minimum value found and 1 denotes the
maximum. The rest of the data are decimals in the range of 0 to 1.
3

4.2. Correlation heatmap of the dataset

Visualization of the dataset is an important part of the pre-
processing step. Various methods of visualization give an overall idea of
how the dataset is in a broad picture. Graphs such as bar graphs, charts,
histograms, density estimate plots, etc provide a visual representation
of the data for analysis. The correlation heatmap Fig. 2(a), depicts
how the attributes of the taken dataset correlate to the target attribute
(the attribute that denotes if a person has heart disease or not).
The matrix represents the correlation coefficient of all the pairs of
attributes. Heatmap visualization is a 2-dimensional representation of
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Fig. 2. (a) Heatmap of the dataset attributes; (b) Stacking concept diagram. . (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
some selected or all the features of a dataset, where the intensity level
of color shows the magnitude of variation in comparison to the other
features. The darkest hue of color represents the attribute having the
highest correlation with the target attribute and the lightest hue is the
least correlating attribute.

4.3. Model building

After the data are pre-processed, the next step is to generate the
model. The proposed work primarily focuses on the ML method of
stacking, as shown in Fig. 2(b), in which various machine learning
classifiers are combined in two levels, which generate a higher pre-
dictive model performance. Level 1, also known as the ‘‘base level’’ or
"base learners’’, contains the set of traditional ML algorithms. Following
that, the second level, known as the ‘‘meta level’’ or "meta learners’’,
takes the input from the former layer. The main advantage of stacking
algorithms in two levels is the utilization of the heterogeneous nature
of multiple classification algorithms. This heterogeneity is where weak
learners prove to be essential because of their diverse nature. Every
classifier comes with certain strengths and drawbacks. Stacking helps
to combine the best scenarios from the chosen classifiers. At the base
level, various classifiers fit the training data and give predictions. Then,
the meta level figures out the best way to maximize the strengths of
each classifier and produce the final optimal prediction results.
4

For the base learners, classifiers include Random forest (RF), Multi-
layer perceptron(MLP), k-Nearest Neighbor(KNN), Extra Trees Clas-
sifier(ET), Extreme Gradient Boosting(XGB), Stochastic Gradient De-
scent(SGD), Support Vector Classifier(SVC), Adaptive Boosting(ADB),
Decision Tree(CART), and Gradient Boosting (GBM) classifier. In ad-
dition, Logistic Regression (LR) and Naive Bayes (NB) were used in
the preliminary experimental steps. As the number of classifiers used
for the base level affects the overall performance, we selected 10 of
the above-mentioned classifiers. Having a diverse set of base learners
is essential as they produce results based on different assumptions.

After data were pre-processed, 10-fold cross-validation of the train-
ing data was performed to avoid model over-fitting. The total number
of entries was divided into 10 sections, also known as folds, after
reshuffling the data to avoid biased predictions. In every step of cross-
validation, a particular fold was treated as test data and the rest as
training data. This process follows a total of 10 iterations. Due to the
limited number of instances available in the dataset, cross-validation
was conducted for performance comparison. This ensures that the bias
and variance of an algorithm are reduced to clearly show how well that
particular algorithm performs with the taken dataset.

For both datasets, averaged-out scores of accuracies, precision, and
recall were recorded with their standard deviation. The comparison is
shown in Table 2. Specifically, 75% of the data was used for training
and 25% for testing the models. The 10 ML classifiers selected for the
base learners were RF, MLP, KNN, ET, XGB, SVC, SGD, ADB, CART, and
GBM.

For the meta-learner level, various classifiers were tested, and their
performance scores are provided in Table 3. Multi-Layer Perceptron
(MLP) classifier was selected as the meta-learner. Due to its adaptive
learning feature, MLP was chosen since it learns and can be trained in
real-time and is best suited for non-linear data, which is a good fit for a
classification problem with a predictor label. GBM and MLP performed
the same in terms of accuracy, but GBM produced higher false-positive
predictions, as shown in Fig. 3(a) and (b). Therefore, MLP is considered
a better fit for the particular scenario where misclassification of a
positive class is undesirable in clinical diagnosis.

