
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tjor20

Journal of the Operational Research Society

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tjor20

Gaussian relevance vector MapReduce-based
annealed Glowworm optimization for big medical
data scheduling

Rizwan Patan, Suresh Kallam, Amir H. Gandomi, Thomas Hanne &
Manikandan Ramachandran

To cite this article: Rizwan Patan, Suresh Kallam, Amir H. Gandomi, Thomas Hanne &
Manikandan Ramachandran (2022) Gaussian relevance vector MapReduce-based annealed
Glowworm optimization for big medical data scheduling, Journal of the Operational Research
Society, 73:10, 2204-2215, DOI: 10.1080/01605682.2021.1960908

To link to this article: https://doi.org/10.1080/01605682.2021.1960908

© 2021 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 23 Aug 2021.

Submit your article to this journal Article views: 468

View related articles View Crossmark data

Citing articles: 1 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=tjor20
https://www.tandfonline.com/loi/tjor20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01605682.2021.1960908
https://doi.org/10.1080/01605682.2021.1960908
https://www.tandfonline.com/action/authorSubmission?journalCode=tjor20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tjor20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/01605682.2021.1960908
https://www.tandfonline.com/doi/mlt/10.1080/01605682.2021.1960908
http://crossmark.crossref.org/dialog/?doi=10.1080/01605682.2021.1960908&domain=pdf&date_stamp=2021-08-23
http://crossmark.crossref.org/dialog/?doi=10.1080/01605682.2021.1960908&domain=pdf&date_stamp=2021-08-23
https://www.tandfonline.com/doi/citedby/10.1080/01605682.2021.1960908#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/01605682.2021.1960908#tabModule

ORIGINAL ARTICLE

Gaussian relevance vector MapReduce-based annealed Glowworm
optimization for big medical data scheduling

Rizwan Patana, Suresh Kallamb, Amir H. Gandomic , Thomas Hanned and Manikandan
Ramachandrane

aDepartment of Computer Science and Engineering, Velagapudi Ramakrishna Siddhartha Engineering College, Vijayawada, India;
bDepartment of Computer Science and Engineering, Sree Vidyanikethan Engineering College, Tirupati, India; cFaculty of
Engineering and Information Technology, University of Technology Sydney, Australia; dInstitute for Information Systems,
University of Applied Sciences and Arts Northwestern Switzerland, Switzerland; eSchool of Computing, SASTRA Deemed
University, Thanjavur, India

ABSTRACT
Various big-data analytics tools and techniques have been developed for handling massive
amounts of data in the healthcare sector. However, scheduling is a significant problem to be
solved in smart healthcare applications to provide better quality healthcare services and
improve the efficiency of related processes when considering large medical files. For this
purpose, a new hybrid model called Gaussian Relevance Vector MapReduce-based Annealed
Glowworm Optimization Scheduling (GRVM-AGS) was designed to improve the balancing of
large medical data files between different physicians with higher scheduling efficiency and
minimal time. First, a GRVM model was developed for the predictive analysis of input med-
ical data. This model reduces the storage complexity of large medical data analysis by
means of eliminating unwanted patient information and predicts the disease class with help
of a Gaussian kernel function. Afterwards, GRVM performs AGS to schedule the efficient
workloads among multiple datacenters based on the luciferin value in the smart healthcare
environment with reduced scheduling time. Through computational experiments, we dem-
onstrate that GRVM-AGS increases the scheduling efficiency and reduces the scheduling
time of large medical data analysis compared to state-of-the-art approaches.

ARTICLE HISTORY
Received 25 March 2020
Accepted 16 July 2021

KEYWORDS
Annealed Glowworm
optimization scheduling; big
data analytics; datacenters;
Gaussian kernel function;
medical files;
workload balancing

1. Introduction

Big Data analytics has received enhanced recogni-
tion in many fields, including healthcare systems as
one of the most promising sectors. Smart healthcare
applications that use Internet of Things (IoT) tech-
nologies have recently gained greater significance
because they allow a patient’s health conditions to
be monitored remotely. The healthcare domain is
comprised of hierarchical terminologies of different
diseases, their syndromes and diagnosis information,
laboratory results, and patient details, such as
admission histories, drug, and billing information.
Thus, such databases for the availed clinical services
are huge in size and complex to analyze. Therefore,
in our proposed methodology, a scheduling process
is introduced to achieve fast and efficient action in
the healthcare system. While scheduling systems pri-
oritize the most important projects first, the cloud
and IoT assist healthcare teams, such as doctors,
nurses, and specialists, in monitoring a patient’s
conditions. In recent years, scheduling has become

one of the most critical issues in large medical data
analytics regarding the distribution of workload
among physicians and other resources in a smart
healthcare environment. Numerous research works
have been conducted to design scheduling systems for
medical data. However, the scheduling performance of
existing methods is not effective when considering
large medical files. Therefore, a novel metaheuristic,
called Gaussian Relevance Vector MapReduce-based
Annealed Glowworm Optimization Scheduling
(GRVM-AGS), is introduced in this study to enhance
the scheduling performance by minimizing storage
complexity and the time to conduct large medical
data analytics.

This article is organized as follows. Section 2
explains the background and reviews related works.
In Section 3, the proposed GRVM-AGS technique is
described in further details. In Section 4, experimen-
tal settings are presented, and the analysis of results
is explained in Section 5. Section 6 concludes
the article.

CONTACT Thomas Hanne thomas.hanne@fhnw.ch Institute for Information Systems, University of Applied Sciences and Arts Northwestern
Switzerland, Switzerland
� 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not
altered, transformed, or built upon in any way.

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY
2022, VOL. 73, NO. 10, 2204–2215
https://doi.org/10.1080/01605682.2021.1960908

http://crossmark.crossref.org/dialog/?doi=10.1080/01605682.2021.1960908&domain=pdf&date_stamp=2022-11-13
http://orcid.org/0000-0002-2798-0104
http://orcid.org/0000-0002-5636-1660
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1080/01605682.2021.1960908
http://www.tandfonline.com

2. Related work

In the study by Elhoseny et al. (2018), a hybrid model
was developed to handle big data in healthcare ser-
vice applications. However, the performance of the
scheduling was poor when examining the multimedia
data of patients. A task-level adaptive MapReduce
framework was presented in Zhang et al. (2015) to
decrease the storage space of big healthcare data, but
workload scheduling remained an open issue.

