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ABSTRACT Machine learning algorithms such as Support Vector 

Machine (SVM) have been widely used to detect brain tumors in big 

data environments.  However, the SVM classifier is unsuitable for a 

large dataset as the complexity involved is found to be high. 

Therefore, in this study, a MapReduce model is introduced with SVM 

to handle large-scale data and deal with this issue. In this article, a 

framework called Mutual Informative MapReduce and Minimum 

Quadrangle Classification (MIMR-MQC) is introduced for brain 

tumor detection to handle challenges associated with big data 

classification. Here, preprocessing is performed using MIMR, which 

removes unwanted and redundant attributes in the brain tumor 

dataset. This technique reduces the computation complexity and time 

using a big dataset for detecting the brain tumors. Then, the 

Minimum Quadrangle Support Vector Machine model is created 

using Lagrange multipliers and Radial Basis Kernel function for 

improving the efficiency of the classification process. The MIMR-

MQC framework is validated on a standard dataset called Central 

Brain tumor Registry of the United States (CBTRUS). Results show 

that the proposed model observed 21% of higher detection accuracy 

by minimizing the computational complexity and detection time by 

37% and 27% respectively in comparison with existing models. A 

comparison with state-of-the-art machine learning techniques, the 

MIMR-MQC framework performs better in terms of brain tumor 

detection time and accuracy due to the better distribution of data. 

Keywords—Big data, Mutual Information, MapReduce, Quadrangle 

Classification, Lagrange multipliers, cancerous, non-cancerous. 

1. INTRODUCTION 

With the exponential growth of big data in the biomedical and 

healthcare communities, advanced disease detection has enabled 

timely help to patient and community service. Various big data-as-

a-service frameworks were developed to process the big data in 

Wang et al. (2018); Wu et al. (2018) to provide proactive services. 

However, the accuracy was minimized with the insufficient qual-
ity of medical data. Divergent regions additionally manifested 

unique features of certain regional diseases, which may weaken 

the detection of disease. Machine learning algorithms Amin et al. 

(2019), streamlined in this context, were used for successful de-

tection of chronic disease breakout in disease-frequent societies, 

named, Convolution Neural Network-based Multimodal Disease 

Risk Prediction (CNN-MDRP), Chen et al., (2017). The structured 

and unstructured data in the healthcare field were combined to 

evaluate the risk of disease. Initially, a latent factor model was 
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used to restore the missing data from the medical records. Then, 

statistical knowledge was utilized to ascertain the major chronic 

diseases. Finally, a novel CNN-based multimodal disease risk pre-

diction (CNN-MDRP) method was created for both structured and 

unstructured data. With this, the disease prediction was done 

efficiently by integrating structured and unstructured features. 

Conducted experiments on the hospital dataset revealed higher 

prediction accuracy with minimum running time. Despite the ob-

served higher prediction, computational cost or time is increased 

through obtaining more essential features from a big dataset. 
Hence, to address this issue, the Mutual Informative MapReduce 

technique is developed based on higher correlation essential infor-

mation that is further utilized for brain tumor detection. In the 

MIMR-MQC framework, the input is taken as preprocessed infor-

mation. The Mutual Informative MapReduce method performs 

minimum preprocessing to find the higher correlation information 

and remove the redundant attributes. By the process of prepro-

cessing, the computational cost or time for brain tumor detection 

are decreased. The MapReduce function provides the resultant re-

duced features, where more suitable features are selected to find 

the tumor are called high correlation. In addition, the features that 
are not appropriate for detecting brain tumor are termed lower cor-

relation information. Subsequently, the lower correlation infor-

mation is discarded to decrease the computational cost or time in-

volved during preprocessing.   

Another machine learning technique is the Deep Neural Network 

(DNN) (Amin et al., (2018) Mohsen, et al. (2018)). A DNN-based 

architecture has efficiently been segmented and classified the 

brain tumor with the aid of magnetic resonance images (MRI). The 

DNN-based architecture employed 07 layers of classification. It 

includes 03 convolutional, 03 ReLU and a SoftMax layer. The in-

put MR image was initially split into multiple patches. Then, the 
center pixel value of each patch was provided as input to the DNN. 

Finally, the DNN-based architecture allocated labels on the basis 

of center pixels and conducted the task of segmentation Liu et al., 

(2018). The DNN-based architecture provides better performance 

in terms of accuracy and average processing time. However, brain 

tumor detection time was not efficiently minimized in DNN. A 

framework based on Mutual Informative MapReduce and Mini-

mum Quadrangle Classification (MIMR-MQC) was developed for 

brain tumor detection in the big dataset to address this issue. The 

MapReduce function was particularly well suited for large-scale 

data analysis that divided the dataset into smaller groups. MapRe-

duce works on Map and Reduce functions to handle the big dataset 
in the MIMR-MQC framework. The map and reduce process were 

performed to sort the more relevant features from the input dataset. 

SVM also executes data classification by means of a drawn opti-

mal hyperplane that acts as a separator between the two classes. 

The combination of MapReduce with the classification model 

Selvapandian, & Manivannan, K. (2018) in this paper, to improve 

the tumor detection performance and decreases the computation 

complexity in a large dataset. 



  

 

Mutual Information (i.e., informative) Criterion MapReduce and 

Minimum Quadrangle Support Vector Machine model are used in 

this article to detect the big brain tumors data. The contribution of 

this work includes the removal of unnecessary features for detect-

ing tumors using MIC-based MapReduce model. At first, Mutual 

Information Criterion MapReduce is developed to remove the re-

dundant attributes present in the brain tumor dataset and extract 

the relevant attributes for brain tumor detection. MapReduce is 

created with the aid of Mutual Information in preprocessing. It ig-

nores the uncertainty in the input dataset, executes the map, and 

reduces functions for providing more related features. This, in 
turn, removes irrelevant features in the proposed framework. Next, 

the Minimum Quadrangle Support Vector Machine model is de-

signed to efficiently classify cancerous and non-cancerous cells by 

applying the Support Vector Machine model for tumor detection 

at an early stage with minimum computation overhead. The MAX-

MIN margin values and radial basis kernel function is also com-

pared to discover the brain tumor at an early stage. If the kernel 

value is larger than the MAXMIN margin value, then the input is 

cancerous; otherwise, the input is noncancerous (used multiple 

times). This means that the brain tumor detection rate is highly 

improved. 

This paper has the following organization. Section 2 describes the 

background knowledge, including MapReduce, classification, and 

brain tumor detection model. Section 3 proposes the Mutual Infor-

mation Criterion MapReduce model and the Minimum Quadran-

gle Support Vector Machine model for brain tumor detection. Sec-

tions 4 and 5 present the experimental settings and discuss the re-

sults, respectively. Finally, Section 6 presents the conclusion. 