5. Results and discussion

The above-mentioned procedure was performed on a 64-bit machine
with a 4th Gen Intel i5 CPU (8 GB DDR3+1 TB Hard drive+20 GB SSD).
Python was chosen as the language for the machine learning tasks on
the Jupiter notebook 3.7.2. Considering the nature of medical data, we
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Fig. 3. Confusion matrix with (a) GBM as meta-learner; (b) MLP as meta-learner.
Table 2
Performance comparison of data.

Classifiers Standardized data Normalized data

Accuracy Precision Recall Accuracy Precision Recall

RF 0.779
(±0.075)

0.807
(±0.087)

0.732
(±0.136)

0.805
(±0.068)

0.794
(±0.125)

0.773
(±0.126)

MLP 0.806
(±0.061)

0.791
(±0.102)

0.833
(±0.077)

0.815
(±0.098)

0.810
(±0.112)

0.833
(±0.111)

KNN 0.783
(±0.091)

0.782
(±0.127)

0.832
(±0.086)

0.769
(±0.092)

0.777
(±0.128)

0.831
(±0.102)

ET 0.787
(±0.087)

0.806
(±0.117)

0.828
(±0.111)

0.796
(±0.074)

0.805
(±0.114)

0.856
(±0.112)

XGB 0.783
(±0.061)

0.776
(±0.108)

0.851
(±0.079)

0.783
(±0.061)

0.776
(±0.108)

0.851
(±0.079)

SVC 0.734
(±0.122)

0.743
(±0.147)

0.782
(±0.177)

0.756
(±0.109)

0.750
(±0.114)

0.825
(±0.150)

LR 0.793
(±0.087)

0.789
(±0.116)

0.858
(±0.113)

0.783
(±0.102)

0.791
(±0.125)

0.825
(±0.121)

SGD 0.703
(±0.122)

0.765
(±0.126)

0.833
(±0.161)

0.719
(±0.114)

0.837
(±0.151)

0.693
(±0.180)

ADB 0.743
(±0.075)

0.749
(±0.113)

0.779
(±0.096)

0.743
(±0.075)

0.749
(±0.113)

0.779
(±0.096)

CART 0.721
(±0.077)

0.738
(±0.126)

0.773
(±0.126)

0.711
(±0.067)

0.750
(±0.107)

0.740
(±0.132)

GBM 0.775
(±0.062)

0.784
(±0.110)

0.833
(±0.070)

0.792
(±0.078)

0.806
(±0.112)

0.824
(±0.078)

NB 0.680
(±0.102)

0.632
(±0.112)

0.782
(±0.177)

0.680
(±0.102)

0.632
(±0.112)

0.693
(±0.180)
Table 3
Accuracy performance of various classifiers as meta-learner.

Classifiers Accuracy scores Precision Recall

RF 0.8918 0.9230 0.8780
LR 0.9054 0.9250 0.9024
KNN 0.8918 0.8837 0.9268
NB 0.8918 0.9024 0.9024
MLP 0.9189 0.9268 0.926
ET 0.8783 0.9210 0.8536
XGB 0.8918 0.9230 0.8780
SVC 0.8783 0.9000 0.8780
SGD 0.8918 0.8837 0.9268
ADB 0.8783 0.8869 0.9024
CART 0.8918 0.9024 0.9024
GBM 0.9189 0.9487 0.9024

tested and recorded multiple performance metrics, including accuracy,
precision, recall, and area under the ROC curve for evaluation [24–26].

As shown in Table 2, 12 different classifiers were tested on the
dataset. Due to the limited number of records available in the dataset,
5

cross-validation was performed as it gives the model multiple folds of
data for training and testing in order to avoid over-fitting as well as
reduce bias. Then, the results were recorded as mean values.