A novel technique was developed by Pag�an et al.
(2018) to optimize energy utilization through work-
load scheduling in datacenters in an eHealth scen-
ario. However, the problem of storage optimization
was not solved. A survey of different storage opti-
mization techniques in a big data cluster environ-
ment was analyzed by Chakravarthy et al. (2019),
but effective storage optimization was not achieved.

An early big data reduction framework was intro-
duced by ur Rehman et al. (2016) to reduce the cost of
cloud service consumption when performing big data
analysis, yet the performance of scheduling was poor.
Real-time awareness scheduling was presented by Xu
et al. (2018) to address the issue of real-time multi-
media big data computing in IoT and to achieve better
workload distribution with less latency. However, the
minimization of scheduling time was not sufficient.

A resource-based data accessing method (UDA-
IoT) was introduced by Xu et al. (2014) to increase
access to IoT data resources, but the study failed to
consider storage complexity. An adaptive streaming
technique was designed by Mohammadi et al.
(2018) to transmit and share the enormous media
healthcare data timely with assured quality of service
(QoS) support at remote terminals. However, the
scheduling performance was not improved by the
adaptive streaming technique.

A CPU-intensive job scheduling algorithm was
reported by Sahoo and Dehury (2018) using a health-
care cloud. Nevertheless, similar to other applications,
also an assigned virtual computing node may take a
longer time to execute jobs. Mora et al. (2017) intro-
duced a distributed framework using the IoT para-
digm to study human biomedical signals, but the time
complexity involved during big medical data schedul-
ing was not reduced by the distributed framework.

A review of different deep learning techniques
designed for IoT big data and streaming analytics was
presented by Mohammadi et al. (2018). However, the
overall runtime reduction of such selection was not
significant. Although a real-time and energy-efficient
resource scheduling and an optimization framework
were introduced by Sun et al. (2015) for a big data
stream, a low response time was not achieved.

Big Data Streaming Applications Scheduling was
designed by Kanoun et al. (2016) employing staged
multi-armed bandits to maximize the scheduling

performance. Similarly, a fast future feature-aware
online scheduling approach was developed by Sun
and Tang (2017). However, both proposed methods
failed to achieve sufficient scheduling performance.

Another study related to the analysis of large
electronic health records was conducted by Wu
et al. (2017) to achieve improved care efficiency.
Moreover, an extensible big data architecture was
designed by El Aboudi and Benhlima (2018) using
stream computing and batch computing to increase
the trustworthiness of healthcare systems. Yet, both
of these studies did not consider storage complexity.

A big data-driven model was introduced by Koufi
et al. (2015) for the optimization of healthcare proc-
esses. An optimization strategy was presented by He
et al. (2016) to decrease the storage surplus and
diminish the load to achieve highly efficient data
processing operations. However, these two existing
methods showed to be unable to achieve efficient
scheduling performance.

The impact of big data in healthcare was resolved
by Palanisamy and Thirunavukarasu (2019) for the
handling of stream-based data for patient monitor-
ing. However, the performance of storage complex-
ity was not considered. While a policy enforcement
framework was introduced by Sicari et al. (2017) to
solve the safety and quality threats in heterogeneous
smart healthcare environments, the scheduling pro-
cess was not achieved at the required level.

In another application, predictive approaches in
healthcare are used for the purpose of predicting
patient no-shows (Harris et al., 2016). Although a
model was proposed for big data applications, based
on regression-like modelling in connection with
function approximation using the sum of exponen-
tial functions to predict no-show probabilities, the
storage complexity was not minimized.

Another approach for scheduling patients to hos-
pitals, also considering no-shows, is discussed by
Samorani and LaGanga (2015). The main goal of
this approach is to maximize the number of patients
while minimizing wait time and overtime.
Unfortunately, the scheduling time was not reduced.

An example of a more complex healthcare sched-
uling problem is patient admission scheduling, as
discussed by Bastos et al. (2019), whereby patients
are scheduled to scarce resources (“beds”) over a
period of 28 to 91 days. While this issue is more
complex than our problem regarding the resource
scheduling aspect, it does not include any aspects of
forecasting (such as disease prediction).

A general overview of using operational research
techniques in healthcare (within Europe) is provided
by Brailsford and Vissers (2011), which covers all
nine identified phases of the healthcare services life-
cycles. Almost 50% (204 of 411) of the considered

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 2205

research is related to units and hospitals and
approaches related to performance management in
service delivery dominate, which is also the focus of
our research. However, only 7 of the 411 publica-
tions related to the unit/hospital level specifically
focused on forecasting the demand of services
(another focus of our study).

In addition, the paper by Ahmadi-Javid et al.
(2017) discusses the increasing importance of out-
patient appointment scheduling and related infor-
mation systems. The work also provides a
comprehensive survey of analytical and numerical
optimization studies that present decision-support
tools for designing and planning outpatient appoint-
ment systems (OASs), considering strategic, tactical,
and operational levels. Yet, an effective patient med-
ical data scheduling performance was not achieved.

To solve the aforementioned issues, the GRVM-
AGS technique is proposed. The key contributions
of GRVM-AGS are described below:

� The Gaussian Relevance Vector MapReduce (GRVM
model) was developed using Relevance Vector
Machine learning, the MapReduce framework, and a
Gaussian kernel function, which is an extension of
existing works. This model is introduced in the pro-
posed GRVM-AGS to significantly minimize the
storage space in processes of large medical data ana-
lytics compared to state-of-the-art works.

� The GRVM model is combined with Annealed
Glowworm Optimization Scheduling (AGS) to

enhance the scheduling performance of big med-
ical data, as compared to state-of-the-art works.

� The AGO-MDS algorithm was designed using
Glowworm optimization and annealed selection
to identify the optimal datacenter for the diagno-
sis of patient medical data. The algorithm is
applied in the GRVM-AGS technique to effi-
ciently compensate for the workloads between
multiple datacenters (i.e. physicians) in a smart
healthcare environment (with a lower planning
time) compared to conventional approaches.