II. BACKGROUND 

Organizing, managing and interpreting big healthcare data is de-

manding, economically costly, and challenging. A blueprint for 

sustained supervision and interpretation of such complex data re-

mains difficult without a powerful, fundamental theory for char-
acterization, investigation, and reasoning. Dinov (2016) investi-

gated several big data challenges, opportunities and software 

mechanisms for combining healthcare data, advanced analytic 

tools, and distributed scientific computing Xing et al., (2015). Ex-

amples were also provided for processing heterogeneous datasets 

with the help of automated and semi-automated classification 

techniques. However, the precise detection of brain tumors was 

not performed. Taheri et al. (2010) introduced a threshold-based 

scheme that was search-based and adaptive for efficient brain tu-

mor segmentation. The scheme also calculated the global thresh-

old for tumor segmentation through, which the tumor’s density es-
timation was efficiently made by discarding the unnecessary tu-

mors. A method was also presented to devise the value of the 

threshold iteratively, resulting in improved tumor detection accu-

racy. However, accuracy was compromised with a large dataset.  

Pereira et al. (2016) investigated an automation segmentation 

method based on the Convolutional Neural Network to address the 

issue by applying intensity normalization. However, accurate 

brain image segmentation was difficult and consumed more time. 

The brain is one of the most complicated organs in the human body 

with billions of cells. A brain tumor is occurred when there is an 

unbounded partition of cells, resulting in an abnormal group of 

cells inside the brain. Deep learning, a machine learning technique 
is applied to several complex problems, classified the brain tumors 

in humans (Mohsen et al., 2017). This was performed utilizing dis-

crete wavelet transform and principal component analysis, result-

ing in the improvement of tumor cell classification. However, ef-

ficient differentiation between the healthy tissues and non-healthy 

tissues were not performed. Menze et al. (2016) studied a genera-

tive probabilistic model for modeling brain tissues to address this 

issue by applying Gaussian Mixture and Expectation Maximiza-

tion to delineate lesion areas. However, the more detailed infor-

mation about brain tumor could not be analyzed.  

Automated computer-aided detection is one of the most important 

topics in medical imaging. Roth et al. (2016) studied a two-tier 
cascade framework by applying coordinates of the region of inter-

est, performed sampling through scale transformations, random 

translations, and rotations based on the extracted region of interest 

to different medical imaging datasets. However, the two-tier cas-

cade framework consumed more time to detect the brain tumor 

with large-scale data. For large-scale data clustering, Banharn-

sakun (2017) investigated a MapReduce-based Artificial Bee Col-

ony model to cluster huge volumes of data in a reasonable time. 

This was performed by applying squared Euclidean distance be-

tween each data and centroid. Nevertheless, the relevant features 

failed to be extracted in a brain tumor image. Tripathi et al. (2018) 
designed an Enhanced Grey Wolf Optimizer (EGWO) algorithm 

with binomial crossover and levy flight steps to grow the search 

capability. Large-scale datasets were also analyzing din EGWO by 

applying the MapReduce model, and the method was proved better 

in terms of F-measure. The task of data analytics is growing in the 

healthcare industry over the last few years with the immense influx 

of multimodality data. This has also resulted in the growing inter-

est in the generation of analytical, data-driven methods, and mech-

anisms of machine learning algorithms in health informatics. Us-

ing deep learning, Ravı et al. (2017) studied an elaborate review 

of research in health informatics, including its merits, demerits, 

applications and so on. Al-Ayyoub et al. (2012) presented yet an-
other method that used a decision tree to classify brain tumor im-

ages. However, the accuracy level was compromised with in-

creased noise or unwanted data. Aslam et al. (2015) significantly 

improved an edge detection algorithm to extract tumor cells using 

the image independent thresholding method. However, the early 

stage of brain tumor detection was not performed. Shboul et al. 

(2017) presented a quantitative analysis for brain tumors; alt-

hough, its accuracy was not guaranteed while handling noisy im-

ages.  

Shree & Kumar (2018) studied an algorithm for removing the un-

wanted noise, feature extraction using Gray Level Co-occurrence 
Matrix and segmentation of brain tumor based on Discrete Wave-

let Transform to minimize the complexity involved in tumor de-

tection. The performance of brain tumor detection was improved 

using this method. However, the size of the input data was not 

reduced. Aswathy et al. (2017) investigated a wrapper-based ge-

netic algorithm by combining machine learning with a support 

vector machine learning technique to detect and segment brain tu-

mor images. However, due to anatomical variability, segmenting 

complex structures were found to be difficult. However, the accu-

rate segmentation of complex structures is difficult due to anatom-

ical variability. Xue et al. (2017) intended a survey of deep learn-

ing for automatic brain tumor detection. Blanc-Durand et al. 
(2018) proposed another automatic lesion detection and segmen-

tation method by using a convolutional neural network, but the 



  

 

performance was not improved. Jha et al. (2017) reported a novel 

method, including Wiener filter to decrease the noise or unwanted 

information, for feature extraction using 2D-discrete wavelet 

transform (2D-DWT). With the extracted results, probabilistic 

principal component analysis (PPCA) reduced the dimensions 

and, finally, a random subspace ensemble (RSE) classifier 

efficiently detected brain tumor. However, the dimensionality re-

duction remained unaddressed. 

Paul & Rho (2016) developed a probabilistic model with mobile 

and dynamic machines to identify the shortest path and the lowest 

cost among machines using a graph-based model. However, the 
real-time power management was not performed. Bhattacharjee et 

al. (2018) presented the Plant Growth Simulation Algorithm 

(PGSA) to automate and optimize the leukocyte analysis process. 

Despite optimization, time consumption was not reduced. 

However, time consumption was no sufficiently decreased. Din & 

Paul (2018) discussed a healthcare architecture-dependent analy-

sis for energy conservation of health monitoring sensors and 

recognition of big data analytics. The computations involved in 

healthcare architecture remained unaddressed. Rathore et al. 

(2016) discussed the Real-time Medical Emergency Response 

System, including IoT-based medical sensors, for handling the 
massive volume of heterogeneous data. However, detection accu-

racy was not efficiently increased. Paul et al. (2016) created a new 

concept of Smart Buddy for the analysis of wearable devices and 

big data to establish human behaviors. The time consumed for 

analysis was not minimized. Paul (2014) designed an embedded 

system working model to apply reinforcement learning to recog-

nize and automate directed recognition that supports various de-

vices. However, accuracy in detection remained unconsidered in 

the embedded system. 

Shi et al. (2017) developed an improved rough-fuzzy c-means 

clustering algorithm to perform the parameter selection strategy 

for adaptively modifying the weighted parameter based on distrib-
utive character. It failed to solve complex problems. Shi et al. 

