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𝐹𝑆𝑎𝑓𝑓,𝑖 = Saffman force, 

𝐹𝑚𝑎𝑔,𝑖 = Magnus force, 

𝑓𝑏𝑢 = static buoyancy force on the particle, 

𝑓ℎ𝑦𝑑
𝑝  = total hydrodynamic force (including the static buoyancy force) on the particle p, 

𝑓𝑓 = hydrodynamic forces on the particle without buoyancy force, 

𝑓𝑔
𝑝 = gravitational force on the particle 𝑝, 

𝑓𝑗
𝑐 = force vector in jth direction at contact c, 

𝑓𝑇 = tangential contact force, 

𝑓𝑁 = normal contact force, 

𝑓𝛼(𝑥, 𝑡) = particle distribution function, 

𝑓𝛼(𝑥, 𝑡
∗) = particle distribution function after the collision of fluid particles, 

𝑓𝛼
𝑒𝑞(𝑥, 𝑡) = equilibrium distribution function, 

G = shear modulus, 

𝐺∗ = equivalent shear modulus, 

H = incremental finer fraction between particle diameters D and 4D, 

𝐼𝑛 = Inertial number, 
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𝐼𝑝 = moment of inertia of the particle 𝑝, 

io = overall applied hydraulic gradient, 

io,cr = critical overall hydraulic gradient of the soil specimen, 

ihyd = local hydraulic gradient in a layer, 

𝑘𝑛 = elastic constant for normal contact, 

𝑘𝑡 = elastic constant for tangential contact, 

𝐿 = height of the particle bed, 

𝑀 = Mach number, 

𝑀𝑠 = fraction of mechanically stable particles, 

𝑚𝑝 = mass of the particle 𝑝, 

𝑚∗ = equivalent mass, 

N = lattice resolution, 

𝑁𝑐 = number of contacts, 

𝑁𝑑 = number of degrees of freedom, 

𝑁𝑐𝑡 = number of constraints, 

𝑁𝑐
𝑝 = number of contacts on particle p, 

𝑁𝑐
𝑐𝑜𝑎𝑟𝑠𝑒−𝑐𝑜𝑎𝑟𝑠𝑒 = number coarse particle contacts, 

𝑁𝑐
𝑓𝑖𝑛𝑒−𝑓𝑖𝑛𝑒 = interparticle contacts of fine particles, 

𝑁𝑐
𝑓𝑖𝑛𝑒−𝑐𝑜𝑎𝑟𝑠𝑒 = number of contacts between fine and coarse particles, 

Np = number of particles, 

𝑁𝑝
𝑐𝑜𝑎𝑟𝑠𝑒 = number of coarse particles, 

𝑁𝑝
≥4 = number of particles with at least 4 or more contacts, 

𝑛 = overall porosity of the soil specimen, 

𝑛𝑐 = skeleton’s porosity, 
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𝑛𝑖
𝑐,𝑝 = unit-normal vector from the centroid of the particle to the contact location, 

𝑛𝐿 = number of layers, 

𝑂𝑖 = initial centroidal location of particle i, 

𝑂𝑗 = initial centroidal location of particle j, 

𝑂𝑗
′ = displaced centroidal location of particle j, 

𝑝𝑝 = mean stress in the particle p, 

𝑝′= sample's effective mean stress equals the average of principal stresses, 

𝑝𝑓
′  = mean stress in the fines, 

𝑞 = deviatoric stress, 

R = constraint ratio for a three-dimensional particle system with only sliding resistance, 

Rd = relative density, 

𝑅∗ = equivalent radius, 

Rep = Reynold's number of the particle, 

𝑟𝑚𝑖𝑛 = minimum particle radius, 

𝑆 = variance in the void ratios, 

𝑆𝑖 = slipping index, 

𝑆𝑐 = fraction of slipping contacts,  

𝑇𝑓
𝑝= fluid-particle interaction torque, 

𝑇𝑗
𝑐 = interparticle contact torque due to tangential force, 

𝑡 = time, 

𝑡∗ = time after the collision, 

𝑢 = macroscopic fluid velocity, 

𝑢𝑓,𝑜 = average fluid velocity of cell 𝑜, 

𝑢𝑝,𝑖 = velocity of particle 𝑖 residing in cell 𝑜, 
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𝑢𝑚𝑎𝑥 = maximum velocity of the fluid flow in physical units,  

𝑉 = volume of the selected region or layer, 

𝑉𝑝 = volume of particle p, 

𝑣𝑑 = superficial or discharge velocity of the fluid, 

𝜐𝑓 = kinematic viscosity of fluid, 

𝑣𝑛
𝑟𝑒𝑙 = normal component of the relative velocity of two spherical particles, 

𝑣𝑡
𝑟𝑒𝑙= tangential component of the relative velocity of two spherical particles, 

𝑣𝑝 = translational velocity of the particle 𝑝, 

𝑤𝑝 = angular velocity of the particle 𝑝, 

𝜔𝛼 = weighing factor for the microscopic fluid velocity, 

𝑥𝑛 = coordinate of the lattice cell, 

𝑥𝑖
𝑐 = location of the contact c, 

𝑥𝑖
𝑝= centre of mass of the particle, 

z = location of the particle, 

Z = coordination number, 

𝑍𝑓𝑖𝑛𝑒−𝑐𝑜𝑎𝑟𝑠𝑒 = fine-coarse coordination number, 

𝑍𝑐𝑜𝑎𝑟𝑠𝑒−𝑐𝑜𝑎𝑟𝑠𝑒 = coarse-coarse coordination number, 

Zavg. = average coordination number, 

  



xxiii 
 

LIST OF ABBREVIATIONS 

ALE = Arbitrary Langrangian Eulerian, 

BGK = Bhatnagar-Gross-Krook, 

CF = Coarser Fraction, 

CSD = Constriction Size Distribution, 

CFD = Computational Fluid Dynamics, 

DEM = Discrete Element Method, 

DLM = Distributed Lagrange Multiplier, 

DNS = Direct Numerical Simulations, 

DSD = Deforming Spatial Domain, 

FBM = Fictitious Boundary Method, 

FD = Fictitious Domain, 

FDM = Finite Difference Method, 

FEM = Finite Element Method, 

FF = Finer Fraction, 

FVM = Finite Volume Method, 

IBM = Immersed Boundary Method, 

LAMMPS = Large-scale Atomic Molecular Massively Parallel Simulator, 

LBM = Lattice Boltzmann Method, 

LGA = Lattice Gas Automata, 

LIGGGHTS = LAMMPS Improved for General Granular and Granular Heat Transfer 

Simulations, 

MD = Molecular Dynamics, 

MEM = Momentum Exchange Method, 

NS = Navier-Stokes, 



xxiv 
 

PCF = Pair Correlation Function, 

PFC = Particle Flow Code, 

PSD = Particle Size Distribution, 

PSM = Partially Saturated Cells Method, 

SA = Surface Area, 

SST = Stabilised Space-Time, 

USACE = United States Army Corps of Engineers, 

µCT = Micro-Computed Tomography. 

 

  



xxv 
 

ABSTRACT 

The Discrete Element Method (DEM) has proven useful to capture the micro and macro 

behaviour of soils. The complex micromechanical characteristics associated with 

hydromechanical failure of soils, such as internal instability and fluidisation, can be 

replicated with DEM. This research is divided into two parts, i.e., (i) microscale analysis 

of internal instability of cohesionless soils by using DEM under isotropic stress 

conditions and during shearing, and (ii) micromechanical analysis of fluidisation of 

granular soils by coupling DEM with the Lattice-Boltzmann Method (LBM). 

         Micromechanical analysis of the internal instability of cohesionless soils under 

isotropic stress state was carried out using DEM. The coordination number and the stress 

reduction factor were used to estimate the potential for internal instability of granular 

soils, and the clear boundaries between the samples that were internally stable and those 

that were unstable were delineated. Thereafter, the dense samples were sheared under 

drained conditions following a constant mean stress path to study the influence of shear 

deformation on internal instability. The simulation results showed that a dense sample 

could transition from internally stable to unstable soil as it dilates during shear. 

      Furthermore, microscale investigations on soil fluidisation were carried out using the 

DEM in combination with the LBM. The development of local hydraulic gradients, the 

distribution of contacts, and the associated fabric changes were examined. The 

microscale findings suggest that a critical hydromechanical state that induces fluid-like 

instability of a granular assembly can be described by a substantial and sudden increase 

in grain slippage combined with a decrease in interparticle contacts. Inspired by these 

results, a novel criterion is proposed to characterise the transformation of granular soil 

from a hydromechanically stable to a fluid-like state based on the constraint ratio, 



xxvi 
 

representing the relative slippage between the particles and the loss of contacts between 

the particles within the granular mass. The constraint ratio of unity corresponds to zero 

effective stress, representing the critical hydromechanical state. 

Keywords: Internal Instability, Discrete Element Method, Coordination Number, Stress 

Reduction Factor, Fluidisation, Constriction Size Distribution, Lattice Boltzmann 

Method, Constraint Ratio, Critical Hydraulic Gradient 
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CHAPTER 1 INTRODUCTION 

1.1 BACKGROUND, SCOPE AND RESEARCH APPROACH 

Railways are recognised as the most cost-effective and essential means of transport for 

people and freight worldwide. In the Australian mining and agriculture industry, railways 

are the predominant link between the source and distribution hubs (including ports); 

hence its secure and stable network is vital for an efficient supply chain across the country. 

With the increasing demand for faster rail networks, railway engineers face challenges in 

designing and maintaining a safe track environment. 

Figure 1.1 shows the cross-section of a typical ballasted track in Australia. It 

consists of the rail and fastening system, the ballast layer, the capping layer, and the sub-

grade. The sub-ballast/capping layer is the focus of this study, and it has two purposes: 

first, to safely transmit the load to the underlying subgrade, and second, to filter out the 

fine particles that can migrate from the subgrade to the overlying ballast layer (Israr 

2016). In order to perform its intended functions, the capping layer, i.e., the uppermost 

compacted sandy-gravel layer of the sub-ballast, must be internally stable because it 

performs load distribution and also serves as a relatively impervious stratum which 

prevents fluidised subgrade soil (mud pumping) from contaminating the overlying ballast. 

 

Fig. 1. 1 Typical cross-section of a ballasted track in Australia (modified after 

Indraratna & Ngo, 2018) 
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Internal instability implies that the coarser part of the Particle Size Distribution 

(PSD) curve cannot stop fine particles from migrating due to seepage flow (Fig. 1.2) 

(Kenney & Lau 1985; Skempton & Brogan 1994). Internal instability occurs in soils with 

a bimodal structure, i.e., the PSD curve can be split into coarser and finer fractions. Fine 

particles in a bimodal structure are much smaller than coarse particles, which makes them 

more vulnerable to erosion during seepage (Israr & Indraratna 2017; Mehdizadeh et al. 

2017; Xiao & Shwiyhat 2012). Compared to hydraulic gradients that cause heave or 

piping, these fine particles can be eroded at much lower levels (Skempton & Brogan 

1994), resulting in permanent changes to the original PSD of soil (Fig. 1.2) and also 

altering its hydraulic and mechanical properties. 

 

Fig. 1. 2 (a) before seepage flow, (b) after seepage flow, where fine particles have 

migrated from the bottom to the top of the soil specimen and show internal instability 

To date, internal instability has been assessed using a number of criteria based on 

PSD and Constriction Size Distribution (CSD) (Indraratna, Israr & Rujikiatkamjorn 2015; 

Kenney & Lau 1985; Kezdi 1979; Li & Fannin 2008; To, Scheuermann & Williams 
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2018). Most of the criteria currently used to determine instability are based on macroscale 

laboratory tests, which unfortunately cannot capture any details of the micromechanisms. 

For example, how the fabric of internally stable and unstable soils differs at the microscale 

demands more insight. In view of the above, one may consider internal instability to be a 

problem at the particle scale, and therefore, the particulate Discrete Element Method 

(DEM) to be used to model and evaluate the extent of particle scale micromechanical 

problems (Cundall & Strack 1979; O’Sullivan 2011). 

While the DEM is widely used in geomechanics to investigate the internal 

instability of cohesionless soils (Ahmadi et al. 2020, 2021; Shire et al. 2014; Shire & 

O’Sullivan 2013), no previous studies could demarcate clear boundaries between 

internally stable and unstable soils based on a micromechanical analysis. Therefore, this 

study attempts to delineate clear boundaries between internally stable and unstable soils 

by using the microscale parameters obtained directly from particle scale data, such as the 

coordination number (Z) and the stress reduction factor (𝛼). 

The coordination number (Z) is defined as the average number of contacts per 

particle in a granular assembly (Thornton 2000). The stress reduction factor means the 

ratio of effective stresses borne by fine particles to the mean effective stresses in the entire 

sample (Skempton & Brogan 1994). The coordination number (Z) and the stress reduction 

factor (𝛼) were then compared to the criteria proposed by Kenney & Lau (1985) and 

Kezdi (1979) and the CSD-based criterion by Indraratna et al. (2011). After establishing 

the clear boundaries between internally stable and unstable soils under isotropic stress 

conditions, dense samples were sheared under drained conditions following a constant 

mean stress path so that the impact of shear-induced deformation on micromechanics 

could be assessed.  
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The second part of this thesis focuses on the micromechanics of subgrade 

fluidisation. In this regard, Figure 1.3 shows a typical problem at a site in NSW caused 

by an internally unstable capping layer, where unfavourable hydraulic gradients could 

cause the subgrade to initiate the condition of mud pumping. This is a major problem that 

leads to unstable railroads and substantial maintenance costs (Chawla & Shahu 2016; 

Duong et al. 2014; Hudson et al. 2016; Indraratna et al. 2020; Nguyen et al. 2019). 

Fluidisation is defined as a condition whereby saturated soils are subjected to excessive 

hydraulic gradients and lose their intergranular contacts as they transition to a fluid-like 

state. This slurry of fine particles then migrates (pumps) into the overlying coarser ballast 

layer, hence the commonly used term mud-pumping, as studied experimentally 

(Arivalagan et al. 2021; Duong et al. 2014; Indraratna et al. 2020). 

 

Fig. 1. 3 Mud pumping of saturated subgrade soil (Picture Courtesy: Professor 

Buddhima Indraratna) 

Experimental studies have enabled the hydromechanical behaviour of subgrade 

soils to be better understood, albeit at the macroscale. From a micromechanical 

perspective, i.e., at the grain level, the slippage and/or breakage of interparticle contacts 

and the resulting fabric evolution may initiate a transition from a hydromechanically 

stable to an unstable state that is still not fully understood. The DEM is a useful tool for 
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assessing the micromechanics of a granular medium (Cundall & Strack 1979; O’Sullivan 

2011); it has been effectively used to study the evolution of interparticle contacts and 

fabric during shear by using the scalar and directional parameters (Barreto 2009; 

Thornton 2000). The coordination number is a fundamental microscale fabric descriptor 

for characterising granular medium (Fonseca et al. 2013; Thornton 2000). Despite these 

advances, the state of interparticle contacts and fabric during fluid flow has rarely been 

considered. In addition, the constraint ratio, as defined by the ratio of the number of 

constraints to the number of degrees of freedom within the particle system (Cundall & 

Strack 1983), can also be used to represent the relative slip and loss of interparticle 

contacts during instability. 

The primary scope of this work includes an attempt to describe and quantify the 

critical hydromechanical conditions corresponding to the fluidisation phenomenon with 

special attention to granular soil at the microscale, adopting the concepts of the 

coordination number and the constraint ratio, as mentioned above. In this context, the 

DEM can be used in combination with Computational Fluid Dynamics (CFD) to study 

soil fluidisation in detail. For instance, Cui et al. (2014), Nguyen & Indraratna (2020) and 

Indraratna et al. (2021) examined the critical hydraulic gradients for internal erosion and 

fluidisation, taking into account the influence of the particle size distribution, the relative 

density, and the interparticle coefficient of friction. Neither of these studies could 

accurately quantify the critical hydromechanical conditions leading to potential 

fluidisation from a microscale perspective, so a more insightful microscale study of this 

instability process is needed. 

Given the above, this study uses a combined Lattice Boltzmann Method (LBM)-

DEM approach that is becoming increasingly popular in investigating fluid-particle 

interactions (Galindo-Torres et al. 2015; Han & Cundall 2017; Indraratna, Phan, et al. 
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2021; Wu et al. 2021). This study also offers another dimension to the expanding field of 

soil micromechanics, where soil-fluid interactions are analysed in a greater depth at a 

particulate level to interpret the effects of internal seepage and associated pore water 

pressure gradients, which traditional continuum mechanics fail to address.  

The advantages of LBM over conventional CFD using the Navier-Stokes 

equations include (a) the ability to generate a much finer mesh size, i.e., finer than the 

particles that can simulate true experimental conditions, (b) a higher computational speed 

when executed on parallel computers and, (c) the relative feasibility of implementation in 

complex geometries of porous media (Han, Feng & Owen 2007a; Rettinger & Rüde 

2017). In addition, the LBM is based on the kinetic theory of gases and represents a fluid 

through an assembly of particles that go through successive collision and propagation 

processes. This enables the calculation of the macroscopic fluid velocity and the pressure 

as a function of the momentum of these particles (Rettinger & Rüde 2017; Seil, Pirker & 

Lichtenegger 2018). 

1.2 KEY OBJECTIVES OF THIS STUDY 

The main aim of this doctoral thesis is to improve the longevity of railroads by proposing 

novel criteria that consider microscale perspectives for internal instability and 

fluidisation. This study considers the numerical aspects by using DEM/LBM-DEM to 

present an extended view of internal instability and fluidisation where the 

micromechanical factors are more insightfully discussed in relation to real-life 

observations with greater insight, as reflected in the following objectives. 

i. To investigate the integrated concepts of granular mechanics, physics and 

hydromechanics which occur at the microscale for granular soils with DEM and 

to examine the validity of the current macroscale particle and constriction-based 

internal instability criteria from microscale investigations. 
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ii. To define the microscale boundaries for distinguishing internally stable and 

unstable soils using DEM and then compare the results of the internal instability 

assessment from the microscale investigations with experimental observations 

from the existing literature. 

iii. To investigate the influence of shear-induced deformation on various concepts of 

the micromechanics of granular soils. 

iv. To calibrate the LBM-DEM coupling with the experimental analysis of seepage 

flow and investigate the varying microscale parameters during the seepage flow. 

v. To define a microscale boundary that distinguishes the solid-like and liquid-like 

states of a soil specimen and to study the fabric during seepage flow as the soil 

approaches fluidisation. 

1.3 INNOVATION AND SALIENT OUTCOMES 

This doctoral thesis introduces two novel criteria to assess internal instability and 

fluidisation in granular soils: 

• The micromechanical parameters such as coordination number (Z) and stress 

reduction factor (α) were used to demarcate clear boundaries between internally stable 

and internally unstable soils. For instance, samples with the potential for internal 

instability simultaneously exhibit Z ≤ 1, 𝛼 ≤ 0.5. These two parameters can be used 

in practical design to assess the internal instability of the capping layer in railway sub-

structures. 

• A novel micromechanical criterion based on the constraint ratio has been proposed to 

assess whether the soil is fluidised, i.e., in a liquid-like state. The constraint ratio 

represents the relative slippage and breakage of the contacts between the particles. 

For instance, a granular assembly is hydromechanically stable when the constraint 

ratio > 1 and unstable (fluid-like) when the constraint ratio < 1; on this basis, the 
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microscale hydromechanical critical state is established at a constraint ratio of unity. 

The constraint ratio can then be used in practical design to assess the fluidisation of 

soils. 

1.4 STRUCTURE OF THE THESIS 

This thesis consists of seven chapters, which are briefly outlined as follows: 

Chapter 1 has provided an introduction to internal instability and the scope of the work to 

be covered in this doctoral thesis, to be elaborated on in the remaining Chapters. 

Chapter 2 presents a critical literature review where research gaps are identified in order 

to epitomize the importance of this study, including the geometric criteria for internal 

instability, the hydromechanical conditions, the numerical studies of internal instability 

and the fluid-particle interaction approaches currently available.  

Chapter 3 describes the research approach and methodology, including the application of 

the discrete element method, the relevant governing equations and the solution of the 

Boltzmann equation, as well as details of the contact model used in the micromechanical 

simulations. The validation of the numerical approaches based on DEM and the LBM-

DEM are also covered in this chapter. 

Chapter 4 is dedicated to “microscale boundaries of internally stable and unstable soils”. 

Based on the microscale variables, a new DEM-inspired criterion is proposed to 

distinguish between internally stable and unstable soils. The microscale parameters are 

described and evaluated and compared with constriction size and particle size-based 

criteria, augmented with experimental results from the literature. 
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Chapter 5 focuses on the “micromechanical analysis of soil transition from an internally 

stable to an unstable state”. The influence of the shear-induced deformation on the 

micromechanics of the soil specimen is discussed in detail.  

Chapter 6 is entitled “hydromechanical state of soil fluidisation – a microscale 

perspective”. This chapter describes the implementation of the lattice Boltzmann method 

in combination with the discrete element method to study soil fluidisation at a microscale. 

This chapter also introduces a novel approach to assessing the fluidisation of soil. 

Chapter 7 summarises the findings of the previous chapters and makes recommendations 

for further studies. It is noteworthy that while the salient aspects of Chapters 4 and 5 have 

already been published in scholarly journals, these Chapters provide greater details for 

the benefit of other research students who shall continue this research in the future. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 INTRODUCTION 

Internal instability is the phenomenon whereby fine particles pass through the 

constrictions of coarse particles under the action of seepage flow (Indraratna, Israr & 

Rujikiatkamjorn 2015; Kenney & Lau 1985). A much lower hydraulic gradient is needed 

for these fine particles to erode than is required to initiate heave or piping failure 

(Skempton & Brogan 1994). This can lead to a change in the PSD of soil and thus alter 

its hydromechanical properties. Hence, the soils used in railway substructures and dams 

may not serve their intended purpose if they are internally unstable. The types of soil that 

may be subject to internal instability are widely and gap-graded (Kenney & Lau 1985; 

Skempton & Brogan 1994). 

Several researchers have examined the internal stability of cohesionless soils for 

over 70 years, beginning with the United States Army Corps of Engineers in 1953 

(USACE 1953). The findings of previous studies are reviewed here, especially the 

geometric criteria used to verify internal instability, the hydromechanical conditions that 

trigger its onset, and the micromechanical analysis of internal instability using the 

Discrete Element Method (DEM), or DEM coupled with Computational Fluid Dynamics 

(CFD) using either the Navier-Stokes equations or the Boltzmann equation. The research 

gaps are identified in Section 2.7 of this Chapter. 

2.2 TERMINOLOGIES USED FOR INTERNAL INSTABILITY 

Many terms are used in literature to describe the internal instability of granular soils. 

Suffusion is a term used when fines are completely washed through granular soils without 

collapsing the structure of coarse particles (Indraratna, Nguyen & Rujikiatkamjorn 2011; 

Kezdi 1979). Suffosion refers to the washing out fine particles by collapsing the structure 

of coarse particles (Kenney & Lau 1985). Internal instability is a term used for both 
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suffusion and suffosion. The inherent instability and segregation pipe are two other terms 

used to describe internal instability (Skempton & Brogan 1994). 

2.3 PROBLEMS CAUSED BY INTERNALLY UNSTABLE SOIL IN RAILWAYS 

The following are the most common consequences of internally unstable soils found in 

railway substructures. 

2.3.1 Ballast Fouling 

Natural soils are weakened by the mechanical effects of dynamic loads at the boundary 

between sub-grade and sub-ballast. These attenuated particles can be conveyed to the top 

layers in a saturated sub-grade by strong hydrodynamic forces developed by excess pore 

pressures under cyclic loads (Figure 2.1). This causes the principal load-bearing ballast 

layer to become fouled, raising the possibility of undrained failure and reducing train 

speed limits (Trani & Indraratna 2010). It also reduces the free drainage capacity of ballast 

and decreases the interlocking of angular ballast particles (Indraratna et al. 2012). Fouled 

ballast has a lower hydraulic conductivity and shear strength than un-fouled ballast 

(Nguyen & Indraratna 2021). Despite the fact that most fouling occurs above the ballast 

layer, several investigations have found that about 18% of fouling is due to subgrade fines 

(Trani 2009); this means that a sub-ballast filter is needed to mitigate fouling from the 

subsurface. 

 

Fig. 2. 1 Ballast fouling in railway tracks (Anbazhagan et al., 2012, by permission) 
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2.3.2 Mud Pumping 

Mud pumping, which causes attenuated fines to combine with the water and form a slurry 

in the subgrade, is another effect of severe erosion of subgrade soil (Hudson et al. 2016; 

Indraratna et al. 2020). Several research investigations into the generation of mud 

pumping have been conducted over the last few decades, but it is still not clear how 

subgrade fluidisation differs with different loads and soil conditions. According to 

Hudson et al. (2016), voids under sleepers, along with localised stress and cyclic 

deformation, promote mud pumping in railroad tracks. A similar phenomenon occurred 

in slab tracks, where gaps between the concrete slabs and subgrade caused fluidised 

subgrade and accelerated mud pumping near the base plate expansion joints during the 

next train loading (Cai et al. 2015).  

According to Takatoshi (1997), suction causes mud pumping in four phases. As 

ballast degrades over time due to dilatation and breaking, gaps appear between the 

sleepers and the ballast layer. Trains cause significant excess pore pressures in the 

subgrade as they travel through the connectors. The vacuum created by the ties provides 

a suction during unloading, which drives fine particles in the subgrade up to the ballast 

layer. With cyclic loading, this suction force is repeated, causing particles to amass inside 

the ballast layer. Because the sleeper-ballast contact is weak, an upward suction is created 

in the ballast layer, which can suck fine particles into the ballast layer and foul the ballast. 

According to Duong et al. (2014), the excess pore pressures under railway tracks 

in subgrade soils are generated by cyclic loads, which cause particles to migrate upwards 

through the surface layers. The fine particle migration results in 'interlayer creation,' or 

the formation of a layer of mixed materials at the subgrade and the ballast interface. Track 

subsidence occasionally occurs as this slurry is discharged at the track surface by strong 

hydrodynamic forces that have formed pipes through porous joints and interconnected 
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voids (Figure 2.2). Mud pumping can be greatly decreased using a sub-ballast filter that 

is internally stable and appropriately compacted (Indraratna, Singh & Nguyen 2020). 

 

Fig. 2. 2 Mud pumping occurred along the east coast in NSW, Australia (Picture 

Courtesy: Prof. Buddhima Indraratna) 

2.3.3 Erosion from Poor Drainage 

The substructure of high-speed railways is prone to generating excessive pore pressures 

that lead to increased seepage forces and higher suction. Due to inadequate drainage, 

rainwater that collects under sleepers and inside the substructure may be propelled out 

under this extreme hydraulic pressure and erode sleepers and other track components. As 

a result, track maintenance costs increase, which jeopardises the ability of trains to operate 

at the established speed limits. Internally stable filters can effectively alleviate this 

problem (Israr 2016). 

2.4 INTERNAL INSTABILITY ASSESSMENT 

Several geometric criteria are presented in the literature to determine whether or not 

granular soils are internally unstable (Indraratna, Israr & Rujikiatkamjorn 2015; Kenney 

& Lau 1985; Kezdi 1979). These geometric criteria consider the diameters of the finer 

and coarser fractions of the Particle Size Distribution (PSD) curve of a soil specimen. 

Assuming a coarser fraction with a controlling constriction size larger than the largest 
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erodible finer particle allows fine particles to pass through these constrictions and alter 

the PSD, thus rendering the soil ineffective for its intended use. However, these geometric 

criteria do not take into consideration the hydraulic and stress conditions required to cause 

the erosion of fine particles (Israr 2016). A critical review of these different geometric 

approaches is as follows: 

2.4.1 PSD-Based Criteria for Assessing Internal Instability 

Most PSD-based criteria are derived directly from experimental investigations on 

granular soils and are based on semi-empirical relationships. The United States Army 

Corps of Engineers (USACE) was the first to use the term “inherent instability”. The 

USACE (1953) conducted experiments on mixtures of gravel and sand in order to 

determine which combination was internally stable and which was unstable. Four gravel-

sand mixtures were tested in a constant-head permeameter apparatus. The soils were 

loose, and no surcharge loading information was available. The flow direction was 

downward, beginning with a hydraulic gradient of 0.5 and then gradually increasing to 

16. Vibrations were applied during the experiments. The PSD curve was used before and 

after the test to determine instability. The results showed that soil Mixtures D (30% sand 

+ 70% gravel) and A (50% sand +50% gravel) were internally unstable, while Mixtures 

C (90% sand +10% gravel) and B (70% sand + 30% gravel) were internally stable. 

Mixture B had a more suitable permeability than Mixture C and was therefore identified 

as a better filter material. However, they carried out these tests on limited soil samples, 

so no criterion was proposed to demarcate internally stable and unstable soils. 

Istomina (1957, reported by Kovacs 1981) proposed a method to check inherent 

instability by using the uniformity coefficient (Cu). Cu is regarded as the primary index of 

the PSD curve. The soil is internally stable at Cu ≤ 10, unstable at Cu ≥ 20 and the soil is 

considered as transitional at 10 ≤ Cu ≤ 20. However, this criterion has not yet proven itself 
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able to evaluate internal instability potential because it is based on theoretical 

investigations. In contrast, Lubochkov (1969) proposed that the shape of the PSD curve 

determines the movement of fine particles. Therefore, internal instability is independent 

of the Cu value. An analytical model has been proposed as follows: 

1

𝜒0.6
𝑊(𝜒𝑑) −𝑊(𝑑)

𝑊(𝑑) −𝑊 (
𝑑
𝜒)
< 1                                                                                                       (2.1) 

where 𝑑 = any particle size obtained from the PSD curve, 𝑊(𝑥) = per cent passing by 

mass at particle size 𝑥, and 𝜒 = safety factor coefficient.  

However, Lubochkov's (1969) criterion was not successful because it is also based 

on theoretical investigations. Kezdi (1979) proposed a method to determine whether 

granular soils have the potential for internal instability by splitting the PSD curve into 

finer and coarser components at any random particle size. The coarser component is 

considered as a filter material and is evaluated to retain the finer component. Soil is 

believed to be internally stable when 𝐷15𝑐 𝑑85
𝑓⁄   ≤ 4 (Figure 2.3), where 𝐷15𝑐  is the 15% 

passing by mass of the PSD of the coarser fraction and 𝑑85
𝑓  is the 85% passing by mass 

of the finer fraction’s PSD. The 𝐷15𝑐  is considered the coarser fraction’s controlling 

constriction size. Sherard (1979) later suggested that the threshold should be 𝐷15𝑐 𝑑85
𝑓⁄  ≤ 

5. Kezdi's (1979) criterion is simple and easy to implement but does not consider the 

relative density of the soil samples (Indraratna, Israr & Rujikiatkamjorn 2015). 
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Fig. 2. 3 Kezdi’s (1969) criterion (modified after Kezdi, 1979) 

Fannin & Moffat (2006) experimented with five widely-graded and gap-graded 

soils in a seepage apparatus. The soil samples were 10 cm long and 10 cm in diameter 

and were held on a metal screen. A downward uni-directional flow was imposed along 

with vibrations. An overburden pressure of 25kPa was imposed. Variations in local 

hydraulic gradients and loss of fine particles were adopted to define the instability. They 

found that the value of (𝐷15𝑐 𝑑85
𝑓⁄ )

𝑚𝑎𝑥
increased, and the percentage loss of fine particles 

also increased. It was observed that the threshold of 𝐷15𝑐 𝑑85
𝑓⁄  = 4 is compatible with the 

experimental results. Li (2008) also carried out experimental investigations on various 

cohesionless soil samples, validated the criterion by Kezdi (1969), and came to similar 

conclusions. Indraratna et al. (2015) showed through their experimental investigations 

that the Kezdi (1969) criterion had had less success than the constriction-based criterion 

that considers the relative density of the soil samples. 

 Kenney & Lau (1985, 1986) tested 16 well-graded sandy gravels using a constant-

head permeameter apparatus. Soil samples were 580 mm or 245 mm in diameter and 860 

mm or 450 mm in length. A uni-directional downward flow was imposed with a surcharge 

pressure of 10 kPa. Vibrations that were induced by manual tamping significantly affected 
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the response of some PSD curves. Internal instability was evaluated by looking at the 

difference in PSD curves before and after the test. 

The shape of the PSD curves was used to propose a criterion. The retention ratio 

from Kenney & Lau (1985) is (H/F)min, where F is the finer particles’ fraction at any 

particle diameter D, and H is the incremental finer fraction between particle diameters D 

and 4D. The internally unstable soils have (H/F)min ≤ 1 (Figure 2.4), while the widely and 

uniformly graded samples were evaluated by considering particles finer than 20% and 

30%, respectively. The boundary was originally defined as (H/F)min ≤ 1.3 but was 

modified to 1 after discussions with several researchers (Kenney & Lau 1986). The 

Kenney & Lau (1985) criterion is easy to use because the shape curve of the PSD is 

needed to verify whether or not a soil is internally stable or unstable. This could be 

achieved by implementing this criterion in a simple MATLAB code. The Kenney & Lau 

(1985) criterion applies only to narrowly graded and widely graded granular soils. 

 
Fig. 2. 4 Kenney and Lau’s (1985) criterion (modified after Kenney & Lau, 1985) 

 
Kenney & Lau (1985) and Kezdi's (1979) criteria were compared by Chapuis 

(1992), who noted that both approaches could be described by comparable slope criteria. 

The likelihood of internal instability can be indicated by the secant slope of the PSD 
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curve. A slope of the secant line may be used to approximate the PSD curve’s slope at 

any point. Therefore, Kenney and Lau’s criterion corresponds to the following: in order 

to have internal instability, the slope per cycle of the particle size distribution curve must 

be less than y/log (4) for any particle size Dy (y ≤20). Likewise, Kezdi’s (1969) criterion 

corresponds to the following: if the slope per cycle of the PSD curve is less than 0.15/log 

(4) for any particle diameter, it is considered unstable. 

 Subsequently, Burenkova (1993) presented a technique by conducting 

experiments on 22 samples with the largest particle size of 100 mm, and Cu ≤ 200. Soils 

were separated into different size proportions and dried and blended in a container. The 

fundamental concept is that the finer proportion of the soil does not participate in the soil 

skeleton unless it causes an increase in volume when mixed with the coarser fraction. The 

conditional factors of uniformity have been proposed to characterise soil heterogeneity 

using the following two ratios: 

ℎ′ = 
𝑑90

𝑑60
⁄                                                                                                                             (2.2) 

ℎ′ = 
𝑑90

𝑑15
⁄                                                                                                                             (2.3) 

 Burenkova (1993) proposed the boundaries that distinguish “suffosive soils” from 

“non-suffosive soils” based on these two ratios (Fig. 2.5). Zones I and III indicate the 

suffosive soils; Zone II shows non-suffosive soils; Zone IV depicts artificial soils. The 

range for non-suffosive soils can be determined using the following equation: 

0.76 log( 𝑑90 𝑑15⁄ ) < 𝑑90 𝑑60⁄ < 1.86 log(𝑑90 𝑑15⁄ ) + 1                                             (2.4) 
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Fig. 2. 5 Burenkova’s criterion (modified after Burenkova, 1993) 
 
 Honjo et al. (1996) experimented with gap-graded soils, primarily sand. A uni-

directional downward flow was imposed with vibrations by gentle manual tamping and a 

surcharge pressure of 0.9 kPa. The loss of fine particles determined the presence of 

internal instability. As the gap ratio increased, the loss of fines increased, so they 

concluded that soils with a gap ratio> 4 are internally unstable, regardless of the number 

of fines in the soil. This criterion only applies to gap-graded soils. 

Liu (2005) presented an approach to assess the internal instability of granular soils 

by dividing the soil gradation curve into coarser and finer fractions. The soil is internally 

stable when fine particles fill the voids created by coarser particles. Therefore, at any 

particle diameter for dividing the PSD curve, the percentage of the finer content by mass 

(P (%)) was used to check the internal instability. Based on the experimental 

investigations and theoretical analysis, the following criteria are proposed:  

• P < 25%, internally unstable soils,  

• P = 25 to 35%, transition conditions,  

• P > 35%, internally stable soils.  
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The point at which the coarser and finer fractions are divided depends on the type of soil. 

These soils were classified as either continuously graded soils or gap-graded soils. For 

the continuously graded soils, P = percentage mass passing at the division diameter 𝑑𝑓 =

√𝑑70𝑑10, and for the gap-graded soils, P = mass passing (%) at the gap location for gap-

graded soils. 