3. Gaussian relevance vector MapReduce-
based annealed Glowworm
optimization scheduling

The GRVM-AGS technique is introduced with the aim
of enhancing the scheduling performance of big med-
ical data in a smart healthcare application. To diagnose
and evaluate a patient, physicians need access to the
patient’s electronic medical files, which include huge
multimedia data from ECGs, EEGs, X-rays, ultra-
sounds, CT scans, and MRI reports. Scheduling the
patient’s medical data files is required to balance the
workloads of physicians in a smart healthcare environ-
ment. Therefore, we combined the Gaussian Relevance
Vector MapReduce model and Annealed Glowworm
Optimization Scheduling (GRVM-AGS) to improve
this scheduling process.

Unlike existing techniques, the GRVM model is
introduced in GRVM-AGS to obtain the predictive

Figure 1. Architecture diagram of the GRVM-AGS technique for big medical data scheduling in a smart healthcare application
using IoT.

2206 R. PATAN ET AL.

analytic results of each patient’s medical file while
optimizing storage. During the predictive analytics
process, GRVM-AGS seeks the disease class from
the patient’s medical files to schedule a task to a
datacenter. Compared to existing state-of-the-art
works, the number of relevance vectors in a GRVM
model is smaller, thereby GRVM-AGS can perform
the predictive analysis faster. In addition, a Gaussian
kernel function applied in the GRVM model (within
GRVM-AGS) maps only the related patient medical
data to a corresponding class and eradicates irrele-
vant data. By removing unrelated information and
selecting only significant medical features, GRVM-
AGS uses a minimal amount of storage space for
effective predictive analytics and, thus, reduces the
storage complexity compared to state-of-the-art
works. The overall architecture diagram of the
GRVM-AGS technique is shown in Figure 1.

The Annealed Glowworm Optimization
Scheduling (AGS) is employed in GRVM-AGS to
find an optimized schedule. Unlike existing schedul-
ing methods, AGS provides an optimal solution
based on the medical files of patients with a lower
scheduling time, allowing physicians to better assess
the medical records and identify the best treatment
and medication for the patient.

Figure 1 displays the overall processes of GRVM-
AGS to achieve higher scheduling performance for
large medical files. As shown in the figure, the
GRVM model first predicts the disease class of the
input medical files and optimizes the storage space
during big medical data analytics. Then, Annealed
Glowworm Optimization Scheduling (AGS) is
applied to find and assign the optimal physicians
for the identified diagnosis based on the medical
file. The detailed process of the GRVM-AGS tech-
nique is described in the next subsections.

3.1. Gaussian relevance vector MapReduce for
predictive analytics

The Gaussian Relevance Vector MapReduce
(GRVM) model advantageously combines relevance
vector machine learning (Fei, 2017), a MapReduce
framework, and a Gaussian radial basis function.
This combination can reduce the size of big medical
data to effectively perform predictive analytics and
achieve storage optimization. The GRVM model
contains two main processes, namely Map and
Reduce. First, a big medical dataset is processed by
splitting the input dataset into independent chunks
in the form of key/value pairs, which are then proc-
essed by the map tasks in a parallel manner. The
biggest advantage of MapReduce (Khezr &
Navimipour, 2017) is this parallel processing based
on the division of work among multiple processor
nodes. During the mapping process, the GRVM
model uses a map function for each input key/value
pair and generates output key/value pairs as inter-
mediate results. During the reduction process, the
GRVM model combines all interim results, groups
the medical data of each patient according to keys
and finally provides the predictive class result. Then,
a Gaussian radial basis kernel function is employed
to remove unrelated data by mapping the patient
medical data into different disease classes, such as
brain tumor, diabetes, and heart diseases. The
MapReduce process in the GRVM model is
depicted below.

Figure 2 provides the block diagram of the GRVM
model for predictive analytics of patient medical data
for workload scheduling. The relationship between
the medical data of patients is categorized with
patients’ medical files associated with a disease. Let
us consider a number of patient medical files

Figure 2. Processes of the GRVM model for predictive analytics and storage optimization.

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 2207

“Mi ¼ M1,M2, :::,Mn” and a different number of dis-
ease classes, such as brain tumors, diabetes, heart dis-
ease, and cancer, represented as “Ci ¼ C1,C2, :::,Cn”
where each class contains a similar medical data
related to a particular disease, denoted as
“Ci ¼ M1,M2, ::,Mnf g:” Here, “n” indicates the given
number of patient medical data. In GRVM-AGS, big
multimedia medical data (i.e. MRI cardiac images
and MRI brain images) are considered as a medical
file “Mi:” The GRVM model captures and utilizes big
multimedia medical data as input then extracts fea-
tures and vital signs from these images. Using the
features and vital signs, key “ai”/value “bi” pairs are
created for the patients in relation to the disease val-
ues from various device inputs. The GRVM model
then creates MapReduce classes for predicting the
results. As an example, this process was applied for
COVID-19 diagnosis data using CT (computed tom-
ography) scans of patients’ lungs as the input.

CT scans were obtained to detect COVID-19
and, if suspected, its severity and condition level. To
evaluate the scans, the COVID-19 Reporting and
Data System (CORADS) and CT severity index were
used, which are described in detail below.

1) CORADS: This provides an assessment scheme to
evaluate patients who are suspected of having
COVID-19. Specifically, the chance of having the
disease increases from Stages 1 to 6; this does not
mean that the severity of the disease increases as the
stage increases. The key/value pairs per the Stages
1–6 are as follows:

a1, b1 ¼ CORADS 1: There is no suspicion.
a2, b2 ¼ CORADS 2: There is slight suspicion, where
the detected abnormalities in the CT scan are most
likely not due to COVID-19.
a3, b3 ¼ CORADS 3: There is mild suspicion, where
abnormalities in the scan are consistent with COVID-
19 and another disease.
a4, b4 ¼ CORADS 4: There is high suspicion, where
abnormalities are consistent with COVID-19.
a5, b5 ¼ CORADS 5: There is a definite presence of
COVID-19, where findings are consistent with other
confirmed cases.
a6, b6 ¼ CORADS 6: This stage is identified if a
COVID-19 RT-PCR or rapid antigen test result
is positive.