(2014) developed an unsupervised change detection technique in-

dependent of a fuzzy active contour model and a genetic algo-

rithm. The fuzzy technique examined the image differences. The 

issues related to computational complexity remained unresolved. 

Bhattacharjee et al. (2018) created an educational model with vir-

tual reality to apply an evolutionary learning algorithm to produce 

a personalized learning path. Venkatesan et al. (2018) presented 

several classifiers for arithmetic beat categorization. The time de-

lay was not reachedthe desired level by using the SVM classifier. 

Torti et al. (2018) applied the Support Vector Machines (SVMs) 
algorithm to categorize hyperspectral (HS) images. However, per-

formance efficiency remained inefficient. Amin et al.(2017)pre-

sented an automated method to distinguish between cancerous and 

non-cancerous Magnetic Resonance Imaging (MRI). However, 

the detection accuracy was reduced. 

Ramakrishnan & Sankaragomathi (2017) modeled the Support 

Vector Machine (SVM) with different kernel functions to catego-

rize tumor and non-tumor images. The accuracy of detecting non-

tumor images was not improved. Vallabhaneni & Rajesh (2018) 

described an automatic brain tumor detection technique to protect 

the edges in the process of the De-noising image. Computational 

complexity issues were not resolved by employing automatic brain 
tumor detection technique. Soltaninejad et al. (2017) planned a 

fully automated method to identify brain tumors by classifying su-

per pixels into tumorous or healthy brain tissue, classification time 

was not reduced. However, tumor classification time was not 

decread. Lakshmi et al. (2017) designed a brain tumor detection 

algorithm to determine the abnormality of brain images by using 

SVM and pointing to the kernel classifier. Jayachandran & Dhana-

sekaran (2014) presented a robust brain tumor classification to 

classify tumor and non-tumor tissue with the aid of structural anal-

ysis. However, the computational complexity remained un-

addressed. Arnaud et al. (2018) designed a modular, fully auto-

matic and data-driven procedure to detect and characterize abnor-
malities in MRI data. Although thedetection accuracy was insuffi-

cient, Naik& Patel (2014) planned a tumor detection and classifi-

cation method to classify tumors using a brain MRI. A machine 

learning decision treemap algorithmwas designed for successful 

prediction of various disease occurrences in disease-frequent soci-

eties. However, the storage complexity was not decreased. Zhang 

et al. (2018) designed a novel smart pathological brain identifi-

cation method with wavelet packet Tsallis entropy, extreme 

learning machine and Jaya algorithm. But the brain tumor de-

tection time was higher. Zhang, Y et al. (2018) introduced a new 

brain detection technique depends on pseudo zernike moment 

and kernel support vector machine. 

Certain problems are recognized from the previously described ex-
isting methods, such as precise brain tumor detection, the time 

required for brain tumor detection, relevant feature extraction, the 

early stage of brain tumor detection, computation complexity, per-

formance efficiency and so on. Motivated by the above observa-

tion, a Mutual Informative MapReduce and Minimum Quadrangle 

Classification (MIMR-MQC) framework is developed with the 

objective of accurately detecting brain tumors in the big dataset. 

In this paper, the Mutual Informative MapReduce has been 

combined with the extraction of the most relevant features to be 

extracted, followed by Minimum Quadrangle Classification with 

efficient class labels as a classifier tool. This article studies the ex-

traction of features or attributes from the brain tumor big dataset 
to detect brain tumors at an early stage. Our outcome leads to the 

conclusion that with this proposed framework, it helps radiologists 

make an effective and timely decision toward brain tumor detec-

tion. 

III. PRELIMINARIES 

The Map and Reduce functions of MapReduce are described with 

respect to data structured in (key, value) pairs. Map considers one 

pair of data with a form in one data domain and provides a list of 

pairs in a different domain: 

𝑀𝑎𝑝(𝑘1, 𝑣1)  →  𝑙𝑖𝑠𝑡(𝑘2, 𝑣2) 

The Map function is used in every pair (𝑘𝑒𝑦𝑒𝑑 𝑏𝑦 𝑘1) in the input 

big dataset. This offers a list of pair (𝑘𝑒𝑦𝑒𝑑 𝑏𝑦 𝑘2) for each call. 

The MapReduce framework gathers pairs with the identical key 

(k2) from the whole lists and combines to make one group for 

each key. Then, the Reduce function is employed to each group in 

a similar manner, which, in turn, provides a collection of values in 

the same domain: 

Reduce (k2, list (v2)) → list(v3) 

Each Reduce call typically offers either one value or an empty re-

turn, though one call is permitted to provide more than one value. 
The returns of all calls are gathered as the preferred result list. 

Therefore, the MapReduce framework changes a list or index of 



  

 

(key, value) pairs into an index of values.  

3.1. Proposed framework 

The proposed Mutual Informative MapReduce and Minimum 

Quadrangle Classification (MIMR-MQC) framework is designed 

to perform brain tumor detection in two distinct phases, namely, 

the Mutual Information Criterion MapReduce (MIC-MapReduce) 

phase and the Minimum Quadrangle Support Vector Machine 

(MQ-SVM) phase. In the MIC-MapReduce phase, pre-processing 

is carried out for the brain tumor big dataset to remove unwanted 

and irrelevant attributes or features. Each reduced feature is used 

for further classification in the MQ-SVM phase to detect whether 
it is a cancerous or non-cancerous tumor by applying Lagrange 

Multipliers with MAXMIN margin. These phases are discussed in 

detail next. 

 

3.1.1 Mutual Information Criterion MapReduce (MIC-MapRe-

duce) phase: 

Brain tumor refers to the collection of abnormal cells in the brain. 

Several types of brain tumors can occur. Some brain tumors are 

considered to be noncancerous or benign, whereas certain other 

brain tumors are cancerous or malignant. The swift progress in the 

field of big healthcare data have resulted in the progress of custom 
paradigms for distributed processing that can extract significant 

brain tumor values and insight for brain tumor detection. Amongst 

several techniques, the MapReduce environment is considered the 

most customary criterion used in the distributed processing sce-

nario.  

Hence, the proposed framework starts with the preprocessing task 

of applying the Mutual Information Criterion with MapReduce for 

brain tumor detection. Figure 1 shows the block diagram of Mu-

tual Information Criterion with MapReduce (MIC-MapReduce) 

for brain tumor detection. 