 Wan & Fell (2004) studied the internal instability of silt-sand-gravel and clay-silt-

sand-gravel mixtures. Fourteen soil samples, each 300 mm in diameter by 300 mm long, 

were examined. The specimen was supported on a single-size 20 mm drainage aggregate. 

In order to break up the flow evenly over the top surface of the sample, a 25 mm aggregate 

was placed on top. The flow direction was downward, and the hydraulic gradients ranged 

from 10 to 18 across the specimen. The specimen was not subjected to vibrations. The 

occurrence of internal instability was checked using the PSD curve before and after each 

test. The soil samples were evaluated based on the available geometric methods and led 

to the following conclusions:  

• The coefficient of uniformity (Cu) (Istomina, 1957) is not a good marker of 

internal instability,  

• The methods used to split the PSD curve into a finer and coarser fraction (e.g., 

Kezdi, 1979) were too conservative in assessing internal instability, 

• Kenney & Lau's (1985) method is conservative. 

 Li & Fannin (2008) contrasted the approaches of Kenney and Lau (1985, 1986) 

and Kezdi (1979). Based on an analysis of their experimental findings and literature data, 

they postulated that the criterion by Kezdi (1979) is the more conservative of the two 

when the per cent passing by mass F < 15%, while the criterion of Kenney and Lau (1985, 

1986) is more conservative for F > 15%, as shown in Figure 2.6. 
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Fig. 2. 6 Comparative analysis of the two criteria (modified after Li & Fannin, 2008) 
 

All the approaches discussed above take the PSD into account. However, it is not 

the PSD but the Constriction Size Distribution (CSD) that controls the instability. The 

constrictions of the coarser fraction control the movement of the fine particles through it. 

A soil sample has a large number of fines, but if the size of the controlling constriction is 

smaller due to its higher relative density, then the soil will be internally stable.  However, 

at a lower relative density, the same sample exhibited larger constriction sizes and is 

therefore internally unstable. 

2.4.2 CSD-Based Criteria for Assessing Internal Instability 

The complex process of internal instability and the variables affecting it can be explained 

using geometric probabilistic approaches, which are useful analytical tools. The concept 

of CSD has gained popularity since it was initially proposed by Silveria (1965), who 

described the complications with particles being washed through dam filters. Until the 

CSD concept was introduced, it was assumed that internal instability was determined by 

considering the size of the filter and the base soils. However, in the 1980s, when attempts 
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were made to estimate the size of the controlling constriction, it attracted increased 

attention from researchers (Kenney et al. 1984). However, the fundamental problem 

remained because these studies were mainly aimed at approximating the CSD from the 

PSD (by mass).  

In this regard, Kovacs (1981) presented a model to test internal instability of 

cohesionless soils. The model considers the collection of different parallel cylindrical 

tubes as the porous space or constrictions of the soil sample (Figure 2.7). The particle size 

distribution by mass was split at any arbitrary diameter (Dn). The effective diameter (𝐷ℎ𝑐) 

of the coarser fraction was calculated using the Dn value. The following equation 

determines the average diameter of parallel tubes (do): 

𝑑𝑜 = 4
𝑛𝑐

1 − 𝑛𝑐
 
𝐷ℎ
𝑐

𝛼𝑑
                                                                                                                     (2.5) 

where  𝛼𝑑 = shape coefficient; 𝑛𝑐 = skeleton’s porosity; and 

𝐷ℎ
𝑐 =

1

∑
∆𝐹𝑖

𝑐

𝐷𝑖
𝑐

                                                                                                                               (2.6) 

where 𝐷𝑖𝑐 = average diameter in the ith interval of the coarser fraction’s PSD curve and 

∆𝐹𝑖
𝑐 = particle weight in the ith interval of the coarser fraction’s PSD curve. 

Kovacs (1981) presented a criterion for internal instability as follows: 

4
𝑛𝑐

1 − 𝑛𝑐
 
𝐷ℎ
𝑐

𝛼𝑑
< 𝑑85

𝑓
                                                                                                                    (2.7) 

The above model has not been widely used because experimental analysis was not 

performed to verify the model. 
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Fig. 2. 7 Capillary tube model (modified after Kovacs, 1981) 

In the 1990s, researchers criticised using the PSD by mass and number for over-

representing the finer and coarser fractions, respectively, and suggested using the PSD by 

surface area instead (Locke 2001). Locke et al. (2001) presented a model for estimating 

the CSD from PSD and Rd of the soil. Indraratna et al. (2007) presented an analytical 

approach for base-filter retention based on the study by Locke et al. (2001). They created 

a complete, user-friendly computer software made up of specific MATLAB subroutines 

that included the computation of CSD by surface area, number, and mass. Several CSD-

based approaches that are available to assess internal instability are discussed below. 

 Indraratna et al. (2011) presented a method for checking the internal instability of 

granular soils. This criterion takes into account the relative density of the soil samples, 

which was neglected in the previous criteria. The PSD curve was divided into finer and 

coarser fractions, and the theory of Aberg (1992) was used. The CSD of the coarser 

portion and the PSD of the finer portion were plotted using the surface area method 

(Indraratna, Raut & Khabbaz 2007). The ratio of the governing constriction size (𝐷𝑐35𝑐 ) 

and the largest erodible fine particle (𝑑85
𝑓 ) was used as an index. Two boundaries proposed 

are given as follows: 

• if 𝐷𝑐35𝑐 𝑑85
𝑓⁄  > 0.82, the soil is internally unstable, and  
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• if 𝐷𝑐35𝑐 𝑑85
𝑓⁄  < 0.73, the soil is internally stable; otherwise, it is in the transition 

zone (Figure 2.8). 

 

Fig. 2. 8 CSD-based method by Indraratna et al. (2011) (Indraratna et al. 2011, by 

permission) 

Indraratna et al. (2015) carried out an experimental analysis on six granular soils 

with different uniformity coefficients and compacted to different relative densities. These 

test samples were 150 mm in diameter by 200 mm long. They extended the original 

criterion of Indraratna et al. (2011) by validating the model with their experimental 

analysis and data from the literature. At (H/F)min, the PSD was split into coarser and finer 

fractions. The resulting coarser fraction was considered to be the filter, and the finer 

fraction was the base soil. The CSD of the coarser fraction and the PSD of the finer 

fraction were plotted using the surface area technique. The boundary proposed is given 

as follows: if 𝐷𝑐35𝑐 𝑑85
𝑓⁄  ≤ 1, the soil is considered internally stable (Figure 2.9). The 

criterion of Indraratna et al. (2015) has shown reasonable success in predicting the 
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internal instability of granular soils because it considered the PSD and relative density of 

the soil sample. 

Israr & Indraratna (2017) performed hydraulic tests on four compacted granular 

materials under cyclic loading. These experiments revealed that the conventional criteria 

for static loading conditions did not work under cyclic loading conditions. Therefore, a 

revised geometric criterion was proposed to define the boundary between internally 

unstable and stable soils under cyclic loading conditions more precisely. The proposed 

boundary is: 𝐷𝑐35𝑐𝑙 𝑑85
𝑓

⁄  ≤ 1, where 𝐷𝑐35𝑐𝑙  is the controlling constriction size at the loosest 

state. The approaches described providing a review of the geometric factors. However, 

for internal instability to occur in the field, the hydraulic and stress conditions, i.e., the 

hydromechanical conditions, must be met.  

Failure to meet the geometric criteria does not mean that fine particles travel 

through the constrictions of coarse particles because a relatively high gradient is required 

to initiate movement (Kovacs 1981). Therefore, in practice, some embankment dams 

constructed from potentially unstable materials may not suffer suffusion from seepage (Li 

2008). So, if the hydraulic gradient is not a problem in a project, potentially unstable 

materials could be used. The following section provides an overview of the 

hydromechanical conditions presented in the previous studies. 
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Fig. 2. 9 Illustration of the constriction-based criterion by Indraratna et al. (2015) 

(modified after Indraratna et al., 2015) 

2.4.3 Hydromechanical Conditions of Internal Instability 

Terzaghi (1943) first proposed a theory of uniform sand seepage failure. This theory is 

based on the submerged weight of soil particles and the upward seepage forces. Suppose 

the hydraulic gradient in a soil sample is increased to a zero effective stress state; in this 

case, heave failure occurs when the seepage pore water pressure becomes equal to the 

total overburden stress of the soil. The critical value of the hydraulic gradient (𝑖𝑐𝑟) is 

given by: 

𝑖𝑐𝑟 =
𝛾′

𝛾𝑤
                                                                                                                                     (2.8) 
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where 𝛾𝑤 = unit weight of water;  𝛾′= submerged unit weight of soil. 

 Adel et al. (1988) performed experiments on three minestones. No overburden 

pressure was applied to the soil specimen, and each specimen was 105 cm long. In the 

horizontal direction, a uni-directional flow was imposed. A sand trap was used to collect 

the washout of fine particles. The critical hydraulic gradient was determined based on the 

rate at which fine particles were lost. Between (H/F)min and the critical hydraulic gradient, 

a linear relationship was found.  

 Skempton & Brogan (1994) conducted seepage experiments on different types of 

soil. The samples were 155 mm long and 139 mm in diameter. The soil sample was first 

saturated, and then upward flow was applied until the sample failed. They discovered that 

the critical hydraulic gradients for internally unstable materials could be about 1/3 to 1/5 

of the normal value of 1 given by Terzaghi. The stability index (H/F)min and the critical 

hydraulic gradient were correlated (Figure 2.10). They interpreted a non-linear 

relationship between the (H/F)min and critical hydraulic gradient compared to the linear 

relationship of Adel et al. (1988). They concluded that the internal stress distribution 

could affect the piping potential. 

 

Fig. 2. 10 Relationship between (H/F)min and critical hydraulic gradient (modified after 
Skempton & Brogan, 1994) 
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Wan & Fell (2004) carried out experiments on 14 soil mixtures. These specimens 

were 250 mm long by 300 mm in diameter, and they were reconstituted by being 

compacted in a cylindrical cell. An upward hydraulic gradient was applied to the 

specimen and then increased until the specimen failed. Signs of the erosion of fines were 

noted by continuously observing the colour of the effluent. They concluded that:  

(i) The internal instability of these soils commenced at critical hydraulic 

gradients of 0.5 or less,  

(ii) No mathematical relationship was found between the coefficient of 

uniformity, the critical hydraulic gradient and Kenney & Lau’s (1985) 

stability index or fines content,  

(iii) A lower hydraulic gradient is required to erode high porosity soils,  

(iv) A higher hydraulic gradient is required to erode clayey soils than soils with 

a similar proportion of fines but no cohesive fines,  

(v) The icr is significantly affected by the density of the soil;  

(vi) A lower hydraulic gradient is required for the failure of gap-graded soils 

compared to the continuously graded soils with a similar proportion of 

fines. 

Liu (2005) conducted experiments in a vertical permeameter, where the diameters 

of the test samples were 200 mm to 300 mm. No overburden pressure was imposed on 

the soil specimen, and an upward uni-directional flow was induced. To define the critical 

hydraulic gradient (icr), the slope of the gradient versus seepage velocity was used. The 

icr increased as the proportion of particles increased, and they were non-linearly related. 

Moffat (2005) conducted experiments on 4 soil mixtures using a large permeameter. The 

test samples were 300 to 500 mm long and 279 mm in diameter. The influence of effective 

vertical stress on the commencement of internal instability was investigated. An 
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overburden pressure of 25 to 175 kPa was imposed. The critical hydraulic gradient was 

determined by differences in the local hydraulic gradients and visual observations. A 

linear relationship was discovered between the critical hydraulic gradient and the vertical 

effective stresses. A different hydromechanical boundary for each gradation marked the 

onset of internal instability. 

Li & Fannin (2012) proposed the concept of a hydromechanical envelope to 

demonstrate the inception of suffusion in cohesionless soils (Figure 2.11). The 

hydromechanical envelope takes the form of a linear relationship in stress-gradient space. 

Its position depends on the magnitude of the stress imparted to the finer fraction of the 

PSD curve. Either heave or suffusion triggers the onset of instability following the 

observations of Terzaghi (1943) and Skempton & Brogan (1994), respectively. 

 

Fig. 2. 11 Theoretical hydromechanical envelope (modified after Li & Fannin, 2012) 
 

Xiao & Shwiyhat (2012) investigated the effect of internal instability or suffusion 

on the geometric and mechanical properties of soils. The geometric and mechanical 

properties considered were volume change, permeability, PSD, and compressive strength. 
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The experimental tests were carried out using a triaxial device that allowed seepage 

through the soil, and the soil eroded during the tests was collected. After the seepage tests, 

the samples were sheared following consolidated undrained stress paths. The results 

showed that the internal instability influenced the geomechanical properties of the soil. 

Soil permeability was reduced because fine particles clogged the voids in the coarser 

particles. Similarly, the compressive strength and volume change properties were 

different before and after the suffusion tests. The changes in compressive strength were 

not captured very well, but some of the gap-graded soils showed that the compressive 

strength increased after internal instability. In contrast, the other soils showed lower 

compressive strength after erosion. 

 Chang & Zhang (2013) carried out laboratory investigations to study the critical 

hydraulic gradients of internal erosion under isotropic compression, drain triaxial 

compression, and extension stress paths. The influence of the stress state on the critical 

hydraulic gradient was studied. Stable, initiation, development, and failure were the four 

phases of erosion that they proposed. The hydraulic gradient for the initiation of particle 

motion first increased with the shear stress ratio and then decreased as the stress reached 

the failure point. Ke & Takahashi (2015) investigated the consequences of suffusion on 

the mechanical behaviour of cohesionless soils with different fines content and at 

different initial confining pressures. It was observed that the strength of the soil decreased 

after suffusion and at higher confining pressures; this drop in strength decreased. The 

volumetric strain was greater at lower confining pressure. 

Indraratna et al. (2017) carried out experimental investigations on four 

cohesionless soils under cyclic loads. A uni-directional flow in an upward direction was 

induced. The relationship between the velocity of effluent and the hydraulic gradient was 

used to check the inception of instability (Figure 2.12). It was found that the critical 
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hydraulic gradient is influenced by the wall of the apparatus and particle-to-particle 

contact friction. It was also found that some samples that were stable under static loads 

became unstable under cyclic loads. 

 

Fig. 2. 12 Relationship between effluent flow rate, turbidity and average hydraulic 
gradient (modified after Indraratna et al., 2017) 

 
 Mehdizadeh et al. (2017) investigated the post-erosion undrained behaviour of 

cohesionless soil under different loading paths. The undrained post-erosion shear strength 

increased under static and cyclic loading. The eroded samples showed higher resistance 

under cyclic loading, whereas the un-eroded sample liquefied immediately. The higher 

resistance of the eroded sample was due to effective contact between the coarser particles. 

Mehdizadeh et al. (2018) studied the effect of erosion on the geometric and mechanical 

properties of internally unstable soils and found that even a small percentage of eroded 

fine particles enhanced the mechanical behaviour.  

Mehdizadeh et al. (2019) investigated the influence of the sample size on the 

internal erosion of the soil sample. As the sample increased in length, the likelihood of 

the particles becoming clogged increased, and fewer fines were eroded. The strain-

softening behaviour became more pronounced as the residual fines content decreased. 
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The mechanical behaviour of the samples changed due to internal erosion, and the 

undrained peak strength increased with up to 15% of fine particle erosion.  

 Luo et al. (2020) studied the effect of deviatoric stress on the onset of soil 

suffusion. For this purpose, four internally unstable cohesionless soils were selected. The 

results showed that the deviatoric stress drastically affected the onset of suffusion of soils. 

A linear relationship was found between the shear stress ratio (ratio of deviatoric stress 

to mean stress) and the critical hydraulic gradient (icr). An empirical equation for 

determining the icr under complex loading conditions was developed. It was found that as 

the shear stress ratio increases, the icr first increases, peaks at the critical value of the shear 

stress ratio, and decreases significantly after the peak. 

A mud pumping incident occurred at a railway site in NSW, leading to a research 

program at the University of Wollongong, Australia, to find the probable explanation. 

The internal instability of the subgrade soil at various points was identified as a possible 

mechanism. Geometrical constraints control the potential for internal instability, whereas 

hydromechanical constraints influence when instability occurs. Although empirical 

methods for checking the geometrical potential for internal instability do exist in the 

literature, their practical applicability is greatly limited by their applicability to soils of 

varied gradations and the utter lack of micromechanical conditions that lead to the onset 

of instability. 

2.4.4 Effect of Cohesionless Fines on Internal Instability 

This doctoral thesis also examines the influence of cohesionless fines content on the 

internal instability of soils because the hydromechanical threshold for the initiation of 

internal instability can alter as a result of variations in the fines content. The maximum 

proportion of mobile fines in the previously mentioned approaches was set at 20% to 30% 

of the total mass (Kenney & Lau 1985). The literature addressing the impact of fines on 
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the shear strength of cohesionless soils will now be compared to this proposed limit. In 

many geotechnical problems, the shear strength of soil with a proportion of sand and silt 

is a decisive factor because, according to experimental evidence, altering the fines 

fraction can change the shear strength of soil (Thevanayagam et al. 2002; Vallejo 2001). 

Apparently, this behaviour varies depending on the range of fines; in essence, the finer 

fraction influences the behaviour of gap-graded granular mixtures. 

A correlation between the void ratio and the undrained shear strength was 

discovered in an experimental study by Thevanayagam et al. (2002). Their fundamental 

hypothesis was that soil behaves like an organised skeleton of particles where in some 

instances, the coarser fraction might carry most of the load, and the finer fraction 

contributes very little to transfer the load. The strength of the finer fraction is lower in 

this situation, so this finding must be considered in any limit equilibrium study of the 

particles (Skempton & Brogan 1994). When introducing non-plastic fines, 

Thevanayagam et al. (2002) recommended using a modified void ratio (inter-granular and 

inter-fine void ratio) to explain the change in shear strength. It was discovered that the 

inter-granular void ratio affects the large strain of the undrained shear strength. They also 

defined a threshold for fines at which strength of the soil is primarily controlled by fines. 

If the proportion of fines is low, the intergranular friction (the skeleton of the soil) plays 

an important role and the finer particles only play a secondary role. 

Vallejo (2001) studied the stiffness and shear strength of mixtures of sand-gravel 

sizes of glass beads and mixtures of sand and silt. To ascertain its effect on the shear 

strength of these mixtures, the concentration of fines was varied. The variations in the 

shear strength of granular mixtures were attributed to variations in porosity. A change in 

porosity occurs with the weight percentage of fine particles. There is no longer room 

between the coarse grains for further fine grains once minimum porosity has been reached 
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because, beyond this stage, fine particles take over as the dominating component of the 

mixture as the coarse grains separate. It was demonstrated that between 25 and 30 per 

cent by weight of the finer fraction is responsible for differentiating the behaviour of the 

material. In soil migration studies, this percentage corresponds to the maximum 

anticipated "mobile" fines for material supported by the coarse fraction. It is comparable 

to how the peak shear strength changes in binary mixtures due to normal stress being 

applied in direct shear experiments. 

As a result, the fines content of soil can affect a range of its behaviours, such as: 

• The strength of the soil mixtures, 

• The transfer of stress between coarser and finer particles, 

• Mobile fines in the voids of coarse particles. 

These factors are likely to influence the onset of internal stability under seepage flow 

(Moffat 2005). 

2.4.5 Role of Particle Shape on Internal Instability 

Although the shape strongly influences the behaviour of soils, little or no attention has 

been paid to this aspect when studying internal instability caused by seepage (Slangen 

2015) due to the complex experimental and computational procedures. According to some 

research on the internal friction angles of granular soils, the internal friction angles for 

sub-angular particles significantly outperform those for sub-rounded particles when re-

formed to the same void ratio. Youd (1973) showed that as the particles become more 

angular, the maximum and minimum index porosities and the difference between the 

maximum and minimum index porosities increase. Mitchell & Soga (2005) stated that 

rounded glass beads are less prone to breakage than angular glass beads.  

According to Cho et al. (2006), compared to a similar packing of rounded 

particles, angular particles produce much looser packing that shows a lower stiffness at 
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small strains. Compression and decompression indices of rounded particles were lower 

than angular particles by intermediate strain response; this was associated with contact 

slippage or particle breaking. An increase in angularity was proposed to increase 

resistance at large strain response related to particle rotation and slip of contacts against 

particle rotation, resulting in greater shear resistance. 

2.4.6 Decisive Factors for the Occurrence of Internal Instability 

Based on the literature review given above, the initiation of internal instability is 

determined by the following factors: 

• PSD (Indraratna, Israr & Rujikiatkamjorn 2015; Kenney & Lau 1985; Kezdi 

1979), 

• Relative density of soil (Israr & Indraratna 2017), 

• Fines content (Liu, 2005), 

• The shape of particles (Slangen 2015), 

• Soil disturbance caused by vibration etc. (Kenney & Lau 1985; Skempton & 

Brogan 1994),  

• The hydraulic gradient applied to the soil specimen (Indraratna, Israr & Li 2017; 

Li & Fannin 2012; Skempton & Brogan 1994), 

• The effective stresses in the soil (Li & Fannin 2012). 

Since all of the above literature focuses on the experimental investigations at the 

continuum scale, microscale perspectives could not be captured with these macroscale 

laboratory investigations. Internal instability is regarded as a problem at the particle scale 

(O’Sullivan 2011); therefore, numerical investigations using the Discrete Element 

Method (DEM) could be used for such particle scale problems. As mentioned in Chapter 

1, this doctoral thesis focuses on the micromechanical modelling of internal instability 
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using DEM. Therefore, various studies on the numerical investigation of internal 

instability using DEM are first reviewed as follows. 

2.5 MICROMECHANICAL ANALYSIS OF INTERNAL INSTABILITY AND 

FLUIDISATION 

2.5.1 Micromechanical Analysis with the Discrete Element Method (DEM) 

In order to solve rock mechanics problems, the numerical modelling method known as 

DEM was developed in the late 1970s (Cundall & Strack 1979). Since then, it has been 

widely used to address various engineering issues. DEM is a mesh-free method that, in 

contrast to more conventional numerical methods such as the Finite Element Method 

(FEM) or the Finite Difference Method (FDM), takes individual particles into account 

and records their behaviour. DEM makes it simpler than any conventional method in 

capturing the continuum response for problems where discrete units are needed to analyse 

their engineering response, such as simulating rockfall, railway sub-ballast, and ballast. 

DEM has been used to study internal instability (Ahmadi et al. 2020; Sufian et al. 2021). 

 Shire & O’Sullivan (2013) carried out DEM modelling of the internal instability 

of gap-graded granular soils. The samples considered showed different degrees of internal 

instability, which were evaluated according to the criterion of Kezdi (1979). The particles 

were spherical, and the periodic boundaries were used to minimize the boundary effects 

and achieve computational efficiency. The samples were compressed isotropically to a 

mean stress of 200 kPa, and no gravity force was applied to the samples in order to obtain 

an isotropic fabric. The micromechanical analysis considered the coordination number, 

the volume-weighted coordination number, the relative frequency of the contacts and the 

probability of the contact force. It was found that the coordination number and the 

volume-weighted coordination number decreased with increasing stability index by 
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Kezdi (1979) (Figure 2.13). However, there was no apparent distinction between samples 

that were internally stable and those that were unstable. 

 

Fig. 2. 13 Variation in (a) coordination number, (b) volume-weighted coordination 
number with Kezdi’s (1979) stability index (Shire & O’Sullivan 2013) 

 
 Shire et al. (2014) used DEM simulations to study the stress distribution in 

idealised gap-graded soils with different internal stability potentials. Samples of soil were 

created with particles having spherical shapes. No gravity force was applied to the 

particles, and the samples were compressed in an isotropic manner. The stress reduction 

factor (𝛼) was quantified directly from the particle scale data using DEM variables. It was 

found that the stress distribution is affected by the particle size distribution, the relative 

density and the percentage of cohesionless fines.  

The DEM data concluded that the soils are underfilled fabric, where the fines are 

loose in the voids of the coarse particles if the fines content < 25%. Therefore, soils with 
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fines content < 25% are not affected by the relative density of the soil. If the fines content 

> 35%, the soil is overfilled and considered to be internally stable. In soils with a fines 

fraction between 25% and 35%, the effective stress transferred to the fines is very 

sensitive to the relative density of the soil. The fabric of the soil sample was divided into 

3 cases. In case 1 (Zone I), coarse particles dominate, while the fine particles sit loosely 

in the spaces between the coarse particles. In case 2 (Zone II), coarse particles are the 

dominant fabric while the fine particles are under-stressed and play a supporting role. In 

case 3 (Zone III), both fine and coarse particles participate in the transfer of stress (Figure 

2.14). However, the samples could transition from one zone to another due to stress-

induced anisotropy; this was not taken into account, but it will be considered in this 

doctoral thesis.  

 

Fig. 2. 14 Zones of the various fabric cases (modified after Shire et al., 2014) 
 
 Langroudi et al. (2015) studied the micromechanical behaviour of internally stable 

and unstable soils using DEM. Linear, concave up, and gap graded were the three types 

of gradations chosen for the analysis. The numerical investigations showed that the gap-

graded soil and concave up gradations exhibited low connectivity of the particles, whereas 
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the internally stable samples showed a more homogeneous network of contact forces than 

internally unstable soils. The macroscale criteria were compared to micromechanical 

parameters such as the mechanical coordination number, but there was no clear distinction 

between internally stable and unstable soils (Figure 2.15).  

 

Fig. 2. 15 Mechanical coordination number versus various macroscale criteria 
(Langroudi et al., 2015, by permission) 

 
 Shire et al. (2016) studied the influence of the size ratio and fines content on the 

contact distribution and stress transfer in dense gap-graded soils. A mean stress of 50 kPa 

was imposed on the samples using the isotropic compression method. The periodic 

boundaries were used, and the gravity of the particles was not considered. It was 

discovered that the fines content and size ratio influence the stress reduction factor (Figure 

2.16).  
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Fig. 2. 16 Relationship between stress reduction factor (α), size ratio (χ) and fines 
content (Ffines) (Shire, O’Sullivan & Hanley 2016) 

 
 Ahmadi et al. (2020) investigated the influence of the fine fraction, the relative 

density and the gap ratio on the internal instability of soils. A novel method was proposed 

to create the DEM samples with target relative densities. Spherical particles were used. 

The evolution of the stress reduction factor and the partial coordination number were 

checked at different relative densities; they found that gradations with gap ratios between 

4-7 with 35% fines are internally unstable but can become stable as the relative density 

increases. 

 Ahmadi et al. (2021) studied the effect of soil structure on the internal instability 

of cohesionless gap-graded soils. The actual fabric of the soil was recorded using Micro-

Computed Tomography (µCT) and then transferred to DEM using image processing 

techniques. The Pair Correlation Function (PCF) was used as a micro geometric 

parameter to assess the influence of image filters on the quality of the images from µCT. 

The numerical results from DEM showed a lower coordination number but a higher stress 
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reduction factor with the real fabric of the soil, which indicated that the fine particles are 

more involved in the transfer of stress in the structure of real soil. 

 Sufian et al. (2021) studied the influence of relative density and stress-induced 

anisotropy on the stress distribution in gap-graded soils using DEM. The particle shapes 

were spherical. Mean effective stress of 100 kPa was imposed on the samples, and then 

constant mean stress triaxial compression tests were carried out to investigate the effect 

of stress-induced anisotropy. A limiting value of the axial strain was set at 5% due to 

computational limitations. The presence of a single fines content threshold capable of 

distinguishing between coarse and fine dominating behaviour in gap-graded soils was 

refuted (Figure 2.17). Dense, transitional gap-graded soils showed less stress transferred 

to the finer fraction during shearing. 

 

Fig. 2. 17 Distribution of mean stress in the fines (a) start (b) end of shearing (Sufian et 
al., 2021, by permission) 

 
 In the approaches presented above, spherical-shaped particles were assumed 

because the shape of particles affects internal instability. For example, spherical particles 

ought to be more prone to instability than angular particles. In the second case, an increase 

in the surface area leads to a large increase in the number of particles that make active 

contacts, which results in a more stable particle assembly. Angular particles have higher 

friction and more efficient stress transfer than spherical particles (Israr 2016). In addition, 



42 
 

the fluid part was ignored in all of the above studies. The following section discusses the 

coupled fluid-particle interaction methods used to assess internal instability. 

2.5.2 Micromechanical Analysis with Coupled DEM-CFD/LBM 

DEM is typically coupled with Computational Fluid Dynamics (CFD) using either the 

Navier-Stokes equations or the Boltzmann equation to model the interaction between the 

fluids and the particles. Modelling fluid-particle interaction is crucial when verifying 

internal instability or mud pumping. DEM-CFD has been used in the literature to study 

the internal instability and fluidisation of soils (Nguyen & Indraratna 2020b; Zhou et al. 

2020; Zou, Chen & Zhang 2020). 

 Liu et al. (2020) investigated the migration of fines within the fabric of coarse 

particles in gap-graded soils using DEM coupled to CFD with the Navier Stokes equation. 

The influence of the confining pressure and the fines content was examined. The 

confining pressure at which the soil was compacted ranged from 50 kPa to 200 kPa, and 

the fines content ranged from 20% to 35%. For the analysis, micromechanical parameters 

such as the buckling of force chains and the release of strain energy under the influence 

of suffusion were considered. It was found that when fines contribute to the transfer of 

stress, i.e., fines content > 25%, the erosion of these fines causes the force chains to buckle 

and the original force transmission structure to collapse (Figure 2.18); this sudden 

collapse intensifies suffusion with the release of strain energy. These observations were 

more pronounced as the confining pressure increased. In contrast, samples with 

underfilled fabric and under-stressed fines were eroded through the soil fabric with little 

impact on the force network. In these structures, a higher confining pressure prevented 

suffusion from occurring. 
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Fig. 2. 18 Percentage of buckling of strong force chains for samples with different fines 
content (Liu et al., 2020, by permission) 

 
 Hu et al. (2020) investigated the effect of suffusion on the undrained shear 

behaviour of an internally unstable soil using DEM-CFD coupling. Flow was induced in 

the upward direction through the granular assembly of the soil. Constant volume tests 

were carried out on the eroded and non-eroded specimens. Strain hardening and softening 

occurred in the non-eroded and eroded specimens. Shearing reduced the coordination 

number (Figure 2.19) and increased the equivalent intergranular void ratio. Fabric 

anisotropy was introduced through suffusion and shearing. 
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Fig. 2. 19 Evolution of (a) coordination number (b) mechanical coordination number 
during shearing (Hu et al. 2020, by permission) 

 
 Zou et al. (2020) studied the suffusion mechanism using coupled DEM-CFD. 

During suffusion with upward seepage, the varying flow rate, the evolution of distinct 

layers’ porosity, and the temporal and spatial redistribution of particles in the sample were 

investigated. The results of the simulation showed that when Kenney and Lau’s stability 

index was lower, the erosion ratio of fine particles was larger. The porosities across the 

layers of the sample changed continuously with the flow time (Figure 2.20). The fines 
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content of the lower layer decreased significantly, whereas the fines content of the upper 

layer decreased just somewhat. 

 

Fig. 2. 20 Porosities varying with time in different vertical layers across soil specimens 
(Zou et al., 2020, by permission) 

 
 Zhou et al. (2020) used coupled DEM and the Lattice Boltzmann Method (LBM) 

to study the evolution of internal erosion under various stress levels and hydraulic 

gradients. It was found that the hydraulic gradient and vertical stresses affect the 

porosities of the soils. Under hydraulic flow, granular materials were divided into erosion, 

stable, and compaction zones (Figure 2.21). As the hydraulic gradient was applied, the 

rattlers began to move with the flow, and the number of particles with a coordination 

number < 3 increased dramatically. Ballistic, caging, and diffusive erosion regimes were 

identified in the initial erosion phase. Indraratna et al. (2021) carried out investigations 
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with DEM coupled with LBM. They studied the number of contacts and the contact force 

distribution during fluid flow, but they did not propose a microscale criterion to 

distinguish soil from a stable to a liquid-like state. 

 

Fig. 2. 21 Three states of granular materials under hydraulic flow (Zhou et al. 2020, by 
permission) 

 
 Nguyen & Indraratna (2020) carried out simulations using DEM coupled to the 

Navier-Stokes equation. The hydraulic gradient was gradually applied to the soil 

specimen in an upward direction. The migration of particles, the rate of erosion, and the 

change in hydraulic conductivity during fluid flow were discussed. The influence of PSD, 

Cu, the friction coefficient, and the boundary conditions were evaluated; it was found that 

the onset of hydraulic failure was strongly influenced by the Cu, the friction coefficient, 

and the boundary conditions (Figure 2.22). Nguyen & Indraratna (2020b) further studied 

internal erosion through a novel concept of energy transformation. The DEM was coupled 

with CFD to model the fluid-particle interactions. The kinetic energies of the fluid and 

the particles were computed. They found that sufficient energy is lost as the fluid flows 
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through the soil, but a significant number of particles with low kinetic energy could 

migrate. The influence of PSD and porosity was also discussed. 

 

Fig. 2. 22 Influence of boundary conditions on the critical hydraulic gradient (Nguyen 
& Indraratna, 2020, by permission) 

 
Although some of the studies discussed above have considered the 

micromechanical analysis of internal instability, the complex micromechanical behaviour 

of granular soils requires more insight. Furthermore, none of the studies could establish 

DEM-inspired criteria to evaluate fluidisation and internal instability. Table 2.1 

summarises the various experimental and numerical studies on internal instability and 

fluidisation described above; this includes their limitations and whether or not they 

account for hydromechanical conditions and micromechanical analysis. The numerical 

studies described above usually combined the DEM to Navier-Stokes equations or the 

Boltzmann equation. These are the different approaches available to couple fluids to 

particles. Since it is vital to select an appropriate method for analysis in this study, the 

different approaches available are reviewed as follows:
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Table 2. 1 Summary of various studies and their limitations 

Reference Macroscale criterion Material susceptibility Hydraulic conditions Stress conditions Microscale analysis 

USACE (1953) In a mixture of gravel and sand, a 
mixture with greater than 50% sand = 
stable 

Yes No No No 

Istomina (1957) Cu ≤ 10, Stable 
Cu ≥ 20, Unstable 
10≤ Cu ≤ 20, Transition 

Yes No No No 

Lubochkov (1969) The shape of the PSD curve 
determines the stability 

Yes No No No 

Kezdi (1969) Internal stability when 𝐷15𝑐 𝑑85
𝑓⁄   ≤ 4 Yes No No No 

Kovacs (1981) Capillary tube model Yes No No No 
Kenney and Lau 

(1985) 
Internal instability when (H/F)min ≤ 1 Yes No No No 

Chapuis (1992) The slope of the PSD curve determines 
the stability 

Yes No No No 

Burenkova (1993) Different zones of internally stable and 
unstable soils 

Yes No No No 

Honjo et al. (1996) Internally unstable when gap ratio > 4 Yes No No No 
Liu (2005) Fines < 25%, unstable 

Fines 25 to 35%, transition 
Fines > 35%, stable 

Yes No No No 

Li & Fannin (2008) Kezdi’s ; finer content < 15% 
Kenney & Lau’s; finer content > 15% 

Yes No No No 

Indraratna et al. (2011)  if 𝐷𝑐35𝑐 𝑑85
𝑓⁄  > 0.82, internally stable 

and if 𝐷𝑐35𝑐 𝑑85
𝑓⁄  < 0.73, internally 

stable otherwise, transition zone. 

Yes No No No 

Indraratna et al. (2015) if 𝐷𝑐35𝑐 𝑑85
𝑓⁄  ≤ 1, internally stable Yes No No No 

Israr & Indraratna 
(2017) 

𝐷𝑐35
𝑐𝑙 𝑑85

𝑓
⁄  ≤ 1, internally stable 

 
 

Yes No No No 
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Reference Macroscale criterion Material susceptibility Hydraulic conditions Stress conditions Microscale analysis 
Terzaghi (1943) 

𝑖𝑐𝑟 =
𝛾′

𝛾𝑤
 

No Yes Yes No 

Adel et al. (1988) The critical hydraulic gradient was 
determined based on the loss rate of 
fine particles. 

No Yes Yes No 

Skempton & Brogan 
(1994) 

Relationship between (H/F)min and 
critical hydraulic gradient. 

No Yes Yes No 

Wan & Fell (2004) No mathematical relationship. No Yes Yes No 
Liu (2005) The slope of the hydraulic gradient and 

seepage velocity was used to define the 
critical hydraulic gradient. 