2) CT Severity Index: In the human body, the right
lung has three lobes and the left has two, thus, total-
ing 5 lobes. The CT severity index is used to iden-
tify the extent of damage of the lungs. The score
ranges from 0 to 25; that is, each lobe is assigned
0–5 points depending on the involvement of that
lobe in a disease. Herein, we used the following key
values associated with the severity index score:

a1¼ Score 1: Less than 5% involvement
a2¼ Score 2: 5–25% involvement
a3¼ Score 3: 26–49% involvement
a4¼ Score 4: 50–75% involvement
a5¼ Score 5: Greater than 75% involvement
After totalling the scores of each lobe, the severity
of the disease, in this case COVID-19, can
be determined:

b1 ¼ Less than 8: Mild severity
b2 ¼ 8–15: Moderate severity
b3 ¼ More than 15: High severity

It is critical to acknowledge that these scores are
consistent with condition of the disease on the
day the CT scans were obtained, and that the
severity is likely to change over time. Therefore,
scans should be repeated from time to time to
evaluate if the disease has progressed and to
which stage.

Another important factor in diagnosing COVD-
19 is SpO2, or the saturation of peripheral oxygen,
which is measured by a pulse oximeter. An SpO2
less than 93% means that our lungs are not working
properly. Therefore, the data obtained from CT
images used as input in this study included the
CORADS stage, CT severity index score, and SpO2.
The features of lungs observed in the CT scan
images also give insight to the severity and progres-
sion of the disease, including:

Ground glass appearance: common radiographic
finding in COVID-19 lungs, indicates presence of
the virus within 5 days of imaging.

Crazy-paving pattern: multiple areas of ground
glass opacities, indicates progression of the virus
between 5 and 10 days.

Consolidation: more extensive lung involvement
in 10 to 13 days.

Gradual resolution: clearance of abnormalities in
lungs after 14 days, indicates regression of the virus.

Using the above COVID-19 CT scan data as input,
the GRVM model can be applied to create a mapping
phase by considering disease features (keys/values) in
the images or to predict the severity level based on the
parameters (1). Specifically, the relevance vector
machine learning creates patterns with the above values
for diagnosing COVID-19 and the MapReduce frame-
work with a Gaussian radial basis function to calculate
CORADS and CT scan severity index. The Gaussian
radial basis function is able to produce sparse solutions
by linearly weighting a small number of features
instead of using all of them, thus, requiring less time.

In the GRVM model, the mapping phase takes
one pair of features and constructs a list of (key
“ai, ” value “bi”) pairs in different domains using
the mapping below:

2208 R. PATAN ET AL.

Map a1, b1ð Þ ! List a2, b2ð Þ (1)

Next, the GRVM model determines the probability
of the desired output class for each patient medical
data with the aid of a probability function using the
following equation:

P
Ci

di

� �
¼
Yn

i¼1
r x Mi; dð Þ� �

1� r x Mi; dð Þ� �� �
(2)

where “d” refers to a weight vector; “r x Mi; dð Þ� �
”

denotes a logistic sigmoid function; and “x” repre-
sents the different features of the medical data file
“Mi:” The logistic sigmoid function is mathematic-
ally specified as:

r x Mi; dð Þ� � ¼ 1
1þ e�x Mi;dð Þ (3)

As mentioned, the GRVM model uses a Gaussian
radial basis function as a kernel function, which
maps significant medical features “Mi” of patients to
the corresponding disease-related class “Ci:” The
mapping of patient medical data “Mi” using a
Gaussian radial basis kernel function is mathematic-
ally described as:

K Ci, Mið Þ ¼
Xn
i¼0

1
di
u Ci, Mið Þ (4)

where “u” represents the Gaussian kernel func-
tion; and “di” denotes a weight value. The
Gaussian kernel function “u” in the GRVM model

maps every medical feature of a patient in a corre-
sponding class “Ci” for predictive analytics to
schedule the workload among different physicians.
Subsequently, the GRVM model gathers all pairs
with similar keys from all lists, groups them
together, and creates a class for each group. This
process helps the GRVM model to remove
unwanted data from large healthcare datasets and,
thus, to achieve storage optimization during work-
load scheduling processes.

Algorithm 1 explains the step-by-step process
of the GRVM model to attain the predictive ana-
lytic results of medical files through storage opti-
mization. As demonstrated in the algorithm, the
(key/value) pairs for a patient’s medical features
are first created. Then, the GRVM model esti-
mates the probability of the desired output class
(disease) for the medical features of each patient
with the help of a probability function. Next, the
GRVM model applies a Gaussian kernel function
for mapping patient medical features into the
appropriate class and, consequently, removes
irrelevant features. The mapping of medical fea-
tures into a corresponding disease class helps to
obtain the predictive analytic result for balancing
the workload of physicians in smart healthcare
monitoring. Furthermore, the removal of
unwanted features supports the GRVM model to
optimize the storage complexity during big med-
ical data analysis.

Figure 3. Process of AGO-MDS for medical data scheduling.