Figure 1: show that the brain tumor training and testing samples 

are divided into two sets, and then the training sample is taken as 

the input to perform MapReduce operation. The input data are di-

vided into logical chunks and partitioned into various separate 

sets. These sets are then sorted, and each sorted chunk is passed to 

the reducer. The MapReduce model used Map and Reduce inter-

faces to implement the map and reduce function. The map function 

first reads the brain tumor dataset into independent subproblems 

and transforms records into a key-value ‘kj- value ‘’ format. A map 

function is employed in the input data consisting of value pair that 
produces a set of intermediate value pairs. The reduce function as-

sociates these intermediate values corresponding to the similar in-

termediate key. Transformations in this phase applyto the Mutual 

Information (MI) criterion to obtain ‘kj – Value’ on each record. It 

is mathematically formulated as follows: 

𝑀𝐴𝑃(𝑘1, 𝑣𝑎𝑙𝑢𝑒1) → 𝐿𝐼𝑆𝑇(𝑘2, 𝑣𝑎𝑙𝑢𝑒2) (1) 

From the above equation (1), the map function ‘MAP ()’ ob-

tains(𝑘1, 𝑣𝑎𝑙𝑢𝑒1)’ as input and obtains a list of transitional 

‘𝐿𝐼𝑆𝑇 (𝑘2, 𝑣𝑎𝑙𝑢𝑒2)’ pairs as output.  
Output keys are then shuffled and grouped based on the critical 

value so that synchronous keys that are mutually related with each 

other (i.e., having similar meanings) are gathered simultaneously 

to form a listing of the values in a parallel manner. The keys are 

then separated and forwarded to the Reducers according to the MI 

criterion key based scheme previously defined. Finally, the Reduc-

ers perform fusion on the lists to eventually generate a single value 

for each pair. 

It is mathematically formulated as follow: 

𝑅𝐸𝐷𝑈𝐶𝐸(𝑘2, 𝐿𝐼𝑆𝑇(𝑣𝑎𝑙𝑢𝑒2)) → (𝑘2, 𝑣𝑎𝑙𝑢𝑒3) (2)

 

Brain Tumor Training and Test 

Data 

Training Set Tset Test sample TSamplesi 

Map Shuffle Reduce 

< 𝑅𝑟𝑓(𝑇𝑆𝑒𝑡) > 

< 𝑅𝑟𝑓(𝑇𝑆𝑒𝑡) > 

< 𝑅𝑟𝑓(𝑇𝑆𝑒𝑡) > 𝑘3 

< 𝑅𝑟𝑓(𝑇𝑆𝑒𝑡) > 𝑘1 

𝑘2 

< 𝑅𝑟𝑓(𝑇𝑆𝑒𝑡) > 𝑘3 

< 𝑅𝑟𝑓(𝑇𝑆𝑒𝑡) > 𝑘1 

< 𝑅𝑟𝑓(𝑇𝑆𝑒𝑡) > 𝑘2 

< 𝑅𝑟𝑓(𝑇𝑆𝑒𝑡) > 𝑘3 

< 𝑅𝑟𝑓(𝑇𝑆𝑒𝑡) > 

< 𝑅𝑟𝑓(𝑇𝑆𝑒𝑡) > 

< 𝑅𝑟𝑓(𝑇𝑆𝑒𝑡) > 

𝑘1 

 

< 𝑅𝑟𝑓(𝑇𝑆𝑒𝑡) > 

< 𝑅𝑟𝑓(𝑇𝑆𝑒𝑡) > 

< 𝑅𝑟𝑓(𝑇𝑆𝑒𝑡) > 

𝑘2 

values<

< 𝑅𝑟𝑓 (𝑇𝑆𝑒𝑡) > 

 

𝑘3 

Brain Tumor Reduced Output 



  

 

Figure 1: Flowchart of the proposed MIC-MapReduce model 

This improvement minimizes the total amount of data present in 

the big dataset while detecting brain tumors by combining each 

feature (i.e., attribute) produced in the Map phase into a single pair. 

The mutual information (MI) in the proposed work obtains the 

amount of information that one random variable contains about 

another. In other words, it denotes the reduction of uncertainty of 

one random variable due to the knowledge of the other variable, 

therefore addressing the dimensionality reduction. In this manner, 

the unwanted or repeated attributes present in the input dataset are 
discarded. It is mathematically expressed as follows: 

𝑀𝐼(𝑃, 𝑄) = 𝐸(𝑃) −  𝐸(𝑄) (3) 

=  ∑ ∑ 𝑝𝑟𝑜𝑏 (𝑝, 𝑞) log
𝑝𝑟𝑜𝑏(𝑝,𝑞)

𝑝𝑟𝑜𝑏(𝑝)𝑝𝑟𝑜𝑏(𝑞)𝑞∈𝑄𝑝 ∈𝑃   (4) 

From the above equation (4), ‘𝑝’ and ‘𝑞’ represents the two ran-

dom attributes with marginal probability functions ‘𝑝𝑟𝑜𝑏(𝑝)’ and 

‘𝑝𝑟𝑜𝑏(𝑞)’, respectively, which ‘𝑝𝑟𝑜𝑏(𝑝, 𝑞)’ represents the inter-

section function, and ‘𝐸’ is the entropy. With the above resultant 
values, the redundant attribute values are discarded using the Mu-

tual Information criterion, and mathematically represented as fol-

lows: 

𝑅𝑟𝑓(𝑇𝑆𝑒𝑡) = 𝑀𝐼(𝑃𝑖 , 𝑄) − 𝛼 ∑ (𝑃𝑖 , 𝑃𝑗)𝐴𝑗∈𝑇𝑆𝑎𝑚𝑝𝑙𝑒𝑠   (5) 

From the above equation (5), ‘𝑅𝑟𝑓(𝑇𝑆𝑒𝑡)’ represents the reduced 

feature ‘𝑟𝑓’ for training set ‘𝑇𝑆𝑒𝑡’ with ‘𝑇𝑆𝑎𝑚𝑝𝑙𝑒𝑠’ representing 

the current set of test sample features for weight factor ‘𝛼’, respec-

tively. The algorithm of the Mutual Informative Criterion RE-

DUCE functions as follows: 

Algorithm 1 MapReduce 

Input: Training Set ‘𝑇𝑆𝑒𝑡’, Test Samples ‘𝑇𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑖’, Result-

ant probability feature ‘𝑅𝑝𝑓’, Instances ‘𝑛’ 

Output: Resultant Reduced Feature ‘𝑅𝑒𝑑𝑟𝑓’ 

1: Begin 

2:        For𝑝 = 0 𝑡𝑜 𝑠𝑖𝑧𝑒 (𝑇𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑖) do 

3:            Measure 𝑅𝑝𝑓(𝑇𝑆𝑒𝑡) →

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑀𝐼 (𝑇𝑆𝑒𝑡𝑗 , 𝑇𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑖) 

4:                  Measure 𝑅𝑒𝑠𝑢𝑙𝑡𝑗 → (< 𝑘 ∶ 𝑝, 𝑉𝑎𝑙𝑢𝑒 ∶

𝑅𝑟𝑓(𝑇𝑆𝑒𝑡) >) 

