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ABSTRACT
The Discrete Element Method (DEM) has proven useful to capture the micro and macro
behaviour of soils. The complex micromechanical characteristics associated with
hydromechanical failure of soils, such as internal instability and fluidisation, can be
replicated with DEM. This research is divided into two parts, i.e., (i) microscale analysis
of internal instability of cohesionless soils by using DEM under isotropic stress
conditions and during shearing, and (ii) micromechanical analysis of fluidisation of

granular soils by coupling DEM with the Lattice-Boltzmann Method (LBM).

Micromechanical analysis of the internal instability of cohesionless soils under
isotropic stress state was carried out using DEM. The coordination number and the stress
reduction factor were used to estimate the potential for internal instability of granular
soils, and the clear boundaries between the samples that were internally stable and those
that were unstable were delineated. Thereafter, the dense samples were sheared under
drained conditions following a constant mean stress path to study the influence of shear
deformation on internal instability. The simulation results showed that a dense sample

could transition from internally stable to unstable soil as it dilates during shear.

Furthermore, microscale investigations on soil fluidisation were carried out using the
DEM in combination with the LBM. The development of local hydraulic gradients, the
distribution of contacts, and the associated fabric changes were examined. The
microscale findings suggest that a critical hydromechanical state that induces fluid-like
instability of a granular assembly can be described by a substantial and sudden increase
in grain slippage combined with a decrease in interparticle contacts. Inspired by these
results, a novel criterion is proposed to characterise the transformation of granular soil

from a hydromechanically stable to a fluid-like state based on the constraint ratio,
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representing the relative slippage between the particles and the loss of contacts between
the particles within the granular mass. The constraint ratio of unity corresponds to zero
effective stress, representing the critical hydromechanical state.

Keywords: Internal Instability, Discrete Element Method, Coordination Number, Stress
Reduction Factor, Fluidisation, Constriction Size Distribution, Lattice Boltzmann

Method, Constraint Ratio, Critical Hydraulic Gradient
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