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 2209

Algorithm 1. Gaussian Relevance Vector MapReduce
Model

// Gaussian Relevance Vector MapReduce Model
Input: Patient medical files ‘Mi ¼ M1,M2, :,Mn’
Output: Obtain predictive analytic results

Step 1: Begin
Step 2: For each medical data of patient ‘Mi’
Step 3: Extract features
Step 4: Construct (key/value) pairs using (1)
Step 5: Compute the probability of the desired

output class using (2)
Step 6: Apply the Gaussian kernel function
Step 7: Patient medical features are mapped into

an appropriate class using (4)
Step 8: Reduce phase: remove the irrelevant

medical features
Step 9: Generate predictive analytic result
Step 10: End for
Step 11: End

3.2. Annealed Glowworm optimization-based
medical data scheduling

After the predicted results are obtained, the patients’
medical files are scheduled to the corresponding data-
centers (i.e. physicians) for diagnosis and treatment.
In our proposed technique, the Annealed Glowworm
Optimization-based Medical Data Scheduling (AGO-
MDS) algorithm is combined with GRVM to balance
the workloads among multiple datacenters in the
smart healthcare environment. The AGO-MDS algo-
rithm is based on combining Glowworm optimization
and annealed selection to select the optimal datacenter
and to increase the scheduling performance of work-
loads. As proposed by Krishnanand and Ghose (2009),
AGO-MDS was motivated by the behavior of
Glowworms (i.e. fireflies or lightning bugs), whereby a
Glowworm with less lighting behavior is attracted to a
brighter Glowworm. In other words, the AGO-MDS
algorithm classifies the working set into the smallest
possible two-element sets to evaluate the movement
probabilities of each datacenter (or Glowworm).
Subsequently, it updates the location of each datacen-
ter to find the optimal datacenter (or brightest
Glowworm) for scheduling a patient’s medical data,
according to Bentayeb et al. (2019).

As presented in Figure 3, AGO-MDS first initial-
izes a population of datacenters (i.e. Glowworms),
then each datacenter is associated with a luciferin
value to be used by the objective function (i.e. pre-
dicted analysis result). Here, the objective is to select
the datacenters that are best suited to a patient’s file
based on the results of predictive analytics. A data-
center (i.e. the physician) with a higher luciferin value

indicates that it is more related to the predictive result
of a considered patient. Therefore, AGO-MDS identi-
fies the datacenter with a higher luciferin value in sev-
eral datacenters in the smart healthcare environment
and then applies annealed selection to schedule the
patient’s medical file to the most that datacenter.

Let us consider a number of datacenters
“DC1,DC2, :::,DCn” in the smart healthcare environ-
ment. Here, datacenters are considered to consist of
various physicians, such as cardiologists, diabetolo-
gists, orthopaedists, and neurologists. In the AGO-
MDS algorithm, the luciferin value is measured for
each datacenter depending on the objective function
(OF) using Equation (5):

cDCi
¼ PAR (5)

where the luciferin value “cDCi
” of all datacenters in

the smart healthcare environment is determined
according to the obtained predictive analytics result
(PAR) of a patient. The datacenter (i.e. Glowworm)
with a small luciferin value is attracted to the data-
center with a higher luciferin value. When a
Glowworm (datacenter) “DC2” with a lower luciferin
value moves toward another brighter Glowworm
“DC1” with a higher luciferin value, the moving
probability is mathematically obtained as:

P ¼ cDC2
tð Þ�cDC1

tð ÞP
cDCnt

tð Þ � cDC1
tð Þ (6)

where “P” is the movement probability of a
Glowworm; “cDC2

tð Þ” is the luciferin value of the
Glowworm “DC2” at the time “t”; where “cDC1

tð Þ” is
a luciferin value of the Glowworm “DC1” at the time
“t”; and “cDCnt

tð Þ” represents the number of desired

neighbors at time “t:” The location of a Glowworm
changes based on the movement probability. From
this, the location of a Glowworm is updated as:

lDC1 tþ1ð Þ ¼ lDC1 tð Þ þ S
lDC2 tð Þ�lDC1 tð Þ

dDC2DC1

 !
(7)

where “lDC1 tþ1ð Þ” is an updated location of the
Glowworm “DC1” at time “t þ 1}; “lDC1 tð Þ” is a loca-

tion of Glowworm “DC1” at time “t”; “lDC2 tð Þ” denotes
the location of Glowworm “DC2” at time “t”;
“dDC2DC1” indicates the distance between the two
Glowworms “DC1” and “DC2”; and “S” refers to step-
size. As the luciferin value of a Glowworm changes
according to its location, the value is updated using
Equation (8):

c tþ1ð Þ ¼ 1� qð Þ�c t�1ð Þ þ b�OF (8)

where “c tþ1ð Þ” refers to the updated luciferin value;

“q” is a constant luciferin decay rate with
ð0 < q < 1); “OF” represents the objective function;
“c t�1ð Þ” is a previous luciferin value of the

2210 R. PATAN ET AL.

datacenter at a time “t � 1}; and “b” is the change
rate of the neighborhood range. After updating the
luciferin value, the AGO-MDS algorithm applies
annealed selection to identify a datacenter with a
higher luciferin value for a better diagnosis of med-
ical files, according to Equation (9):

Y ¼ arg max cDCi
(9)

where “arg max” refers to a datacenter with a max-
imum luciferin value among the considered datacen-
ters; and “Y” denotes the final selection result of the
AGO-MDS algorithm to schedule a medical file.

Algorithm 2 presents the step-by-step process of
AGO-MDS to select the optimal datacenters based
on the results of the predictive analytic disease for
each input medical file “Mi:” By applying a set of
patient data for scheduling, AGO-MDS categorizes
the data before distributing the task among the
computation nodes, which are then updated accord-
ing to the patient medical key/value pairs. The luci-
ferin value of datacenters is then updated to reduce
the time required for scheduling and improve
scheduling performance. This allows AGO-MDS to
schedule the workload for different physicians with
minimal time for diagnosis and to provide treatment
for patients who connect remotely in smart health-
care applications using IoT. As a result, the GRVM-
AGS technique achieves an improved scheduling
performance and reduces scheduling time for big
medical data analysis compared to existing methods.