5:                  Compute 𝑅𝐸𝐷𝑈𝐶𝐸(𝑘2, 𝐿𝐼𝑆𝑇(𝑣𝑎𝑙𝑢𝑒2)) →
(𝑘2, 𝑣𝑎𝑙𝑢𝑒3) 

6:                  Remove unwanted repeated features using 

𝑅𝑟𝑓(𝑇𝑆𝑒𝑡) = 𝑀𝐼(𝑃𝑖 , 𝑄) −  𝛼 ∑ (𝑃𝑖 , 𝑃𝑗)𝐴𝑗 ∈𝑇𝑆𝑎𝑚𝑝𝑙𝑒𝑠    

7:         End for 

8:           For𝑖 = 0 𝑡𝑜 𝑛 do 

9:                     If Resultant Feature ‘𝑅𝑟𝑓’ is highly correlated to 

reduced ‘𝑅𝑒𝑑𝑟𝑓’ then 

10:                              Resultant Reduced Value = ‘𝑅𝑒𝑑𝑟𝑓’ 

11:                     Else 

12:                              Resultant Reduced Value = ‘𝑅𝑟𝑓’ 

13: Select the next value i=1 to n  

14:                               Go to step 4 

15:                     End if 

16:            End for 

17:      End 
18: End  

As given above, the Mutual Information MapReduce (MIMR) al-

gorithm is performed where every map ‘𝑀𝐴𝑃()’ represents a re-

sultant feature set for each test sample ‘𝑝’ in Test Samples 

‘𝑇𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑖’. The Mutual Informative Criterion MAP algorithm 

measures for each test sample the probabilistic features using mar-

ginal probability function and entropy. The MICMAP makes po-

sition invariance over a larger neighborhood, i.e., one per test in-

stance, Then the ‘𝑅𝑝𝑓(𝑇𝑆𝑒𝑡)’is outputted as value together with 

an identifier of test instance as a key. In this manner, the proposed 

framework allows the use of multiple reducers. Having many re-

ducers is therefore found to be highly useful when dealing with 

big data. The reduce function comprises the collection of resultant 

probability features provided by the map function. In reduce 

phase, more relevant features for detecting brain tumor diseases 

has the highest probability of being selected in test samples 

‘𝑇𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑖’. 
After the map function, all features or attributes possessing a sim-

ilar key are grouped. The update process has become faster since 

the vectors coming from the maps are sequenced on the basis of 

correlation. Therefore, this function Resultant Feature ‘𝑅𝑟𝑓’ is 

compared with the reduced ‘𝑅𝑒𝑑𝑟𝑓’ to find high correlation values. 

If the Resultant Feature ‘𝑅𝑟𝑓’ is highly correlated, then the reduced 

‘𝑅𝑒𝑑𝑟𝑓’ is the resultant reduced feature; otherwise, the process is 

followed with the next value. With the resultant reduced feature 

extracted using the MIREDUCE algorithm, the tumor detection 

time is decreased.  

3.1.2 Minimum Quadrangle Support Vector Machine (MQ-SVM) 

phase 

Upon successful accomplishment of this feature, the result fea-

tures or attributes and their class labels are fed to the classifier to 

detect brain tumor diseases. The traditional support vector 

machine learning model does not perform well while validating 
big data [30]. It results in an increase in computational overhead 

or increases computational complexity. Figure 2 shows the work-

ing diagram of the Minimum Quadrangle Support Vector Machine 

(MQ-SVM) model, which considers the training set as the input. 

Here, for each training sample, the weight factor ‘w’, bias term ‘b’ 

and the error values ‘e’ are calculated.  Then, the Lagrange multi-

plier is employed to identify the objective functions i.e., local 

maxima and minima of a function (MAXMIN). Then the radial 

basis kernel function is determined for detecting a brain tumor by 

means of comparing the radial basis kernel value and MAXMIN 

margin value.  If the radial basis kernel is greater than the MAX-

MIN margin value, then the patient is detected with a brain tumor. 
This, in turn, improves brain tumor detection accuracy, using the 

MQ-SVM model. 

Therefore, the Minimum Quadrangle Support Vector Machine 

(MQ-SVM) model has been studied here to avoid the issues re-

lated to computational overhead and improve brain tumor detec-

tion accuracy. This additionally solves a set of linear equations due 

to the presence of fairness constraints in the formulation of the 

MQ-SVM, while the DNN-based architecture solves a non-linear 

problem. A brief description of the MQ-SVM follows. 

 

 



  

 

 

Figure 2: Flow chart of Minimum Quadrangle Support Vector Machine for brain tumor detection 

Figure 2 shows the Minimum Quadrangle Support Vector Machine 
flow chart for brain tumor detection. Each training sample first 

calculates the weight factor, bias term, and error values. The local 

maxima and minima of a function (i.e., MAXMIN margin) are 

then identified by using Lagrange multipliers in MQ-SVM. Lastly, 

the radial basis kernel function is applied to detect brain tumors at 

an early stage. The input sample is cancerous if the resultant kernel 

value is higher than the MAXMIN margin value; otherwise, the 

input sample is considered as noncancerous. 

As shown in figure 3, let ‘(𝑅𝑒𝑑𝑖 , 𝑅𝑒𝑠𝑖)’ represent a training set of 

‘𝑛’ samples, where ‘𝑖 = 1, 2, … 𝑛’ with input data ‘𝑅𝑒𝑑𝑖  ∈ 𝑅𝑒𝑑𝑟𝑓’ 

and class labels ‘𝑅𝑒𝑠𝑖 = {−1, +1}’; then MQ-SVM is mathemat-

ically represented as follows: 

𝑀𝐼𝑁 𝐽(𝑤𝑇 , 𝑏, 𝑒) =  
1

2
𝑤𝑇𝑤 + 𝑅 

1

2
∑ 𝑒𝑖

𝑛
𝑖=1   (6) 

Subject to a fairness constraint 

𝑅𝑒𝑠𝑖 = [𝑤𝑇𝑅𝑒𝑑𝑖 +  𝑏]   (7) 

In equations (6) and (7), ‘𝑅𝑒𝑑𝑖’ represents the resultant reduced 

features for training samples ‘𝑇𝑆𝑎𝑚𝑝𝑙𝑒𝑠’, and ‘𝑤’ is the weight 

factor, respectively, with ‘𝑅’ denoting the regularization factor. In 

addition, ‘𝑏’ and ‘𝑒’ represents the bias term, and the error value, 

respectively. Furthermore, Lagrange multipliers ‘𝛾𝑖’ are used in 

the design of MQ-SVM to identify the local maxima and minima 

of a function (i.e., MAXMIN margin) subject to fineness. It is 

mathematically formulated as follows: 

𝐿(𝑤, 𝑏, 𝑒, 𝛾) = 𝐽(𝑤, 𝑏, 𝑒) −  ∑ 𝛾𝑖([𝑤𝑇𝑅𝑒𝑑𝑖 +  𝑏])𝑛
𝑖=1  (8) 

Decision planes that define the boundary between classes are 

modeled with the calculation’s resultant value. IF the training set 

is distinguishable in a linear fashion, then it results in two parallel 

hyperplanes, therefore, differentiating the data into two classes. 