No Yes Yes No 

Moffat (2005) The critical hydraulic gradient was 
determined by local hydraulic gradient 
variations and visual observations. 

No Yes Yes No 

Li & Fannin (2012) The concept of a hydromechanical 
envelope was proposed. 

No Yes Yes No 

Xiao & Shwiyhat 
(2012) 

The geometric and mechanical 
properties considered were volume 
change, permeability, PSD and 
compressive strength. 

No Yes Yes No 

Chang & Zhang (2013) The hydraulic gradient for the particle 
motion initiation first increased with 
the shear stress ratio and then 
decreased as the stress reached the 
failure point. 

No Yes Yes No 

Ke & Takahashi (2015) No mathematical relationship. No Yes Yes No 
Indraratna et al. (2017) Critical hydromechanical envelopes 

were plotted. 
No Yes Yes No 

Mehdizadeh et al. 
(2017) 

N/A No Yes Yes No 

Mehdizadeh et al. 
(2018) 

N/A 
 
 

No Yes Yes No 
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Reference Macroscale criterion Material susceptibility Hydraulic conditions Stress conditions Microscale analysis 
Mehdizadeh et al. 

(2019) 
N/A No Yes Yes No 

Luo et al. (2020) N/A No Yes Yes No 
Shire & O’Sullivan 

(2013) 
N/A No No No Yes 

Shire et al. (2014) N/A No No Yes Yes 
Langroudi et al. (2015) N/A No No No Yes 

Shire et al. (2016) N/A No No Yes Yes 
Liu et al. (2020) N/A No Yes Yes Yes 
Hu et al. (2020) N/A No Yes Yes Yes 
Zou et al. (2020) N/A No Yes Yes No 
Zhou et al. (2020) N/A No Yes Yes Yes 

Nguyen & Indraratna 
(2020) 

N/A No Yes Yes Yes 

Nguyen & Indraratna 
(2020b) 

N/A No Yes Yes Yes 

Ahmadi et al. (2020) N/A No No Yes Yes 
Ahmadi et al. (2021) N/A No No Yes Yes 
Sufian et al. (2021) N/A No No Yes Yes 
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2.6 FLUID-PARTICLE INTERACTION APPROACHES 

Two approaches are available to couple fluids and particles; they are referred to as 

unresolved and resolved (Figure 2.23). A single fluid cell can hold multiple solid particles 

if a coupling is unresolved, i.e., the particle diameter is substantially less than the mesh 

size (Figure 2.23b). The interaction force between fluid and particles is calculated using 

the local porosity of the cell as well as the superficial slip velocity of the particles and the 

fluid (Hager 2014). Since the fluid phase has a low spatial resolution, it is challenging to 

compute the fluid-particle interactions directly. Therefore, these models require a closer 

relationship, so some correlations were used to compute the fluid-particle interaction 

forces. The biggest source of error with unresolved coupling is the average force 

experienced by the particles (Hager 2014; Third & Muller 2013). These unresolved 

approaches have been used in geomechanics (Nguyen & Indraratna 2016; Zhao & Shan 

2013).  

In resolved coupling, each solid particle contains several fluid cells, i.e., the 

particle diameter is larger than the mesh size and has several Langrangian points (Figure 

2.23a). The hydrodynamic forces acting on the particle may be calculated by integrating 

the forces acting on the Langrangian points around the perimeter of the solid particle. The 

force on each particle is calculated separately. This resolved coupling can be a kind of 

Direct Numerical Simulation (DNS) (Hager 2014; Han, Feng & Owen 2007a; Third & 

Muller 2013). 
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Fig. 2. 23 Resolved and unresolved approaches (modified after Hager, 2014) 
 
2.6.1 Resolved Simulations 

For the resolved simulations of the fluid-particle interaction, several methods based on 

the processing of the underlying mesh are available, namely (i) fixed mesh methods, and 

(ii) body-conformal mesh methods (Figure 2.24) (Haeri & Shrimpton 2012; Hager 2014). 

In the body-conformal mesh method, a discretization of space and time is first carried out. 

The solution is achieved by shifting it in time, starting from a certain initial state. With 

space discretization, the domain is sub-divided into control volumes; these control 

volumes are divided into two sub-groups, i.e., unstructured and structured meshes.  

If the geometry is complex, then the unstructured mesh is the best choice, but it is 

complicated to generate. If the particles are stationary, the unstructured mesh is generated 

once around each particle, and then the solution is carried out. However, the entire domain 

is re-meshed at each time step when the particles are in motion. Re-meshing is a slow and 

complicated technique. Various other methods are also available in this category, namely 

Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST), Arbitrary-Langrangian-

Eulerian (ALE), and Fictitious Boundary Method (FBM) (Figure 2.24). These methods 

are not suitable for simulating high-resolution 3D particular flow with many particles 

(Haeri & Shrimpton 2012). Note that this doctoral thesis only introduced the Body 

Conforming Mesh Methods, and the details are not elaborated here. 
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The fixed mesh methods are further divided into two categories, i.e., Immersed 

Boundary Method (IBM) and Distributed Lagrange Multiplier/Fictitious Domain 

(DLM/FD) (Figure 2.24). In the fixed mesh methods, the flow equations are solved on 

either a structured or unstructured mesh but with a stationary Eulerian grid. The object 

within the Eulerian domain is defined by adding Langrangian points to the surfaces of the 

objects; these Langrangian points may or may not coincide with the Eulerian grid, and 

they can move freely over the Eulerian mesh (Peskin 1972).  

A non-slip condition at the boundary of the submerged object is considered to 

simulate the flow around them, regardless of whether the object is stationary or in motion. 

The fluid node has the same velocity as the solid node at the solid boundary for the 

moving objects, whereas with stationary objects, the fluid and solid nodes have zero 

velocity in all directions at the boundary of the object. An additional source term called 

the forcing term is introduced into the governing equations of fluid flow at these surface 

points of the object (Haeri & Shrimpton 2012). Coupling between the Langrangian 

marker points of the surface within the Eulerian grid is achieved by the force that the flow 

exerts on the marker points and the reaction force that the marker points exert on the fluid 

(Peng & Luo 2008). 

Resolved 
Simulations 

Fixed Mesh 
Methods 

Body Conformal 
Mesh Method 

DLM/FD IBM ALE DSD/SS
T 

FBM 

Fig. 2. 24 Categories of resolved simulations based on the treatment of underlying mesh 

(modified after Haeri & Shrimpton, 2012) 
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2.6.1.1 Immersed boundary method (IBM) 

IBM was originally introduced by Peskin (1972) to simulate fluid-particle interactions. In 

this method, the solid object within the fluid domain cuts through the fluid's mesh, so only 

the governing equations of the fluid near the boundary are modified. Therefore, a body 

force term is introduced into the fluid flow governing equation at predefined boundary 

points to enforce the boundary conditions at those points. IBM offers a number of 

benefits, including quick solutions due to the structured mesh; unstructured meshes are 

not required to discretize complicated geometries. Imagine a stream of liquid flowing 

around a body, as shown in Figure 2.25.  The volume of the body is 𝛺𝑏 with boundary 𝛤𝑏 

and the surrounding fluid is represented by 𝛺𝑓.The governing equations for the fluid are 

written in terms of Navier-Stokes equations as (Mittal & Iaccarino 2005):  

𝜕�⃗� 

𝜕𝑡
+ �⃗� . 𝛻�⃗� +

1

𝜌
. 𝛻𝑝 −

𝜇

𝜌
𝛻2�⃗� = 0                                                                                        (2.9) 

𝛻�⃗� = 0                                                                                                                                      (2.10) 

The above equations only apply to the fluid domain represented by 𝛺𝑓. To include the 

boundary of the immersed object, the following equations must be modified at the 

boundary 𝛤𝑏 as: 

�⃗� = �⃗� 𝛤                                                                                                                                        (2.11) 

where �⃗�  = the fluid velocity, 𝑝 = the pressure, and 𝜌 and 𝜇 = the density and viscosity, 

respectively. 
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Fig. 2. 25 Schematic diagram showing a generic body around which the flow is to be 

simulated (modified after Mittal & Iaccarino, 2005) 

In the Body Conformal Mesh Methods, Equations 2.9 and 2.10 are discretized for 

the fluid domain and the boundary conditions, i.e., Equation 2.11 at the immersed 

boundary 𝛤𝑏 is enforced directly. While in the immersed boundary method, Equations 2.9 

and 2.10 are discretized on a Cartesian grid. By changing these equations, the boundary 

conditions can be enforced indirectly. In most cases, this adjustment takes the form of a 

source term in the governing equation called a forcing term that reproduces the boundary 

effect. There are two approaches to applying these forcing terms. The "continuous forcing 

approach" is the first approach; the forcing element is incorporated into the continuous 

governing Equations 2.9 and 2.10, resulting in equations of the form: 

ℒ𝑈 = 𝑓𝑏                                                                                                                                    (2.12) 

where ℒ = the operator representing the Navier-Stokes equations as in Equations 2.9 and 

2.10. Equation 2.12 is then applied to the entire domain, i.e., 𝛺𝑏 + 𝛺𝑓. Note that 𝑓𝑏 =

(𝑓𝑚, 𝑓𝑝), where 𝑓𝑚 and 𝑓𝑝 = the forcing term applied to the momentum and pressure, 

respectively. Equation 2.10 is then discretized on a Cartesian grid, which can be written 

as: 

{𝐿}{𝑈} = {𝑓𝑏}                                                                                                                         (2.13) 
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The system of equations, i.e., Equation 2.13, is then solved over the entire domain. 

The discrete forcing technique is the second method, and it involves discretizing the 

governing equations on a Cartesian grid without taking into account the immersed 

boundary, as follows: 

{𝐿}{𝑈} = 0                                                                                                                               (2.14) 

After discretization, the equations near the immersed boundary are adjusted to account 

for its presence resulting in a modified system of equations as follows: 

{𝐿′}{𝑈} = {𝑟}                                                                                                                           (2.15) 

which are then solved on the Cartesian grid, where {𝑟} represents the known terms 

associated with the boundary condition on the immersed surface. 

The two approaches are connected; the above equation is written as follows: 

{𝐿}{𝑈} = {𝑓𝑏′}                                                                                                                        (2.16) 

where, 

 {𝑓𝑏′} = {𝑟} + {𝐿}{𝑈} − {𝐿′}{𝑈}                                                                                         (2.17) 

2.6.2 Resolved Simulations Using the Lattice Boltzmann Method (LBM)  

Fluid flows can be simulated at different scales, i.e., microscopic, mesoscopic, and 

macroscopic. The Navier-Stokes (NS) equations are the basis of fluid flows at the 

macroscopic scale and can be solved using either the Finite Element Method (FEM), the 

Finite Difference Method (FDM), or the Finite Volume Method (FVM) because they are 

complicated to be solved by analytical methods (Bao & Meskas 2011). The simulation of 

fluid flows can be done at the microscopic scale by Molecular Dynamics (MD) by solving 

Hamilton’s equation. However, identifying the location and velocity of each particle by 

the MD method is complex and requires enormous computations. The Lattice Boltzmann 

Method (LBM) closes the gap between macro and micro scales; it is a modern method in 
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Computational Fluid Dynamics (CFD) and is based on the kinetic theory of gases and 

models the system on a mesoscopic scale. 

The macroscopic fluid behaviour results from the collective behaviour of 

microscopic particles (Bao & Meskas 2011; Chen & Doolen 1998). LBM has evolved 

from the Lattice Gas Automata (LGA) method, which is a simplified fictitious MD model 

in which space, time, and particle velocities are all discrete. Unlike standard CFD 

techniques, LBM models the fluid as a collection of notional particles that propagate and 

collide sequentially (Chen & Doolen 1998). LBM does not mimic detailed particle motion 

like particle-based approaches such as MD and Direct Simulation Monte Carlo (Chen & 

Doolen 1998; Noble & Torczynski 1998). In NS equations, fluid is described in terms of 

macroscopic quantities, e.g., velocity and pressures, while in LBM, the velocity and 

pressure are computed as the momentum of particles. The NS equations can be recovered 

from Lattice Boltzmann (LB) equations using the Chapman-Enskog expansion 

(Bhatnagar, Gross & Krook 1954). 

The Lattice Boltzmann Method (LBM) has been effectively employed for Direct 

Numerical Simulations (DNS) (i.e., resolved simulations) of particle flow systems, unlike 

the standard Computational Fluid Dynamics (CFD). Researchers have used several 

thousand to millions of spherical particles with LBM. This approach may also be used to 

address non-spherical objects, such as the movement of blood cells and the motion of 

elongated particles (Rettinger & Rüde 2017). Several approaches are available for fluid-

particle coupling with LBM, (i) Partially Saturated Cells Method (PSM), (ii) Momentum 

Exchange Method (MEM), and (iii) methods based on Langrangian marker points such 

as IBM. 
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2.6.2.1 Momentum exchange method (MEM) 

Ladd (1994) proposed the momentum exchange method with the basic idea that when 

solid particles are placed within the fluid domain, some links between the lattice nodes 

are cut by the boundary surface. The fluid particles travelling down these links interact 

with the solid surface at the boundary nodes, which are situated halfway along these links. 

This results in a discrete representation of the particle surface that becomes increasingly 

precise as the particle size grows. This method maps the particles at each time step when 

they are in motion. The approach used in this method is similar to the bounce-back 

boundary condition where the particles travelling from the fluid node to the solid node 

are bounced back with additional momentum, depending on particle velocity. The force 

and torque on the particle are then computed by summing over the momentum transfer 

across the boundary. This method is computationally efficient, but when a particle travels, 

the cells originally covered with the solid domain that convert back to the fluid require a 

consistent reconstruction of missing particle distribution function information. As a 

result, the interaction forces and pressures oscillate (Rettinger & Rüde 2017). 

2.6.2.2 Partially saturated cells method (PSM) 

PSM was first proposed by Noble & Torczynski (1998) and was then used by Seil & 

Pirker (2016) to develop an open-source code called LBDEM coupling. Han & Cundall 

(2017) used the same method to couple the Particle Flow Code (PFC) 2D and 3D with 

LBM. The Immersed Moving Boundary (IMB) technique, which differs from the 

momentum exchange method, is another name for this methodology. 

At each time step, instead of mapping the object, the local solid volume 

percentages for each computational cell are determined. The LBM collision operator is 

then modified, and the hydrodynamic forces are evaluated using this solid volume fraction 

(Noble & Torczynski 1998; Rettinger & Rüde 2017). The involvement of solid particles 
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within the fluid can be achieved by introducing an additional collision term into the 

original LBM equation to account for the interaction of fluid particles with nodes that 

overlap with solids. This approach shifts the hydrodynamics very smoothly between the 

fluid and solid nodes. 

Each time step is divided into two further sub-steps in the LBM: collision and 

streaming/propagation. In the collision phase, the particles in a lattice collide and transfer 

momentum to one another. The distribution function of each particle carries the 

momentum transfer information. While the streaming/propagation phase is the post-

collision phenomenon, the new distribution functions of the particles have shifted to the 

neighbouring nodes. 

2.6.3 Unresolved Simulations 

When the behaviour of a large number of particles is of interest, unresolved simulations 

are chosen. The mesh cell is much larger than the particle sizes, and a cell can contain 

several particles (Tsuji, Tanaka & Ishida 1992). Coupling the fluid to the particle is 

achieved by a particle-fluid interaction force at a continuum scale for the fluid and 

individual particle levels for the solid phase. The Discrete Element Method (DEM) 

describes the motion of particles (Cundall & Strack 1979). The flow of the fluid by the 

local averaged Navier-Stokes equations. Two formulations are available; they are referred 

to as model A and model B. The decrease in pressure is distributed by the fluid and the 

particle in model A, but only the fluid phase in model B. However, both models do not 

provide many different results. Model A is explained here which is given as follows (Zhou 

et al. 2010): 

Conservation of mass equation: 

𝜕𝑛

𝜕𝑡
+ 𝛻. (𝑛𝑢𝑓) = 0                                                                                                                (2.18) 

Conservation of momentum equation: 
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𝜕(𝜌𝑓𝑛𝑢𝑓)

𝜕𝑡
+ 𝛻. (𝜌𝑓𝑛𝑢𝑓𝑢𝑓) = −𝑛𝛻𝑝 − 𝑓𝑝 + 𝛻. (𝑛. 𝜏) + 𝜌𝑓𝑛𝑔                                    (2.19) 

where 𝑛 = porosity of the cell, 𝑢𝑓 = fluid velocity, 𝑝 = fluid pressure, 𝜏 = viscous fluid 

stress tensor, 𝜌𝑓 = fluid density,  𝑓𝑝 = force exerted on the fluid cell by the particles. The 

computation of  𝑓𝑝 can be obtained as follows: 

𝑓𝑝,𝑜 =∑𝜛𝑖,𝑜 (
𝐹𝑝,𝑖

𝑉𝑐,𝑜
)

𝑛𝑝,𝑜

𝑖=1

                                                                                                          (2.20) 

where 𝑛𝑝,𝑜 = total number of particles in cell 𝑜, 𝜛𝑖,𝑜 = weight factor, which is the ratio of 

the volume of the particle 𝑖 to the cell’s total volume 𝑜; it has values ranging from 0 to 1; 

if the particle covers the cell completely, then its value would be 1, and 𝐹𝑝,𝑖 = total force 

acting on particle 𝑖. 

The particle-fluid interaction force on the individual particle 𝑖 can be written as 

(Zhou et al., 2010) 

𝐹𝑓,𝑖 = 𝐹𝑑,𝑖 + 𝐹𝛻𝑝,𝑖 + 𝐹𝛻𝜏,𝑖 + 𝐹𝜐𝑚,𝑖 + 𝐹𝐵,𝑖 + 𝐹𝑆𝑎𝑓𝑓,𝑖 + 𝐹𝑚𝑎𝑔,𝑖                                        (2.21) 

where 𝐹𝑝𝑓,𝑖 = total fluid-particle interaction force, 𝐹𝑑,𝑖 = drag force, 𝐹𝛻𝑝,𝑖 = pressure 

gradient force, 𝐹𝛻𝜏,𝑖 = viscous force, 𝐹𝜐𝑚,𝑖 = virtual mass force, 𝐹𝐵,𝑖 = Basset force, 𝐹𝑆𝑎𝑓𝑓,𝑖 

= Saffman force and 𝐹𝑚𝑎𝑔,𝑖 = Magnus force. Different authors have proposed different 

correlations to compute the various forces in the above equation, summarized in Zhou et 

al. (2010). The correlations of some of the most common forces are given as: 

De Felice's solution gives the drag force on the particle and is given as (Nguyen & 

Indraratna 2016): 

𝐹𝑑,𝑖 =
1

8
𝐶𝑑,𝑖𝜌𝑓𝜋𝐷𝑝,𝑖

2 𝑛𝑜
2(𝑢𝑓,𝑜 − 𝑢𝑝,𝑖)|𝑢𝑓,𝑜 − 𝑢𝑝,𝑖|𝑛𝑜

−𝜒
                                                     (2.22) 

where 𝐶𝑑,𝑖 = drag coefficient of the fluid-particle system, 𝜌𝑓 = fluid density, 𝐷𝑝 = diameter 

of the particle, 𝑢𝑓,𝑜 = average fluid velocity of cell 𝑜, 𝑢𝑝,𝑖 = velocity of particle 𝑖 residing 
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in cell 𝑜, 𝑛𝑜
−𝜒 = a porosity function which considers the presence of other particles in the 

cell with power factor 𝜒 being a function of Reynold’s number and is given as: 

𝜒 = 3.7 − 0.65 𝑒𝑥𝑝 [−
(1.5 − 𝑙𝑜𝑔10 𝑅𝑒𝑝,𝑖)

2

2
]                                                                (2.23) 

The Reynold’s number can be given by: 

𝑅𝑒𝑝,𝑖 =
𝑛𝑜𝜌𝑓𝐷𝑝,𝑖|𝑢𝑓,𝑜 − 𝑢𝑝,𝑖|

𝜇𝑓
                                                                                              (2.24) 

 𝐶𝑑,𝑖 is also related to the particle Reynolds number and can be given as follows: 

𝐶𝑑,𝑖 =

(

 0.63 +
4.8

√𝑅𝑒𝑝,𝑖)

 

2

                                                                                                   (2.25) 

The pressure gradient force can be divided into (i) the buoyancy force 𝐹𝑏,𝑖 (ii) and the 

acceleration pressure gradient force 𝐹𝛻𝑝,𝑖 due to difference in pressure of flowing fluid: 

𝐹𝑏,𝑖 = −𝜌𝑓𝑔𝑉𝑝,𝑖                                                                                                                       (2.26) 

𝐹𝛻𝑝,𝑖  = −(𝛻. 𝑝)𝑉𝑝,𝑖                                                                                                                (2.27) 

where 𝜌𝑓 = fluid density, 𝑔 = gravitational acceleration, 𝑉𝑝,𝑖 = volume of particle 𝑖. 

Viscous forces can be computed by using the following relationship: 

𝐹𝛻𝜏,𝑖 = −(𝛻. 𝜏)𝑉𝑝,𝑖                                                                                                                  (2.28) 

The motion of individual particles is governed by the DEM proposed by Cundall & Strack 

(1979) and is given as follows: 

𝑚𝑝
𝑑𝑣𝑝

𝑑𝑡
= 𝑓𝑔

𝑝 +∑𝑓𝑗
𝑐

𝑁𝑐
𝑝

𝑐=1

                                                                                                      (2.29) 

𝐼𝑝
𝑑𝑤𝑝

𝑑𝑡
=∑𝑇𝑗

𝑐

𝑁𝑐
𝑝

𝑐=1

                                                                                                                 (2.30) 
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where 𝑚𝑝 and 𝐼𝑝 are the mass and the moment of inertia of the particle 𝑝, and 𝑣𝑝 and 𝑤𝑝 

are the translational and angular velocities of the particle 𝑝, 𝑁𝑐
𝑝 is the total number of 

contacts on the particle p, 𝑓𝑗𝑐 is the contact force vector in the jth direction at contact c on 

the particle p, 𝑇𝑗𝑐 is the torque that acts on the particle p due to the tangential contact force 

at contact c, and 𝑓𝑔
𝑝 is the gravitational force on the particle p. 

 This discussion shows that since the biggest error source in unresolved 

simulations is the average force experienced by the particles from the fluid; therefore, the 

resolved simulations with the Lattice Boltzmann Method (LBM) are used in this study. 

LBM is considered to be a modern approach that is relatively new to the field of 

geomechanics; as such, it has only been used in a limited number of studies (Han & 

Cundall 2017; Indraratna, Phan, et al. 2021).  

2.7 IDENTIFICATION OF RESEARCH GAPS 

Various macroscale criteria for evaluating the internal instability potential based on the 

experimental investigations have been proposed in the literature. Micromechanical 

analyses have also been carried out using DEM or DEM-CFD/LBM. However, the 

complex micromechanical analysis of internally stable and unstable soils demands further 

insights; none of these studies could address the following research gaps: 

• Internal instability was studied at the continuum scale using experimental 

investigations, and several empirical methods were proposed. However, internal 

instability is a problem at the micro/particle scale. Several studies were conducted to 

investigate internal instability at the particle scale using DEM, but none of them could 

demarcate the clear boundaries between internally stable and unstable soils based on 

parameters such as the coordination number and stress reduction factor that are 

obtained directly from the particle scale data. Therefore, there is a need to delineate 
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distinct boundaries to distinguish internally stable and unstable soils based on these 

microscale parameters using DEM. 

• Several studies carried out microscale analyses of internally stable and unstable soils 

but under isotropic stress conditions using DEM. Limited microscale analyses under 

anisotropic stress state due to shear-induced deformation were carried out, but none 

of them investigated how the samples could transition from an internally stable to an 

unstable state due to shear-induced deformation by taking soil micromechanics into 

account. This is why this study investigates parameters such as the coordination 

number, the partial coordination number, sliding contacts, and the stress reduction 

factor due to shear-induced deformation of the soil specimen and gives a whole new 

perspective. 

• Fluidisation or mud pumping was studied at a macroscale level using traditional 

experimental investigations. However, the changes in the fabric at a microscale could 

trigger the fluidisation of soil, and that has not yet been studied. Therefore, DEM, 

coupled with LBM, considered an emerging fluid-particle interaction approach, can 

be used to model the initiation of fluidisation at the microscale using parameters such 

as the coordination number and constraint ratio. Therefore, this study uses DEM-LBM 

and considers microscale parameters such as the coordination number, constraint 

ratio, sliding index, lost contacts, and contact force distribution to model the initiation 

of fluidisation at a microscale. 

2.8 SUMMARY AND CURRENT RESEARCH FOCUS 

In summary, internal instability is a phenomenon that changes the hydraulic and 

mechanical properties of soils. Since internal instability is a particle scale phenomenon, 

the DEM (Cundall & Strack 1979) can be used to study this phenomenon. DEM has 

previously been used to study internal instability (Hu, Zhang & Yang 2019; Langroudi, 
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Soroush & Shourijeh 2015; Nguyen & Indraratna 2020b; Shire et al. 2014; Zou, Chen & 

Zhang 2020). Shire et al. (2014) studied the stress distribution in gap-graded soils using 

DEM simulations. The stress distribution was affected by the PSD, relative density and 

the percentage of cohesionless fines. Langroudi et al. (2015) studied the micromechanical 

behaviour of internally stable and unstable soils using DEM. The gap-graded and 

concave-up gradations exhibited low connectivity of the particles. 

Similarly, Liu et al. (2020) investigated the migration of fine particles within the 

fabric of coarse particles in gap-graded soils using DEM coupled to Computational Fluid 

Dynamics (CFD) with the Navier Stokes equation. Hu et al. (2020) investigated the effect 

of suffusion on the undrained shear behaviour of internally unstable soil using DEM-

CFD. Zou et al. (2020) studied the suffusion mechanism using coupled DEM-CFD. The 

simulation results showed that the erosion ratio of the fine particles was larger when 

Kenney and Lau's stability index was lower. Nguyen & Indraratna (2020) studied internal 

erosion through a novel concept of energy transformation. Sufian et al. (2021) studied the 

effect of stress-induced anisotropy on the gap-graded bimodal samples using DEM. The 

main focus of this thesis is to establish micromechanically inspired criteria for checking 

the internal instability and fluidisation of soils. DEM combined with LBM is used in this 

study to achieve the objectives outlined in Chapter 1, based on the research gaps 

mentioned above. 
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CHAPTER 3 RESEARCH METHODOLOGY 

3.1 INTRODUCTION 

Literature reveals that extensive laboratory investigations have been carried out to check 

the internal instability and fluidisation of cohesionless soils (Indraratna et al. 2020; Israr 

& Indraratna 2017; Mehdizadeh et al. 2017; Xiao & Shwiyhat 2012). Although these tests 

were usually used to study the behaviour of soils at the continuum scale, microscale 

particle interactions have not been studied in detail. Soil is a particulate material, so it 

should be modelled at particle scale or microscale to gain further insights (O’Sullivan 

2011) because microscale interactions between particles strongly influence soil behaviour 

at a continuum scale. 

Recent advances in computational modelling have helped simulate soil at the 

microscale using the Discrete Element Method (DEM) (Cundall & Strack 1979). DEM is 

a viable tool for modelling soil at the microscale and has been widely used (Ahmadi et al. 

2020; Shire et al. 2014). DEM is typically coupled with Computational Fluid Dynamics 

(CFD) to model the interaction between the fluid and the particles (Nguyen & Indraratna 

2020b). Several approaches available for coupling fluids and particles have been 

described in detail in Chapter 2. The analyses in this doctoral thesis were carried out using 

DEM and its coupling to the Lattice Boltzmann Method (LBM), a comparatively new 

fluid-particle interaction tool used in geomechanics. The fluid-particle interaction was 

carried out using the method proposed by Noble & Torczynski (1998), who modified the 

fluid equation to account for the solid fraction of the particles. This chapter describes the 

DEM, the fundamental characteristics of the contact model, boundary conditions, the 

governing equations and their numerical approximations, and the coupling between DEM 

and LBM. 
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3.2 DISCRETE ELEMENT METHOD 

The Discrete Element Method (DEM) was originally proposed by Cundall & Strack 

(1979) to solve rock mechanics problems. It considers the particulate nature of soil, where 

particles are modelled in a discrete manner, and it can reproduce the macroscale response 

of the soil. It also provides microscale parameters that are not easy to determine from the 

experimental investigations. It uses an explicit finite difference system as a numerical 

scheme in which particle interaction is treated as a transient problem. The contact forces 

are found from the force-displacement law using the particle displacements. The motion 

of the particles resulting from the contact forces is obtained by Newton’s 2nd law as 

follows:  

𝑚𝑝
𝑑𝑣𝑝

𝑑𝑡
= 𝑓𝑔

𝑝 +∑𝑓𝑗
𝑐

𝑁𝑐
𝑝

𝑐=1

                                                                                                           (3.1) 

𝐼𝑝
𝑑𝑤𝑝

𝑑𝑡
=∑𝑇𝑗

𝑐

𝑁𝑐
𝑝

𝑐=1

                                                                                                                       (3.2) 

where 𝑚𝑝 and 𝐼𝑝 are the mass and the moment of inertia of the particle 𝑝, 𝑣𝑝 and 𝑤𝑝 are 

the translational and angular velocities of the particle 𝑝, 𝑁𝑐
𝑝 is the total number of contacts 

on the particle p, 𝑓𝑗𝑐 is the contact force vector in the jth direction at contact c on the 

particle p, 𝑇𝑗𝑐 is the torque that acts on the particle p due to the tangential contact force at 

contact c, and 𝑓𝑔
𝑝 is the gravitational force on the particle p. Figure 3.1 shows the flow 

chart of the DEM algorithm. The parameters required to run a DEM simulation are listed 

in Table 3.1. 
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Table 3. 1 Required parameters to run a DEM simulation 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. 1 Flow chart of the DEM algorithm 
 
3.2.1 Time Step and Stability 

The DEM is conditionally stable because it uses a finite-difference integration scheme, 

and therefore the time step must be small enough to achieve stability. Various approaches 

are available to define a critical time step. According to Cundall & Strack (1979), the 

 Parameter Units 

Geometric parameters Number of particles - 

 Particle Size Distribution - 

 Dimensions and shape of the domain m 

Contact Parameters Young’s modulus N/m2 

 Density of particles Kg/m3 

 Poisson’s ratio - 

 Coefficients of friction - 

Characteristic times Strain rate s-1 

Other parameters Applied pressure N/m2 
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critical time step (∆𝑡𝑐𝑟𝑖𝑡) is estimated based on a system with a single degree of freedom 

of mass 𝑚 that is connected to the ground by a stiffness spring 𝐾, it is given as follows: 

 ∆𝑡𝑐𝑟𝑖𝑡 = 2√
𝑚

𝐾
                                                                                                                           (3.3) 

Moreover, according to ITASCA, a safety factor of 0.8 should be multiplied by 

the critical time step, which was re-calculated by O’Sullivan (2011) using Rayleigh’s 

theorem, as follows: 

∆𝑡𝑐𝑟𝑖𝑡 = 0.22√
𝑚

𝐾
                                                                                                                      (3.4) 

The mass of the soil particles can be scaled up to increase the time step, but this 

increases particles inertia. Mass scaling is not advised if a high frequency response is 

needed (O’Sullivan 2011), which is why this thesis never used mass or density scaling. 

Strain rates are selected by having the inertial number less than 7.9 x 10-5 (Perez et al. 

2016). The capability of the contact detection algorithm to effectively detect the formation 

and loss of contacts between particles is also related to the appropriate choice of the time 

step. Having a large time-step means variations in the current contact of the particle 

assembly may alter dramatically, and the contact detection algorithm may not identify 

them; as a result, the predicted particle response may be altered. 

3.2.2 Fundamental Characteristics of Contact Model 

Figure 3.2 shows the rheological scheme and schematic sketch of the Hertz-Mindlin 

contact model used to simulate the internal instability and fluidisation of soil. The 

tangential contact force (𝑓𝑇) is based on the work of Mindlin & Deresiewicz (1989) and 

Hertzian contact theory is the basis of the normal contact force (𝑓𝑁). The 𝑓𝑁  and 𝑓𝑇 have 

nonlinear spring and damping components. The normal and tangential damping 

coefficients (cn and ct) are related to the restitution coefficient, as reported by Tsuji et al. 

(1992). 
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Fig. 3. 2 (a) Rheological scheme and (b) schematic sketch of the Hertz-Mindlin contact 

model used to simulate soil specimen fluidisation and internal instability 

The tangential frictional force follows Coulomb's friction law (Cundall & Strack 

1979). 

𝑓𝑁 = 𝑘𝑛𝛿𝑛 − 𝑐𝑛𝑣𝑛
𝑟𝑒𝑙                                                                                                                 (3.5) 

Where 𝑐𝑛 is the viscoelastic damping constant for normal contact, 𝑘𝑛 is the elastic 

constant for normal contact, 𝛿𝑛 is the normal component of the displacement at the 

contact, as represented by the overlap distance, 𝑣𝑛𝑟𝑒𝑙 is the normal component of the 

relative velocity of two spherical particles, and 𝑘𝑛 is given by: 

𝑘𝑛 =   
4

3
𝐸∗√𝑅∗𝛿𝑛                                                                                                                    (3.6) 

where 𝐸∗ is the equivalent Young's modulus and 𝑅∗ is the equivalent radius which can be 

written as follows: 

1

𝑅∗
=   

1

𝑅𝑖
+
1

𝑅𝑗
                                                                                                                          (3.7) 

1

𝐸∗
=   

1 − 𝜈𝑖
2

𝐸𝑦𝑖
+
1 − 𝜈𝑗

2

𝐸𝑦𝑗
                                                                                                          (3.8) 
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where 𝑅𝑖 and 𝑅𝑗 are the radius, 𝐸𝑦𝑖 and 𝐸𝑦𝑗  are Young's modulus, and 𝜈𝑖 and 𝜈𝑗 are the 

Poisson's ratio of each neighbouring sphere in contact. The viscoelastic damping constant 

(𝑐𝑛)  is given by: 

𝑐𝑛 =  −2√
5

6
   𝛽√𝑆𝑛 𝑚∗      ≥ 0                                                                                             (3.9) 

where, 𝑚∗ is the equivalent mass and is given by: 

1

𝑚∗
=   

1

𝑚𝑖
+
1

𝑚𝑗
                                                                                                                     (3.10) 

𝛽 and 𝑆𝑛 are given by: 

𝛽 =
𝑙𝑛 𝑒𝑟

√𝑙𝑛2𝑒𝑟 + 𝜋2
                                                                                                                  (3.11) 

𝑆𝑛 = 2𝐸
∗√𝑅∗𝛿𝑛                                                                                                                      (3.12) 

where 𝑒𝑟 is the coefficient of restitution. The tangential contact force (𝑓𝑇) is given by: 

𝑓𝑇 = 𝑘𝑡𝛿𝑡 − 𝑐𝑡𝑣𝑡
𝑟𝑒𝑙                                                                                                                (3.13) 

where 𝑘𝑡 is the elastic constant for tangential contact, 𝑐𝑡 is the viscoelastic damping 

constant for tangential contact, 𝛿𝑡 is the tangential overlap, and 𝑣𝑡𝑟𝑒𝑙 is the tangential 

component of the relative velocity of two spherical particles, and 𝑘𝑡 is given by: 

𝑘𝑡 =  8𝐺
∗√𝑅∗𝛿𝑛                                                                                                                     (3.14) 

with 𝐺∗ as the equivalent shear modulus, and 𝑐𝑡 is written as follows: 

𝑐𝑡 =  −2√
5

6
   𝛽√𝑘𝑡 𝑚∗      ≥ 0                                                                                           (3.15) 

The 𝑓𝑇 is limited by: 

𝑓𝑇 = µ𝑠  𝑓
𝑁                                                                                                                               (3.16) 

where µ𝑠 is the coefficient of sliding friction.  
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3.2.3 Types of Boundary Conditions Used 

The boundary conditions that a soil sample experiences in the field or during laboratory 

tests can be simulated with a variety of boundary types. In this current study, rigid 

frictional walls and periodic boundary conditions were used (Figure 3.3). Frictional walls 

are used to simulate the fluidisation of soil specimens using DEM coupled with LBM. 