Algorithm 2. Annealed Glowworm Optimization-
based Medical Data Scheduling

// Annealed Glowworm Optimization-based Medical
Data Scheduling Algorithm
Input: Patient medical files “Mi ¼ M1,M2, :,Mn, ”
datacenters “DC1,DC2, :::,DCn, ” luciferin value cDCi

,
luciferin update value c tþ1ð ÞlDC1 tþ1ð Þ, movement prob-

ability P, luciferin decay coefficient q, change rate of
the neighborhood range b, step size of movement S:
Output: Schedule with improved efficiency

Step 1: Begin
Step 2: For each medical file “Mi”with predictive

analytics result “PAR”
Step 3: Initialize the population using a number

of datacenters “DCi”
Step 4: Measure “cDCi

” using (5)
Step 5: Compute “P” using (6)
Step 6: Update “lDC1 tþ1ð Þ” using (7)
Step 7: Update “c tþ1ð Þ”using (8)
Step 8: Apply annealed selection to find an opti-

mal datacenter using (9)
Step 9: Schedule the medical file to the diagnosis
Step 10: End For
Step 11: End

AGO-MDS provides an efficient self-scheduling
strategy of the patient data. Figure 4 shows the
detailed self-scheduling process flow before and after
applying the AGO-MDS. In Steps 2–5 of Algorithm
2, the computation node of the datacenter is first
read, then each node is allocated and computed for
further process allocation. In Steps 6–8, the compu-
tation node is updated based on the medical file cat-
egory, either in the same workspace or in different
workspaces, to optimize the datacenter medical file
allocation. The process runs until the self-scheduling
of the patient data with the correct category of med-
ical files is optimized. The secondary MapReduce
model helps to create patterns within the patient
data frames to create the relationship between the
medical data of patients and the associated disease.
In the self-scheduling process model, similar catego-
ries of the medical files are moved into one work-
space with less computation nodes, unlike other
scheduling strategies that handle large data files.
Figure 4 demonstrates the categorization of the
medical files in several workspaces and computation
nodes. Before applying AGO-MDS, the three med-
ical files that do not follow any pattern are ran-
domly allocated for computing, taking up more
space in computing node 2. After applying AGO-
MDS, it is apparent that the allocated of medical
files is better balanced and requires less effort for
computation. This demonstrates that the proposed
GRVM-AGS technique can achieve efficient sched-
uling using less space than other models.

4. Experimental settings

The GRVM-AGS technique was implemented in
Java to evaluate its performance. In the experiment,
GRVM-AGS collected medical multimedia data (i.e.
MRI images and vital signs) from two datasets,
namely the Cardiac MRI dataset (Andreopoulos &
Tsotsos, 2008) and the Atlas brain database
(Johnson & Becker, 2019). The Cardiac MRI dataset
was constructed from 33 subjects, where each sub-
ject’s sequence includes 20 frames and 8–15 slices
along the long axis to make a total of 7980 images.
The Atlas brain database is comprised of the MRI
images of remotely monitored patients affected by
cerebrovascular diseases, neoplastic diseases, and
degenerative diseases. The GRVM-AGS technique
considers the various medical files to accomplish the
experimental process. During the scheduling pro-
cess, GRVM-AGS distributed medical files to the
optimal datacenter (i.e. physicians) to balance the
workload in the smart healthcare application. For
example, heart disease medical information was
scheduled to a cardiologist and brain tumor disease
medical files to a neurologist for diagnosis. The

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 2211

number of datacenters for the experiments was set
to 10. (This number was not provided in the men-
tioned datasets but was assumed to provide a realis-
tic setting.)

The performance of GRVM-AGS technique was
compared to that of two existing approaches,
namely a hybrid model (Elhoseny et al., 2018) and a
task-level adaptive MapReduce framework (Zhang
et al., 2015), using storage complexity, scheduling
performance, and scheduling time as indicators.

In Table 1, the simulation settings of the
parameters in the AGO-MDS algorithm, such as
luciferin decay coefficient q, luciferin valuecDCi

,
change rate of the neighborhood range b, number
of desired neighbors nt , and step size S were all
fixed. The specified parameter values have been
chosen based on some experiments with different
values as these were the settings leading to the
best results.

5. Results and discussions

In this section, we present the results of GRVM-
AGS for scheduling workloads efficiently among
multiple datacenters based on the luciferin value in
the smart healthcare environment. The performance
results of GRVM-AGS are compared with those of
the hybrid model (Elhoseny et al., 2018) and the
task-level adaptive MapReduce framework (Zhang
et al., 2015) based on the metrics discussed below.
The analysis results of GRVM-AGS are presented in
tables and graphs.

5.1. Storage complexity

Storage complexity “SC” measures the amount of
memory space the datacenter needs to store the
medical files of patients. The storage complexity is
computed as follows:

SC ¼ n � Space SSPð Þ (10)

where “n” represents the number of patients’ med-
ical files being considered for the experiments; and
“Space SSPð Þ” denotes the memory being utilized to
store an average patient’s medical file. The storage

Figure 4. GRVM-AGS efficient self-scheduling strategy process flow.

Table 1. Parameter values of the GRVM-AGS technique in
the experiment.
Parameter q cDCi b nt S

Value 0.4 0.6 0.08 5 0.03

2212 R. PATAN ET AL.

complexity is measured in terms of mega-
bytes (MB).

A sample calculation for storage complexity using
the proposed GRVM-AGS technique and compara-
tive methods is presented below. For each method,
assume that there are 25 medical files (n¼ 25).

Hybrid Model: Requires 1.44 (MB) to store a
patient’s medical file. Thus, the storage complexity
(SC) is measured as:

SC ¼ 25 � 1:44 ¼ 36 MBð Þ
Task-level Adaptive MapReduce Framework:

Requires 1.32 (MB) to store a patient’s medical file.
Thus, SC is measured as:

SC ¼ 25 � 1:32 ¼ 33 MBð Þ
GRVM-AGS Technique: Requires 1.12 (MB) to

store a patient’s medical file. Thus, SC is measured
as:

SC ¼ 25 � 1:12 ¼ 28 MBð Þ
To estimate the space complexity of big medical

data scheduling and analysis, GRVM-AGS was imple-
mented in Java using two medical datasets with a
range of 25–250 medical files. With 150 medical files,
GRVM-AGS achieved a storage complexity of 65MB,
whereas the hybrid model presented by Elhoseny et al.
(2018) and the task-level adaptive MapReduce frame-
work by Zhang et al. (2015) achieved storage capaci-
ties of 89 and 80MB, respectively. From the results, it
is obvious that GRVM-AGS can realize a lower stor-
age complexity for the effective analysis of big medical
data compared to previous methods. The complete
performance results of storage complexity are provided
in Table 2.