Algorithm 1 above shows a 10-fold cross-validation process. The 10
top-performing classifiers were selected for the next step. One dataset
was standardized using the standard scaler function, and the other
was normalized using the min–max scaler function. As discussed in
the pre-processing section, outliers were removed prior to the stan-
dardization and normalization process. Normalized data performed
better than standardized data in the majority of the classifier cases.
Therefore, normalized data were used in subsequent experiments. Due
to the heterogeneous nature of ML methods, as we can see some
classifiers have good precision and recall scores but fail to achieve
good accuracy. After the final predictions were made, the performance
metrics were calculated based on the confusion matrix and the values
of True Positive (TP), True Negatives(TN), False Positive(FP), and False
Negative(FN) labels. In Fig. 3(b), the confusion matrix exhibits 3 false
positives and 3 false negatives predictions.

Accuracy is the measure of a correctly classified class. Precision is

the measure of the ratio between true positives to the total number
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Fig. 4. (a) Comparison of accuracy scores; (b) Comparison of precision scores.
Table 4
Comparative result of model with classifiers.

Model Accuracy Precision Sensitivity Specificity F1-score ROC Log loss Matthews correlation co-efficient

GBM 0.824 0.868 0.804 0.848 0.835 0.826 6.067 0.649
RF 0.864 0.878 0.878 0.848 0.878 0.863 4.667 0.726
MLP 0.891 0.883 0.926 0.848 0.904 0.887 3.733 0.781
KNN 0.905 0.904 0.926 0.878 0.915 0.902 3.267 0.808
ET 0.891 0.902 0.902 0.878 0.902 0.890 3.733 0.781
XGB 0.824 0.850 0.829 0.818 0.839 0.823 6.067 0.645
SVC 0.918 0.888 0.975 0.848 0.930 0.912 2.800 0.839
SGD 0.905 0.947 0.878 0.939 0.911 0.908 3.267 0.812
ADB 0.797 0.760 0.926 0.636 0.835 0.781 7.001 0.598
CART 0.756 0.810 0.731 0.787 0.769 0.759 8.401 0.516
Stacked classifier 0.918 0.926 0.926 0.909 0.926 0.917 2.800 0.835
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Table 5
Parameters specified for various classifiers.

Classifiers Parameters

KNN k = 5
SVC kernel = ‘linear’, gamma = ‘auto’, probability = ‘true’
LR penalty = l2
GBM n_estimators = 100, max_features = ‘sqrt’
RF criterion = ‘entropy’, n_estimators = 10
MLP Alpha = 0.0001
ET n_estimators = 100
SGD max_iter = 100

of cases classified as positives (true positives and false positives). For
any medical predictive model, a good recall score (also known as
sensitivity) and specificity should be maintained. Recall is a measure of
how well the model correctly identifies true positive cases. Specificity
is the number of correctly classified negatives by the model to actual
negative cases.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(3)

𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(4)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑟𝑒𝑐𝑎𝑙𝑙) = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(5)

F1-score is a performance metric, which is the resulting score com-
ination of precision and recall’s harmonic mean. The Area Under the
urve (AUC) of the Receiver Characteristic Operator (ROC) is a graph
f the true positive rate against the false positive rate, which is used
or binary classification problems. A higher ROC score indicates that
he model performs well.

Matthews Correlation Coefficient (MCC) is a performance metric
hat produces a high score when a model performs well across all four
ategories (TP, TN, FP, and FN).

𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁 (6)

𝐹𝑃 + 𝑇𝑁 e

6

𝐶𝐶 = 𝑇𝑁 × 𝑇𝑃 − 𝐹𝑁 × 𝐹𝑃
√

(𝑇𝑃 + 𝐹𝑃 )(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃 )(𝑇𝑁 + 𝐹𝑁)
(7)

Table 4 displays the performance comparison of all classifiers based
n the 8 performance metrics, including accuracy, precision, sensitivity
r recall, specificity, F1-score, AUC-ROC, log loss value, and MCC.

The stacked classifier outperformed the other ML classifiers with
n accuracy of 92%, precision of 92.6%, sensitivity of 92.6%, and
pecificity of 90.9%. SVC closely follows with an accuracy of 91%.