The most commonly used boundary types are rigid boundaries with frictional walls 

(O’Sullivan 2011). These rigid boundaries might be flat or curved, and they are 

analytically specified surfaces. Inclusions or machinery interacting with the granular 

material can also be simulated using rigid boundaries. Periodic boundaries are used to 

simulate internal instability using DEM. Since boundary effects are neglected when using 

periodic boundaries, the number of particles can be reduced, which means computing 

time can be saved because smaller samples are required. Second, the uniform strain field 

is intended to prevent the formation of localization during shear, thus ensuring the 

samples remain homogeneous until they reach a critical state. 

3.2.4 The Quasi-Static Condition 

When the response of the particle system becomes independent of the rate of loading, 

quasistatic conditions are reached. Under quasi-static conditions, the inertial forces are 

negligible compared to the contact forces from the applied loads.  Therefore, in order to 

achieve quasi-static conditions, the kinetic energy of the particle systems should be small 

enough to ensure it does not affect the overall mechanical behaviour. A dimensionless 

inertial number (In) is used to confirm the quasi-static conditions (Da Cruz et al. 2005).  

𝐼𝑛 =  휀 ̇ 𝑑𝑎𝑣𝑔√
𝜌

𝑝′
                                                                                                                    (3.17) 
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where 휀̇ is the strain rate, 𝑑𝑎𝑣𝑔 is the average diameter of the PSD, and 𝑝′ is the effective 

mean stress. The limiting value of In for the quasi-static isotropic compression should be 

less than 7.9 x 10-5 (Perez et al. 2016). 

 
 
Fig. 3. 3 (a) Rigid boundaries, (b) periodic boundaries (modified after O’Sullivan, 2011) 
 
3.3 DEM COUPLED WITH THE LATTICE BOLTZMANN METHOD 

In order to simulate fluid-particle interaction, the DEM is coupled to the Lattice 

Boltzmann Method (LBM). The Navier-Stokes’ (NS) equations are the basis of fluid 

flows at a macroscopic scale, which can be solved by either the finite element, finite 

difference or finite volume method. The Lattice Boltzmann Method (LBM), which is 

considered to be a modern approach in Computational Fluid Dynamics (CFD), bridges 
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the gap between macro and micro scales because it is based on the kinetic theory of gases 

and models the fluid on a mesoscopic scale. Macroscopic fluid behaviour is the result of 

the collective behaviours of microscopic particles (Bao & Meskas 2011; Chen & Doolen 

1998). Unlike molecular dynamics, LBM does not simulate detailed particle motion 

(Chen & Doolen 1998; Noble & Torczynski 1998).  The theoretical formulations of the 

LBM coupled with the DEM approach are described as follows:  

3.3.1 Fluid Equations 

The governing Boltzmann equation is written as (Chen, Martínez & Mei 1996): 

𝜕𝑓𝛼(𝑥, 𝑡)

𝜕𝑡
+ 𝑒𝛼

𝑣 𝛻𝑓𝛼(𝑥, 𝑡) = 𝛺𝛼                         (𝛼 = 1,2, ……… . . , 𝑁 )                          (3.18) 

where 𝑓𝛼(𝑥, 𝑡) is the particle distribution function in the 𝛼 direction, 𝑒𝛼𝑣 is the microscopic 

fluid velocity and 𝛺𝛼 is the collision operator which considers the transfer of momentum 

between the particles during collision, and 𝑡 is the time. Equation (3.18) can be discretized 

on a regular lattice using a unique finite difference method, and the lattice-Boltzmann 

equation with the Bhatnagar-Gross-Krook (BGK) collision operator for a Newtonian fluid 

is written as (Bhatnagar, Gross & Krook 1954; Chen, Martínez & Mei 1996): 

𝑓𝛼(𝑥 + 𝑒𝛼
𝑣 ∆𝑡, 𝑡 + ∆𝑡) − 𝑓𝛼(𝑥, 𝑡) = 𝛺𝛼

𝐵𝐺𝐾                                                                       (3.19) 

where 𝛺𝛼𝐵𝐺𝐾 is the BGK collision operator, and ∆𝑡 is the time-step. Equation (3.19) 

ensures the conservation of mass and momentum at each lattice node. For each direction 

of the lattice nodes, the particle distribution function (𝑓𝛼(𝑥, 𝑡)) defines the proportion of 

particles moving with velocity 𝑒𝛼𝑣  at time 𝑡 along the 𝛼 direction of the node at position 

𝑥. 

Each time step is split into streaming and collision sub-steps, where the collision step is 

written as: 

𝑓𝛼(𝑥, 𝑡
∗) =  𝑓𝛼(𝑥, 𝑡) + 𝛺𝛼

𝐵𝐺𝐾                                                                                               (3.20) 



74 
 

𝑓𝛼(𝑥, 𝑡
∗) and 𝑓𝛼(𝑥, 𝑡) are the particle distribution functions after and before the collision, 

respectively, and 𝑡∗ is the time after the collision. In the streaming step, the 𝑓𝛼(𝑥, 𝑡∗) is 

propagated over the lattice grid as follows: 

𝑓𝛼(𝑥 + 𝑒𝛼
𝑣 ∆𝑡, 𝑡 + ∆𝑡) = 𝑓𝛼(𝑥, 𝑡

∗)                                                                                       (3.21) 

The 𝛺𝛼𝐵𝐺𝐾, through which momentum transfer occurs between the particles when they 

collide, is given by (Bhatnagar, Gross & Krook 1954): 

𝛺𝛼
𝐵𝐺𝐾 = −

∆𝑡

𝜏
(𝑓𝛼(𝑥, 𝑡) − 𝑓𝛼

𝑒𝑞(𝑥, 𝑡))                                                                              (3.22) 

where 𝑓𝛼
𝑒𝑞(𝑥, 𝑡) is the equilibrium distribution function, 𝜏 is the relaxation time, and is 

related to the kinematic viscosity (𝜈𝑓) of the fluid, the lattice spacing (∆𝑥), and the time 

step (∆𝑡) by the following relationship: 

𝜈𝑓 =
1

3
(𝜏 −

1

2
)
∆𝑥2

∆𝑡
                                                                                                               (3.23) 

Equation (3.23) implies that the 𝜏 value should be greater than 0.5. For a given value of 

𝜈𝑓 and 𝜏, the ∆𝑡 is defined according to the chosen ∆𝑥 by: 

∆𝑡 =
1

3𝜈𝑓
(𝜏 −

1

2
)∆𝑥2                                                                                                         (3.24) 

The 𝑓𝛼
𝑒𝑞(𝑥, 𝑡) for the BGK model is given by (Bhatnagar, Gross & Krook 1954): 

𝑓𝛼
𝑒𝑞(𝑥, 𝑡) = 𝜔𝛼𝜌𝑓  (1 +

3

𝑐𝐿2
𝑒𝛼
𝑣 𝑢 +

9

2𝑐𝐿4
(𝑒𝛼
𝑣 𝑢)2 −

3

2𝑐𝐿2
𝑢2)                                    (3.25) 

where, 𝜔𝛼 is the weighting factor for the velocity vectors, 𝜌𝑓 is the fluid density, 𝑒𝛼𝑣 is the 

microscopic fluid velocity, 𝑢 is the macroscopic fluid velocity, and 𝑐𝐿 is the lattice speed 

given by:  

𝑐𝐿 = 
∆𝑥

∆𝑡
                                                                                                                                   (3.26) 

In the lattice Boltzmann computations, 𝑐𝐿 = ∆𝑥 = ∆𝑡 = 1, and the discretisation 

schemes in LBM are labelled as DdQq, where d is the number of dimensions, and q 
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represents the number of velocity vectors. This study used D3Q19, a three-dimensional 

scheme with 19 velocity vectors, including one at rest.  

Figure 3.4 shows the directions of the velocity vectors (𝑒𝛼𝑣) for the D3Q19 scheme 

and, for the sake of simplicity, their magnitudes are already defined by:  

𝑒𝛼
𝑣 = {

(0,0,0)                                                𝑖 = 0 
(±𝑐𝐿 , 0,0), (0, ±𝑐𝐿 , 0), (0,0, ±𝑐𝐿)                 𝑖 = 1,2,3,4,5,6

   (±𝑐𝐿, ±𝑐𝐿 , 0), (±𝑐𝐿, 0, ±𝑐𝐿), (0, ±𝑐𝐿 , ±𝑐𝐿)            𝑖 = 7,8,9,10,11,… ,18
   (3.27) 

and the weighing factors are 𝜔0 = 1/3, 𝜔1,2,3,4,5,6 = 1/18 and 𝜔7,8,…,18 = 1/36. 

The macroscopic fluid properties, i.e., fluid density (𝜌𝑓) and velocity (𝑢) can be retrieved 

at each node and are given by (Han & Cundall 2017; Seil & Pirker 2016): 

𝜌𝑓 (𝑥, 𝑡) =  ∑ 𝑓𝛼(𝑥, 𝑡)

𝑞−1

𝛼=0

                                                                                                        (3.28) 

𝑢 (𝑥, 𝑡) =
1

𝜌𝑓
 ∑ 𝑓𝛼(𝑥, 𝑡)𝑒𝛼

𝑣

𝑞−1

𝛼=0

                                                                                                (3.29) 

To determine the fluid pressure 𝑝𝑓, it is assumed that the fluid is slightly compressible, 

and thus the following state equation is used: 

𝑝𝑓 = 𝑐𝑠
2𝜌𝑓                                                                                                                                 (3.30) 

where 𝑐𝑠 is the sound celerity, defined as follows: 

𝑐𝑠 =
𝑐𝐿

√3
                                                                                                                                    (3.31) 

Fluid modelled with LBM requires a slight variation in spatial density. An 

approximate incompressibility situation can only be achieved when the Mach number (𝑀) 

is small; it is therefore kept below 0.1 (Han, Feng & Owen 2007b) and is defined as 

follows: 

𝑀 =
𝑢𝑚𝑎𝑥
𝑐𝐿

                                                                                                                                (3.32) 
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𝑢𝑚𝑎𝑥 is the maximum velocity in the fluid flow in physical units. Fluids with lower 

viscosity and turbulent flows can also be simulated with LBM using the Smagorinsky 

Large Eddy Simulation approach (Han, Feng & Owen 2007a; Seil, Pirker & Lichtenegger 

2018). 

 

Fig. 3. 4 Directions of the 19 (0-18) velocity vectors of the D3Q19 discretisation 
scheme used in this study 

 
3.3.2 Fluid-Particle Interaction 

For fluid-particle interaction, the partially saturated cells method was introduced by 

Noble & Torczynski (1998) and implemented by Seil & Pirker (2016) to couple open-

source DEM code, which is the LAMMPS Improved for General Granular and Granular 

Heat Transfer Simulations (LIGGGHTS) (Kloss et al. 2012) with LBM code Palabos 

(Parallel Lattice Boltzmann Solver). This thesis has further modified the implementation 

of Seil & Pirker (2016). Han & Cundall (2017) also used the same model to couple LBM 

with PFC2D and PFC3D. The advantage of this method is the smooth variation of forces 

acting on the particles. The method is also called the Immersed Moving Boundary (IMB) 

(Rettinger & Rüde 2017). The participation of solid particles in the fluid is achieved by 

introducing an additional collision term (𝛺𝛼𝑠 ) in Equation (3.19) (Noble & Torczynski 

1998): 
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𝑓𝛼(𝑥, 𝑡
∗) =  𝑓𝛼(𝑥, 𝑡) + [1 − 𝐵 ]𝛺𝛼

𝐵𝐺𝐾 + 𝐵𝛺𝛼
𝑠                                                               (3.33) 

𝐵 =  
휀𝑠(
𝜏
∆𝑡⁄ − 1 2⁄ )

(1 − 휀𝑠) + (
𝜏
∆𝑡⁄ − 1 2⁄ )

= (0,1)                                                                             (3.34) 

where 휀𝑠 is the solid fraction in the fluid cell volume, 𝐵 is a weighting function for 

correcting the collision phase of the lattice-BGK equation due to the presence of solid 

particles, and 𝜏 is the relaxation time. The critical part of this algorithm is to evaluate the 

solids fraction in each lattice over time while taking into account the moving particles. In 

a three-dimensional case, the volume of the fluid cell can be divided into a number of 

sub-cells, and then it can be evaluated whether these sub-cells are located inside or outside 

the solid object. The solid fraction can then be computed from the ratio of the sub-cells 

within the solid object to the total number of sub-cells in a lattice (Rettinger & Rüde 2017; 

Seil, Pirker & Lichtenegger 2018). 

The non-equilibrium part of the particle distribution function is bounced back and 

𝛺𝛼
𝑠 is computed using: 

𝛺𝛼
𝑠 = 𝑓−𝛼(𝑥, 𝑡) − 𝑓𝛼(𝑥, 𝑡) + 𝑓𝛼

𝑒𝑞(𝜌𝑓 , 𝑣
𝑝) − 𝑓−𝛼

𝑒𝑞(𝜌𝑓 , 𝑢)                                         (3.35) 

where 𝑣𝑝 is the velocity of solid particle 𝑝 at time 𝑡 + ∆𝑡 at the node, 𝑢 is the macroscopic 

fluid velocity, and the notation 𝑓−𝛼 is the rebound state obtained by reversing all 

microscopic fluid velocities, i.e., 𝑒𝛼𝑣 to 𝑒−𝛼𝑣 . 

The force (𝑓𝑓) (without the static buoyancy force) and the torque (𝑇𝑓) acting on a 

particle through the fluid can then be computed by (Noble & Torczynski 1998; Seil, Pirker 

& Lichtenegger 2018): 

𝑓𝑓 =
∆𝑥3

∆𝑡
[∑𝐵𝑛
𝑛

∑𝛺𝛼
𝑠 𝑒𝛼

𝑣

𝛼

]                                                                                              (3.36) 

𝑇𝑓 =
∆𝑥3

∆𝑡
[∑𝐵𝑛 (

𝑛

𝑥𝑛 − 𝑥𝑝)∑𝛺𝛼
𝑠 𝑒𝛼

𝑣

𝛼

]                                                                        (3.37) 
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𝐵𝑛 is the weighting function in the cell, 𝑥𝑛 is the coordinate of the lattice cell, and 𝑥𝑝 is 

the centre of mass of the particle. Since Equation (3.19) does consider acceleration due 

to the force of gravity of the fluid, Equation (3.36) does not include the static buoyancy 

forces; therefore, they are applied separately to the particles and the total hydrodynamic 

force (𝑓ℎ𝑦𝑑) on the particle, including the static buoyancy force (𝑓𝑏𝑢) is given by: 

𝑓ℎ𝑦𝑑 = 𝑓𝑓 + 𝑓𝑏𝑢                                                                                                                       (3.38) 

3.3.3 Governing Equations of Particle Motion 

The governing equations of the motion of solid particles given by Cundall & Strack 

(1979), with the additional fluid-particle interaction force (𝑓ℎ𝑦𝑑
𝑝 ) and the torque (𝑇𝑓

𝑝), are 

as follows: 

𝑚𝑝
𝑑𝑣𝑝

𝑑𝑡
= 𝑓𝑔

𝑝 + 𝑓ℎ𝑦𝑑
𝑝 +∑𝑓𝑗

𝑐

𝑁𝑐
𝑝

𝑐=1

                                                                                            (3.39) 

𝐼𝑝
𝑑𝑤𝑝

𝑑𝑡
= 𝑇𝑓

𝑝 +∑𝑇𝑗
𝑐

𝑁𝑐
𝑝

𝑐=1

                                                                                                          (3.40) 

where 𝑚𝑝 and 𝐼𝑝 are the mass and the moment of inertia of the particle 𝑝, 𝑣𝑝 and 𝑤𝑝 are 

the translational and angular velocities of the particle 𝑝, 𝑁𝑐
𝑝 is the total number of contacts 

on the particle p, 𝑓𝑗𝑐 is the contact force vector in the jth direction at contact c on the 

particle p, 𝑇𝑗𝑐 is the torque that acts on the particle p due to the tangential contact force at 

contact c, and 𝑓𝑔
𝑝 is the gravitational force on the particle p. Figure 3.5 shows the 

flowchart of the LBM-DEM approach described above. The DEM calculation cycles are 

within the LBM cycles. A suitable interval for the information transfer was chosen so that 

the accuracy of the simulation could not be impaired. 
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Fig. 3. 5 Flowchart of the Lattice Boltzmann Method (LBM) combined with the 

Discrete Element Method (DEM) 

3.4 VALIDATION 

3.4.1 Drag Force on A Single Fixed Particle 

Figure 3.6a shows a schematic sketch of the problem where a single fixed particle (sphere) 

with diameter D (where D = Lx/10) is in the centre of a 3D region of dimensions Lx, Ly 

and Lz (where Lx = Lz, and Ly = 20D). The drag force on the particle was investigated 

under creeping flow conditions by maintaining smaller values of the particle Reynold’s 

number (Rep). The numerical results of the drag coefficient (𝑐𝐷) were compared at 

different Rep values from 0.01 to 1 with analytical solution and experimental results by 

Yang et al. (2015). Each simulation was run until the flow conditions stabilized. The 

analytical solution for the drag coefficient (𝑐𝐷) is given as follows (Hoerner 1965; Yang 

et al. 2015): 

𝑐𝐷 =
24

𝑅𝑒𝑝
=

8𝐹𝐷
𝜌𝑣2𝜋𝐷2

                                                                                                             (3.41) 
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where 𝐹𝐷 is the Stoke’s drag force and 𝑣 is the velocity of the fluid.  

Figure 3.6b shows the analytical, experimental and numerical 𝑐𝐷 at different 𝑅𝑒𝑝 

values. For the numerical analysis, the lattice resolution (N) and relaxation time (𝜏) were 

5 and 0.59, respectively. An N value of 5 means the particle consists of 5 cells along its 

diameter. While the value of 𝜏 is chosen close to but greater than its lower limit of 0.5. 

Figure 3.6b shows that the numerically determined 𝑐𝐷 values agree very well with the 

analytical and experimental values. 

 
Fig. 3. 6 Validation of drag force on a single fixed particle 

 
3.4.2 Single-Particle Falling into The Fluid 

The transient motion of the particles in the fluid also needs to be validated with LBM-

DEM coupling. In this regard, an attempt is made in this study to validate the motion of 

a single particle falling into the fluid with different particle Reynold's numbers (Rep). The 

validation was carried out by comparing the numerical results with the experimental 

observations by Ten Cate et al. (2002). Figures 3.7(a) and 3.7(b) show the schematic 

sketch and the modelled problem using the LBM-DEM approach. 
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Fig. 3. 7 (a) Schematic representation of a single sphere with a diameter (dp) = 15 mm 

falling into the fluid; (b) the modelled particle in the fluid mesh using LBM-DEM; (c) 

comparison of the numerical and experimental results of particle position over time; (d) 

comparison of experimental and numerical results of particle velocity over time 

 
Table 3.2 shows the fluid properties used with lattice resolution (N) = 5 (particle 

diameter corresponds to 5 fluid cells) and the relaxation time (𝜏) = 0.53. Figures 3.7(c) 

and 3.7(d) show an excellent agreement between the numerical and experimental results 

of the position and velocity of the falling particle over time at different Reynold's 

numbers. Hence, it could be justified with confidence that the LBM-DEM approach can 

0 1 2 3 4
0

2

4

6

8
0 1 2 3 4

-0.12

-0.08

-0.04

0.00

Pa
rti

cl
e 

H
ei

gh
t /

 P
ar

tic
le

 D
ia

m
et

er
, z

 / 
d p

Time (seconds)

 Rep= 1.5, Exp. (Ten Cate et al., 2002)
 Rep = 1.5, LBM-DEM
 Rep = 4.1, Exp. (Ten Cate et al., 2002)
 Rep = 4.1, LBM-DEM
 Rep = 11.6, Exp. (Ten Cate et al., 2002)
 Rep = 11.6, LBM-DEM
 Rep = 31.9, Exp. (Ten Cate et al., 2002)
 Rep = 31.9, LBM-DEM

(d)

dp = 15 mm

Fig. 2.

Ve
lo

ci
ty

 (m
/s

ec
)

Time (seconds)

(a)

(c)

160 mm

100 mm

100 mm

Not to scale

12
2.

25
 m

m

(b)



82 
 

reasonably predict the transient motion of the particles in the fluid with these selected 

numerical parameters. 

Table 3. 2 Fluid properties for simulating the single-particle falling into the fluid using 
the LBM-DEM approach (after Ten Cate et al. 2002) 

 
3.4.3 Fluidisation of Granular Soils 

The minimum fluidization velocity and the pressure drop through a three-dimensional 

particle bed were investigated in this case. The particles were placed in a 3D rectangular 

domain with a velocity inlet, a pressure outlet, and free-slip side boundaries (Figure 3.8a). 

Buoyancy force was applied to each particle separately, while the gravity of the fluid was 

not considered. The semi-analytical solution for the pressure drop through a packed 

particle bed is given by (Ergun 1952): 

∆𝑃

𝐿
=  
150𝜇𝑓𝑣𝑑(1 − 𝑛)

2

𝑑𝑝2 𝑛3
+
1.75𝜌𝑓𝑣𝑑

2(1 − 𝑛)

𝑑𝑝 𝑛3
                                                              (3.42)   

where ∆𝑃 is the drop in pressure across the bed of particles, 𝐿 is the height of the bed, 𝑑𝑝 

is the particle size, and it is selected equal to 𝑑50 (particle size corresponding to 50% finer 

in the particle size distribution), 𝑛 is the overall porosity, 𝜇𝑓 is the fluid’s dynamic 

viscosity, and 𝑣𝑑 is the superficial or discharge velocity of the fluid. 

Figures 3.8b and 3.8c show the analytically and numerically determined pressure 

drops and minimum fluidization velocities while considering different values of N and 𝜏. 

The inlet velocity was gradually increased, and the pressure drop continued to drop as the 

Case Density (𝝆𝒇) (kg/m3) Kinematic Viscosity (𝝊𝒇) (m2/s) 

Rep = 1.5 970 3.845 x 10-4 

Rep = 4.1 965 2.197 x 10-4 

Rep = 11.6 962 1.175 x 10-4 

Rep = 31.9 960 6.042 x 10-5 
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velocity increased. A continuous increase in the flow velocity leads to a condition where 

particles begin to migrate with a constant drop in pressure. This state is called a fluidised 

state, where the effective stresses tend to zero, and the particulate medium acts like a 

fluid. Numerical analyses were performed for N = 2 and N = 5. When N = 2, the results 

deviated greatly from the analytical solution, and there was a considerable difference in 

the results with various 𝜏 values. Therefore, it is necessary to increase the N value to better 

resolve the fluid-particle interaction.  

 

Fig. 3. 8 Validation of fluidisation of particles 
 

Figure 3.8 shows that when N = 5 and 𝜏 = 0.56, the numerical results are 

comparable to the analytical solution, and as the 𝜏 value is further increased, the minimum 
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fluidization velocity increases. The values of 𝜏 affect these results in two ways, namely 

the fluid compressibility error and the fluid-particle interaction force error. A lower value 

of 𝜏 close to but greater than the limiting value of 0.5 reduced errors in the fluid 

compressibility and fluid-particle interaction. The effect of the 𝜏 value on the fluid-

particle interaction forces is easily explained using Figures 3.8b and 3.8c. As the 𝜏 value 

increased, the minimum fluidization velocity also increased, showing that the forces of 

the fluid on the particles became smaller for larger values of 𝜏. Therefore, a smaller value 

of 𝜏 (≥0.5) leads to smaller errors in the fluid-particle interaction forces. In Figure 3.8c, 

where N = 5, the variation in 𝜏 value did not affect the results as much as when N = 2. 

3.4.4 Hydraulic Conductivity Prediction 

Figure 3.9 shows the results of the hydraulic conductivity prediction given by the LBM-

DEM method compared to available semi-empirical solutions, i.e., Hazen (1892), Carman 

(1939) and Indraratna et al. (2012). The lattice resolution (N) was kept equal to 5 with a 

relaxation time of 0.56. There is a good agreement between the current study and other 

works, which indicates reasonable success in predicting the hydraulic conductivity of 

granular materials using DEM coupled with LBM. 

 
Fig. 3. 9 Validation of hydraulic conductivity through the particle bed 
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3.4.5 Stress-Strain Behaviour 

The parameters used for the analysis with DEM are listed in Table 3.3. The samples were 

first compressed isotropically to different confining pressures using a strain-controlled 

approach that considered quasi-static conditions; the samples were then sheared. Figure 

3.10a shows the stress-strain curves of the samples sheared under drained conditions at 

constant confining pressures of 50 kPa, 100 kPa, and 200 kPa. The stress-strain curves 

from the numerical simulations are in a reasonable comparison to that of the experimental 

ones by Hazzar et al. (2020). Figure 3.10b also compares the volumetric strain with axial 

strain well.  

The experimental investigations were carried out on glass beads by a series of 

drained triaxial compression tests. The dense specimens with a diameter of 38 mm and a 

height of 76 mm were produced using the air pulviation method. The required bulk 

density was achieved by compacting each layer of glass beads. The specimens were 

saturated using the back pressure, and the sample saturation was verified using 

Skempton’s pore-pressure parameter B. The cell pressure was then increased by keeping 

the back pressure constant until the difference between the two reached the desired 

consolidated pressures of 50 kPa, 100 kPa, and 200 kPa. After consolidation, each 

specimen was sheared under drained condition. 

Table 3. 3 Parameters used for the DEM simulations 
 

Parameter Value 
Young’s modulus 70 GPa (Thornton 2000) 
Poisson’s ratio 0.30 (Shire et al. 2014) 
Friction coefficient during isotropic compression 0 (Thornton 2000) 
Friction coefficient during shearing 0.30 (Shire et al. 2014) 
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Fig. 3. 10 Validation of the (a) deviatoric stress versus axial strain, (b) volumetric strain 

versus axial strain 
3.5 SUMMARY  

This chapter describes the numerical approaches used in this thesis. This includes the 

governing equation of the DEM, the choice of the appropriate time step, details of the 

contact model, the assumed boundary conditions, and the quasi-static conditions. This 

chapter also described the Boltzmann equation and its solution using the finite difference 

scheme and its coupling to DEM. The DEM-LBM coupling was further validated by 

using the results for the drag force on a single fixed particle, a single particle falling into 

the fluid, the fluidisation of a bed of cohesionless soils, and the hydraulic conductivity 

and the stress-strain behaviour. A good comparison of the results showed that the 

approaches selected are suitable for the micromechanical investigations of soil. 
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CHAPTER 4 MICROSCALE BOUNDARIES OF INTERNALLY STABLE AND 

UNSTABLE SOILS 

4.1 INTRODUCTION 

Internal instability is the inability of coarse particles to prevent fine particles from being 

eroded during seepage flow. Soil can become internally unstable due to changes in 

Particle Size Distribution (PSD), and this can affect its hydraulic and mechanical 

properties (Mehdizadeh, Disfani & Shire 2019; Xiao & Shwiyhat 2012). To evaluate the 

likelihood of internal instability, several proven criteria based on the PSD and 

Constriction Size Distribution (CSD) are available (Indraratna, Israr & Rujikiatkamjorn 

2015; Kenney & Lau 1985; Kezdi 1979). However, these criteria are based on macroscale 

laboratory modelling, while internal instability is a problem at the micro/particle scale. 

Hence, internal instability may be better assessed at particle scale using the Discrete 

Element Method (DEM) (O’Sullivan 2011). 

Prior studies have used DEM to examine internal instability (Ahmadi et al. 2020; 

Shire et al. 2014; Shire & O’Sullivan 2013), but internally stable and unstable soils have 

yet to be delineated at the microscale. In order to differentiate between internally unstable 

and stable soil, this chapter focuses on the internal instability of non-cohesive soils at the 

micro/particle scale using DEM under isotropic stress conditions. With 21 particle size 

distribution curves, 63 DEM simulations were carried out at three different relative 

densities. The findings demonstrate a new method of examining the likelihood of internal 

instability in cohesionless soils. The coordination number and stress reduction factor, 

taken directly from the particle scale data, were considered. The results were compared 

to the available macroscale criteria based on PSD and CSD. This analysis demonstrates 

that CSD-based criteria could anticipate the possibility of internal instability more 

accurately, and thus it could be used to evaluate the internal instability of cohesionless 
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soils. This Chapter has been adapted from the following published article and is 

reproduced with permission from Springer Nature: 

Indraratna, B., Haq, S., Rujikiatkamjorn, C., & Israr, J. (2021). Microscale boundaries of 

internally stable and unstable soils. Acta Geotechnica. https://doi.org/10.1007/s11440-

021-01321-7 

4.2 PARTICLE SIZE DISTRIBUTION CURVES AND INTERNAL 

INSTABILITY ASSESSMENT USING EXISTING CRITERIA  

Figure 4.1 shows a total of 21 PSD curves selected for numerical analysis from previously 

published experimental research (Crawford-Flett 2014; Honjo, Haque & Tsai 1996; 

Indraratna, Raut & Khabbaz 2007; Israr 2016; Slangen 2015). Since soils with more than 

35% of fines are always internally stable (Skempton & Brogan 1994), only soils with less 

than 35% of fines were included in this study. The PSDs of Samples 1,2,3,4, and 5 are in 

the range of the typical size of sub-ballast in Australian railroads (Israr 2016). Although 

samples 1,2,3,4, and 5 are uniformly graded and well-graded soils, they could exhibit 

internal instability under certain conditions (Israr & Indraratna 2017). Other samples are 

gap-graded soils, which are also used for practical purposes, such as embankment dams 

(Skempton & Brogan 1994). 

Figure 4.2 shows the use of PSD-based approaches by Kenney & Lau (1985) and 

Kezdi (1979) to evaluate the internal instability of the selected specimens. The retention 

ratio of Kezdi (1979) is given by (𝐷15𝑐 /𝑑85
𝑓 )max, where 𝐷15𝑐  is the 15% passing by mass of 

the PSD of the coarser fraction and 𝑑85
𝑓  is the 85% passing by mass of the PSD of the 

finer fraction. Soils are internally unstable when (𝐷15𝑐 /𝑑85
𝑓 )max ≥ 4. The retention ratio 

from Kenney & Lau (1985) is given by (H/F)min, where F is the finer fraction at any 

particle diameter D, and H is the incremental finer fraction between particle diameters D 

and 4D. The soils with the potential for internal instability have (H/F) min ≤ 1, while the 

https://doi.org/10.1007/s11440-021-01321-7
https://doi.org/10.1007/s11440-021-01321-7
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widely and uniformly graded samples were evaluated by considering particles finer than 

20% and 30%, respectively. 

 

Fig. 4. 1 Particle size distribution of soils investigated (Indraratna, Haq, et al. 2021) 
(reproduced with permission from Springer Nature) 

 

 
 

Fig. 4. 2 Evaluation of the likelihood for internal instability of selected samples using 
the methods of (a) Kezdi (1979) (b) Kenney and Lau (1985) (Indraratna, Haq, et al. 

2021) (reproduced with permission from Springer Nature) 
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Table 4.1 summarises the results of the internal instability assessment by 

considering the CSD-based retention ratio presented by Indraratna et al. (2011). The 

CSD-based retention ratio is 𝐷𝑐35𝑐
∗
/𝑑85

𝑓∗, where 𝐷𝑐35𝑐
∗  is the 35% finer of the CSD of the 

coarser fraction and 𝑑85
𝑓∗ is the 85% finer of PSD of the finer fraction, both plotted using 

the surface area method (Indraratna, Raut & Khabbaz 2007). The soil specimens with 

𝐷𝑐35
𝑐∗ /𝑑85

𝑓∗ ≥ 0.73 are internally unstable. In the CSD-based method, the PSD of soil was 

split into coarser and finer fractions at the ratio (H/F)min for continuously-graded soils and 

percentage finer corresponding to the almost horizontal part of the PSD of gap-graded 

soils, following the method proposed by Indraratna et al. (2015). The gradations of soils 

with a fines content ≥ 25% were divided into finer and coarser fractions at the 25% finer 

point on the respective PSD curves for loose and medium states and the 20% finer point 

for the dense state. 

The CSD can be determined accurately from a given particle gradation using the 

mathematical approach introduced by Indraratna et al. (2007, 2015) and Indraratna & 

Raut (2006), from which the controlling constriction size (𝐷𝑐35𝑐
∗ ) and the largest erodible 

fine particle (𝑑85
𝑓∗) are readily obtained by using the relative density of the soil and 

exploiting the surface area approach (e.g., using MATLAB). The use of the CSD-based 

method in real life design to assess internal instability, and for instance to evaluate the 

effectiveness of base-filter combinations for rail substructures and embankment dam 

materials has been described elsewhere (Indraratna, Israr & Rujikiatkamjorn 2015; 

Indraratna & Raut 2006; Indraratna, Raut & Khabbaz 2007). 

 

 



91 
 

Table 4. 1 Evaluation of internal instability (Indraratna, Haq, et al. 2021) 

(reproduced with permission from Springer Nature) 

ID Rd 
a  (𝑫𝟏𝟓𝒄 /𝒅𝟖𝟓

𝒇 )max 
b 𝑫𝒄𝟑𝟓

𝒄∗ /𝒅𝟖𝟓
𝒇∗ c (H/F)min 

d Np 
e n f Z g α h Exp.i 

1 

Loose 1.150 0.270 N/A 

10000 

0.415 4.317 1.111 Stable 

Medium 1.150 0.227 N/A 0.391 5.182 1.124 Stable 

Dense 1.150 0.175 N/A 0.358 5.736 1.138 Stable 

2 

Loose 1.220 0.322 N/A 

10000 

0.387 3.733 1.210 Stable 

Medium 1.220 0.270 N/A 0.366 4.778 1.244 Stable 

Dense 1.220 0.205 N/A 0.337 5.456 1.336 Stable 

3 

Loose 1.070 0.276 N/A 

10000 

0.397 4.290 1.090 Stable 

Medium 1.070 0.232 N/A 0.393 5.210 1.123 Stable 

Dense 1.070 0.177 N/A 0.361 5.470 1.128 Stable 

4 

Loose 1.500 0.462 1.740 

41000 

0.275 2.160 1.277 Stable 

Medium 1.500 0.385 1.740 0.271 3.680 1.475 Stable 

Dense 1.500 0.283 1.740 0.251 4.630 1.758 Stable 

5 

Loose 1.280 0.344 2.200 

10000 

0.364 3.410 1.250 Stable 

Medium 1.280 0.288 2.200 0.343 4.530 1.340 Stable 

Dense 1.280 0.217 2.200 0.317 5.170 1.422 Stable 

6 

Loose 6.340 1.750 0 

82000 

0.239 0.040 0.255 - 

Medium 6.340 1.467 0 0.221 0.050 0.073 - 

Dense 6.340 1.113 0 0.185 0.090 0.007 Unstable 

7a 

Loose 4.720 1.096 0.970 

15000 

0.317 0.154 0.279 - 

Medium 4.720 0.916 0.970 0.286 0.187 0.134 - 

Dense 4.720 0.737 0.970 0.266 0.206 0.044 Stable 

7b 

Loose 4.760 1.111 0.980 

35000 

0.234 0.111 0.392 - 

Medium 4.760 0.930 0.980 0.216 0.239 0.224 - 

Dense 4.760 0.703 0.980 0.185 2.059 0.399 Stable 

7c 

Loose 3.990 0.668 0.790 

55000 

0.218 1.566 0.857 - 

Medium 3.990 0.550 0.790 0.212 3.872 1.133 - 

Dense 3.990 0.398 0.790 0.198 5.141 1.810 Stable 

8a 

Loose 3.330 0.777 2.700 

12000 

0.267 0.464 0.772 - 

Medium 3.330 0.650 2.700 0.243 1.361 0.777 - 

Dense 3.330 0.491 2.700 0.222 3.058 1.116 Stable 

8b 

Loose 2.810 0.595 1.590 

20000 

0.253 1.748 1.111 - 

Medium 2.810 0.492 1.590 0.248 3.780 1.372 - 

Dense 2.810 0.361 1.590 0.231 4.814 1.789 Stable 

9 Loose 3.940 0.887 3.290 12000 0.296 0.362 0.473 Unstable 
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Medium 3.940 0.745 3.290 
 

0.268 0.551 0.452 - 

Dense 3.940 0.567 3.290 0.234 1.708 0.758 - 

10a 

Loose 5.490 1.213 0 

27000 

0.281 0.124 0.252 Unstable 

Medium 5.490 1.019 0 0.251 0.163 0.148 - 

Dense 5.490 0.777 0 0.212 0.244 0.119 - 

10b 

Loose 4.940 0.666 0.160 

56000 

0.246 3.256 1.120 Stable 

Medium 4.940 0.545 0.160 0.242 4.593 1.363 - 

Dense 4.940 0.247 0.160 0.226 5.382 1.756 - 

 

11a 

Loose 6.620 1.524 0 

53000 

0.276 0.055 0.204 Unstable 

Medium 6.620 1.281 0 0.245 0.064 0.037 - 

Dense 6.620 0.977 0 0.209 0.082 0.003 - 

11b 

Loose 6.420 1.528 0 

69000 

0.252 0.060 0.287 Unstable 

Medium 6.420 1.284 0 0.206 0.330 0.124 - 

Dense 6.420 0.432 0 0.187 4.630 0.701 - 

11c 

Loose 6.240 0.717 0 

90000 

0.220 0.110 0.522 Unstable 

Medium 6.240 0.574 0 0.213 4.100 0.884 - 

Dense 6.240 0.419 0 0.200 5.350 1.564 - 

11d 

Loose 6.360 0.677 0.160 

116000 

0.231 3.550 1.099 Stable 

Medium 6.360 0.564 0.160 0.227 4.750 1.292 - 

Dense 6.360 0.250 0.160 0.212 5.520 1.807 - 

12a 

Loose 5.960 1.341 0 

44000 

0.263 0.080 0.282 Stable 

Medium 5.960 1.126 0 0.234 0.090 0.104 - 

Dense 5.960 0.859 0 0.193 0.380 0.061 - 

12b 

Loose 7.260 1.671 0 

85000 

0.258 0.040 0.283 Unstable 

Medium 7.260 1.405 0 0.224 0.050 0.061 - 

Dense 7.260 1.071 0 0.190 0.120 0.001 - 

12c 

Loose 8.220 1.873 0 

120000 

0.258 0.030 0.250 Unstable 

Medium 8.220 1.573 0 0.231 0.040 0.031 - 

Dense 8.220 1.199 0 0.189 0.110 0.0003 - 
a relative density; b retention ratio by Kezdi (1979); c retention ratio by Indraratna et al. 