The superior performance of GRVM-AGS can be
attributed to the implemented GRVM model, which
measures the probability of the desired output class for
all medical data via the likelihood function. Afterward,
GRVM-AGS maps the medical data into a respective
class and then removes unrelated data. The elimin-
ation of unnecessary information supports GRVM-
AGS to achieve a lower storage complexity in big med-
ical data analysis. Therefore, GRVM-AGS allows for a
higher reduction of the amount of memory space the
datacenter needs to store the patients’ medical files
compared to the other methods. Specifically, GRVM-
AGS reduced the storage complexity by 19% and 12%
compared to the existing hybrid model (Elhoseny
et al., 2018) and the task-level adaptive MapReduce
framework (Zhang et al., 2015), respectively.

5.2. Scheduling performance

Scheduling performance “(SP)” is the ratio of the
number of medical files that are correctly scheduled
to the optimal datacenter to the total number of

medical data. The formula for scheduling perform-
ance is depicted as follows:

SP ¼ NCS
n

� 100 (11)

where “n” denotes the number of medical files; and
“NCS” represents the number of medical files that
are accurately scheduled. The scheduling perform-
ance is measured in percentage (%).

To determine the scheduling performance of big
medical data, GRVM-AGS was implemented in Java
with a varying number of medical data files
(25–250) from two medical datasets. With 175 med-
ical files, GRVM-AGS achieved a scheduling per-
formance of 94%, while the hybrid model (Elhoseny
et al., 2018) and the task-level adaptive MapReduce
framework (Zhang et al., 2015) achieved performan-
ces of 81% and 83%, respectively. The results clearly
demonstrate that GRVM-AGS can realize better
scheduling performance for balancing workloads in
smart healthcare applications compared to other
existing works. The complete results of scheduling
performance are illustrated in Table 3.

Due to the application of annealed Glowworm opti-
mization scheduling, GRVM-AGS was able to identify
the optimal physicians to analyze the medical files.
Specifically, GRVM-AGS achieved a higher ratio of
correctly scheduled medical files and enhanced the
efficiency of medical data scheduling by 16% and 11%
compared to the hybrid model (Elhoseny et al., 2018)
and the task-level adaptive MapReduce framework
(Zhang et al., 2015), respectively.

5.3. Scheduling time

Scheduling time “(ST)” determines the amount of
time required to schedule medical files to the opti-
mal datacenter. The scheduling time is calculated as
follows:

ST ¼ n�time SSMð Þ (12)

where “n” is the number of medical files; and
“time SSMð Þ” denotes the average time utilized for
scheduling a single medical file to an optimal data-
center. The scheduling time is measured in millisec-
onds (ms).

The GRVM-AGS technique was implemented in
Java with 25–250 medical data files from two med-
ical datasets to measure the amount of time
required to schedule medical data. With 200 medical
files, GRVM-AGS required 52ms scheduling time,
while the conventional hybrid model and the task-
level adaptive MapReduce framework required 62
and 56ms, respectively. This finding confirms the
superior performance of GRVM-AGS for the effect-
ive analysis of big medical data. All results for
scheduling times are shown in Table 4.

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 2213

With the help of annealed Glowworm optimization
scheduling (AGS), GRVM-AGS initializes a population
with a number of datacenters, and then, estimates the
luciferin values depending on the objective function.
Using these computed luciferin values and the object-
ive function of AGS, GRVM-AGS can identify data-
centers that fit well with the predictive results of each
medical file. After that, GRVM-AGS schedules the
medical files to the identified optimal datacenter with
minimal time for health status analyses. In this pro-
cess, GRVM-AGS requires 20% and 10% less time to
schedule the medical data to the optimal datacenter
compared to the hybrid model (Elhoseny et al., 2018)
and the task-level adaptive MapReduce framework
(Zhang et al., 2015), respectively.

6. Conclusion

An effective technique combining the Gaussian
Relevance Vector MapReduce (GRVM) model and

Annealed Glowworm Optimization Scheduling (AGS)
has been designed with the aim of increasing the
scheduling performance of large medical data files.
Results show that the proposed GRVM-AGS tech-
nique significantly improves the scheduling perform-
ances of big medical data analytics, effectively
balancing the workloads among diverse datacenters in
a smart healthcare environment with reduced time
and complexity. In scheduling the big medical data, a
file is assigned to optimal datacenters, where a phys-
ician then analyses the medical information and deter-
mines the correct treatments and medication for
patients remotely connected through IoT. The effect-
iveness of GRVM-AGS was evaluated in terms of stor-
age complexity, scheduling efficiency, and scheduling
time. Compared with two state-of-the-art methods,
namely a hybrid model and task-level adaptive
MapReduce framework, the results show that GRVM-
AGS leads to better performances for big medical data
diagnostics with enhanced scheduling performance
and a reduced storage complexity. In addition, the
application of the GRVM model is presented for
COVID-19 diagnosis as an example, utilizing CT
scans as the data input and MapReduce and Gaussian
radial basis function to calculate features of the evalu-
tation methods (i.e. CORADS and CT scan sever-
ity index).

For future research, it would be insightful to
compare the suggested technique with other
approaches. In addition, the proposed GRVM-AGS
could be used for different scheduling problems,
such as scheduling tasks in other service industries.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Amir H. Gandomi http://orcid.org/0000-0002-
2798-0104
Thomas Hanne http://orcid.org/0000-0002-5636-1660

References

Ahmadi-Javid, A., Jalali, Z., & Klassen, K. J. (2017).
Outpatient appointment systems in healthcare: A
review of optimization studies. European Journal of
Operational Research, 258(1), 3–34. https://doi.org/10.
1016/j.ejor.2016.06.064

Andreopoulos, A., & Tsotsos, J. K. (2008). Efficient and gen-
eralizable statistical models of shape and appearance for
analysis of cardiac MRI. Medical Image Analysis, 12(3),
335–357. https://doi.org/10.1016/j.media.2007.12.003

Bastos, L. S., Marchesi, J. F., Hamacher, S., & Fleck, J. L.
(2019). A mixed integer programming approach to the
patient admission scheduling problem. European
Journal of Operational Research, 273(3), 831–840.
https://doi.org/10.1016/j.ejor.2018.09.003

Table 2. Results of storage complexity.