Due to this, the intraclass distance is said to be insignificant and 
the interclass distance is said to be significant. The region between 

insignificant and significant data is referred to as the boundary, 

and the maximum boundary is the hyperplane that lies midway 

between them, which is mathematically formulated as follows: 

𝛼 ∗  𝛽 − 𝛿 = 1   (9) 

𝛼 ∗  𝛽 − 𝛿 = −1   (10) 
 

Figure 3: Working Diagram of Minimum Quadrangle Support 
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A radial basis kernel function is additionally applied to the base 

hyper-plane and mathematically formulated as follows: 

𝐺(𝑅𝑒𝑠𝑖) =  𝛼𝑖𝐸𝑋𝑃 {– 𝛿
(𝑅𝑒𝑑− 𝑅𝑒𝑑𝑖)2

2𝜎2
} (11)  

With the resultant radial basis kernel value, ‘𝐺’ for the corre-

sponding input data ‘𝑅𝑒𝑠𝑖’, brain tumor detection is performed 
by way of comparison with the MAXMIN margin. If the result-

ant value of the radial basis kernel is greater than the MAXMIN 

margin value, then the patient is detected with a brain tumor. 

Conversely, if the resultant value of the radial basis kernel is 

lesser than the MAXMIN margin value, then the patient is not 

detected with a brain tumor. The following diagram shows the 

algorithm of Minimum Quadrangle Support Vector for brain tu-

mor detection. 

Algorithm 2 Minimum Quadrangle Support Vector Brain Tumor 

Detection 

Input: Resultant Reduced Feature ‘𝑅𝑒𝑑𝑟𝑓’, samples ‘𝑛’, class 

labels ‘𝑅𝑒𝑠𝑖 = {−1, +1}’ 

Output: Brain tumor detection  

1: Begin 

2:           For each Resultant Reduced Feature ‘𝑅𝑒𝑑𝑟𝑓’ with 

samples ‘𝑛’ 

3:         Mathematically express the objective function subject 

to constraints using equation (6) and (7) 

4:                   Identify MAXMIN margin using equation (8) 

5:                   Measure the radial basis kernel function 
6:           End for 

7: End 

As algorithm 2 shows, the Minimum Quadrangle Support Vector 

Brain Tumor Detection algorithm identifies the MAXMIN margin 

for each resultantly reduced feature with training samples given as 

input, and the objective function subject to constraints. This is fol-
lowed by the radial basis kernel function being applied to the re-

duced resultant feature. Finally, a comparison is made with the 

MAXMIN margin values and radial basis kernel function values 

to detect a brain tumor at an early stage. As a result, the 

computational overhead involved in brain tumor detection is 

reducedto a higher detection rate. 

IV. EXPERIMENTAL EVALUATION 

The performance of Mutual Informative MapReduce and Mini-

mum Quadrangle Classification (MIMR-MQC) is compared with 

Convolutional Neural Network-based Multimodal Disease Risk 

Prediction (CNN-MDRP) and Deep Convolutional Neural Net-
works (DNN) and validates the brain tumor detection results. The 

proposed MIMR-MQC framework is implemented by using the 

JAVAplatform with a hardware specification of the Intel® Core™ 

i3-4130 processor with 3.40GHZ, 4 GB memory, 500 GB hard 

disk and the Windows 7operating system. The test dataset, 

CBTRUS [4] consists of Primary Brain and Other Central Nervous 

System Tumors Diagnosed in the United States in 2009–2013. 

Here, the number of test samples in the range of 20 to 200 is con-

sidered for the experimental evaluation.  

This dataset providesa comprehensive summary of the current, de-

scriptive epidemiology of primary brain, and other central nervous 

system (CNS) tumors in the United States (US) population. The 
dataset contains the Central Brain Tumor Registry of the United 

States (CBTRUS), Brain and Central Nervous System Tumor Site 

Groupings, Brain and Central Nervous System Tumor Histology 

Groupings, Brain and Central Nervous System Tumor Malignant 

Histologist, Brain and Central Nervous System Tumor Non-Ma-

lignant Histologist and ICD-O-3 Morphology Codes for all His-

tologist Included in Glioma Major Histology Groupings. This da-

taset contains a number of brain tumor tissues identified using the 

International Classification of Diseases for Oncology (ICD-O-3a) 

Histology Codes. For example, the ICD-O-3a Histology 

Codeb9400represents the tumor as Diffuse astrocytoma, ICD-O-

3a Histology Codec9540, represents Nerve sheath tumors, ICD-

O-3a Histology Codec8324 denotes Mesenchymal tumors, ICD-
O-3a Histology Codec8020 denotes Germ cell tumors, and so on. 

By using the ICD-O site code, the cancerous patient is identified 

using the proposed MIMR-MQC. Brain tumor detection accuracy 

and computational complexity are measured to evaluate the 

performance of the MIMR-MQC framework’stumor detection 

time.  

The metrics applied to measure the performance evaluation of the 

MIMR-MQC framework are brain tumor detection accuracy, brain 

tumor detection, and computational complexity or overhead. The 

brain tumor detection accuracy ‘𝐵𝑇𝐷𝐴𝑠’ of an individual sample 

‘𝑠’depends on the number of samples correctly detected (true pos-

itives plus true negatives), and it is evaluated by the following for-

mula: 

𝐵𝑇𝐷𝐴𝑠 =  
𝐶𝐷

𝑛
∗ 100   (12) 

From (12), ‘𝐶𝐷’ presents the number of sample cases correctly de-

tected; ‘𝑛’ is the total number of sample cases. The brain tumor 

detection time ‘𝐵𝑇𝐷𝑇𝑠’ of an individual sample ‘𝑠’ depends on the 

number of samples correctly detected (true positives plus true neg-

atives), and the time taken to detect the brain tumor samples. The 

brain tumor detection time is evaluated by the following formula: 

𝐵𝑇𝐷𝑡 =  𝑇𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑖 ∗  𝑇𝑖𝑚𝑒 (𝐶𝐷)  (13) 

From equation (13), the brain tumor detection time is measured 

by the time taken for correct detection ‘𝑇𝑖𝑚𝑒(𝐶𝐷)’ with respect 

to the test samples ‘𝑇𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑖’ provided as input. Finally, the 

computational complexity involved in brain tumor detection re-

fers to the number of resources required to run the algorithm. The 

computational complexity, however, refers to the minimum of the 

complexities of all possible algorithms for brain tumor detection 

expressed in terms of milliseconds and formulated as: 

𝐶𝐶 = ∑ 𝑇𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑖 ∗𝑛
𝑖=1 𝑇𝑖𝑚𝑒 [𝑀𝐼𝑀𝐴𝑃 + 𝑀𝐼𝑅𝐸𝐷𝑈𝐸 +

𝑀𝑄𝑆𝑉]  (14) 

From equation (14), the computational complexity in the design 
of the MIMR-MQC is highly influenced by the three different 

algorithms used, MIMAP, MIREDUCE, and MQSV with respect 

to the test samples.  