(2011); d retention ratio by Kenney and Lau (1985); e number of particles simulated; f 

sample's porosity; g coordination number; h stress reduction factor, i experimental 

assessments of the samples from the previous studies (Crawford-Flett 2014; Honjo, Haque 

& Tsai 1996; Indraratna, Israr & Rujikiatkamjorn 2015; Indraratna, Raut & Khabbaz 

2007; Israr 2016; Israr & Indraratna 2019; Slangen 2015) 
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4.3 SIMULATION APPROACH 

Three-dimensional simulations were carried out on cubical samples using an open-source 

particulate Discrete Element Method (DEM) code developed by Kloss et al. (2012). The 

periodic boundary conditions were used, thus negating the need to account for boundary 

effects while still allowing for an infinite sample size (Thornton 2000). The Young’s 

modulus and Poisson’s ratio of the particles were set to 70 GPa and 0.3, respectively, with 

a particle density of 2650 kg/m3 (Thornton 2000). The spherical shapes of the particles 

were simulated. The literature has considered a broad range of friction coefficient (µs) 

values. Senetakis et al. (2013) used a micromechanical inter-particle loading apparatus 

and found that sand particles are in the range of 0.12 < µs < 0.35. Since Huang et al. 

(2014) found that using µs > 0.5 for element tests in geomechanics leads to implausible 

findings, so µs< 0.5 was assumed in this study. Since it is not always possible to mimic 

the void ratios observed in experiments with spherical particles in DEM samples, the 

relative density (Rd) was matched in order to draw comparisons with experimental 

observations (Salot, Gotteland & Villard 2009). The minimum and maximum void ratios 

in the numerical samples were determined by varying the coefficient of inter-particle 

friction (µs) under isotropic compression, and they are a function of the mean effective 

stress (𝑝′) (Abbireddy & Clayton 2010; Sazzad, Biswas & Toufiq-E-Alahy 2014; 

Thornton 2000). During isotropic compression, dense, medium, and loose states were 

achieved by setting µs = 0, 0.1, and 0.3, respectively. Thereafter, the samples were 

equilibrated through sufficient cycles with µs = 0.3 (Shire et al. 2014).  

When identifying fine particles that do not help to transmit stresses, gravity was 

disabled, and periodic boundaries were used. The representative volume element (RVE) 

was also checked for periodic boundaries. In order to achieve an RVE, it was ensured that 

at least 500 particles were present in the coarser fraction of PSD (Shire et al. 2014). The 
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particles were initially produced in the periodic cell without any contact between them. 

The boundaries were then isotropically compressed to the desired stress level using a 

strain-controlled approach. A strain rate was chosen to ensure a quasi-static compression 

of the samples. After the target stress was reached, the strain rate went to zero, and the 

system stabilized. A sufficient number of simulation cycles were run to guarantee 

equilibrium at the target stress level. The simulations were then stopped as the mean stress 

(𝑝′) and the coordination number (Z) remained constant for 20,000 cycles. Shire et al. 

(2014) and Thornton (2000) followed a similar simulation approach. 

The average Cauchy stress tensor (𝜎𝑖𝑗) of the samples after isotropic compression 

to the desired stress level was calculated using the following equation (Potyondy & 

Cundall 2004): 

𝜎𝑖𝑗 =
1

𝑉
 ∑𝜎𝑖𝑗

𝑝
𝑉𝑝

𝑁𝑝

                                                                                                                 (4.1) 

where V is the sample volume, 𝑉𝑝 is the volume of particle p, Np is the number of 

particles, and 𝜎𝑖𝑗
𝑝 is the average stress tensor within a particle p and is given by: 

𝜎𝑖𝑗
𝑝 =

1

𝑉𝑝
 ∑|𝑥𝑖

𝑐 − 𝑥𝑖
𝑝|

𝑁𝑐,𝑝

𝑛𝑖
𝑐,𝑝𝑓𝑗

𝑐                                                                                             (4.2) 

where 𝑓𝑗𝑐 is the force at the contact c with the location 𝑥𝑖𝑐, 𝑥𝑖
𝑝 is the location of particle 

centroid, 𝑛𝑖
𝑐,𝑝 is the unit-normal vector from the centroid of particle to contact location, 

and 𝑁𝑐,𝑝 is the contact numbers on particle p. 

The stress reduction factor (𝛼) was calculated using the approach given by Shire et al. 

(2014): 

𝑝𝑓
′ = 𝛼 𝑝′                                                                                                                                 (4.3) 

where 𝑝𝑓′  is the mean stress in fines and 𝑝′ is the mean stress of the sample, it is given as 

follows: 
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𝑝′ =
1

𝑉
 ∑(𝑝𝑝𝑉𝑝)

𝑁𝑝

                                                                                                                 (4.4) 

where 𝑝𝑝 is the mean stress in the particle p, and 𝑝𝑓′  is given as follows: 

𝑝𝑓
′  =

(1 − 𝑛)

∑ 𝑉𝑝
𝑁𝑝
𝑓𝑖𝑛𝑒𝑠

 ∑ (𝑝𝑝𝑉𝑝)

𝑁𝑝
𝑓𝑖𝑛𝑒𝑠

                                                                                           (4.5) 

where  𝑁𝑝
𝑓𝑖𝑛𝑒𝑠 is the number of fine particles, and n is the porosity of the sample. 

The coordination number (Z) is a microscale parameter that describes the packing of 

particles as given by (Thornton 2000): 

𝑍 =  
2𝑁𝑐
𝑁𝑝
                                                                                                                                  (4.6) 

where 𝑁𝑐 and 𝑁𝑝 are the number of contacts and particles in the samples, respectively. 

Eq. 4.6 also includes those particles that are not involved in the stress transmission (i.e., 

with less than two contacts). Here, Z can be less than 1 since gravity has been omitted. 

Figure 4.3 shows the isotropically compressed DEM modelled samples 1 and 11b 

in their dense states to the target mean stress (𝑝′) of 200 kPa. The concept of relative 

density was used to model the experimental conditions because the precise values of the 

numerically simulated void ratios are not always directly comparable to those found 

experimentally (e.g., Salot et al., 2009). For example, the loose, medium, and dense states 

of numerical samples correspond to relative densities of 10%, 50%, and 95%, 

respectively. 
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Fig. 4. 3 Isotropically compressed DEM modelled samples to the target mean stress of 

200 kPa in their dense states, (a) Sample 1, (b) Sample 11b (Indraratna, Haq, et al. 

2021)  (reproduced with permission from Springer Nature) 

4.4 RESULTS AND DISCUSSION 

4.4.1 Microscale Parameters versus CSD-Based Criterion 

The number of particles (Np), the porosity (n), the coordination number (Z), and the stress 

reduction factor (𝛼) of each sample are shown in Table 4.1. Figures 4.4a and 4.4b 

illustrate the microscale parameters Z and 𝛼, together with the CSD-based retention ratio 

introduced by Indraratna et al. (2011). It was possible to discern distinct boundaries 

between the samples that were internally stable and those that were unstable. There is a 

high probability that the samples that have the potential for internal instability 

concurrently show Z ≤ 1, 𝛼 ≤ 0.5 and 𝐷𝑐35𝑐
∗
/𝑑85

𝑓∗ ≥ 0.73, whereas particle erosion could not 

occur until a certain level of the hydraulic gradient is applied. In order to determine 

whether internal instability could occur, the microscale parameters Z and 𝛼 must be 

examined. If a sample does not satisfy either of the two stability limits listed below, then 

the sample is considered to be internally unstable: Z >1 or 𝛼 > 0.5. 
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Fig. 4. 4 Evolution of (a) coordination number with CSD-based retention ratio and (b) 

stress reduction factor with CSD-based retention ratio (Indraratna, Haq, et al. 2021) 

(reproduced with permission from Springer Nature) 
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Following the above explanations, Sample 8a is found to be unstable according to 

the CSD-based criterion because, in its loose state, it has the values of Z = 0.464 and α = 

0.772, and the ratio 𝐷𝑐35𝑐
∗
/𝑑85

𝑓∗ = 0.777. Moreover, it does not meet one of the microscale 

stability boundaries, Z >1. Therefore, based on the microscale evaluation, this sample is 

regarded as internally unstable. Similarly, Sample 7b is also unstable in its dense state 

with values of Z = 2.059 and α = 0.399. Despite the dense state value of 𝐷𝑐35𝑐
∗
/𝑑85

𝑓∗ = 0.703 

for Sample 7b, the microscale assessment would be overly cautious to label it as unstable. 

In addition, according to the methods of Kenney & Lau (1985) and Kezdi (1979), this 

sample is also anticipated to be unstable (Table 4.1). It is noteworthy that Sample 8a, in 

its loose state, and Sample 7b, in its dense state, are very close to the CSD-based boundary 

of 0.73. Due to the distinct fabric categories of these two samples, their Z and 𝛼 values 

contradict one another (e.g., Shire et al., 2014). For all other samples, the boundaries of 

Z and 𝛼 coincide with the boundary of 𝐷𝑐35𝑐
∗
/𝑑85

𝑓∗. As an overall trend, Z and 𝛼 decrease 

as 𝐷𝑐35𝑐
∗
/𝑑85

𝑓∗
  increases. 

Figure 4.4 shows that Sample 11b has values of Z ≤ 1, 𝛼 ≤ 0.5, and 𝐷𝑐35𝑐
∗
/𝑑85

𝑓∗ ≥ 

0.73 in the loose and medium states, so it is regarded as internally unstable. However, this 

sample formed more contacts and became stable in its dense state with the boundaries Z 

>1, 𝛼 > 0.5, and 𝐷𝑐35𝑐
∗
/𝑑85

𝑓∗ < 0.73. This compaction of Sample 11b into its dense state 

eliminated the void spaces between the coarser particles by allowing the fine particles to 

fit in, making Z >1 and 𝛼 > 0.5. This demonstrates the significance of taking relative 

density (Rd) into account while evaluating internal instability. Similar experimental 

findings were reported by Indraratna et al. (2015), with some of the unstable samples 

becoming stable at higher Rd values. Given that Sample 11b has a fines content of 25%, 

the internal instability is sensitive to the value of Rd for samples with a fines content ≥ 



99 
 

25%. In addition, the variation in 𝛼 at different Rd for samples with a gap ratio (the ratio 

of the minimum particle size in the coarser fraction to the maximum particle size in the 

finer fraction of the particle size distribution curve of a gap-graded soil) ≥ 4 and fines 

content < 25% was insignificant, as in 12a, 12b, and 12c, among other samples. 

Sample 7a represents the bounds where Z ≤ 1, 𝛼 ≤ 0.5, and 𝐷𝑐35𝑐
∗
/𝑑85

𝑓∗ ≥ 0.73 at all 

compaction states, characterised as internally unstable. In contrast, Sample 7c is stable 

since it has bounds that are Z > 1, 𝛼 > 0.5, and 𝐷𝑐35𝑐
∗
/𝑑85

𝑓∗ < 0.73 for all values of Rd. 

Interestingly, Samples 7a and 7c have identical gap ratios but with 10% and 30% fines, 

respectively. This shows that the unstable samples filled the voids left by the coarser 

particles and became stable as the fines content increased. Higher values of Z and 𝛼 occur 

because the finer particles become well-connected as they fill the voids left by coarser 

particles. The case with Samples 10a, 10b, 11a, and 11d is similar. 

Similarly, Sample 9 is found to be stable in its dense state with values of Z >1, 𝛼 

> 0.5, and 𝐷𝑐35𝑐
∗
/𝑑85

𝑓∗ < 0.73 (Table 4.1), whereas Samples 10a and 11a are unstable. It is 

noteworthy that Samples 9, 10a, and 11a have a comparable proportion of fines despite 

different gap ratios. The fines in the voids become looser as the gap ratio rises, which 

decreases the magnitude of Z and 𝛼. As a result, the coarser fraction subsequently begins 

to transfer the principal stresses. Therefore, in internally stable soils, fine particles mainly 

act as void fillers because they occupy the pore spaces between the coarse particles. 

Figure 4.4 depicts that the Z values decreased as the proportion of loose or 

disconnected fine particles increased with the coefficient of uniformity (Cu) in the 

continuously-graded Samples 1, 2, 3, 4, and 5. In fact, Z could drop below 1 after a 

specific value of Cu, which would make the samples internally unstable. Figure 4.4 also 
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shows the trend line relating the Z and 𝛼 with 𝐷𝑐35𝑐
∗
/𝑑85

𝑓∗. The values of Z and 𝛼 varied 

systematically with 𝐷𝑐35𝑐
∗
/𝑑85

𝑓∗, and were correlated by the following equations: 

𝑍 =
5

1 + exp (10
𝐷𝑐35
𝑐∗

𝑑85
𝑓∗ − 6.2)

                                                                                              (4.7) 

𝛼 = 0.16 + 
1.2

1 + exp (14
𝐷𝑐35
𝑐∗

𝑑85
𝑓∗ − 9.5)

                                                                                (4.8) 

4.4.2 Microscale Parameters versus PSD-Based Criteria 

  Figure 4.5 shows the excessive scatter between the parameters Z and 𝛼 with the retention 

ratio defined by Kezdi (1979) as (𝐷15𝑐 /𝑑85
𝑓 )max. The ratio (𝐷15𝑐 /𝑑85

𝑓 )max does not take the 

Rd and the fines content into account, so it may not offer a more accurate prediction of 

internal instability for the samples with fines ≥ 25%, where Rd has a significant impact. 

For instance, Sample 11b is unstable in its loose and medium states where Z ≤ 1 and 𝛼 ≤ 

0.5 but becomes stable in its dense state where Z >1 and 𝛼 > 0.5. However, the ratio 

(𝐷15𝑐 /𝑑85
𝑓 )max > 4 predicts that it would be unstable in the loose, medium, and dense states. 

Consequently, the ratio (𝐷15𝑐 /𝑑85
𝑓 )max incorrectly predicts that Sample 11b is unstable in 

its dense state.  

           Similarly, Samples 10b and 11d have 35% of fines and are stable at all relative 

density levels, although the ratio (𝐷15𝑐 /𝑑85
𝑓 )max > 4 predicts these stable samples to be 

unstable. In Figure 4.5, except for the sample with fines content ≥ 25%, the other data 

points follow a clear relationship between Z and 𝛼 with an increasing magnitude of 

(𝐷15𝑐 /𝑑85
𝑓 )max. The samples that do not follow the trend of decreasing magnitude of Z as 

the value of (𝐷15𝑐 /𝑑85
𝑓 )max increases are also marked in Fig. 4.5. Therefore, the CSD-based 
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retention ratio is the only macroscale approach that considers all three factors, i.e., PSD, 

Rd, and the fines content affecting internal instability. 

Considering Figure 4.6, there is no convincing evidence of a clear relationship 

between Z, 𝛼, and the retention ratio from Kenney & Lau (1985), i.e., (H/F)min. For 

example, according to the Kenney & Lau (1985) criterion, Sample 7c is internally 

unstable because its (H/F)min < 1 at all Rd (Table 4.1). However, it has boundaries where 

Z >1, 𝛼 > 0.5 and 𝐷𝑐35𝑐
∗
/𝑑85

𝑓∗ < 0.73 at loose, medium, and dense states and is therefore 

stable. Honjo et al. (1996) also found this sample stable in their experimental 

investigations. Accordingly, in contrast to the PSD-based criteria, the experimental 

studies are consistent with the microscale boundaries and CSD-based criterion. 

 

Fig. 4. 5 Variation of (a) coordination number with Kezdi’s (1979) retention ratio and 

(b) stress reduction factor with Kezdi’s (1979) retention ratio (Indraratna, Haq, et al. 

2021) (reproduced with permission from Springer Nature) 
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Fig. 4. 6 Variation of (a) coordination number with Kenney & Lau’s (1985) retention 

ratio and (b) stress reduction factor with Kenney & Lau’s (1985) retention ratio 

(Indraratna, Haq, et al. 2021) (reproduced with permission from Springer Nature) 

4.5 SUMMARY 

This chapter described internal instability at the microscale level using the DEM. A total 

of 63 DEM simulations were carried out on 21 different PSD curves at three different 

density levels. The microscale parameters, i.e., the coordination number (Z) and the stress 

reduction factor (𝛼), were used to mark the boundaries between internally stable and 

unstable samples. The samples showed internal instability when Z ≤ 1 or 𝛼 ≤ 0.5. These 

microscale boundaries showed consistent results when compared to the constriction-

based retention ratio. However, excessive scattering of the data occurred when the 

microscale parameters were plotted against particle-size-based criteria. Therefore, criteria 

based on particle size could not accurately predict internal instability because they do not 

take the relative density of soil into account in a quantifiable manner. In addition, samples 

with higher fines, i.e., more than 35%, could not be analyzed due to high computational 

cost, which can be considered a limitation of the current study.  
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CHAPTER 5 MICROMECHANICAL ANALYSIS OF SOIL TRANSITION 

FROM AN INTERNALLY STABLE TO AN UNSTABLE STATE 

5.1 INTRODUCTION 

Chapter 4 presented a novel approach to check the internal instability potential of 

cohesionless soils under an isotropic stress state. However, the stresses under railroad 

structures and on the downstream side of an embankment dam are anisotropic. Previous 

experimental studies examined internal instability under different stress paths (Chang & 

Zhang 2013; Ke & Takahashi 2015; Luo, Luo & Xiao 2020; Xiao & Shwiyhat 2012). 

Meanwhile, these laboratory tests only assessed the behaviour of granular soils at a 

continuum scale; hence the underlying micro mechanism is not yet fully understood. 

Therefore, the internal instability under anisotropic stress conditions could be modelled 

at a microscale using the Discrete Element Method (DEM) (O’Sullivan 2011). 

This Chapter describes a series of simulations using DEM to check the internal 

instability of soil samples under anisotropic loading conditions. The novel findings of this 

Chapter show how shear-induced deformation can cause some samples that were 

internally stable under an isotropic stress state to become internally unstable under an 

anisotropic stress state. This Chapter also shows the different stages of evolution of the 

stress reduction factor due to shear-induced deformation of dense soil specimens; this has 

not previously been reported in recent studies (e.g., Sufian et al. 2021). It is noted that 

much of the contents of this Chapter have been submitted for publication: 

Haq, S., Indraratna, B., Nguyen TT., & Rujikiatkamjorn, C. (2022). Micromechanical 

analysis of internal instability during shearing. ASCE, International Journal of 

Geomechanics (UNDER REVIEW) 
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5.2 PARTICLE SIZE DISTRIBUTION CURVES AND SIMULATION 

APPROACH 

Figure 5.1 shows a set of 10 particle size distribution (PSD) curves of the soil samples 

considered for analysis from a previous experimental study (Honjo, Haque & Tsai 1996). 

These samples show varying degrees of internal instability (Table 5.1). In order to 

replicate all fabric types, from underfilled to overfilled, two values for gap ratios, 2 and 

3, were chosen from previous experimental studies (Honjo, Haque & Tsai 1996), and the 

fines content ranged from 10% to 40%. Gap-graded soils are used in numerous 

geotechnical engineering applications such as alluvial sediment deposits, moraines, 

glacial tills, mining waste, rockfill-soil mixtures used in embankment dams, fouled ballast 

under railroads, and geological hazards such as debris flows and landslides that cause the 

formation of gap-graded soils (Langroudi et al. 2013; Zhu et al. 2020). Table 5.1 shows 

the gap ratios, fines contents, initial void ratios, initial coordination numbers, initial stress 

reduction factors, and the number of particles considered. 

 
Fig. 5. 1 Particle size distribution curves (10 numbers) of soils analysed with the 

discrete element method 
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*Assessment of internal instability using microscale criterion proposed by (Indraratna, Haq, et al. 

2021) 

Three-dimensional DEM simulations were carried out using an open-source code 

developed by Kloss et al. (2012). To avoid boundary effects, periodic boundaries were 

applied to the cubical samples during the simulation (Thornton 2000). The Hertz-Mindlin 

contact model was adopted. Spherical shapes were simulated with a particle density of 

2650 kg/m3. Young's modulus and Poisson's ratio of the particles were assumed to be 70 

GPa and 0.3 (Thornton 2000).  

In order to identify the fine particles not assisting in the transfer of stresses, 

periodic boundaries were used with the gravity of the particles switched off. Each sample 

had at least 500 particles in the coarser fraction of the particle size distribution curve, 

which was enough to attain a representative element volume (REV) (Shire et al. 2014). 

The samples were created in a dense state that was achieved through isotropic 

compression by setting the coefficient of friction (µs) = 0. The µs value was changed to 

S. 
No. 

Sample 
ID 

Gap 
Ratio 

FC 
(%) 

Rd 

 (%) 

Initial 
Void 
Ratio 
(eo) 

Number 
of 

Particles 

Initial 
Coordination 
Number (Zo) 

Initial 
Stress 

Reduction 
Factor 

(αo) 

Internal 
Instabili

ty*   

1  

 

A 

 

 

2 

 

 

10 95 0.3713 5000 0.719 0.459 Unstable 

2 15 95 0.3131 10,000 0.858 0.337 Unstable 

3 20 95 0.2854 12,000 3.058 1.116 Stable 

4 30 95 0.3004 20,000 4.814 1.665 Stable 

5 40 95 0.3203 30,000 5.202 1.616 Stable 

6  

 

B 

 

 

       3 

10 95 0.3619 15,000 0.206 0.044 Unstable 

7 15 95 0.2911 25,000 0.146 0.062 Unstable 

8 20 95 0.2277 35,000 2.156 0.400 Unstable 

9 30 95 0.2470 55,000 5.141 1.655 Stable 

10 40 95 0.2851 85,000 5.419 1.739 Stable 

Table 5. 1 Properties of the particle size distribution curves used in the analysis 
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0.3 once the requisite stress level was reached, and then the samples were given enough 

cycles to equilibrate (Shire et al. 2014).  

A strain-controlled method was used to compress a non-interacting cloud of 

particles to the target confining pressure = 𝑝′ = (𝜎1′ + 𝜎2′ + 𝜎3′) 3⁄  = 200 kPa. To assure 

the samples' quasi-static deformation, a strain rate was selected by maintaining the low 

inertial number (In) determined after the sensitivity analysis. The strain rate dropped to 

zero at 𝑝′ = 200 kPa, thereby bringing the system into a state of equilibrium. The 

simulations were run for additional cycles sufficient to confirm equilibrium. As shown in 

Figure 5.2, the samples were then sheared under a constant 𝑝′ stress path. Shearing was 

terminated when the axial strain reached 15%. The target stress at each time step was 

estimated at the constant 𝑝′ drained loading conditions by assuming that the stresses in 

the x and y directions were equal. The 𝑝′ is given as follows: 

𝑝′ = 
𝜎1
′ + 𝜎2

′ + 𝜎3
′

3
                                                                                                         (5.1) 

Since 𝜎2′ = 𝜎3′  therefore, 

𝜎2
′ = 𝜎3

′ = 
1

2
(3𝑝′ − 𝜎1

′)                                                                                                (5.2) 

𝜎1,𝑡 +∆𝑡
′ = 𝜎1,𝑡 

′ + (𝜎1,𝑡 
′ − 𝜎1,𝑡 −∆𝑡

′ )                                                                                 (5.3) 

The desired stresses in the x and y directions at 𝑡 + ∆𝑡 can be given by: 

𝜎2,𝑡+∆𝑡  
′ = 𝜎3,𝑡+∆𝑡

′ =
1

2
(3𝑝′ − 𝜎1,𝑡+∆𝑡

′ )                                                                        (5.4) 

The strain rates in the x and y directions can be determined using the following equation: 

휀2̇ = 휀𝑖2 (̇  
𝜎2,𝑡+∆𝑡  
′ − 𝜎2,𝑡  

′

𝜎2,𝑡+∆𝑡  
′ )                                                                                               (5.5) 

휀3̇ = 휀𝑖3 (̇  
𝜎3,𝑡+∆𝑡  
′ − 𝜎3,𝑡  

′

𝜎3,𝑡+∆𝑡  
′ )                                                                                               (5.6) 



107 
 

where 휀2̇ and 휀3̇ are the strain rates in the x and y directions, and 휀𝑖2̇ and 휀𝑖3̇ are the initial 

strain rates in the x and y directions. 

 

Fig. 5. 2 Constant mean stress path followed in the simulations; (b) isotropically 

compressed and sheared Sample B (30%) (fines content are given in brackets) 

5.3 RESULTS AND DISCUSSION 

5.3.1 Justification for smaller gap widths 

At the isotropic stress state, Fig. 5.3a shows a plot of the percentage (by number) of 

unconnected cohesionless fine particles within the voids of the coarse particles for 

different gap widths and fines content. For a given particle size distribution curve, the gap 

width is the ratio of the minimum particle size in the coarser fraction to the maximum 

particle size in the finer fraction.  It is shown that with 10% (by mass) fines, the 
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percentage of unconnected (suspended) fine particles by number is greater than 90% for 

both gap widths (i.e., 2 and 3) considered within the scope of this study. With 20% (by 

mass) fines, the proportion of unconnected fines by number is around 50% for both gap 

widths. In contrast, with higher proportions of fines corresponding to 30% and 40% (by 

mass), the percentage of fine particles (by number) for both gap widths is less than 20%. 

A lower percentage (by number) of unconnected fines at a higher percentage (by mass) 

of fines indicates that the fines occupy the voids between the coarse particles, thereby 

establishing contact with one another. From this, it can be concluded that at 10% and 20% 

of the fines with gap widths of 2 and 3, a notable number of unconnected fines can still 

be present in the voids of the coarse particles. 

Figure 5.3b shows the percentage of unconnected particles with the percentage of 

fines. With an increasing proportion of fines, the unconnected particles decrease. This is 

because the fine particles occupy the voids between the coarse particles and remain 

connected to each other as the proportion increases. The decrease in unconnected particles 

is insignificant when the fines content is ≥ 30%. Therefore, a fine content = 30% can be 

considered as the threshold required to connect the unconnected particles in voids for gap 

ratios 2 and 3. 
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Fig. 5. 3 Percentage (by number) of unconnected fines with different gap widths and 

fines content 
 
5.3.2 Stress-Strain Behaviour 

Figure 5.4 shows the macroscopic stress-strain behaviour of the sample after being 

sheared under drained conditions with a constant mean stress path. When shearing, the 

contacts do not engage, which causes the stress-strain curves to oscillate (Sufian et al. 

2021). How the contacts engage during shearing is determined by the initial fabric of the 

sample. Selected examples include the stress-strain curves of Samples A (40%) and B 

(40%), with the fines indicated in brackets, showing more subtle variations than the other 

samples in their respective groups. At relatively low axial strains (< 2%), all samples 
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show a noticeable peak deviatoric stress (qpeak), indicating that the samples were stiff 

(dense).  

Figure 5.4 also shows that the gap ratio and fines influence the macroscopic stress-

strain behaviour. All samples show post-peak strain softening; however, samples with 

higher fines show a significant drop in post-peak deviatoric stress, i.e., indicating a greater 

degree of post-peak strain softening than those with lower fines content. For example, at 

the end of the shear, the post-peak deviatoric stress of Sample B (30%) is less than Sample 

B (20%). The relative densities of both samples are the same; however, the fine contents 

are different; hence the post-peak deviatoric stresses of Samples B (30%) and B (20%) 

are different. For Sample A with a gap ratio of 2 and different fines, the stress-strain 

curves are similar because the difference in size of the coarse and fine particles is 

insignificant due to a smaller gap ratio. While for Sample B with a gap ratio of 3 and 

different fines, the stress-strain curves are different because the sizes of the coarse and 

fine particles are significantly different. 

 

Fig. 5. 4 Stress-strain curves of all specimens under drained shearing with a constant 

mean stress path 
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5.3.3 Volumetric Strain versus Axial Strain 

Figure 5.5 shows the development of volumetric strain (εv) with axial strain. A positive 

value of εv implies that the specimen has dilated. The magnitude of εv first increases until 

it reaches a critical value and then remains relatively constant. This is considered to be 

the critical state, where shear deformation continues without changing the sample volume. 

The samples with a higher proportion of fines reach the critical value of εv at lower axial 

strains than those with a lower proportion of fines. For example, in Sample A(30%), εv 

becomes constant at about 6% of axial strain, whereas in Sample A(20%), εv becomes 

constant at about 10% of axial strain. Similarly, Sample B (30%) reaches the critical εv 

level at about 5% axial strain, but Sample B (20%) shows no apparent convergence of 

strain to a constant value. For both the gap ratios = 2 and 3, specimens with 30% fines 

undergo the least amount of dilation than the other specimens because of the filled fabric, 

i.e., fine particles completely fill the voids between the coarse particles, restricting the 

dilation of the specimens. 

 

Fig. 5. 5 Evolution of the volumetric strain (εv) with axial strain 
 
5.3.4 Varying Initial Void Ratio and Peak Strength with Fines Content 

Figure 5.6a shows the correlation between the fines content and the initial void ratio (eo) 

for each gap ratio. Initial void ratio (eo) is affected by fines, gap ratio and density. eo 
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decreases as the proportion of fine increases because the fine particles occupy the voids 

between the coarse particles. At a certain fines content, the voids are completely occupied 

by fine particles, whereby the void ratio reaches a minimum value; in this particular case 

(Figure 5.6b), there is no more space between the coarse particles to accommodate further 

fine particles. As additional fines are introduced, the coarse particles must be separated, 

and the fine particles become more dominant in the mixture. As a result, coarse particles 

float in the matrix of fine particles, which is known as an overfilled fabric (Figure 5.6b). 

The void ratio increases after reaching the overfilled fabric. The proportion of fines 

needed to achieve the lowest value of eo is determined by the gap ratio; a sample with a 

higher gap ratio requires more fines to fill the voids. Figure 5.6c shows the development 

of the peak deviatoric stress (qpeak) for different fines content. As the proportion of fines 

increases, eo decreases, causing the qpeak value to increase. The highest value of qpeak is 

reached at the lowest value of eo. After the maximum of qpeak, the value of qpeak decreases 

as eo increases with increasing fines. 

The numerical results show that the influence of the gap ratio on qpeak is 

insignificant at 10-15% fines. However, this influence becomes more pronounced when 

the fines content exceeds 15%. The larger the gap ratio, the larger qpeak; in particular, the 

largest qpeak is about 254 kPa at a gap ratio of 3 but decreases to about 237 kPa as the gap 

ratio decreases to 2. As fines continue to increase and the soil becomes overfilled, the 

difference between the two curves narrows due to the increasing role of fines in shear 

strength. It is to be expected that the two curves, which represent different gap ratios, will 

converge with an increasing proportion of fines (>40%) and will have a significant 

influence on the shearing behaviour of the soil. 
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Fig. 5. 6 (a) Relationship between the fines content and the initial void ratio, (b) 

schematic sketch of different fabric cases, (c) relationship between the fines content and 

the peak deviatoric stress 

5.3.5 Evolution of Coordination Number during Shearing 

Figure 5.7 shows the variations in coordination number (Z) with axial strain. Z is a 

microscale parameter that describes the average number of contacts per particle and is 

given as follows (Thornton 2000). 

𝑍 = 
2𝑁𝑐
𝑁𝑝
                                                                                                                                     (5.7) 

where 𝑁𝑐 = the number of contacts, and 𝑁𝑝 = the number of particles in the specimen. 
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Fig. 5. 7 (a), (b) Development of the coordination number (Z) with axial strain for 

specimens A and B, and (c) percentage of drop in Z values with fines content 

 
During the early shearing phase, the value of Z changes rapidly until it reaches a 

critical value that remains constant thereafter. The decrease in Z values can be attributed 

to the shear strain breaking the particle contacts. The initial rapid decline in coordination 

number implies that the rate of contact breakage exceeds the rate at which new contacts 

are formed. In the critical state, this rate of breakage and formation of new contacts 

becomes equal (Rothenburg & Kruyt 2004). It is apparent that the critical coordination 

number is a function of the PSD and the proportion of fines. For Sample B(30%), the Z 

value suddenly falls below the critical value. These fluctuations in Z values are caused by 

local instability and increasing particle mobility (Thornton 2000). If actual boundaries 

were used, strain localisation and shear band formation could occur, but when the uniform 

strain field is applied, strain localisation cannot occur in periodic cells (Thornton 2000). 



115 
 

Figure 5.7c shows the percentage decrease of Z during the shear-induced 

deformation with the fines content. The overall behaviour can be divided into three 

categories: (i) the decrease in Z value is less for samples with a low fines content, (ii) the 

value of Z decreases dramatically for samples with 20 to 30% fines, but the percentage of 

decrease is also affected by the gap ratio, (iii) the decrease in Z is again lower for 

overfilled samples with a higher proportion of fines, and this is consistent across different 

gap ratios. In Fig. 5.7c, it is noticeable that the decrease in the value of Z is greater than 

80% for samples that change from an internally stable to an unstable state, i.e., Samples 

A (20%), B (20%), and B (30%). 

5.3.6 Development of Stress Reduction Factor during Shearing 

Figure 5.8 shows a three-dimensional plot of the stress reduction factor (𝛼), the axial 

strain, and the stress ratio (𝑞 𝑝′⁄ ). The 𝛼 is the ratio of the mean stress carried by the fines 

to the overall mean stress, which was determined using the method described by Shire et 

al. (2014). The value of 𝛼 indicates how much the fine particles contribute to stress 

transfer and the overall stress-strain response; hence, it can be used as an index to 

determine internal instability. A low value of α indicates a significant likelihood of 

internal instability (Shire et al. 2014). The samples can be divided into two distinct groups 

based on their behaviour. The first group consists of samples with a low fines content and 

underfilled fabric, i.e., Samples A(10%), A(15%), B(10%), and B(15%). Because the fine 

particles do not contribute to the deviatoric stress and remain loose in the voids of the 

coarse particle fractions, the values of 𝛼 with the axial strain and stress ratio remain 

constant, albeit with minor fluctuations. After the peak stress ratio, the 𝛼 value for Sample 

B (15%) increases slightly. 

The second group consists of samples with a higher proportion of fines, i.e., 

Samples A(20%), A(30%), A(40%), B(30%), and B(40%). During shearing, α changes 
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significantly. In Sample B (30%), the α value drops dramatically from 1.655 to 0.751; 

likewise, in Sample A (30%), it decreases from 1.665 to 0.964. The drop in α of Samples 

A (40%) and B(40%) is not as significant as that of Samples A(30%) and B(30%). In this 

sense, the development of 𝛼 for samples in the second group can be divided into three 

stages. In stage 1, 𝛼 remains constant up to a stress ratio = 0.80 with a low axial strain 

value; in stage 2 𝛼 decreases slightly as it approaches the peak stress ratio, and stage 3 is 

the post-peak region, where the value of 𝛼 falls dramatically. For example, in Samples 

A(20%), A(30%), A(40%), B(30%), and B(40%), 𝛼 remains practically constant until the 

peak stress ratio is reached with a small axial strain value; thereafter, the value of 𝛼 

gradually decreases until it reaches the peak stress ratio. The value of 𝛼  then drops 

dramatically after the peak stress ratio. 