Table 5 lists the parameters defined for some of the tested classifiers,
uch as KNN, SVC, GBM, RF, ET, and SGD [30–49]. For the other
lassifiers, their default parameters were used. Values were pre-defined
y the sci-kit learn library. Comparisons of all traditional classifiers
ith the stacked classifier based on accuracy, precision, and recall are

llustrated as bar graphs in Figs. 4(a), (b), and 5(a) respectively. Table 6
resents the performance comparison of our proposed stacked model
ith existing approaches in the literature that used the same heart
isease dataset.

The AUC-ROC curve was also used for performance evaluation,
hich depicts how well a classifier is able to distinguish between two

lasses [50]. In clinical scenarios, the ability to discriminate the data
etween positive and negative classes is of prime importance.

Fig. 5(b), compares the ROC score of the proposed stacked classifier
ith other classifiers, where a higher area under the curve indicates
ood performance. In the graph, we can see stacked classifier’s curve
as a greater area with an inclination towards the true positive rate
xis.

. Conclusion and future work

In this work, we propose an effective model that incorporates data
re-processing with outlier detection and the stacking of classifiers for
redicting heart diseases. The data used was first normalized so as to
nsure that the distribution of data is even and on a similar scale. This
nsures the training stability of the model and gives better performance.
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Table 6
Result comparison with existing approaches for heart disease predictions—UCI dataset.

Author Methods Accuracy Precision Recall

Christalin Latha, et al. NB, BN, RF, MP with majority voting 85.48% N/A N/A
Mohan et al. [27] HRFLM 88.4% 90.1% 92.8%
Haq et al. [28] KNN with SBS feature selection 90% N/A N/A
Kavitha et al. [29] Hybrid DT and RF 88% N/A N/A
Saqlain et al. SVM with Fisher score + MCC feature subset selection 81.19% N/A N/A
Proposed model Stacked ensemble classifiers 91.8% 92.6 92.6%
Fig. 5. (a) Comparison of recall scores; (b) Comparison of AUC-ROC values.
Herein, we used 10 different classifiers with different strengths, such
s instance-based (e.g. KNN), probabilistic (e.g.NB), and a few ensem-
le (e.g. XGB and GB) classifiers. Considering those different methods
or prediction, we stacked various classifiers to take advantage of their
ifferences in strengths. Using MLP as the meta-learner, we obtained re-
ults with 92% accuracy. The proposed stacked classifier outperformed
he traditional machine learning classifiers better in terms of overall
arameter comparison with a precision of 92.6%, sensitivity of 92.6%,
nd specificity of 91%. The proposed model exhibits the advantages of
ombining weak learners and using their heterogeneity to strengthen
verall prediction results.

Heart diseases often result in poor quality of life or even death.
herefore, early treatment could help to save many lives if CVDs are
redicted on time. However, it is not manually feasible for cardiologists
o analyze the large amount of data acquired for a patient to make a
imely treatment plan. Hence, primary screening by machine learning-
ased systems is a promising solution. Such systems need to be reliable
nd efficient for diagnosing patients by predictive analysis. The aim and
se of such predictive models in the healthcare sector will help save
ives and make sure no patient with heart disease is left undiagnosed.
n this work, our method achieved good accuracy with high sensitivity
n predicting patients with heart diseases.

The demonstrated high sensitivity indicates that the model has
ewer false-negative results compared to traditional approaches. In
ther words, our method will ensure that no patient with heart disease
s misdiagnosed or classified as negative for the disease. Importantly,
his will allow the cardiologist to quickly establish the appropriate plan
f action.

For future work, we plan to evaluate and test the proposed model
n various other datasets. The limited amount of data, instances, and
umber of attributes is the main issue facing machine learning ap-
roaches. In the future, more work and research can be done if we
re able to acquire a greater quantity of good-quality medical data by
ollaborating with hospitals and other data-producing entities.

ata availability

Data will be made available on request.
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