V.  RESULTS AND DISCUSSION 

Firstly, the proposed Mutual Informative MapReduce and 

Minimum Quadrangle Classification (MIMR-MQC) for brain 

tumor detection is compared to malicious tumor detection with 

two other tumor detection methods, the Convolutional Neural 

Network-based Multimodal Disease Risk Prediction (CNN-

MDRP) Chen et al., (2017) and Deep Convolutional Neural 

Networks (DNN)Amin et al., (2018). Three performance measures 
were employed to evaluate the tested tumor detection framework.  

First, brain tumor detection accuracy is observed that refers to the 

sample cases correctly detected to the input provided for 

experimentation. The second metric is the brain tumor detection 

time that refers to the time consumed in detecting the tumor cells. 



  

 

Finally, the third measure evaluates thecomputational overhead or 

computational complexity.  

5.1 Analysis of brain tumor detection accuracy 

The brain tumor detection accuracy is measured based on the 

number of samples provided fora particular instance.Figure 3 

illustrates the extensive experiments conducted to better 

understand the effectiveness of the proposed MIMR-MQC 

framework. Figure 3 presents a comparative analysis of the brain 

tumor detection accuracy for a different number of samples that 

combine different age groups.  

The experiments were conducted using a brain tumor dataset, in 
the range of 20 and 200, and the brain tumor detection accuracy is 

measured in terms of percentage (%). The JAVA platform is used 

to experiment with brain tumor detection accuracy by analyzing 

the results using graph values. Results are presented for a different 

number of test samples; the outputs reported here confirm that the 

outcomes are not linear with the increase in the number of test 

samples.  

 

Figure 4 shows the performance measure of brain tumor detection 

accuracy with respect to 200 different samples. The higher the 

brain tumor detection accuracy, the more efficient the method is 

(Zhao, et al., 2017). The brain tumor detection accuracy of MIMR-

MQC framework is found to be higher than CNN-MDRP [1] and 

DNN [2]. With a higher amount of scalability achieved in the 

proposed framework in data-rich environments, the proposed 

machine learning algorithms become even more accurate and 

more usable with the increasing data size. 

 

As Figure 4illustrates, the x-axis represents the different number 
of test samples in the range of 20 to 200 collected between the 

period 2009 and 2013 in the United States. It also includes samples 

of different age groups. Conversely, the y-axis represents brain 

tumor detection accuracy.It is also evident from the figure thatan 

increase in the number of test samples reduces brain tumor 

detection accuracy. However, a slight improvement is observed 

with test samples of 100 using MIMR-MQC and CNN-MDRP. 

The brain tumor detection accuracy was found to be improved 

when compared to CNN-MDRP and DNN

 

 

Figure 4: Performance measures of brain tumor detection accuracy using MIMR-MQC, CNN-MDRP and DNN 

The brain tumor detection accuracy was improved because of the 

application of the Minimum Quadrangle Support Vector 

Machine.Weight factor, bias term,and the error values are 

calculated for each input sample. By applying the Minimum 

Quadrangle Support Vector Machine, an objective function subject 

to the fairness constraint was included with which the Lagrange 

multipliers were applied toobtain the MAXMIN boundary. 
Besides, a radial basis kernel function was evaluated to reduce the 

resultant feature and compared to the MAXMIN boundary to 

detect brain tumors. If the resultant kernel value is higher than the 

MAXMIN margin value, then the input sample is cancerous. If the 

comparison value is lesser than the MAXMIN margin value, then 

the sample is noncancerous. The framework detects the tumor 

present in the samples only upon a successful comparison. 

Therefore, brain tumor detection accuracy was improved by 11% 

compared to CNN-MDRP.In addition by applying the Minimum 

Quadrangle Support Vector Machine, brain tumor is said to be 

detected at an early stage via regularization factor.With this, the 

brain tumor detection accuracy was improved by 31%. Precision , 

sensitivity, specificity are also related to detection accuracy. These 

are defined follow as, 

Precision is defined as a number of patient files are correctly pre-

dicted as disease into the total number of input files taken for the 

experimental evaluation. Sensitivity refers to the test's ability to 
correctly detect ill patients who do have the condition. Specificity 

relates to the test's ability to correctly reject healthy patients with-

out a condition. Precision, sensitivity, specificity are increased in 

the proposed model MIMR-MQC compared to state-of-the-art 

methods. 

Sample calculation for brain tumor detection accuracy : 

Proposed MIMR-MQC :  Number of test samples is correctly pre-

dicted as disease or not is 18 and the total numbers of test samples 

are 20.  Then the   tumor detection accuracy is calculated as fol-

lows,  
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𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
18

20
∗ 100 = 90% 

Existing CNN-MDRP : Number of test samples is correctly pre-

dicted as disease or not is 16 and the total numbers of test samples 
are 20.  Then the tumor accuracy is calculated as follows, 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
16

20
∗ 100 = 80% 

Existing DNN: Number of test samples is correctly predicted as 

disease or not is 15 and the total numbers of test samples are 20.  

Then the tumor detection accuracy is calculated as follows, 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
15

20
∗ 100 =75% 

5.2 Analysis of brain tumor detection time 

The Brain tumor detection time with respect to a different number 

of samples based on the incidence rates by sex and histology for 

50 different male and female respectively is measured on the basis 

of correct brain tumor detection. The targeting results of brain 
tumor detection time using the MIMR-MQC framework are 

presented in figure 4 for comparison based on the number of 

samples.  A lower brain tumor detection time results in the 

improvement of the framework

 
Figure 5 Performance measure of brain tumor detection time using MIMR-MQC, CNN-MDRPand DNN 

 
In Figure 5, the x-axis represents 200 different test samples 

involving different age groups, 0 – 19 years and 0 – 14 years, 

respectively. Conversely, the y-axis represents the brain tumor 

detection time. It is evident from the figure that with the increasing 

number of test samples, the number of images provided as input 

increases and therefore the brain tumor detection time is also 

found to be increased. In other words, the size of the test samples 

increases with ahigher number of test samples considered for 

experimentation. Therefore, with the increase in the test 

samplesize, the time taken to detect a brain tumor is found to be 
higher. However, comparative analysis shows improvement when 

using MIMR-MQC rather than CNN-MDRP and DNN. This is due 

to the application of the Mutual Informative Criterion MapReduce 

algorithm.  