 

Fig. 5. 8 Three-dimensional plot between the stress reduction factor (𝜶), the axial strain 
εa (%) and the stress ratio (q/p') 

 
For a certain axial strain and stress ratio, the 𝛼 value of both gap ratios increases 

with the proportion of fines. Fine particles begin to intervene in the load-carrying process 

as their proportion increases; however, the magnitude of their contribution varies with the 

gap ratio. For example, with the same proportion of fines, e.g., at 30% fines, the value of 

𝛼 drops with an increasing gap ratio. Because as the gap ratio increases, fines can easily 

fit into the voids between the coarse particles. With a higher proportion of fines, i.e., 40%, 
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𝛼 increases with the gap ratio because a larger number of fine particles separate the coarse 

particles and are now accessible to carry and distribute the stresses (Sufian et al. 2021). 

For example, at the isotropic stress state, Sample A(20%) has a 𝛼 value of 1.116 while 

Sample B(20%) has a 𝛼 value of 0.40. In contrast, the 𝛼 value of Sample A(40%) is 1.616, 

while that of Sample B(40%) is 1.740. 

The coordination number (Z) and the stress reduction factor (𝛼) were used to 

assess the internal instability of granular soils, as explained elsewhere by Indraratna et al. 

(2021). The Z and α values are used to define the boundaries between internally stable 

and unstable soils (Figures 5.7 and 5.8). For instance, samples with the potential for 

internal instability exhibit Z ≤ 1 or α ≤ 0.5. Sample A(20%) has an initial value of Z = 

3.06 and α = 1.116; however, the critical value of Z becomes less than 1, and the sample 

becomes internally unstable. Similarly, Sample B(30%) has an initial Z > 1 and α > 0.50, 

and thereafter, the value of Z becomes less than unity. As a result, it transforms from 

internally stable to unstable materials with dilation.  

5.3.7 Development of the Stress Reduction Factor with Fine-Fine and Fine-Coarse 

Coordination Number 

Figure 5.9 shows the progression of 𝛼 with fine-fine and fine-coarse coordination 

numbers (Zfine-coarse) during shearing, where Zfine-coarse is defined by (Minh & Cheng 2013): 

𝑍𝑓𝑖𝑛𝑒−𝑐𝑜𝑎𝑟𝑠𝑒 =  
2(𝑁𝑐

𝑓𝑖𝑛𝑒−𝑓𝑖𝑛𝑒
+ 𝑁𝑐

𝑓𝑖𝑛𝑒−𝑐𝑜𝑎𝑟𝑠𝑒
)

𝑁𝑝
𝑓𝑖𝑛𝑒𝑠

                                                                (5.8) 

where 𝑁𝑐
𝑓𝑖𝑛𝑒−𝑓𝑖𝑛𝑒 is the number of contacts between the fine particles, 𝑁𝑐

𝑓𝑖𝑛𝑒−𝑐𝑜𝑎𝑟𝑠𝑒 is 

the number of contacts between the fine and coarse particles and 𝑁𝑝
𝑓𝑖𝑛𝑒𝑠 is the total 

number of fine particles. Although their percentage is lower, the fine particles outnumber 

the coarse particles. 
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Fabrics are classified into three categories (Shire et al. 2014; Thevanayagam et al. 

2002). (i) Type 1 includes Case I and Case IV (Fig. 5.9), where mainly the coarse particles 

are in contact with each other. In Case I, the fine particles are loose in the voids of the 

coarse particles, and their erosion does not appreciably disturb the structure of the coarse 

particles. In Case IV, fine particles get stuck between the coarser particles and are 

overstressed. (ii) Type 2 is Case II, where coarse particles are primarily in contact with 

each other, and the fine particles serve as a support. In this case, both the coarse and fine 

particles affect stress transfer, but the coarse particles govern the transfer of stresses. The 

loss of fines can cause the fabric of the coarse particles to disintegrate, (iii) Type 3, i.e., 

Case III represents the situation where the fine particles are mainly in contact with each 

other, and the coarse particles are dispersed in the mixture (overfilled by fines). In this 

scenario, both coarse and fine particles transmit equal amounts of stress. Each case with 

different intergranular contacts may show a distinct drained shear response. During the 

shear-induced dilation of the samples, a transition in the microstructure between different 

cases can occur. 

 

Fig. 5. 9 Evolution of the stress reduction factor (𝜶) with fine-coarse coordination number 
(Zfine-coarse) 
 

Figure 5.9 shows the development of the fabrics of various samples with dilation 

during shearing. For instance, Sample A(20%) begins with the overfilled fabric in Case 
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III with 𝑍𝑓𝑖𝑛𝑒−𝑐𝑜𝑎𝑟𝑠𝑒 > 1 and 𝛼 > 0.5; however, it moves from Case III to Case IV with 

𝑍𝑓𝑖𝑛𝑒−𝑐𝑜𝑎𝑟𝑠𝑒 <1 and 𝛼 > 0.5 towards the end of shearing due to sample dilation. This 

means that the fine particles were once in contact with each other but have already lost 

contacts. Similarly, Sample B(20%) shows Case II with 𝑍𝑓𝑖𝑛𝑒−𝑐𝑜𝑎𝑟𝑠𝑒 >1 and 𝛼 < 0.5 at 

the isotropic stress state and transitions to Case I with 𝑍𝑓𝑖𝑛𝑒−𝑐𝑜𝑎𝑟𝑠𝑒 < 1 and 𝛼 < 0.5 at the 

end of shearing, indicating that fines are now loosely seated between the coarse particles 

and can be eroded without affecting the coarse particles. These findings have practical 

implications since the samples with overfilled fabric could be internally stable at the 

isotropic stress state; however, due to shear-induced deformation, they could transition 

from internally stable to unstable soils with underfilled fabric. 

5.3.8 Variation of the Coarse-Coarse Coordination Number with Deviatoric Stress 

Figure 5.10 shows the evolution of the coarse-coarse coordination number (Zcoarse-coarse) 

with the deviatoric stress. The value of 𝑍𝑐𝑜𝑎𝑟𝑠𝑒−𝑐𝑜𝑎𝑟𝑠𝑒 is defined as (Minh & Cheng 

2013): 

𝑍𝑐𝑜𝑎𝑟𝑠𝑒−𝑐𝑜𝑎𝑟𝑠𝑒 = 
2𝑁𝑐

𝑐𝑜𝑎𝑟𝑠𝑒−𝑐𝑜𝑎𝑟𝑠𝑒

𝑁𝑝
𝑐𝑜𝑎𝑟𝑠𝑒                                                                                        (5.9) 

where 𝑁𝑐𝑐𝑜𝑎𝑟𝑠𝑒−𝑐𝑜𝑎𝑟𝑠𝑒 is the number of coarse particles contacts, and 𝑁𝑝𝑐𝑜𝑎𝑟𝑠𝑒 is the 

number of coarse particles. 

Zcoarse-coarse decreases rapidly until the peak deviatoric stress is reached and then 

increases slightly. Consequently, the stress reduction factor (α) remains constant until the 

stress ratio reaches the peak value (Figure 5.8). As a result, in the early phase of shearing 

up to the peak of the deviatoric stress, the coarse particles are separated by dilation. 

However, the stresses they carry remain constant (constant α), overstressing the reduced 

coarser contacts. The loss of contacts for coarse particles ceases after the peak deviatoric 

stress, whereas α continues to drop. Consequently, the coarser particles are subjected to 
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increased stress as the α lowers. Because coarse particles carry significant stresses, they 

re-establish some contacts after the peak when the Zcoarse-coarse value increases slightly in 

some samples (e.g., A(20%), A(30%), A(40%), and B(30%). This behaviour of Zcoarse-

coarse is consistent across different samples, although the initial value of Zcoarse-coarse 

changes with fines content. 

 

Fig. 5. 10 Variation of the coarse-coarse coordination number (Zcoarse-coarse) with 
deviatoric stress 

 
5.3.9 Development of Sliding Contacts with Axial Strain 

Figure 5.11 shows the development of sliding contacts with axial strain. The sliding 

contacts are identified using the following equation: 

𝑆𝑖 =
𝑓𝑇

µ𝑠𝑓𝑁
                                                                                                                                (5.10) 

where 𝑆𝑖 represents the sliding index, 𝑓𝑇 represents the tangential contact force, and 𝑓𝑁 

represents the normal contact force. When 𝑓𝑇 fully mobilises the friction, sliding contacts 

occur, i.e., 𝑆𝑖 = 1. 

The percentage of sliding contacts increases first, reflecting the initial shear stage 

where the deviatoric stress increases rapidly (see Fig. 5.4). After reaching a peak value, 

it decreases and then remains constant, which is when the critical state takes place with 

constant volumetric strain. It is worth noting that the percentage of sliding contacts 
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increases after the peak (axial strain > 3%) in Sample B (30%). This can be attributed to 

the local instability and significant particle mobility, consistent with the evolution of the 

coordination number with axial strain for this sample, as mentioned previously (see Fig. 

5.7). 

 

Fig. 5. 11 Development of the proportion of sliding contacts with axial strain. 
 
5.3.10 Directional Distribution of Contacts 

Figure 5.12 shows the directional distribution of contacts (rose histograms) in selected 

Samples A(10%), B(10%), and B(15%) at the isotropic stress state and at the end of shear. 

These results only apply to the x-z plane as the distribution of contacts in the y-z plane is 

similar. The distribution of the contacts is the same in all directions at the isotropic stress 

state, as shown in Fig. 5.12. However, at the end of the shear, anisotropy develops in the 

contact networks, and the contact distribution is not equal in all directions. Therefore, 

shear deformation of soil due to contact separation leads to structural anisotropy. The 

number of contacts in the major principal stress direction is higher than that of minor 

principal stress. Consequently, the major contact losses occur during shear deformation 

in the lateral strain direction perpendicular to the direction of major principal stress. 
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at the isotropic stress state                                                  at the end of shearing

                
at the isotropic stress state                                                    at the end of shearing

             
Fig. 5. 12 Rose histograms of the contacts for selected Samples 1(10%), 2(10%) and 

2(15%)

z

x

Sample B(10%)

Sample B(15%)

Direction of major principal stress
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5.4 SUMMARY 

A total of 10 DEM simulations were carried out on 10 particle size distribution curves. 

The specimens were prepared in a dense state and sheared under drained conditions along 

a constant mean stress path to study the influence of stress anisotropy on micromechanics. 

The development of microscale parameters such as the coordination number, partial 

coordination number, sliding contacts, and stress reduction factor was observed. The 

simulations showed that certain internally stable samples could become unstable during 

shear-induced dilation. This was confirmed by observing the evolution of the 

coordination number and stress reduction factor due to shear-induced deformation of soil 

samples.  

         The coordination number initially decreased rapidly, showing that the contact 

breaking rate was higher than the contact forming rate. It then remained constant, with 

the rate of breakage and the formation of contacts remaining the same. In addition, three 

distinct stages in the development of the stress reduction factor were observed in the 

dense, overfilled fabric samples. Stage 1 was characterised by α remaining constant when 

the stress ratio (q/p') was less than 0.80 at a low axial strain value. Stage 2 was 

characterised by a slight decrease in α as it approached the peak q/p', and Stage 3 was 

characterised by a significant decrease in α due to shear-induced dilation in the post-peak 

region.  
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CHAPTER 6 HYDROMECHANICAL STATE OF SOIL FLUIDISATION – A 

MICROSCALE PERSPECTIVE 

6.1 INTRODUCTION 

Chapters 4 and 5 included the use of the Discrete Element Method (DEM) to describe 

how hydromechanical instability of granular soils could occur. However, the fluid part 

was ignored in the previous chapters; therefore, the hydraulic conditions could not be 

considered. Since it is vital to consider the hydraulic conditions, this chapter addresses 

the fluid-particle interaction and examines an important hydromechanical failure mode 

called fluidisation that implies the transition of a stable soil to a slurry-like state due to 

loss of contacts between soil particles, often known as mud pumping or subgrade 

fluidisation in railway terminology.  Mud pumping occurs when soil slurry penetrates the 

overlying coarser ballast layer of rail tracks. While literature reveals that experiments 

have been carried out to study fluidisation and mud pumping (Hudson et al., 2016; 

Indraratna et al., 2020), these laboratory investigations only provide a macroscale 

response, whereas the evolution of fabric at the microscale may reveal the mysteries 

associated with fluidisation. This means the Discrete Element Method (DEM) could be 

used to evaluate the fabric of soil during fluidisation.  

This chapter aims to study soil fluidisation at the microscale through the discrete 

element concepts of (i) coordination number (average number of contacts per particle) 

and (ii) constraint ratio (ratio of number of constraints to the number of degrees of 

freedom in the particle system). In this study, the DEM was coupled with the Lattice 

Boltzmann Method (LBM) to simulate fluid-particle interaction. An upward hydraulic 

gradient was applied to the specimen, and the evolution of effective stress was noted as 

the hydraulic gradient increased. A novel criterion based on microscale parameters was 

proposed to characterise the transformation of granular soil from stable to liquid-like 
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material. A significant part of this Chapter has been adapted from the following work and 

reproduced with permission from Springer Nature: 

Haq, S., Indraratna, B., Nguyen, T. T., & Rujikiatkamjorn, C. (2022). Hydromechanical 

state of soil fluidisation: a microscale perspective. Acta Geotechnica. 

https://doi.org/10.1007/s11440-022-01674-7 

6.2 SIMULATION APPROACH 

Three-dimensional LBM-DEM simulations were carried out using the Hertz-Mindlin 

contact model with Young's modulus and Poisson's ratio of particles set as 70 GPa and 

0.3, respectively (Thornton 2000). The particle density was set to 2650 kg/m3, and rigid 

boundary walls were used. The gravitational deposition method was used for sample 

preparation (Abbireddy & Clayton 2010), whereby the acceleration due to the force of 

gravity of the particles was set to 9.81 m/s2. The particles were initially created in a larger 

volume with no overlap, and then particles were dropped under gravity. The particles 

were allowed to settle until equilibrium was reached, thereby ensuring that the 

coordination number remained constant for a sufficient number of numerical cycles. 

Since it is not always possible to simulate the actual void ratios and fabric with an 

assembly of purely spherical particles, the notion of relative density was utilised to 

simulate the experimental conditions, as suggested by Salot et al. (2009). The sample was 

prepared in a dense state by setting the coefficient of friction (µs) to 0 (Abbireddy & 

Clayton 2010; Cundall 1988). Subsequently, µs was changed to 0.30, and the particles 

were re-equilibrated with a sufficient number of numerical cycles before they became 

saturated with fluid (Cundall 1988; Thornton 2000). The value of µs used here was in the 

range of real quartz particles that can be determined experimentally with a 

micromechanical interparticle loading apparatus (e.g., Senetakis et al., 2013). The 

https://doi.org/10.1007/s11440-022-01674-7
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particle-wall contact parameters were assumed to correspond to the particle-to-particle 

contact parameters (Hu, Zhang & Yang 2019). 

The fluid density was set to 1000 kg/m3 with a kinematic viscosity of 1 x 10-6 m2/s 

according to pure water properties at 20 oC and 1 atmosphere (101 kPa). The resolution 

of the fluid lattice was chosen with at least 5 lattices in each particle, i.e., the diameter of 

the smallest particle corresponds to at least 5 fluid cells based on the validation of a single-

particle displaced downwards into the fluid that was described previously. A relaxation 

parameter close to but greater than 0.50 was chosen, and the Mach number was kept 

below 0.1, inspired by the need for improved accuracy, as explained elsewhere by Han et 

al. (2007). Fluid flow was initiated with the relevant inlet and outlet pressure boundary 

conditions, and no-slip conditions were imposed on the boundaries perpendicular to the 

flow. For each hydraulic gradient applied, the flow was continued over a sufficient period 

of time until a steady-state condition was attained. 

6.3 PARTICLE SIZE DISTRIBUTION AND HOMOGENEITY OF THE SAMPLE 

Figure 6.1(a) illustrates the particle size distribution of the sample selected from an 

experimental study carried out by Indraratna et al. (2015). Figure 6.1(b) shows the three-

dimensional DEM-based sample with 17607 particles, and the direction of flow of the 

fluid is also shown, i.e., the z-direction. Figure 6.1(c) shows the sample after being 

divided into 10 different inner layers. The ratio of the lateral dimension of the simulation 

domain to the maximum particle diameter was greater than 12 in order to obtain a 

representative elementary volume (REV) and avoid the boundary effects. A local 

decrease in the void ratio occurred near the rigid boundaries (O'Sullivan, 2011), so the 

bottom boundary layer (besides the rigid bottom boundary) was omitted in order to nullify 

the boundary effects (Huang, Hanley, O’Sullivan & F. C. Y. Kwok 2014). The thickness 

of each layer was more than twice the maximum particle diameter in order to define a 
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REV (Huang, Hanley, O’Sullivan & F. C. Y. Kwok 2014). The stresses at the boundaries 

do not reflect the actual material response, so the interaction of the particles in each layer 

with the lateral boundaries was not considered. 

Figure 6.1(c) shows the similar initial void ratios of all layers, indicating the REV 

in each layer. The initial homogeneity of the sample was further confirmed by considering 

the variances in the void ratios as reported by Jiang et al. (2003): 

𝑆2 = 
1

𝑛𝐿 − 1
 ∑(𝑒𝑜𝑖

𝑘 − 𝑒𝑜𝑖
𝑎𝑣𝑔
)2

𝑛𝐿

𝑘=1

                                                                                            (6.1) 

where 𝑆 is the variance of the void ratios, 𝑛𝐿 is the total number of layers, 𝑒𝑜𝑖𝑘  is the initial 

void ratio of the kth layer, and 𝑒𝑜𝑖
𝑎𝑣𝑔 is the initial void ratio of the entire sample. The 𝑆2 

value for the sample in Fig. 6.1(c) is 2.72 x 10-5, which is low enough to classify the 

sample as homogenous with respect to the REV in each layer. The overall void ratio of 

the numerical sample is the same as the experimental sample. Note that the void ratio 

only considers the volume of the voids and solid particles, not the particulate structure of 

the granular medium. Figure 6.1(d) shows an enlarged view of the particles modelled in 

the fluid mesh. It is noteworthy that the mesh is much smaller than the particle and pore 

sizes, unlike the conventional unresolved approach with the Navier-Stokes equation. 

6.4 CALIBRATION 

Figure 6.2 shows the calibration of the numerical model of soil fluidisation by comparing 

the flow curves obtained from the LBM-DEM approach, an earlier experimental study 

(Indraratna, Israr & Rujikiatkamjorn 2015), and a semi-analytical solution (Ergun 1952) 

as follows: 

∆𝑃

𝐿
=  
150𝜇𝑓𝑣𝑑(1 − 𝑛)

2

𝑑𝑝2 𝑛3
+
1.75𝜌𝑓𝑣𝑑

2(1 − 𝑛)

𝑑𝑝 𝑛3
                                                                (6.2)   
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where ∆𝑃 is the pressure drop across the particle bed, 𝐿 is the height of the bed, 𝑑𝑝 is the 

particle size and in this study is selected equal to 𝑑50 (the particle size that is 50% finer 

by mass in the particle size distribution), 𝑛 is the overall porosity, 𝜇𝑓 is the dynamic 

viscosity of the fluid, and 𝑣𝑑 is the superficial or discharge velocity of the fluid. 

The flow curves obtained from the LBM-DEM approach, experimental, and semi-

analytical methods agree with each other. The overall critical hydraulic gradient (io,cr) 

predicted by the LBM-DEM approach was 1.050, while the semi-analytical and 

experimental values of io,cr were 1.133 and 1.180, respectively. These values are in 

acceptable agreement with one another. 
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Fig. 6. 1 (a) Particle size distribution of the sample selected for modelling in DEM; (b) 

three-dimensional sample modelled in DEM; (c) division of the sample into different 

layers with the mentioned layer numbers and initial void ratios (eoi); (d) a close-up view 

of the particles modelled in the fluid mesh using the LBM-DEM approach (Haq et al. 

2022) (reproduced with permission from Springer Nature)  
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Fig. 6. 2 Calibration of the soil specimen fluidisation model by comparing the flow 

curves obtained from the LBM-DEM, the documented experimental, and semi-

analytical solution (Haq et al. 2022) (reproduced with permission from Springer Nature) 

 
6.5 RESULTS AND DISCUSSION 

6.5.1 Stress-Hydraulic Gradient Evolution  

Figure 6.3 shows the stress-hydraulic gradient space where the local hydraulic gradients 

(ihyd) are plotted against the normalised Cauchy effective stresses (𝜎𝑧𝑧′ /𝜎𝑧𝑧𝑜′ ) of particles 

in a given layer in the fluid flow direction at any time, where 𝜎𝑧𝑧′  is the Cauchy effective 

stresses of the particles in a layer at any time, and 𝜎𝑧𝑧𝑜′  is the initial Cauchy effective 

stresses of the particles in that particular layer. The 𝜎𝑧𝑧′  is obtained using particle-based 

stresses via the following second-order stress tensor equation (Potyondy & Cundall 

2004). 

𝜎𝑖𝑗
′ =

1

𝑉
 ∑𝜎𝑖𝑗

𝑝′𝑉𝑝

𝑁𝑝

𝑝=1

                                                                                                                   (6.3) 
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where 𝑉 is the volume of the layer or the selected region, 𝑉𝑝 is the volume of particle 𝑝 

in the region, 𝑁𝑝 is the number of particles in the layer, and 𝜎𝑖𝑗
𝑝′ is the average stress tensor 

within a particle 𝑝, and it is given by: 

𝜎𝑖𝑗
𝑝′ =

1

𝑉𝑝
 ∑|𝑥𝑖

𝑐 − 𝑥𝑖
𝑝|

𝑁𝑐
𝑝

𝑐=1

𝑛𝑖
𝑐,𝑝𝑓𝑗

𝑐                                                                                               (6.4) 

where 𝑓𝑗𝑐 is the force vector in the jth direction at contact c with the location 𝑥𝑖𝑐, 𝑥𝑖
𝑝 is the 

location of the particle's centroid, 𝑛𝑖
𝑐,𝑝 is the unit normal vector from the centroid of the 

particle to the contact location and 𝑁𝑐
𝑝 is the number of contacts on particle p. Note that 

Equations (6.3) and (6.4) compute the effective stresses directly from the contact 

moments and not according to Terzaghi's concept used in the macroscale laboratory 

studies. Reynold's stresses are negligible and are not taken into account. 

The onset of soil fluidisation is associated with hydraulic and stress conditions, 

i.e., hydromechanical conditions. The effective stresses decrease as the local hydraulic 

gradients increase in each layer, and fluidisation occurs at a critical hydraulic gradient 

when the effective stresses drop to zero. The evolution of the stress-gradient of each layer 

is not the same. The stress-gradient paths of Layers 1-6 are approximately linear with a 

slope of -1. In contrast to the theoretical linear stress-gradient paths presented by Li and 

Fannin (2012), the stress-gradient paths of Layers 7-10 (lower layers) are nonlinear until 

failure, and failure commences when the effective stress of Layer 10 approaches zero. At 

the same time, Layers 1-9 show residual stresses due to the motion of particles in the form 

of clusters. These residual stresses decrease as the particles in the cluster lose further 

contacts over time after onset until complete fluidisation occurs. The inception of failure 

at Layer 10 under all layers is consistent with the experimental investigations (Indraratna, 

Israr & Li 2017; Indraratna, Israr & Rujikiatkamjorn 2015). 
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Fig. 6. 3 Evolution of the local hydraulic gradient and normalised effective stresses 

(Haq et al. 2022) (reproduced with permission from Springer Nature) 

 
6.5.2 Distribution of Normal Contact Forces 

Figure 6.4 shows the Probability Density Function (PDF) of the normalised contact forces 

(𝑓𝑁 𝑓𝑜
𝑁,𝑎𝑣𝑔⁄ ) of the selected layers, where 𝑓𝑁 is the normal contact force at any time and 

𝑓𝑜
𝑁,𝑎𝑣𝑔 is the average normal contact force in a layer at a hydrostatic state. Given that two 

types of contact networks are present, the strong and the weak contacts. The strong 

contacts that carry the primary load are those with above-average normal contact forces 

(𝑓𝑁 ≥ 𝑓𝑜
𝑁,𝑎𝑣𝑔); otherwise, they correspond to weak contacts (Thornton & Antony 1998). 

The average normal contact force at the hydrostatic state (when the particles are saturated 

with fluid and the overall hydraulic gradient across the soil specimen is zero) is used for 

subsequent stages as the overall hydraulic gradient is increased until the soil is fluidised. 
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Fig. 6. 4 Probability density function (PDF) of the normalised contact forces 

(𝒇𝑵 𝒇𝒐
𝑵,𝒂𝒗𝒈⁄ ) of the selected layers at the different local hydraulic gradients (ihyd) 
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The PDF decreases exponentially as the magnitude of normalised normal contact 

force increases. In almost all layers at the hydrostatic state, the strong forces have a broad 

tail that is up to 5 times the average normal contact force. The seepage forces alleviate 

the normal contact forces between particles in a granular medium with increasing local 

hydraulic gradients. As a result, the tail of the strong forces shifts to the left, and the head 

of the weak forces becomes wider, showing that the strong contacts fade into weak ones. 

It is noteworthy that the strong contacts at the critical hydraulic gradient disappear 

entirely, which indicates the onset of fluidisation of the soil layers. On this basis, these 

PDF plots can be used to distinguish soil that has changed from a hydromechanically 

stable into a fluid-like state. Note that Fig. 6.4 only considers the active contacts, so those 

particles with contacts that have already been lost are not involved. 

Figure 6.5 shows the evolution of normalised effective stresses with strong 

contacts across all layers as the local hydraulic gradients increase. The strong contacts 

decrease, and consequently, the normalised effective stresses diminish. When the 

percentage of strong contacts becomes zero, the normalised effective stresses decrease to 

minimum values, i.e., about 10% of the effective stresses remain in each layer. The 

proportion of strong contacts in all layers at the hydrostatic state is 40%, which is about 

a third of the total contacts; this observation was also reported by Thornton and Antony 

(1998). This lower proportion of contacts that transmit strong forces is evidence of the 

arching effect and heterogeneity of the force network in the granular assembly due to the 

gravitational force on the particles. This also shows that only 40% of the contacts in each 

layer are available to contribute to the 90% of effective stresses to resist the incipient 

fluidisation of the soil layers. The contribution made by the weak contacts and tangential 

forces (with a coefficient of friction of 0.30) to the effective stresses remains marginal, 

i.e., less than or equal to 10%. 
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Fig. 6. 5 Varying normalised effective stresses (𝜎𝑧𝑧′ /𝜎𝑧𝑧𝑜′ ) with strong contacts (𝑓𝑁 ≥

𝑓𝑜
𝑁,𝑎𝑣𝑔) 

6.5.3 Evolution of Broken Contacts 

Figure 6.6 shows the development of broken contacts (BR) compared to the normalised 

effective stresses (𝜎𝑧𝑧′ /𝜎𝑧𝑧𝑜′ ). BR is the percentage of interparticle contact losses in the 

initial number of contacts in the corresponding layer. The value of BR increases with an 

increasing hydraulic gradient and decreasing effective stresses. Contact is lost when the 

normal contact force due to hydrodynamic forces becomes zero. When the fluid flows, 

the contacts break off, and new contacts are formed in the layer. The sharp turn in BR 

represents the critical hydromechanical state where the contacts are notably lost. The 

granular assembly would become a fully fluid-like material when the number of 

unconnected particles increases to a maximum due to contact breakage, i.e., most particles 

would simply float without making any contact. It is noteworthy that the contact losses in 

the lower layers are greater than in the upper layers, which shows that more particles lose 

contact at the bottom and migrate upwards with the fluid flow if the constrictions are wide 

enough. The BR at the critical hydraulic gradient is about 5% in Layer 1 and 17% in Layer 

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Strong Contacts (f N ³ f  N,avg
o ) (%)

 Layer 1
 Layer 2
 Layer 3
 Layer 4
 Layer 5
 Layer 6
 Layer 7
 Layer 8
 Layer 9
 Layer 10

N
or

m
al

is
ed

 E
ffe

ct
iv

e 
St

re
ss

es
, s

' zz
 /s

' zz
o

Fig. 7.

Incre
asin

g hydraulic 
gradient



136 
 

10, but it increases substantially when a further slight increase in the hydraulic gradient 

is applied across the soil specimen. 

 

Fig. 6. 6 Evolution of broken contacts with the normalised effective stresses (Haq et al. 

2022) (reproduced with permission from Springer Nature) 

6.5.4 Variation of Mechanically Stable Particles 

Figure 6.7 shows the evolution of the fraction of mechanically stable particles (Ms) with 

normalised effective stresses (𝜎𝑧𝑧′ /𝜎𝑧𝑧𝑜′ ) under increasing hydraulic gradients. The 

mechanically stable particles are those that participate in the stable network of force 

transmission. Since soil approaching fluidisation would continuously lose those particles 

involved in the stable force transmission network, it is essential to examine their 

development with decreasing effective stresses. The value of Ms is defined by (Imole et 

al. 2012): 

𝑀𝑠 =
𝑁𝑝
≥4

𝑁𝑝
                                                                                                                                   (6.5) 

where 𝑁𝑝≥4 is the number of particles with at least 4 or more contacts. Particles with zero 

contacts that do not take part in the stable network of force transmission are called rattlers 
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or unconnected particles, so they are excluded. Those particles with 1, 2, and 3 contacts 

are temporarily stable for a limited time, so they are also neglected in the above equation. 

It should be noted that the values of Ms are always smaller than 1 across all layers 

because temporarily stable particles are also present at a hydrostatic state. The lower 

levels have higher initial Ms values than the top layers. The values of Ms decrease across 

all layers with a decrease in the values of the effective stresses. This reduction becomes 

significant under critical hydromechanical conditions that indicate the breakup of clusters 

of mechanically stable particles. The results show that a critical value of Ms ≈ 0.75 is 

found for all layers, below which the fluid-like behaviour of the soil is observed. 

 

Fig. 6. 7 Evolution of the fraction of mechanically stable particles with normalised 

effective stresses (Haq et al. 2022) (reproduced with permission from Springer Nature) 

6.5.5 Change of the Soil Fabric 

Figure 6.8 shows a conceptual model that describes the differences in the fabrics of 

two-particle systems where particles with two different geometrical arrangements are 
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of interparticle contacts is different due to the dissimilarity of the fabrics of the particulate 

systems. It is noteworthy that the geometric arrangement of the particles is more 

important than the void ratio when it comes to the strength of the granular assembly 

(Cundall & Strack 1983). The similar initial void ratios of all layers indicate that the 

number of particles in each layer is the same. However, the number of interparticle 

contacts can vary due to the different geometrical configurations of the particles. During 

fluid flow, the number of particles in each layer remains unchanged until fluidisation 

begins, while the geometrical rearrangement of the particles can occur, mainly due to the 

fact that the interparticle contacts within the layer slip and/or break. To assess the 

evolution of soil fabric under fluid flow, this study uses a scalar approach (e.g., Fonseca 

et al., 2013) to quantify the fabric with a scalar fabric descriptor called the coordination 

number (Z) (Thornton 2000).  Figure 6.9 shows the distribution of Z at the hydrostatic 

state and the onset of soil fluidisation, taking into account three distinct cases: 

(a) all particles 

(b) particles with diameters (dp) ≥ d50 (where d50 is the particle size that is 50% finer by 

mass), and 

(c) particles with dp ≥ d85 (where d85 is the particle size that is 85% finer by mass) 

 

Fig. 6. 8 Conceptual model showing differences in the fabrics of particles with the same 
void ratios (Haq et al. 2022) (reproduced with permission from Springer Nature) 

(a) (b)

Interparticle contacts = 7

x

y

Interparticle contacts = 11

y

x

Fig. 10.



139 
 

 

Fig. 6. 9 Distribution of the coordination number at the hydrostatic state and the onset of 

fluidisation of soil specimen (Haq et al. 2022) (reproduced with permission from 

Springer Nature) 
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Figure 6.9(a) shows that the distribution of the coordination numbers at the 

hydrostatic state across different layers is somewhat dissimilar when all particles are 

considered. This difference is enhanced when larger particle sizes are considered (Figures 

6.9(c) & 6.9(e)), which shows a dissimilarity in the fabric of all layers despite the similar 

void ratios. This fabric dissimilarity is ascribed to the influence of gravity during the 

sample preparation phase. The curves of the lower layers are on the right-hand side and 

show higher values of the coordination numbers than those of the upper layers. The slight 

difference in the evolution of local hydraulic gradients and effective stresses through each 

layer, as described previously, is due to the slight dissimilarity of the particles' fabric in 

the layers. It is appealing to note that at the onset of fluidisation, the distributions of the 

coordination numbers of all layers converge and become similar (Figures 6.9(b), 6.9(d), 

& 6.9(f)). The median value of the coordination number (Z50) is 4 when all particles in 

the granular medium of the layer are taken into account (Figure 6.9(b)). Thus, at the onset 

of fluidisation, the distributions of the interparticle contacts are uniform and show a 

similar fabric for all soil layers. 

Figure 6.10 shows average coordination numbers (Zavg) versus normalised effective 

stresses (𝜎𝑧𝑧′ /𝜎𝑧𝑧𝑜′ ), where the initial (at the hydrostatic state) average coordination of 

Layer 10 is the highest (i.e., Zavg = 5.405), while Layer 1 has the lowest (i.e., Zavg = 4.811). 

As the normalised effective stresses decrease, the values of Zavg decrease across all layers, 

and so does the difference between them. Although each layer initially had a different 

fabric, the Zavg of all layers has evolved to become the same, i.e., 4.6 at the critical 

hydromechanical state. 
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Fig. 6. 10 Development of the average coordination number with normalised effective 

stresses (Haq et al. 2022) (reproduced with permission from Springer Nature) 

6.5.6 Distribution of Slipping Index 

The distribution of the slipping index (𝑆𝑖) of the selected Layer 10 is shown in Figure 

6.11. Note that all layers show an almost similar development in the slipping index as the 

local hydraulic gradient increases. The slipping index (𝑆𝑖) is defined by (Imole et al. 

2012): 

𝑆𝑖 =
𝑓𝑇

µ𝑠𝑓𝑁
                                                                                                                                  (6.6) 

Slipping or plastic contacts occur when the tangential contact force (𝑓𝑇) has fully 

mobilised the friction, i.e., 𝑆𝑖 = 1. The contacts with 𝑆𝑖 < 1 are elastic contacts and 𝑓𝑇 is 

independent of 𝑓𝑁 in such contacts. Note that contacts that have already been lost are 

omitted when calculating 𝑆𝑖. 
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Fig. 6. 11 Distribution of the slipping index (Si) of the selected Layer 10 at different 
local hydraulic gradients (ihyd) (Haq et al. 2022) (reproduced with permission from 

Springer Nature) 
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The results show that a small proportion of contacts slip even at the hydrostatic 

state since the static buoyancy forces would be acting on the particles when they are 

saturated with the fluid. As the local hydraulic gradients increase, the elastic contacts 

decrease, and the slipping contacts increase. The hydrodynamic forces from the seepage 

flow tend to move the particles, causing a change in the magnitudes of the resisting 

tangential and normal contact forces. As a result, a slip is caused when the elastic 

tangential contact force reaches the Coulomb cut-off, i.e., 𝑓𝑇 = µ𝑠𝑓𝑁 and this slipping of 

the particles occurs in the weak contacts (𝑓𝑁 < 𝑓𝑜
𝑁,𝑎𝑣𝑔) (Cundall, Drescher & Strack 

1982). At ihyd ≤ 1, the proportion of slipping contacts in the total number of contacts in 

the layer is ≤ 10%, while it is around 17% at the critical ihyd =1.251 (Figure 6.11(g)). 

Thereafter, this proportion of slipping contacts increases sharply with a further, albeit 

slight, increase in the hydraulic gradient. It is noteworthy that the maximum tangential 

force is controlled by the value of µ𝑠. Therefore, the value of µ𝑠 has a profound influence 

on the proportion of slipping contacts and consequently on the macroscale behaviour of 

the granular assembly. 