Irrelevant and unwanted features or attributes are discarded with 

the application of the Mutual Information Criterion MapReduce 

algorithm. Only the features or attributes that contribute to the 

brain tumor detection are used at the later stage. At first, the map 

function reads the input samples into a number of independent 

subproblems and transforms records into a key-value format.  The 

MapReduce function is performed to collect the resultant 
probability features. The maximum correlated feature is 

considered as the highest probability of being selected. After the 

map function; all features compressing a similar key are 

grouped.Then the function resultant feature is compared with the 

reduced feature to find high correlation values. If the Resultant 

Feature includes a higher correlation than the reduced feature, then 

the resultant reduced value is the resultantly reduced feature. 

Otherwise, the process is continued with the next value. Therefore, 

brain tumor detection time using the MIMR-MQC framework is 

found to be reduced by 19% when compared to CNN-MDRP. 

However, only mutually informative or highly correlated 

attributes of features are extracted during the preprocessing. The 

proposed framework has the ability to apply the MIMAP and 

MICREDUCE algorithms while maintaining a reasonable 

computational timeby using the MIC-based MapReduce 

algorithm. As a result, the brain tumor detection time is reduced 
by 34% when compared to DNN. 

Sample calculation for brain tumor detection time: 

Proposed MIMR-MQC:  Number of the test samples is 20 and the 

time for predicting one test samples is 0.21 ms, then the tumor 

detection time is calculated as follows, 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 = 20 ∗ 0.21𝑚𝑠 = 4.2𝑚𝑠 

Existing CNN-MDRP:   Number of the test samples is 20 and the 

time for predicting one test samples is 0.31ms, then the tumor de-

tection time is calculated as follows, 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 = 20 ∗ 0.31𝑚𝑠 = 6.2𝑚𝑠 
Existing  DNN: Number of the test samples is 20 and the time for 

predicting one test samples is 0.359ms, then the tumor detection 

time is calculated as follows, 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 = 20 ∗ 0.359𝑚𝑠 = 7.18𝑚𝑠 

5.3 Analysis of computational complexity 

Finally, the computational complexity involved in brain tumor 
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detection is evaluated.Lowering thepreprocessing time or 

discarding the irrelevant attributes or features results in the unique 

presence of attributes. With the unique attributes acquired, the 

computational complexity involved in brain tumor detection is 

reduced; therefore, the brain tumor detection accuracy is 

improved.

 

Figure 6:Performance measure of computational complexity using MIMR-MQC, CNN-MDRPand DNN 

Figure 6 shows the plot of the computational complexity using 

MIMR-MQC, CNN-MDRP, and DNN for different test samples in 

the range of 20 and 200 of children aged 0 – 14 years. The plots 

indicate that the MIMR-MQC framework achieved significantly 

lower computational complexity when compared to CNN-MDRP 

and DNN. However, when the test sample sizes were too small, 

the computational complexity started to increase by applying all 

three frameworks. This is because the resultant probability 

features is found to be higher with the higher amount of test 

samples and due to this, reduced features also increases, causing 
an overall rise in the detection time.  

Hence, the computational complexity using all the three 

frameworks is found to be higher with the varying number of 

samples provided as input. However, improvement is said to be 

achieved using the MIMR-MQC framework because of the 

Mutual Information Criterion with MapReduce and Minimum 

Quadrangle Support Vector Machine model. By applying the 

Mutual Information Criterion with MapReduce, unwanted 

features are discarded according to the higher correlation factor, 

resulting in the reduced feature set. Hence, the computational 

complexity is reduced by 28% when using the MIMR-MQC 

framework compared to CNN-MDRP. A higher dimensional 
feature space also grows the generalization errorfor big data 

analysis. The MIMR-MQC framework applied the Minimum 

Quadrangle Support Vector Machine model to address this issue. 

Here, the generalization error is said to be reduced due to the 

presence of fairness constrain and linearity factor, hence the 

computational complexity using the MIMR-MQC framework is 

reduced by 46% compared to DNN. 

Sample calculation for computational complexity: 

Proposed MIMR_MQC: Number of the test samples is 20 and the 

computational complexity for   predicting one test samples is 

0.081 ms, then the computational complexity is calculated as fol-
lows, 

  Computational complexity = 20 * 0.081ms = 1.62 ms 

Existing CNN-MDRP: Number of the test samples is 20 and the 

computational complexity for   predicting one test samples is 

0.107 ms, then the computational complexity is calculated as fol-

lows, 

 Computational complexity = 20* 0.107 ms = 2.14 ms 

Existing DNN: Number of the test samples is 20 and the compu-

tational complexity for   predicting one test samples is 0.127ms, 

then the computational complexity is calculated as follows, 

Computational complexity = 20* 0.127ms  = 2.54 ms 

VI. CONCLUSION AND FUTURE WORK 

Deep and Convolutional neural networks have been 

predominantly proven much faster than other machine learning 

techniques. However, high computational time and cost are still 

challenging issues related to big data.  MIMR-MQC article has 

aimed to solve these issues by introducing the Mutual Information 

with MapReduce and Minimum Quadrangle Support Vector 

Machine model for big data. The unwanted and redundant 

attributes in the big dataset are removed by applying Mutual 

Information with MapReduce functionality.  This also helped the 

proposed MIMR-MQC framework to achieve comparable brain 

tumor detection time using highly correlative information while 

having computational gains of a MapReduce function on brain 
tumor big datasets. Linearity is also addressed through the 

MAXMIN margin with the application of the Minimum 

Quadrangle Support Vector Machine. Here, the Lagrange 

multiplier is employed to classify cancerous and noncancerous 

cellsto identify the brain tumor at an early stage.  A comparison 

with state-of-the-art machine learning techniques revealed that the 

MIMR-MQC framework performs better in terms of brain tumor 

detection time and accuracy due to the better distribution of data. 

The MIMR-MQC framework additionally achieves a 31% higher 

brain tumor detection accuracy compared to DNN, a 46% lower 

computational complexity compared to DNN and a 19% lower 
brain tumor detection time compared to CNN-MDRP.Future work 
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will extend the MIMR-MQC framework for other types of tumors, 

like, breast, lung, abdomen and so on. The proposed MIMR-MQC 

framework has been tested using CBTRUS dataset for 200 

different test samples. In addition, improving the number of test 

samples also remains an open issue. 
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