6.5.7 Evolution of Constraint Ratio 

Figure 6.12 shows a three-dimensional representation of the constraint ratio (R) versus 

local hydraulic gradients (ihyd) and normalised effective stresses (𝜎𝑧𝑧′ /𝜎𝑧𝑧𝑜′ ). The 

constraint ratio for a three-dimensional particle system that only considers the sliding 

resistance is given by (Cundall & Strack 1983): 

𝑅 =
𝑁𝑐𝑡
𝑁𝑑

= 
𝑁𝑐(3 − 2𝑆𝑐)

6𝑁𝑝
                                                                                                        (6.7) 

where 𝑁𝑐𝑡 is the number of constraints, 𝑁𝑑 is the number of degrees of freedom, and 𝑆𝑐 

is the fraction of slipping contacts in the total number of contacts at a given point in time. 

For an idealised granular medium with µ𝑠 = ∞, 𝑁𝑐𝑡 = 3𝑁𝑐 and 𝑁𝑑 = 6𝑁𝑝. The realistic 
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granular medium, however, would have a finite value of µ𝑠; therefore, the two tangential 

force constraints on contacts subject to slipping vanish and are excluded from the total 

number of constraints given in Equation (6.7). Theoretically, if 𝑁𝑐𝑡 > 𝑁𝑑, the granular 

assembly is considered to be over-constrained or mechanically stable, and if 𝑁𝑐𝑡 = 𝑁𝑑, it 

is considered to be in a critical or transitional state; otherwise, it is unstable. Note that R 

represents both slipping and loss of contacts in the particle systems, whereas the 

coordination number (Thornton 2000) does not consider the slipping of particles. 

The constraint ratio in each layer decreases according to the nonlinear power laws 

when the normalised effective stresses decrease, and it decays exponentially after the 

onset of the soil fluidisation. The initial mild slope shows that at relatively low ihyd values, 

i.e., ihyd < 1, the particles slip less and have minimal loss of contacts. The abrupt change 

in slope after onset is triggered by substantial slipping and the associated rapid loss of 

interparticle contacts. The point at which the slope values change represents the critical 

microscale hydromechanical state or the onset of soil fluidisation. This point is marked 

as a transition line from a hydromechanically stable to a fluid-like state, as shown in Fig. 

6.12(b). This critical hydromechanical state corresponds to R ≈ 1, with effective stresses 

≈ 0 at the critical hydraulic gradient. Therefore, the soil is hydromechanically stable when 

R is greater than 1. It is in a transition state from a hydromechanically stable to a fluid-

like state when R is 1; otherwise, it corresponds to a slurry or fluid-like state. Complete 

fluidisation of the soil specimen occurs when almost all interparticle contacts are lost, 

with a constraint ratio well below 1. 



145

Fig. 6. 12 (a) Three-dimensional plot of the hydraulic gradient, the normalised effective 

stresses, and the constraint ratio; (b) projections of the three-dimensional plot of 

hydraulic gradient, the normalised effective stresses, and the constraint ratio (Haq et al. 

2022) (reproduced with permission from Springer Nature)

6.6 SUMMARY

DEM coupled with LBM was used to study the fluidisation of soils at the microscale. The 

sample was prepared in a dense state by dropping the particles under the action of gravity 

Fig. 14.
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into a cuboid domain. Microscale parameters such as the coordination number, broken 

contacts, fraction of mechanically stable particles, sliding index, and the constraint ratio 

were observed. The percentage of interparticle contact losses compared to the initial 

number of contacts was non-uniform at the critical hydraulic gradient and ranged from 5 

to 17 per cent across the depth of the specimen. The breakage of interparticle contacts 

then appeared to accelerate, even with a small increase in hydraulic gradients. At the onset 

of fluidisation, the coordination number distributions became more uniform across all 

layers of the soil specimen, with a median value of 4 and an average value of 4.6, thus 

indicating a more uniform granular fabric across the soil layers. The results also showed 

that soil changes from a solid-like substance to a liquid-like material when the constraint 

ratio falls below 1. 
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CHAPTER 7 CONCLUSIONS 

7.1 INTRODUCTION 

The scope of this doctoral thesis was to describe and quantify the critical hydromechanical 

conditions corresponding to internal instability and fluidisation with particular attention 

to granular soil at the microscale, adopting the concepts of various microscale parameters 

such as coordination number, constraint ratio, stress reduction factor, partial coordination 

number, and sliding contacts etc. The primary objective of this thesis was to propose 

novel criteria considering the microscale parameters to assess the potential for internal 

instability and fluidisation of soil. 

In order to present a comprehensive understanding of internal instability and 

fluidisation, this study considered the numerical aspects by combining the Discrete 

Element Method (DEM) with the Lattice Boltzmann Method (LBM), and the 

micromechanical factors were discussed with greater insight. Based on this 4-year PhD 

study (also contributing to 3 peer-reviewed journal papers), the following salient 

Conclusions are drawn. 

7.2 SALIENT FINDINGS 

7.2.1 Microscale Boundaries of Internally Stable and Unstable Soils 

The internal instability of granular soils was assessed from a microscale perspective using 

the DEM. A total of 21 Particle Size Distribution (PSD) curves were analysed at three 

different relative density levels. The key findings of this study are listed below: 

• Clear boundaries were drawn between internally unstable and stable soils with 

parameters obtained directly from the particle scale data, i.e., the coordination number 

(Z) and the stress reduction factor (α). For instance, samples with the potential for 

internal instability showed Z ≤ 1 and α ≤ 0.5. 
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• The influence of relative density on the microscale parameters was minimal in soils 

with a gap ratio ≥ 4 and a fines content < 25% and became noticeable for soils with a 

fines content ≥ 25%. The coordination number (Z) and stress reduction factor (α) 

increased as the relative density increased, making the samples internally stable. 

• For a soil to be internally stable, fines must fully occupy the voids formed by the 

coarse particles. As the percentage of fines increased, there were more contacts with 

a higher coordination number (Z), a higher stress reduction factor (α), and increased 

internal stability. Similarly, reducing the gap ratio increased the internal stability. 

• The significant scatter of the results between the microscale parameters and particle 

size-based criteria showed that the particle-size-based criteria could not predict 

internal instability very well. 

• The microscale boundaries closely matched the criterion based on Constriction Size 

Distribution (CSD). This proved beyond doubt that the CSD-based criterion could 

appropriately predict internal instability with greater accuracy. For brevity, soils with 

Z ≤ 1, α ≤ 0.5 and 𝐷𝑐35𝑐
∗
/𝑑85

𝑓∗ ≥ 0.73 (where 𝐷𝑐35𝑐
∗  is the 35% finer of the CSD of the 

coarser fraction and 𝑑85
𝑓∗ is the 85% finer of PSD of the finer fraction, both plotted 

using the surface area method) were considered internally unstable, which is 

consistent with the experimental results of internal instability. This consistency of 

results increases confidence in using microscale and CSD-based criteria in practical 

design. 
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7.2.2 Micromechanical Analysis of Soil Transition from an Internally Stable to an 

Unstable State 

Simulations with DEM were carried out to investigate the influence of shear-induced 

deformation on internal stability under drained conditions subjected to a constant mean 

stress path. Based on the findings of this study, the following conclusions could be drawn: 

• The numerical analysis showed that the coordination number initially dropped rapidly 

because the rate at which the contacts disintegrated was higher than the rate at which 

new contacts could form. The coordination number then remained unchanged, as the 

rate of disintegration and the formation of contacts were the same. This leads to the 

conclusion that the development of the coordination number was strongly influenced 

by shear-induced deformation. 

• Internally stable samples, e.g., Sample A (20%) (where the percentage of fines is 

given in brackets) with an initial coordination number (Z) = 3.06 and a stress reduction 

factor (α) = 1.116, transitioned into internally unstable soil with Z < 1 and α > 0.5 at 

the end of shearing. Similarly, Sample B (30%) with an initial Z > 1 and α > 0.50 

became internally unstable with Z < 1 and α > 0.50. The percentage drop in the Z-

values of the samples that transition from internally stable to unstable soils was greater 

than 80%. In addition, at the macroscale, the volumetric strain increased due to the 

shear-induced dilation of the dense samples. Based on these results, it was evident 

that the decrease in microscale parameters, such as the Z and α, would be linked to 

the volumetric response of the samples at the macroscale. 

• It was found that the initially overfilled fabric of Sample A (20%) with a fine-coarse 

coordination number (𝑍𝑓𝑖𝑛𝑒−𝑐𝑜𝑎𝑟𝑠𝑒) > 1 and 𝛼 > 0.5 was found to convert to an 

underfilled fabric with 𝑍𝑓𝑖𝑛𝑒−𝑐𝑜𝑎𝑟𝑠𝑒 < 1 and 𝛼 > 0.5 upon shearing. Similarly, Sample 

B (20%) with partially filled fabric (𝑍𝑓𝑖𝑛𝑒−𝑐𝑜𝑎𝑟𝑠𝑒 > 1 and 𝛼 < 0.5) at the isotropic 
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stress state changed to underfilled fabric (𝑍𝑓𝑖𝑛𝑒−𝑐𝑜𝑎𝑟𝑠𝑒 < 1 and 𝛼 < 0.5) at the end of 

shearing. This leads to the conclusion that the fabric of the soil may change 

significantly due to shear-induced deformations, thus altering the internal stability of 

the soil. 

• The stress reduction factor (α) of samples with underfilled fabric, i.e., A (10%), A 

(15%), B (10%), B (15%), and B (20%), remained almost unchanged with the axial 

strain and the stress ratio. For samples with a higher fines content, α dropped 

significantly during shearing. For instance, in Sample B (30%), α decreased 

significantly from 1.655 to 0.751. Three distinct stages were observed in the 

development of α, namely: Stage 1, where α was constant when the stress ratio (q/p') 

≤ 0.80 at a small value of axial strain; Stage 2 represented the slight decrease in α as 

it approached the peak q/p' and Stage 3 where α dropped significantly in the post-peak 

region caused by shear-induced dilation. This implies that the stress distribution is a 

function of the soil fabric, the stress ratio (q/p') and the axial strain. 

7.2.3 Hydromechanical State of Soil Fluidisation – A Microscale Perspective 

The hydromechanical state of soil fluidisation was evaluated from a micromechanical 

point of view using the hybrid LBM-DEM approach. The excellent agreement between 

the model predictions and the experimental observations regarding particle motion, fluid 

flow curves, and the critical hydraulic gradients confirms the capability and reliability of 

this hybrid numerical method. Based on the findings of this study, the following salient 

outcomes could be drawn: 

• At comparatively low values of the local hydraulic gradient (ihyd), i.e., ihyd ≤ 1, the 

proportion of slipping contacts in the total number of contacts of the selected Layer 

10 (bottom of the specimen) was ≤ 10%, while it was about 17% at the critical ihyd 
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=1.251. The magnitude of the slipping contacts increased with a further increase in 

the hydraulic gradient applied across the soil specimen. 

• At the critical hydraulic gradient, the percentage of interparticle contact losses relative 

to the initial number of contacts was non-uniform and varied between 5 and 17% 

across the depth of the specimen. Thereafter, even with a slight increase in the 

hydraulic gradients, the breakage of the interparticle contacts appeared to exacerbate. 

• At the onset of fluidisation, the coordination number distributions became more 

uniform across all layers of the soil specimen, with a median value of 4 and an average 

value of 4.6; this indicated a more uniform granular fabric across the soil layers. 

• The granular assembly was hydromechanically stable when the constraint ratio > 1 

and unstable (fluid-like) when the constraint ratio < 1, thereby establishing the 

microscale hydromechanical critical state at the constraint ratio of unity. 

7.3 RESEARCH IMPACTS 

The following are the implications of this research work: 

• Microscale investigations enabled a better understanding of the mechanism of internal 

instability and the fluidisation of soil, which can be helpful in the design and 

construction of substructures in railways. 

• To demarcate internally unstable and stable soils, a microscale criterion based on the 

coordination number and the stress reduction factor was proposed that can be used to 

estimate the probability of internal instability in the field. The microscale criterion 

was shown to agree with the constriction-based criterion; therefore, it could be used 

to reduce the maintenance cost of railway substructures. 

• Fluidisation or mud pumping is a problem in railways that results in significant 

maintenance costs. A microscale criterion based on the constraint ratio was proposed 



152 
 

to determine the onset of soil fluidisation, and this proposed criterion could  be used 

to avoid this problem. 

7.4 LIMITATIONS AND RECOMMENDATIONS 

7.4.1 Limitations 

The following are some of the limitations of this study: 

• The shapes of the particles were spherical as opposed to the actual irregular shapes of 

the particles. Non-spherical shapes of the particles could create more contacts and 

thus an increased coordination number, and the hydraulic gradient required to initiate 

movement of the fine particles is also increased, resulting in greater internal stability. 

• The fluidisation of granular soils was simulated under upward flow conditions, 

although these simulations could have been carried out under cyclic loading 

conditions. The cyclic loading causes a continuous change in the fabric and pore 

structure of the granular medium and thus changes the fluidisation resistance of the 

soil, while this cannot be simulated in simple upward flow conditions. 

• The microscale experimental investigations could have been carried out to evaluate 

the internal instability of non-cohesive soils using micro-CT scanning and image 

analysis techniques. 

• A pore network analysis could have been carried out to check internal instability. This 

could be achieved by extracting the constriction size distribution of coarser particles 

from the DEM data and comparing it to the particle size distribution of the finer 

particles. 

7.4.2 Recommendations 

The following are some recommendations for future studies: 
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• The microscale boundaries proposed in this study apply under static loads. This work 

could be extended to check the validity of the presented methods under cyclic loading 

conditions. In this regard, DEM coupled with LBM can be incorporated under cyclic 

loading conditions to examine the internal instability and fluidisation of soils.  

• The shear behaviour of the samples was checked by considering the constant mean 

stress path, but various stress paths can also be used to investigate this behaviour. 

Stress paths that could be used for further investigations are (i) conventional triaxial 

compression with increasing mean stress, (ii) triaxial extension etc. These triaxial 

compression and extension stress paths are used to simulate the conditions of loading 

and unloading in the field. 

• Particles with different shapes can be utilised to observe the effect of their shapes on 

the micromechanics of the samples. The real shapes of the particles can first be 

scanned and then incorporated into DEM simulations by clumping the particles 

together. 

• DEM investigations can be extended to capture the behaviour of broadly-graded soils 

with a coefficient of uniformity (Cu) > 10, which are used in various practical 

applications and are not studied in detail in the literature. 

• Micro-CT scan can be used to determine the internal structure of soil and compare it 

to the DEM results; this should be carried out to compare the microscale parameters 

from the DEM simulations with experimental observations of real soil specimens. 

This can be accomplished by carrying out the image analysis of the CT-scanned 

samples.  
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APPENDIX A - SOURCE CODE FOR ISOTROPICALLY COMPRESSING THE 

SAMPLES USING THE DISCRETE ELEMENT METHOD (DEM) 

 
The following code was used in LIGGGHTS (LAMMPS Improved for General Granular 

and Granular Heat Transfer Simulations) to isotropically compress the samples to 

constant mean stress of 200 kPa. The code also shows that samples were equilibrated with 

a sufficient number of numerical cycles after isotropic compression to the desired stress 

level. 

 

variable run1 equal 1000 

variable reqstress equal 2e5 

variable ratei equal 0.90 

variable rho_s equal 2650 

variable v_limit equal 1e-14 

variable n_particles equal 20000 

variable dmp_stp equal 1e7 

variable timestep equal 5.95e-9 

 

#Dimensions of the domain 

variable dx equal 0.0058 

variable dy equal 0.0058 

variable dz equal 0.0058 

 

variable r1 equal 0.000574232 

variable r2 equal 0.000533125 

variable r3 equal 0.000494961 
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variable r4 equal 0.000460306 

variable r5 equal 0.000428076 

variable r6 equal 0.000398104 

variable r7 equal 0.000369605 

variable r8 equal 0.000343147 

variable r9 equal 0.000319121 

variable r10 equal 0.000296777 

variable r11 equal 0.000275998 

variable r12 equal 0.00025624 

variable r13 equal 0.000238299 

variable r14 equal 0.00022124 

variable r15 equal 0.000101256 

variable r16 equal 9.01E-05 

variable r17 equal 8.01E-05 

variable r18 equal 7.14E-05 

variable r19 equal 6.35E-05 

variable r20 equal 5.62E-05 

 

units  si 

atom_style granular 

atom_modify map array 

hard_particles yes 

 

communicate single vel yes 

 

boundary  p p p 
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newton  off 

processors * * * 

region  box block 0 ${dx} 0 ${dy} 0 ${dz} units box 

create_box 1 box 

 

variable skin equal 5e-6 

neighbor ${skin} bin 

neigh_modify delay 0 

 

fix   m1 all property/global youngsModulus peratomtype 

70e9 

fix   m2 all property/global poissonsRatio peratomtype 

0.3 

fix   m3 all property/global coefficientRestitution 

peratomtypepair 1 0.70 

fix   m4 all property/global coefficientFriction 

peratomtypepair 1 0 

 

pair_style gran model hertz tangential history 

pair_coeff * * 

 

#fix xwalls1 all wall/gran model hertz tangential history 

primitive type 1 xplane 0 

#fix xwalls2 all wall/gran model hertz tangential history 

primitive type 1 xplane ${dx} 

#fix ywalls1 all wall/gran model hertz tangential history 
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primitive type 1 yplane 0 

#fix ywalls2 all wall/gran model hertz tangential history 

primitive type 1 yplane ${dy} 

#fix zwalls1 all wall/gran model hertz tangential history 

primitive type 1 zplane 0 

#fix zwalls2 all wall/gran model hertz tangential history 

primitive type 1 zplane ${dz} 

 

timestep        ${timestep}   

 

fix  1 all nve/sphere 

 

fix pts1 all particletemplate/sphere 11593 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r1} 

fix pts2 all particletemplate/sphere 11701 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r2} 

fix pts3 all particletemplate/sphere 11807 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r3} 

fix pts4 all particletemplate/sphere 11897 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r4} 

fix pts5 all particletemplate/sphere 11969 atom_type

 1 density constant ${rho_s} volume_limit
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 ${v_limit} radius constant ${r5} 

fix pts6 all particletemplate/sphere 12071 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r6} 

fix pts7 all particletemplate/sphere 12157 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r7} 

fix pts8 all particletemplate/sphere 12253 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r8} 

fix pts9 all particletemplate/sphere 12347 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r9} 

fix pts10 all particletemplate/sphere 12437

 atom_type 1 density constant ${rho_s}

 volume_limit ${v_limit} radius constant

 ${r10} 

fix pts11 all particletemplate/sphere 12517

 atom_type 1 density constant ${rho_s}

 volume_limit ${v_limit} radius constant

 ${r11} 

fix pts12 all particletemplate/sphere 12601

 atom_type 1 density constant ${rho_s}

 volume_limit ${v_limit} radius constant

 ${r12} 

fix pts13 all particletemplate/sphere 12689
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 atom_type 1 density constant ${rho_s}

 volume_limit ${v_limit} radius constant

 ${r13} 

fix pts14 all particletemplate/sphere 12791

 atom_type 1 density constant ${rho_s}

 volume_limit ${v_limit} radius constant

 ${r14} 

fix pts15 all particletemplate/sphere 12899

 atom_type 1 density constant ${rho_s}

 volume_limit ${v_limit} radius constant

 ${r15} 

fix pts16 all particletemplate/sphere 12973

 atom_type 1 density constant ${rho_s}

 volume_limit ${v_limit} radius constant

 ${r16} 

fix pts17 all particletemplate/sphere 13049

 atom_type 1 density constant ${rho_s}

 volume_limit ${v_limit} radius constant

 ${r17} 

fix pts18 all particletemplate/sphere 13159

 atom_type 1 density constant ${rho_s}

 volume_limit ${v_limit} radius constant

 ${r18} 

fix pts19 all particletemplate/sphere 13249

 atom_type 1 density constant ${rho_s}

 volume_limit ${v_limit} radius constant
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 ${r19} 

fix pts20 all particletemplate/sphere 13339

 atom_type 1 density constant ${rho_s}

 volume_limit ${v_limit} radius constant

 ${r20} 

 

fix pdd1 all particledistribution/discrete 32452843 20 pts1 

0.05 pts2 0.05 pts3 0.05 pts4 0.05 pts5 0.05 pts6 0.05 pts7 

0.05 pts8 0.05 pts9 0.05 pts10 0.05 pts11 0.05 pts12 0.05 

pts13 0.05 pts14 0.05 pts15 0.05 pts16 0.05 pts17 0.05 pts18 

0.05 pts19 0.05 pts20 0.05 

 

region  insreg block 0 ${dx} 0 ${dy} 0 ${dz} units box 

 

fix ins all insert/pack seed 32452867 distributiontemplate 

pdd1 insert_every once & 

                       overlapcheck yes  

particles_in_region ${n_particles} region insreg ntry_mc 

50000 

 

fix stress all ave/euler nevery ${dmp_stp} 

cell_size_relative 3 parallel no 

 

compute       cpgl all pair/gran/local pos id force 

force_normal force_tangential contactArea contactPoint 
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run 1 

 

compute              peratom all stress/atom pair 

compute              p all reduce sum c_peratom[1] c_peratom[2] 

c_peratom[3] 

variable           press equal -

(c_p[1]+c_p[2]+c_p[3])/(3*vol) 

#variable       sigmaxx equal -(c_p[1])/vol 

#variable       sigmayy equal -(c_p[2])/vol 

#variable       sigmazz equal -(c_p[3])/vol 

 

# thermo settings 

fix  ts all check/timestep/gran 10000 0.1 0.1 

compute  contacts all contact/atom 

thermo_style  custom ke step v_press 

thermo  50000 

thermo_modify lost ignore norm no 

#compute_modify thermo_temp dynamic yes 

 

########################################### 

#Dumping 

########################################### 

 

dump dmp_LIG all custom ${dmp_stp} output/post/d_*.liggghts 

id type type x y z ix iy iz vx vy vz fx fy fz omegax omegay 

omegaz radius c_contacts c_peratom[1] c_peratom[2] 
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c_peratom[3] c_peratom[4] c_peratom[5] c_peratom[6] 

 

dump dmp_cpgl all local ${dmp_stp} output/CPGL/cpgl*.dump 

c_cpgl[1] c_cpgl[2] c_cpgl[3] c_cpgl[4] c_cpgl[5] c_cpgl[6] 

c_cpgl[7] c_cpgl[8] c_cpgl[9] c_cpgl[10] c_cpgl[11] 

c_cpgl[12] c_cpgl[13] c_cpgl[14] c_cpgl[15] c_cpgl[16] 

c_cpgl[17] c_cpgl[18] c_cpgl[19] c_cpgl[20] c_cpgl[21] 

c_cpgl[22] 

 

dump dmp_euler all euler/vtk ${dmp_stp} 

output/euler/eulerdump*.vtk 

 

run 1 

 

########################################### 

#application of strain rate 

########################################### 

 

variable rate equal ${ratei}*(${reqstress}-

v_press)/(${reqstress}) 

 

fix   iso all deform 1 z erate -${rate} x erate -${rate} 

y erate -${rate} remap x units box 

 

####################################### 

#printing some data 
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####################################### 

 

#fix printingdata all print 20000 "$(step) $(v_press) 

$(v_sigmaxx) $(v_sigmayy) $(v_sigmazz) $(v_rate)" screen no 

file stresses.txt 

 

###########################################################

### 

#if statement to desired stress level and changing the 

coefficient of friction 

###########################################################

### 

 

label loop 

if '$(v_press) >= ${reqstress}' then 'jump in.lbdem endloop' 

run ${run1} 

jump in.lbdem loop 

label endloop 

 

unfix iso 

unfix m4 

fix m4 all property/global coefficientFriction 

peratomtypepair 1 0.30 

 

dump_modify dmp_LIG every 50000 

dump_modify dmp_cpgl every 50000 
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dump_modify dmp_euler every 50000 

 

run 500000 

 

write_restart restart.file 

APPENDIX B - SOURCE CODE FOR SHEARING THE SAMPLES USING THE 

DEM 

The following code was used in LIGGGHTS (LAMMPS Improved for General Granular 

and Granular Heat Transfer Simulations) to first isotropically compress the samples to 

constant mean stress of 200 kPa, and then the samples were sheared using a constant mean 

stress path. 

 

variable run1 equal 1000 

 

variable reqstress equal 2e5 

 

variable ratei equal 0.55 

 

variable rho_s equal 2650 

 

variable v_limit equal 1e-14 

 

variable n_particles equal 53000 

 

variable dmp_stp equal 1e8 
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variable timestep equal 7.25e-9 

 

#Dimensions of the domain 

variable dx equal 0.01124 

variable dy equal 0.01124 

variable dz equal 0.01124 

#particle sizes 

 

variable r1 equal 6.82E-05 

variable r2 equal 7.92E-05 

variable r3 equal 8.64E-05 

variable r4 equal 9.50E-05 

variable r5 equal 0.000522185 

variable r6 equal 0.000550642 

variable r7 equal 0.000558669 

variable r8 equal 0.000569553 

variable r9 equal 0.000578785 

variable r10 equal 0.000583457 

variable r11 equal 0.000590062 

variable r12 equal 0.000598663 

variable r13 equal 0.000604467 

variable r14 equal 0.000607389 

variable r15 equal 0.000612292 

variable r16 equal 0.000622217 

variable r17 equal 6.31E-04 
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variable r18 equal 6.40E-04 

variable r19 equal 6.57E-04 

variable r20 equal 7.12E-04 

 

#Percentage increments 

 

variable pts1 equal 0.05 

variable pts2 equal 0.05 

variable pts3 equal 0.05 

variable pts4 equal 0.05 

variable pts5 equal 0.05 

variable pts6 equal 0.05 

variable pts7 equal 0.05 

variable pts8 equal 0.05 

variable pts9 equal 0.05 

variable pts10 equal 0.05 

variable pts11 equal 0.05 

variable pts12 equal 0.05 

variable pts13 equal 0.05 

variable pts14 equal 0.05 

variable pts15 equal 0.05 

variable pts16 equal 0.05 

variable pts17 equal 0.05 

variable pts18 equal 0.05 

variable pts19 equal 0.05 

variable pts20 equal 0.05 
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units  si 

atom_style granular 

atom_modify map array 

hard_particles yes 

communicate single vel yes 

 

boundary  p p p 

newton  off 

processors * * * 

region  box block 0 ${dx} 0 ${dy} 0 ${dz} units box 

create_box 1 box 

 

variable skin equal 7e-6 

neighbor ${skin} bin 

neigh_modify delay 0 

 

fix   m1 all property/global youngsModulus peratomtype 

70e9 

fix   m2 all property/global poissonsRatio peratomtype 

0.3 

fix   m3 all property/global coefficientRestitution 

peratomtypepair 1 0.70 

fix   m4 all property/global coefficientFriction 

peratomtypepair 1 0 
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pair_style gran model hertz tangential history 

pair_coeff * * 

 

#fix xwalls1 all wall/gran model hertz tangential history 

primitive type 1 xplane 0 

#fix xwalls2 all wall/gran model hertz tangential history 

primitive type 1 xplane ${dx} 

#fix ywalls1 all wall/gran model hertz tangential history 

primitive type 1 yplane 0 

#fix ywalls2 all wall/gran model hertz tangential history 

primitive type 1 yplane ${dy} 

#fix zwalls1 all wall/gran model hertz tangential history 

primitive type 1 zplane 0 

#fix zwalls2 all wall/gran model hertz tangential history 

primitive type 1 zplane ${dz} 

 

timestep        ${timestep}   

 

fix  1 all nve/sphere 

 

fix pts1 all particletemplate/sphere 11593 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r1} 

fix pts2 all particletemplate/sphere 11701 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r2} 
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fix pts3 all particletemplate/sphere 11807 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r3} 

fix pts4 all particletemplate/sphere 11897 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r4} 

fix pts5 all particletemplate/sphere 11969 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r5} 

fix pts6 all particletemplate/sphere 12071 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r6} 

fix pts7 all particletemplate/sphere 12157 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r7} 

fix pts8 all particletemplate/sphere 12253 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r8} 

fix pts9 all particletemplate/sphere 12347 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r9} 

fix pts10 all particletemplate/sphere 12437 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r10} 

fix pts11 all particletemplate/sphere 12517 atom_type

 1 density constant ${rho_s} volume_limit
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 ${v_limit} radius constant ${r11} 

fix pts12 all particletemplate/sphere 12601 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r12} 

fix pts13 all particletemplate/sphere 12689 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r13} 

fix pts14 all particletemplate/sphere 12791 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r14} 

fix pts15 all particletemplate/sphere 12899 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r15} 

fix pts16 all particletemplate/sphere 12973 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r16} 

fix pts17 all particletemplate/sphere 13049 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r17} 

fix pts18 all particletemplate/sphere 13159 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r18} 

fix pts19 all particletemplate/sphere 13249 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r19} 

fix pts20 all particletemplate/sphere 13339 atom_type
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 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r20} 

 

fix pdd1 all particledistribution/discrete 32452843 20 pts1 

${pts1} pts2 ${pts2}  pts3 ${pts3}  pts4 ${pts4}  pts5 

${pts5}  pts6 ${pts6}  pts7 ${pts7}  pts8 ${pts8}  pts9 

${pts9}  pts10 ${pts10}  pts11 ${pts11}  pts12 ${pts12} 

pts13 ${pts13} pts14 ${pts14}  pts15 ${pts15}  pts16 

${pts16}  pts17 ${pts17}  pts18 ${pts18}  pts19 ${pts19}  

pts20 ${pts20} 

  

region  insreg block 0 ${dx} 0 ${dy} 0 ${dz} units box 

 

fix ins all insert/pack seed 32452867 distributiontemplate 

pdd1 insert_every once & overlapcheck yes 

particles_in_region ${n_particles} region insreg ntry_mc 

50000 

 

fix stress all ave/euler nevery ${dmp_stp} 

cell_size_relative 3 parallel no 

 

compute cpgl all pair/gran/local pos id force force_normal 

force_tangential contactArea contactPoint 

 

run 1 
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compute              peratom all stress/atom pair 

compute              p all reduce sum c_peratom[1] c_peratom[2] 

c_peratom[3] 

variable           press equal -

(c_p[1]+c_p[2]+c_p[3])/(3*vol) 

#variable       sigmaxx equal -(c_p[1])/vol 

#variable       sigmayy equal -(c_p[2])/vol 

#variable       sigmazz equal -(c_p[3])/vol 

 

# thermo settings 

fix  ts all check/timestep/gran 10000 0.1 0.1 

compute  contacts all contact/atom 

thermo_style  custom ke step v_press 

thermo  50000 

thermo_modify lost ignore norm no 

 

########################################### 

#Dumping 

########################################### 

 

dump dmp_LIG all custom ${dmp_stp} output/post/d_*.liggghts 

id type type x y z ix iy iz vx vy vz fx fy fz omegax 

omegay omegaz radius c_contacts c_peratom[1] 

c_peratom[2] c_peratom[3] c_peratom[4] c_peratom[5] 

c_peratom[6] 
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dump dmp_cpgl all local ${dmp_stp} output/CPGL/cpgl*.dump 

c_cpgl[1] c_cpgl[2] c_cpgl[3] c_cpgl[4] c_cpgl[5] 

c_cpgl[6] c_cpgl[7] c_cpgl[8] c_cpgl[9] c_cpgl[10] 

c_cpgl[11] c_cpgl[12] c_cpgl[13] c_cpgl[14] c_cpgl[15] 

c_cpgl[16] c_cpgl[17] c_cpgl[18] c_cpgl[19] c_cpgl[20] 

c_cpgl[21] c_cpgl[22] 

 

dump dmp_euler all euler/vtk ${dmp_stp} 

output/euler/eulerdump*.vtk 

 

run 1 

 

########################################### 

#application of strain rate 

########################################### 

 

variable rate equal ${ratei}*(${reqstress}-

v_press)/(${reqstress}) 

 

fix   iso all deform 1 z erate -${rate} x erate -${rate} 

y erate -${rate} remap x units box 

 

####################################### 

#printing some data 

####################################### 
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#fix printingdata all print 20000 "$(step) $(v_press) 

$(v_sigmaxx) $(v_sigmayy) $(v_sigmazz) $(v_rate)" screen 

no file stresses.txt 

 

###########################################################

### 

#if statement to desired stress level and changing the 

coefficient of friction 

###########################################################

### 

 

label loop 

if '$(v_press) >= ${reqstress}' then 'jump in.lbdem endloop' 

run ${run1} 

jump in.lbdem loop 

label endloop 

 

unfix iso 

unfix m4 

fix m4 all property/global coefficientFriction 

peratomtypepair 1 0.30 

 

dump_modify dmp_LIG every 50000 

dump_modify dmp_cpgl every 50000 

dump_modify dmp_euler every 50000 
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run 500000 

 

write_restart restart.file 

 

read_restart restart.file 

 

variable run1 equal 1000 

 

variable lo equal  0.0089361908 

 

variable reqstress equal 2e5 

 

variable reqstresszz equal 1e6 

 

variable ratexi equal -0.55 

 

variable rateyi equal -0.55 

 

variable ratezi equal -0.55 

 

variable ratezshear equal -0.11 

 

variable v_limit equal 1e-14 

 

variable dmp_stp equal 200000 
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hard_particles yes 

 

communicate single vel yes 

 

newton  off 

 

variable skin equal 7e-6 

neighbor ${skin} bin 

neigh_modify delay 0 

 

fix   m1 all property/global youngsModulus peratomtype 

70e9 

fix   m2 all property/global poissonsRatio peratomtype 

0.3 

fix   m3 all property/global coefficientRestitution 

peratomtypepair 1 0.70 

fix   m4 all property/global coefficientFriction 

peratomtypepair 1 0.30 

 

pair_style gran model hertz tangential history 

pair_coeff * * 

 

fix  1 all nve/sphere 

 

fix stress all ave/euler nevery ${dmp_stp} 

cell_size_relative 3 parallel no 
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compute       cpgl all pair/gran/local pos id force 

force_normal force_tangential contactArea contactPoint 

 

run 1 

 

compute              peratom all stress/atom pair 

compute              p all reduce sum c_peratom[1] c_peratom[2] 

c_peratom[3] 

variable           press equal -

(c_p[1]+c_p[2]+c_p[3])/(3*vol) 

variable       sigmaxx equal -(c_p[1])/vol 

variable       sigmayy equal -(c_p[2])/vol 

variable       sigmazz equal -(c_p[3])/vol 

 

# thermo settings 

fix  ts all check/timestep/gran 10000 0.2 0.2 

compute  contacts all contact/atom 

thermo_style  custom ke step v_sigmaxx v_sigmayy v_sigmazz 

v_press vol lx ly lz 

thermo  ${run1} 

thermo_modify lost ignore norm no 

#compute_modify thermo_temp dynamic yes 

 

run 20000 
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###########################################################

### 

#Application of strain rate to bring the system back into 

the required mean stress after the equilibrium 

###########################################################

### 

 

label loop1 

 

fix   iso1 all deform 1 z erate ${ratezi} x erate 

${ratexi} y erate ${rateyi} remap x units box 

 

###########################################################

### 

#If statement to desired stress level  

###########################################################

### 

 

if '$(v_press) >= ${reqstress}' then 'jump in2.lbdem 

endloop1' 

run ${run1} 

 

jump in2.lbdem loop1 

 

label endloop1 
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unfix iso1 

 

run 20000 

 

########################################### 

#Dumping 

########################################### 

 

dump dmp_LIG all custom ${dmp_stp} output2/post/d_*.liggghts 

id type type x y z ix iy iz vx vy vz fx fy fz omegax 

omegay omegaz radius c_contacts c_peratom[1] 

c_peratom[2] c_peratom[3] c_peratom[4] c_peratom[5] 

c_peratom[6] 

 

dump dmp_cpgl all local ${dmp_stp} output2/CPGL/cpgl*.dump 

c_cpgl[1] c_cpgl[2] c_cpgl[3] c_cpgl[4] c_cpgl[5] 

c_cpgl[6] c_cpgl[7] c_cpgl[8] c_cpgl[9] c_cpgl[10] 

c_cpgl[11] c_cpgl[12] c_cpgl[13] c_cpgl[14] c_cpgl[15] 

c_cpgl[16] c_cpgl[17] c_cpgl[18] c_cpgl[19] c_cpgl[20] 

c_cpgl[21] c_cpgl[22] 

 

dump dmp_euler all euler/vtk ${dmp_stp} 

output2/euler/eulerdump*.vtk 

 

run 1 
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############################################# 

#Printing some data 

############################################# 

 

fix printingdata all print ${dmp_stp} "$(step) $(v_sigmaxx) 

$(v_sigmayy) $(v_sigmazz) $(v_press) $(vol) ${ebs1} 

${ebs2} ${ebs3}" screen no file data.txt 

 

########################################### 

#Application of strain rate 

########################################### 

 

label loop3 

 

label loop2 

 

variable ebs1 equal 100*(${lo}-$(lz))/(${lo}) 

 

variable ebs2 equal 100*(${lo}-$(ly))/(${lo}) 

 

variable ebs3 equal 100*(${lo}-$(lx))/(${lo}) 

 

variable reqstressxx equal 0.50*(3*${reqstress}-v_sigmazz) 

 

variable reqstressyy equal 0.50*(3*${reqstress}-v_sigmazz) 
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variable ratex equal ${ratexi}*(${reqstressxx}-

v_sigmaxx)/(${reqstressxx}) 

 

variable ratey equal ${rateyi}*(${reqstressyy}-

v_sigmayy)/(${reqstressyy}) 

 

variable ratez equal ${ratezshear}*(${reqstresszz}-

v_sigmazz)/(${reqstresszz}) 

 

fix      iso all deform 1 z erate ${ratez} x erate ${ratex} 

y erate ${ratey} remap x units box 

 

if '${ebs1} > 2' then 'jump in2.lbdem endloop2' 

 

run ${run1} 

 

jump in2.lbdem loop2 

 

label endloop2 

 

dump_modify dmp_LIG every 5000000 

dump_modify dmp_cpgl every 5000000 

dump_modify dmp_euler every 5000000 

 

if '${ebs1} > 15' then 'jump in2.lbdem endloop3' 
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run ${run1} 

 

jump in2.lbdem loop3 

 

label endloop3 

 

unfix iso 

 

run 1 

 

write_restart restart2.file 

 

APPENDIX C - SOURCE CODE FOR SIMULATING FLUIDISATION OF SOIL 

The following code was used in LIGGGHTS (LAMMPS Improved for General Granular 

and Granular Heat Transfer Simulations) coupled with PALABOS (Parallel Lattice 

Boltzmann Solver) to simulate the fluidisation of samples. 

 

*/ 

#include "palabos3D.h" 

#include "palabos3D.hh" 

 

#include "plb_ib.h" 

 

#include <vector> 

#include <cmath> 
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#include <iostream> 

#include <fstream> 

#include <sstream> 

#include <ctime> 

 

// necessary LAMMPS/LIGGGHTS includes 

#include "lammps.h" 

#include "input.h" 

#include "library.h" 

#include "library_cfd_coupling.h" 

 

#include "liggghtsCouplingWrapper.h" 

#include "latticeDecomposition.h" 

 

using namespace plb; 

using namespace std; 

 

typedef double T; 

 

#define DESCRIPTOR descriptors::D3Q19Descriptor //defining 

the model to be used 

#define DYNAMICS IBcompositeDynamics<T,DESCRIPTOR>(new 

BGKdynamics<T,DESCRIPTOR>(parameters.getOmega())) 

//defining the dynamics of the model 

 

 const T lx = 0.007, ly =0.007, lz = 0.030;      //defining 
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the dimensions 

 T g = 9.81;        //defining the 

gravity 

 T r_part= 1e-4;                   //defining 

the radius of the particles 

 T rho_s = 2650;     //defining the 

density of the solid particles as DOUBLE type 

 const T rho_f = 1000;     //defining the 

density of the fluid as DOUBLE type 

 plint N=5;      //defining the number of 

grids points per particle diameter as Palabos INTEGER 

type 

 T uMax=0.004;                    //defining 

the maximum velocity in LB units as DOUBLE type 

 T nu_f = 1e-6;            //defining the 

kinematic viscosity of the fluid as DOUBLE type 

 T v_inf= 0.01;                    //defining 

the estimated settling velocity as DOUBLE type 

        T CI = 600;     //coupling interval         

 

        const T maxT = 0.20; 

        const T vtkT = 0.05; 

        const T logT = 0.001; 

 

void writeVTK(MultiBlockLattice3D<T,DESCRIPTOR>& lattice, 

              IncomprFlowParam<T> const& parameters, 
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              PhysUnits3D<T> const& units, plint iter) 

{ 

   

  T p_fact = 

units.getPhysForce(1)/pow(units.getPhysLength(1),2)/3.; 

   

  std::string fname(createFileName("vtk", iter, 6)); 

   

  VtkImageOutput3D<T> vtkOut(fname, 

units.getPhysLength(1)); 

  vtkOut.writeData<3,float>(*computeVelocity(lattice), 

"velocity", units.getPhysVel(1));   

  vtkOut.writeData<float>(*computeDensity(lattice), 

"density",units.getPhysDensity(1));  

   

  MultiScalarField3D<T> p(*computeDensity(lattice)); 

  subtractInPlace(p,1.); 

  vtkOut.writeData<float>(p,"pressure",p_fact );  

   

  IBscalarQuantity sf = SolidFraction; 

  applyProcessingFunctional(new 

GetScalarQuantityFromDynamicsFunctional<T,DESCRIPTOR,T>

(sf), 

                            

lattice.getBoundingBox(),lattice,p); 
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  vtkOut.writeData<float>(p,"solidfraction",1. );  

  

  pcout << "wrote " << fname << std::endl; 

} 

 

void boundaryConditions( MultiBlockLattice3D<T,DESCRIPTOR>& 

lattice,   //boundary conditions are defined here 

                            IncomprFlowParam<T> const& 

parameters, 

                            

OnLatticeBoundaryCondition3D<T,DESCRIPTOR>& 

boundaryCondition ) 

{ 

    const plint nx = parameters.getNx(); 

    const plint ny = parameters.getNy(); 

    const plint nz = parameters.getNz(); 

 

    Box3D inlet    = Box3D(0,    nx-1, 0,    ny-1, 0,    0); 

    Box3D outlet = Box3D(0,    nx-1, 0,    ny-1, nz-1, nz-

1);   

 

    Box3D top    = Box3D(0,    nx-1, ny-1, ny-1, 0, nz-1); 

    Box3D bottom = Box3D(0,    nx-1, 0,    0,    0, nz-1); 

          

    Box3D left   = Box3D(0,    0,    1,    ny-2, 0, nz-1); 

    Box3D right  = Box3D(nx-1, nx-1, 1,    ny-2, 0, nz-1); 
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boundaryCondition.setPressureConditionOnBlockBoundaries

( lattice, inlet);      //create or define 

pressure boundary condition at inlet and outlet 

     

     

boundaryCondition.setPressureConditionOnBlockBoundaries

( lattice, outlet);   

     

//boundaryCondition.setVelocityConditionOnBlockBoundari

es ( lattice, inlet); 

  

    boundaryCondition.setVelocityConditionOnBlockBoundaries 

( lattice, top ); 

    boundaryCondition.setVelocityConditionOnBlockBoundaries 

( lattice, bottom ); 

     

    boundaryCondition.setVelocityConditionOnBlockBoundaries 

( lattice, left ); 

    boundaryCondition.setVelocityConditionOnBlockBoundaries 

( lattice, right ); 

     

   

//boundaryCondition.setVelocityConditionOnBlockBoundari

es ( lattice, top, boundary::freeslip ); 
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//boundaryCondition.setVelocityConditionOnBlockBoundari

es ( lattice, bottom, boundary::freeslip ); 

     

   

//boundaryCondition.setVelocityConditionOnBlockBoundari

es ( lattice, left, boundary::freeslip ); 

   

//boundaryCondition.setVelocityConditionOnBlockBoundari

es ( lattice, right, boundary::freeslip ); 

 

  setBoundaryVelocity(lattice, top, 

Array<T,3>((T)0.0,(T)0.0,(T)1e-10)); 

  setBoundaryVelocity(lattice, bottom, 

Array<T,3>((T)0.0,(T)0.0,(T)1e-10)); 

  setBoundaryVelocity(lattice, left, 

Array<T,3>((T)0.0,(T)0.0,(T)1e-10)); 

  setBoundaryVelocity(lattice, right, 

Array<T,3>((T)0.0,(T)0.0,(T)1e-10)); 

        

   //setBoundaryVelocity(lattice, inlet, 

Array<T,3>((T)0.0,(T)0.0,(T)5e-5)); 

       

   setBoundaryDensity(lattice, inlet, 1.0456); 

 

    setBoundaryDensity(lattice, outlet, 1.);                                        
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// specify the pressure boundary condition at OUTLET 

 

    lattice.initialize(); 

 

} 

 

int main(int argc, char* argv[]) {   //argc and 

argv parameters are used to access the command line 

parameters to the main function 

 

    plbInit(&argc, &argv);    // necessary to 

initialize Palabos in every program 

 

    std::string outDir; 

     

    try {     

        global::argv(1).read(outDir); 

     

}  catch(PlbIOException& exception) { 

        pcout << "1 : outDir\n"; 

        exit(1); 

    } 

 

    std::string lbOutDir(outDir), demOutDir(outDir); 

    lbOutDir.append("/tmp/"); demOutDir.append("/post/"); 

    global::directories().setOutputDir(lbOutDir); 
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    LiggghtsCouplingWrapper 

wrapper(argv,global::mpi().getGlobalCommunicator()); 

 

    // particle size and volume fraction are handed over to 

LIGGGHTS  

    // as variables (see LIGGGHTS docu for details) 

    wrapper.setVariable("r_part",r_part); 

    wrapper.setVariable("rho_s",rho_s);     

    wrapper.setVariable("rho_f",rho_f); 

    wrapper.setVariable("lx",lx); 

    wrapper.setVariable("ly",ly); 

    wrapper.setVariable("lz",lz); 

 

    wrapper.execFile("in.lbdem"); 

     

    T r_ = r_part;    //defining the radius of 

particles from the diameters as DOUBLE type 

     

    T m = r_*r_*r_*4./3.*3.14*rho_s;  //calculating 

the mass of each particle from its density and volume and 

defining as DOUBLE type 

     

    PhysUnits3D<T> 

units(2.*r_,v_inf,nu_f,lx,ly,lz,N,uMax,rho_f); 
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    IncomprFlowParam<T> parameters(units.getLbParam()); 

 

    plint nx = parameters.getNx(), ny = parameters.getNy(), 

nz = parameters.getNz(); 

 

    // get lattice decomposition from LIGGGHTS and create 

lattice according to parallelization 

    // given in the LIGGGHTS input script 

    LatticeDecomposition 

lDec(parameters.getNx(),parameters.getNy(),parameters.g

etNz(), 

                              wrapper.lmp); 

    SparseBlockStructure3D blockStructure = 

lDec.getBlockDistribution(); 

    ExplicitThreadAttribution* threadAttribution = 

lDec.getThreadAttribution(); 

    plint envelopeWidth = 1; 

 

    MultiBlockLattice3D<T, DESCRIPTOR>  

      lattice (MultiBlockManagement3D (blockStructure, 

threadAttribution, envelopeWidth ), 

               

defaultMultiBlockPolicy3D().getBlockCommunicator(), 

               

defaultMultiBlockPolicy3D().getCombinedStatistics(), 
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defaultMultiBlockPolicy3D().getMultiCellAccess<T,DESCRI

PTOR>(), 

               new DYNAMICS); 

 

    defineDynamics(lattice,lattice.getBoundingBox(),new 

DYNAMICS); 

 

    const plint maxSteps = units.getLbSteps(maxT); 

    const plint vtkSteps = 

max<plint>(units.getLbSteps(vtkT),1); 

    const plint logSteps = 

max<plint>(units.getLbSteps(logT),1); 

 

    writeLogFile(parameters, "Hydraulic Conductivity and 

Internal Instability"); 

 

    lattice.initialize(); 

    T dt_phys = units.getPhysTime(1); 

    plint demSubsteps = CI; 

    T dt_dem = dt_phys/((T)demSubsteps); 

 

 

    pcout << "------------------------------\n" 

          << "tau: " << 1/parameters.getOmega() << "\n"  

          << "dt_phys: " << dt_phys << "\n" 

          << "maxT: " << maxT << " | maxSteps: " << maxSteps 
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<< "\n" 

          << "v_inf: " << v_inf << "\n" 

          << "Re : " << parameters.getRe() << "\n" 

          << "vtkT: " << vtkT << " | vtkSteps: " << vtkSteps 

<< "\n" 

          << "grid size: " << nx << " " << ny << " " << nz 

<< "\n" 

          << "------------------------------" << std::endl; 

    

// set timestep and output directory 

    wrapper.setVariable("t_step",dt_dem); 

    wrapper.setVariable("dmp_stp",vtkSteps*demSubsteps); 

    wrapper.setVariable("dmp_dir",demOutDir); 

 

    wrapper.execFile("in2.lbdem"); 

   

    clock_t start = clock(); 

    clock_t loop = clock(); 

    clock_t end = clock(); 

 

// use the boundary conditions which are already defined 

 

OnLatticeBoundaryCondition3D<T,DESCRIPTOR>* 

boundaryCondition 

      = createLocalBoundaryCondition3D<T,DESCRIPTOR>(); 
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boundaryConditions(lattice, parameters, 

*boundaryCondition); 

 

//T previousIterationTime = T(); 

 

    // Loop over main time iteration. 

    for (plint iT=0; iT<=maxSteps; ++iT) { 

 

      bool initWithVel = false; 

      

setSpheresOnLattice(lattice,wrapper,units,initWithVel); 

       

      if(iT%vtkSteps == 0 && iT > 0) // LIGGGHTS does not 

write at timestep 0 

        writeVTK(lattice,parameters,units,iT); 

 

      lattice.collideAndStream(); 

 

      getForcesFromLattice(lattice,wrapper,units); 

 

      wrapper.run(demSubsteps); 

 

      if(iT%logSteps == 0){ 

        end = clock(); 

        T time = difftime(end,loop)/((T)CLOCKS_PER_SEC); 

        T totaltime = 
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difftime(end,start)/((T)CLOCKS_PER_SEC); 

        T mlups = ((T) 

(lattice.getNx()*lattice.getNy()*lattice.getNz()*logSte

ps))/time/1e6; 

        pcout << "time: " << time << " " ; 

        pcout << "calculating at " << mlups << " MLU/s" 

              << " | total time running: " << totaltime << 

std::endl; 

        loop = clock(); 

      } 

    } 

    T totaltime = difftime(end,start)/((T)CLOCKS_PER_SEC); 

    T totalmlups = ((T) 

(lattice.getNx()*lattice.getNy()*lattice.getNz()*(maxSt

eps+1)))/totaltime/1e6; 

    pcout << " ********************** \n" 

          << "total time: " << totaltime 

          << " calculating at " << totalmlups << " MLU/s" << 

std::endl; 

 delete boundaryCondition; 

} 

variable run1 equal 1e7 

variable run2 equal 5e6 

variable        hz equal 0.012 

variable  n_particles equal 22300 
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variable  v_limit equal 1e-14 

 

#incremental radius values 

 

variable r1 equal 0.000239 

variable r2 equal 0.0002202 

variable r3 equal 0.0002049 

variable r4 equal 0.0001957 

variable r5 equal 0.0001919 

variable r6 equal 0.0001894 

variable r7 equal 0.0001857 

variable r8 equal 0.0001815 

variable r9 equal 0.0001773 

variable r10 equal 0.0001745 

variable r11 equal 0.0001722 

variable r12 equal 0.0001694 

variable r13 equal 0.0001672 

variable r14 equal 0.000165 

variable r15 equal 0.0001629 

variable r16 equal 0.0001602 

variable r17 equal 0.0001561 

variable r18 equal 0.000151 

variable r19 equal 0.0001438 

variable r20 equal 0.0001333 

 

#incremental percent passing values 
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variable pts1 equal 0.05 

variable pts2 equal 0.05 

variable pts3 equal 0.05 

variable pts4 equal 0.05 

variable pts5 equal 0.05 

variable pts6 equal 0.05 

variable pts7 equal 0.05 

variable pts8 equal 0.05 

variable pts9 equal 0.05 

variable pts10 equal 0.05 

variable pts11 equal 0.05 

variable pts12 equal 0.05 

variable pts13 equal 0.05 

variable pts14 equal 0.05 

variable pts15 equal 0.05 

variable pts16 equal 0.05 

variable pts17 equal 0.05 

variable pts18 equal 0.05 

variable pts19 equal 0.05 

variable pts20 equal 0.05 

 

units  si 

atom_style granular 

atom_modify map array 
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communicate single vel yes 

 

boundary f f f 

newton  off 

processors * * * 

region  box block 0 ${lx} 0 ${ly} 0 ${lz} units box 

create_box 1 box 

 

region  delete_region block 0 ${lx} 0 ${ly} ${hz} 

${lz} units box 

 

variable skin equal 1e-5 

neighbor ${skin} bin 

neigh_modify delay 0 

 

fix grav all gravity 9.810  vector 0 0 -1 

 

fix   m1 all property/global youngsModulus peratomtype 

70e9 

fix   m2 all property/global poissonsRatio peratomtype 

0.3 

fix   m3 all property/global coefficientRestitution 

peratomtypepair 1 0.70 

fix   m4 all property/global coefficientFriction 

peratomtypepair 1 0 
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# lb coupling fix 

fix lbcoupling all couple/lb/onetoone 

 

pair_style gran model hertz tangential history 

pair_coeff * * 

 

fix  1 all nve/sphere 

 

fix xwalls1 all wall/gran model hertz tangential history 

primitive type 1 xplane 0 

fix xwalls2 all wall/gran model hertz tangential history 

primitive type 1 xplane ${lx} 

fix ywalls1 all wall/gran model hertz tangential history 

primitive type 1 yplane 0 

fix ywalls2 all wall/gran model hertz tangential history 

primitive type 1 yplane ${ly} 

fix zwalls1 all wall/gran model hertz tangential history 

primitive type 1 zplane 0 

fix zwalls2 all wall/gran model hertz tangential history 

primitive type 1 zplane ${lz} 

 

fix pts1 all particletemplate/sphere 11593 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r1} 

fix pts2 all particletemplate/sphere 11701 atom_type

 1 density constant ${rho_s} volume_limit
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 ${v_limit} radius constant ${r2} 

fix pts3 all particletemplate/sphere 11807 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r3} 

fix pts4 all particletemplate/sphere 11897 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r4} 

fix pts5 all particletemplate/sphere 11969 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r5} 

fix pts6 all particletemplate/sphere 12071 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r6} 

fix pts7 all particletemplate/sphere 12157 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r7} 

fix pts8 all particletemplate/sphere 12253 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r8} 

fix pts9 all particletemplate/sphere 12347 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r9} 

fix pts10 all particletemplate/sphere 12437 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r10} 

fix pts11 all particletemplate/sphere 12517 atom_type
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 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r11} 

fix pts12 all particletemplate/sphere 12601 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r12} 

fix pts13 all particletemplate/sphere 12689 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r13} 

fix pts14 all particletemplate/sphere 12791 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r14} 

fix pts15 all particletemplate/sphere 12899 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r15} 

fix pts16 all particletemplate/sphere 12973 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r16} 

fix pts17 all particletemplate/sphere 13049 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r17} 

fix pts18 all particletemplate/sphere 13159 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r18} 

fix pts19 all particletemplate/sphere 13249 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r19} 



217 
 

fix pts20 all particletemplate/sphere 13339 atom_type

 1 density constant ${rho_s} volume_limit

 ${v_limit} radius constant ${r20} 

 

fix pdd1 all particledistribution/discrete 32452843 20 pts1 

${pts1} pts2 ${pts2} pts3 ${pts3} pts4 ${pts4} pts5 

${pts5} pts6 ${pts6} pts7 ${pts7} pts8 ${pts8} pts9 

${pts9} pts10 ${pts10} pts11 ${pts11} pts12 ${pts12} 

pts13 ${pts13} pts14 ${pts14} pts15 ${pts15} pts16 

${pts16} pts17 ${pts17} pts18 ${pts18} pts19 ${pts19} 

pts20 ${pts20} 

 

region  insreg block 0 ${lx} 0 ${ly} 0 ${lz} units box 

 

fix ins all insert/pack seed 32452867 distributiontemplate 

pdd1 insert_every once overlapcheck yes 

particles_in_region ${n_particles} region insreg ntry_mc 

5000 

 

compute       cpgl all pair/gran/local pos id force 

force_normal force_tangential contactArea 

 

run 1 

 

timestep        ${t_step}       
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fix euler all ave/euler nevery ${dmp_stp} cell_size_relative 

3 parallel no 

 

compute              peratom all stress/atom pair 

compute              p all reduce sum c_peratom[1] c_peratom[2] 

c_peratom[3] 

variable           press equal -

(c_p[1]+c_p[2]+c_p[3])/(3*vol) 

#variable       sigmaxx equal -(c_p[1])/vol 

#variable       sigmayy equal -(c_p[2])/vol 

#variable       sigmazz equal -(c_p[3])/vol 

 

# thermo settings 

fix  ts all check/timestep/gran 10000 0.2 0.2 

compute  contacts all contact/atom 

thermo_style  custom ke step v_press 

thermo  100000 

thermo_modify lost ignore norm no 

 

#run with particle insertion 

run ${run1} 

 

delete_atoms region delete_region 

run 20000 

 

unfix m4 
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fix   m4 all property/global coefficientFriction 

peratomtypepair 1 0.30 

run ${run2} 

 

fix bu all buoyancy level ${lz} dim z density 1000 

 

run 20000 

 

# dumping start 

dump  dmp_LIG all custom ${dmp_stp} 

${dmp_dir}LIG_*.liggghts id type type x y z ix iy iz vx 

vy vz fx fy fz omegax omegay omegaz radius c_contacts 

c_peratom[1] c_peratom[2] c_peratom[3] c_peratom[4] 

c_peratom[5] c_peratom[6] f_dragforce[1] f_dragforce[2] 

f_dragforce[3] 

 

dump dmp_cpgl all local ${dmp_stp} output/CPGL/cpgl_*.dump 

c_cpgl[1] c_cpgl[2] c_cpgl[3] c_cpgl[4] c_cpgl[5] 

c_cpgl[6] c_cpgl[7] c_cpgl[8] c_cpgl[9] c_cpgl[10] 

c_cpgl[11] c_cpgl[12] c_cpgl[13] c_cpgl[14] c_cpgl[15] 

c_cpgl[16] c_cpgl[17] c_cpgl[18] c_cpgl[19] 

 

dump dmp_euler all euler/vtk ${dmp_stp} 

output/euler/eulerdump_*.vtk 
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APPENDIX D - SOURCE CODE FOR DIRECTIONAL DISTRIBUTION OF 

CONTACTS 

 
This code calculates the orientation of the branch vectors and plots them in the form of a 

rose diagram using MATLAB. Note that the branch and contact normal vectors coincide 

in the case of spherical particles, and this code only applies to spherical particles 

  
data_CPGL = xlsread('data_CPGL');   % dump file of 

compute/pair/gran - LIGGGHTS 

  

x1 = data_CPGL(:,1);   % centre "x" coordinate of particle 

1 

y1 = data_CPGL(:,2);   % centre "y" coordinate of particle 

1 

z1 = data_CPGL(:,3);   % centre "z" coordinate of particle 

1 

x2 = data_CPGL(:,4);   % centre "x" coordinate of particle 

2 

y2 = data_CPGL(:,5);   % centre "y" coordinate of particle 

2 

z2 = data_CPGL(:,6);   % centre "z" coordinate of particle 

2 

fx = data_CPGL(:,13);  % x component of "f_normal" 

fy = data_CPGL(:,14);  % y component of "f_normal" 

fz = data_CPGL(:,15);  % z component of "f_normal" 
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nbins = 36; % number of bins in 0 to 2pi limits 

  

for i = 1:size(fx,1) 

    

    fn(i,1) =sqrt(fx(i,1)^2+fy(i,1)^2+fz(i,1)^2); % normal 

contact force 

  

end 

  

fn_avg = mean(fn); % mean normal contact force 

  

n = size (fx,1); % maximum number of values = number of 

contacts (Nc) 

  

for i = 1 : n 

    

    nx(i,1) = fx(i,1)/fn_avg; 

    ny(i,1) = fy(i,1)/fn_avg; 

    nz(i,1)= fz(i,1)/fn_avg; 

     

    %Rose diagram (radians)- Branch Vector 

    xy(i,1)= atan(ny(i,1)/nx(i,1)); %angles of branch 

vectors in xy plan 

    xz(i,1)= atan(nz(i,1)/nx(i,1)); %angles of branch 

vectors in xz plan 
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    yz(i,1)= atan(nz(i,1)/ny(i,1)); %angles of branch 

vectors in yz plan   

  

end 

  

% transferring the data to 2pi values 

XY1 = xy; 

XY2 = xy+pi; 

XY = [XY1; XY2]; 

  

XZ1 = xz; 

XZ2 = xz+pi; 

XZ = [XZ1; XZ2]; 

  

YZ1 = yz; 

YZ2 = yz+pi; 

YZ = [YZ1; YZ2]; 

  

figure(1); 

h = polarhistogram(YZ,nbins); % plotting the number of 

contact normals 

hold off 

  

%Analytical solution 

  

DNc = h.Values; 
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E = DNc/(n*(360/nbins)); 

  

thetai = (h.BinEdges(1:end-1) + h.BinEdges(2:end))/2;   % 

angle of bin centers 

  

DesignMatrix = (1/(2*pi))+[cos(2*thetai(:)) 

sin(2*thetai(:))]; %design the equation in the form of matrix 

without the coefficients 

Coefficients = 

inv(DesignMatrix'*DesignMatrix)*DesignMatrix'*E(:); % 

getting the coefficients 

coeff1 = Coefficients(1); 

coeff2 = Coefficients(2); 

  

thetaA =(atan(coeff2/coeff1))/2; % derived by equating both 

the coefficients as given in the book by O'Sullivan (in 

radians) 

  

a = 2*pi*coeff1/cos(2*thetaA); 

  

for j = 1:nbins 

  

   %Ethetai (1,j) = 

(1/(2*pi))+coeff1*cos(2*(thetai(1,j)))+coeff2*sin(2*(thetai

(1,j))); 
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   Ethetai (1,j) = (1/(2*pi))*(1+a*cos(2*(thetai(1,j)-

thetaA))); 

  

end 

  

figure(2); 

h1 = polarhistogram(YZ,nbins,'Normalization','pdf'); % 

plotting the probability density functions of contact 

normals 

h1.DisplayStyle = 'stair'; % displays the figure h1 in the 

form of stairs 

  

hold on 

  

polarplot(thetai,Ethetai); % plotting the analytical 

solution of the probability density function 

APPENDIX E - SOURCE CODE FOR COMPUTING COORDINATION 

NUMBER, GEOMETRIC COORDINATION NUMBER AND VOLUME-

WEIGHTED COORDINATION NUMBER 

This code calculates the coordination number, geometric coordination number, and 

volume-weighted coordination number using MATLAB. The data_LIG is the output file 

of LIGGGHTS.  
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V = 3.43e-7; %entire volume of the specimen in m3 for vol-

weighted coordination number only 

  

data_LIG = xlsread('data_LIG'); 

  

radius = data_LIG(:,19); 

  

contacts = data_LIG(:,20); 

  

NOP=size(radius,1); %number of particles 

  

%Coordination number (Thornton 2000) 

  

NOC = sum (contacts); % total number of contacts x 2 - each 

contact is shared between two particles 

  

Z = NOC/NOP; 

  

%Mechanical coordination number (Thornton 2000) 

  

Np0 = sum(contacts(:)==0); % count the number of particles 

with zero (0) contacts or number of zero contacts 

Np1 = sum(contacts(:)==1); % count the number of particles 

with one (01) contacts 
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Z_mech = (NOC - Np1)/(NOP-Np1-Np0); % Note: NOC = 2 x number 

of contacts 

  

%Geometric coordination number 

  

Z_geo = NOC/(NOP-Np0); % Note: NOC = 2 x number of contacts 

  

% Volume-Weighted Coordination Number (Shaebani et al. 

(2012)) 

  

for i = 1:NOP 

    Vp(i,1) = (4/3)*pi*(radius(i,1))^3; 

end 

  

for i = 1:NOP 

    CpVp(i,1) = contacts(i,1)*Vp(i,1); 

end 

  

sumCpVp = sum(CpVp); 

  

Z_vol_weighted = sumCpVp/V; 

  

ZZs = [Z Z_geo Z_mech]; 
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APPENDIX F - SOURCE CODE FOR COMPUTING STRESS REDUCTION 

FACTOR 

 
This code calculates the stress reduction factor using MATLAB for the methods of Shire 

et al. (2014) and Sufian et al. (2021). 

 

V = 1; %entire volume of the specimen in m3 - does not affect 

the alpha value 

  

load r.txt; % radii of the finer fraction 

  

data_LIG = xlsread('D:\PhD\MATLAB Codes\DEM-

MAT\AllCodes\data_LIG'); 

  

radius = data_LIG(:,19); 

psXXwv = -data_LIG(:,21);  %sigmaxx of individual particle 

multiplied by volume of the particle 

psYYwv = -data_LIG(:,22);  %sigmayy of individual particle 

multiplied by volume of the particle 

psZZwv = -data_LIG(:,23);  %sigmazz of individual particle 

multiplied by volume of the particle 

  

NOP=size(radius,1); %number of particles 

  

%stresses in the entire sample 

sigmaxx = sum(psXXwv); %sigmaxx of the entire sample 
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sigmayy = sum(psYYwv); %sigmayy of the entire sample 

sigmazz = sum(psZZwv); %sigmazz of the entire sample 

  

meanstress = (sigmaxx+sigmayy+sigmazz)/(3*V); % mean stress 

of entire sample 

  

%finding the porosity 

  

for i = 1:NOP 

  

    Vp(i,1) = (4/3)*pi*(radius(i,1))^3; 

  

end 

  

Vs = sum(Vp); % total volume of the particles 

  

SVF = Vs/V; % Solid Volume Fraction 

  

n = 1 - SVF; % Porosity 

  

% finding the rows containing the finer fraction 

  

row1=find(radius(:)==r(1,1)); 

row2=find(radius(:)==r(2,1));   

row3=find(radius(:)==r(3,1));  

row4=find(radius(:)==r(4,1));  
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row5=find(radius(:)==r(5,1)); 

row6=find(radius(:)==r(6,1)); 

  

row = [row1;row2;row3;row4;row5;row6]; 

  

psXXwv_fines = psXXwv(row,1); % psXXwv values of fines 

  

psYYwv_fines = psYYwv(row,1); % psZZwv values of fines 

  

psZZwv_fines = psZZwv(row,1); % psZZwv values of fines 

  

radius_fines= radius(row,1);  % radii of fines 

  

for i = 1:size(radius_fines,1) 

     

    Vp_fines(i,1) = (4/3)*pi*radius_fines(i,1)^3; 

    

end 

  

Vfines = (sum(Vp_fines))/(1-n); 

  

% mean stress in the fines 

meanstressfines 

=(sum(psXXwv_fines)+sum(psYYwv_fines)+sum(psZZwv_fines))/(3

*Vfines); 
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% DEM stress reduction factor 

alpha_DEM = meanstressfines./meanstress; 

  

% calculations for the beta parameter 

  

qf = (sum(psZZwv_fines)-sum(psXXwv_fines)); 

q = (sigmazz-sigmaxx); 

  

beta_DEM = qf/q; 

  

% calculation of the coordination number for fine to fine 

and fine to 

% coarse contacts only 

  

contacts = data_LIG(:,20); 

  

contacts = contacts (row,:); 

  

NOP_FF = size(contacts,1); 

  

NOC = sum(contacts); 

  

CN_FF=NOC/NOP_FF; 

  

%Alpha DEM Calculation based on the method by Sufian et al. 

(2021) 
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% mean stress in the fines 

meanstressfines_as 

=(sum(psXXwv_fines)+sum(psYYwv_fines)+sum(psZZwv_fines))/(3

*V); 

% DEM stress reduction factor 

alpha_DEM_as = meanstressfines_as./meanstress; 

  

OUTPUT =[alpha_DEM alpha_DEM_as beta_DEM CN_FF]; 

 

load r.txt; % radii of the finer fraction 

  

if size(r,1) ==2 

    SRF2radius 

elseif size(r,1) ==3 

    SRF3radius 

elseif size(r,1) ==4 

    SRF4radius 

elseif size(r,1) ==5 

    SRF5radius 

elseif size(r,1) ==6 

    SRF6radius 

else 

    SRF7radius 

end 
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APPENDIX G - SOURCE CODE FOR COMPUTING PERCENTAGE OF 

SLIDING CONTACTS 

This code calculates the percentage of sliding contacts using MATLAB. 

 
Mu = 0.3; % coefficient of sliding friction 

  

data_CPGL = xlsread('data_CPGL'); % dump file of 

compute/pair/gran - LIGGGHTS 

  

fnx = data_CPGL(:,13);  % x-component of "f_normal" 

fny = data_CPGL(:,14);  % y-component of "f_normal" 

fnz = data_CPGL(:,15);  % z-component of "f_normal" 

ftx = data_CPGL(:,16);  % x-component of "f_tangential" 

fty = data_CPGL(:,17);  % y-component of "f_tangential" 

ftz = data_CPGL(:,18);  % z-component of "f_tangential" 

  

for i = 1:size(fnx,1) % normal contact force 

  

    fn(i,1) =sqrt(fnx(i,1)^2+fny(i,1)^2+fnz(i,1)^2); % 

normal contact force 

  

end 

  

for i = 1:size(ftx,1)  % tangential contact force 
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ft(i,1) =sqrt(ftx(i,1)^2+fty(i,1)^2+ftz(i,1)^2); % 

tangential contact force 

  

end 

  

for i = 1:size(fnx,1) 

  

S(i,1)= (ft(i,1))./(Mu*fn(i,1)); 

  

end 

  

S = sortrows(S); 

  

%SlidingContacts = sum(S(:)>=1 & S(:)<=1.01); % number of 

sliding contacts 

  

SlidingContacts = sum(S(:)>=1); % number of sliding contacts 

  

percentageSlidingContacts = 

100*SlidingContacts/size(fnx,1); % ratio of sliding contacts 

to total number of contacts 

APPENDIX H - SOURCE CODE FOR COMPUTING CONSTRAINT RATIO 

This code computes the constraint ratio (ratio of the number of constraints to the number 

of degrees of freedom in a granular assembly) using MATLAB. 

Mu = 0.3; % coefficient of sliding friction 
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data_CPGL = xlsread('data_CPGL');   %dump file of 

compute/pair/gran - LIGGGHTS 

  

data_LIG = xlsread('data_LIG');     %dump file of LIGGGHTS 

  

contacts = data_LIG(:,20); 

  

fnx = data_CPGL(:,13);  % x-component of "f_normal" 

fny = data_CPGL(:,14);  % y-component of "f_normal" 

fnz = data_CPGL(:,15);  % z-component of "f_normal" 

ftx = data_CPGL(:,16);  % x-component of "f_tangential" 

fty = data_CPGL(:,17);  % y-component of "f_tangential" 

ftz = data_CPGL(:,18);  % z-component of "f_tangential" 

  

for i = 1:size(fnx,1) % normal contact force 

  

    fn(i,1) =sqrt(fnx(i,1)^2+fny(i,1)^2+fnz(i,1)^2); % 

normal contact force 

  

end 

  

for i = 1:size(ftx,1)  % tangential contact force 

  

    ft(i,1) =sqrt(ftx(i,1)^2+fty(i,1)^2+ftz(i,1)^2); % 

tangential contact force 
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end 

 

for i = 1:size(fnx,1) 

 

    S(i,1)= (ft(i,1))./(Mu*fn(i,1)); 

 

end 

  

S = sortrows(S); 

  

SlidingContacts = sum(S(:)>=1); % number of sliding contacts 

  

f = SlidingContacts/size(fnx,1); % fraction of sliding 

contacts 

  

NOP=size(contacts,1); %number of particles 

NOC = sum (contacts); % total number of contacts x 2 - each 

contact is shared between two particles 

Np0 = sum(contacts(:)==0); % count the number of particles 

with zero (0) contacts or number of zero contacts 

Np1 = sum(contacts(:)==1); % count the number of particles 

with one (01) contacts 

  

Z = NOC/NOP; 
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Z_mech = (NOC - Np1)/(NOP-Np1-Np0); % Note: NOC = 2 x number 

of contacts 

Z_geo = NOC/(NOP-Np0); % Note: NOC = 2 x number of contacts 

  

Ir_Z = Z*((3-2*f)/12); 

Ir_Zgeo = Z_geo*((3-2*f)/12); 

Ir_Zmech = Z_mech*((3-2*f)/12); 

output = [Ir_Z Ir_Zgeo Ir_Zmech]; 
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