Number of
medical files (n)

Storage complexity (MB)

Hybrid
model

Task-level adaptive
MapReduce framework

GRVM-AGS
technique

25 36 33 28
50 46 40 35
75 59 56 49
100 74 70 60
125 86 81 69
150 89 80 65
175 98 88 79
200 94 90 82
225 99 95 86
250 105 100 93

Table 3. Results of scheduling performance.

Number of
medical files

Scheduling performance (%)

Hybrid
model

Task-level adaptive
MapReduce framework

GRVM-AGS
technique

25 68 76 92
50 74 80 90
75 80 83 93
100 82 85 94
125 82 84 91
150 85 87 95
175 81 83 94
200 83 85 92
225 84 88 93
250 85 89 95

Table 4. Results of scheduling times.

Number of
medical files (n)

Scheduling time (ms)

Hybrid
model

Task-level adaptive
MapReduce framework

GRVM-AGS
technique

25 33 25 20
50 40 33 30
75 45 41 38
100 55 48 45
125 56 49 44
150 59 53 48
175 58 54 49
200 62 56 52
225 63 59 54
250 70 65 58

2214 R. PATAN ET AL.

https://doi.org/10.1016/j.ejor.2016.06.064
https://doi.org/10.1016/j.ejor.2016.06.064
https://doi.org/10.1016/j.media.2007.12.003
https://doi.org/10.1016/j.ejor.2018.09.003

Bentayeb, D., Lahrichi, N., & Rousseau, L.-M. (2019).
Patient scheduling based on a service-time prediction
model: a data-driven study for a radiotherapy center.
Health Care Management Science 22(4), 768–782.

Brailsford, S., & Vissers, J. (2011). OR in healthcare: A
European perspective. European Journal of Operational
Research, 212(2), 223–234. https://doi.org/10.1016/j.ejor.
2010.10.026

Chakravarthy, S. K., Sudhakar, N., Reddy, E. S.,
Subramanian, D. V., & Shankar, P. (2019). Dimension
reduction and storage optimization techniques for dis-
tributed and big data cluster environment. In Soft com-
puting and medical bioinformatics (pp. 47–54).
Springer. https://doi.org/10.1007/978-981-13-0059-2_6

El Aboudi, N., & Benhlima, L. (2018). Big data management
for healthcare systems: Architecture, requirements, and
implementation. Advances in Bioinformatics, 2018,
4059010–4059018. https://doi.org/10.1155/2018/4059018

Elhoseny, M., Abdelaziz, A., Salama, A. S., Riad, A. M.,
Muhammad, K., & Sangaiah, A. K. (2018). A hybrid
model of internet of things and cloud computing to
manage big data in health services applications. Future
Generation Computer Systems, 86, 1383–1394. https://
doi.org/10.1016/j.future.2018.03.005

Fei, S. W. (2017). Fault diagnosis of bearing based on
relevance vector machine classifier with improved bin-
ary bat algorithm for feature selection and parameter
optimization. Advances in Mechanical Engineering, 9(1),
168781401668528–168781401668529. https://doi.org/10.
1177/1687814016685294

Harris, S. L., May, J. H., & Vargas, L. G. (2016). Predictive
analytics model for healthcare planning and scheduling.
European Journal of Operational Research, 253(1),
121–131. https://doi.org/10.1016/j.ejor.2016.02.017

He, H., Du, Z., Zhang, W., & Chen, A. (2016). Optimization
strategy of Hadoop small file storage for big data in
healthcare. The Journal of Supercomputing, 72(10),
3696–3707. https://doi.org/10.1007/s11227-015-1462-4

Johnson, K. A., Becker, J. A. (2019). Atlas brain database.
http://www.med.harvard.edu/aanlib/home.html

Kanoun, K., Tekin, C., Atienza, D., & Van Der Schaar,
M. (2016). Big-data streaming applications scheduling
based on staged multi-armed bandits. IEEE
Transactions on Computers, 65(12), 3591–3605. https://
doi.org/10.1109/TC.2016.2550454

Khezr, S. N., & Navimipour, N. J. (2017). MapReduce
and its applications, challenges, and architecture: A
comprehensive review and directions for future
research. Journal of Grid Computing, 15(3), 295–321.
https://doi.org/10.1007/s10723-017-9408-0

Koufi, V., Malamateniou, F., & Vassilacopoulos, G.,
(2015). A big data-driven model for the optimization
of healthcare processes. In R. Cornet (Ed.), Digital
healthcare empowering Europeans (pp. 697–701). IOS
Press. https://doi.org/10.3233/978-1-61499-512-8-697

Krishnanand, K. N., & Ghose, D. (2009). Glowworm
swarm optimisation: A new method for optimising
multi-modal functions. International Journal of
Computational Intelligence Studies, 1(1), 93–119. https://
doi.org/10.1504/IJCISTUDIES.2009.515637 https://doi.
org/10.1504/IJCISTUDIES.2009.025340

Mohammadi, M., Al-Fuqaha, A., Sorour, S., & Guizani,
M. (2018). Deep learning for IoT big data and stream-
ing analytics: A survey. IEEE Communications Surveys

& Tutorials, 20(4), 2923–2960. https://doi.org/10.1109/
COMST.2018.2844341

Mora, H., Gil, D., Terol, R. M., Azor�ın, J., & Szymanski,
J. (2017). An IoT-based computational framework for
healthcare monitoring in mobile environments. Sensors,
17(10), 2302–2327. https://doi.org/10.3390/s17102302

Pag�an, J., Zapater, M., & Ayala, J. L. (2018). Power trans-
mission and workload balancing policies in eHealth
mobile cloud computing scenarios. Future Generation
Computer Systems, 78, 587–601. https://doi.org/10.1016/
j.future.2017.02.015

Palanisamy, V., & Thirunavukarasu, R. (2019).
Implications of big data analytics in developing health-
care frameworks–A review. Journal of King Saud
University - Computer and Information Sciences, 31(4),
411–415. https://doi.org/10.1016/j.jksuci.2017.12.007

Sahoo, P. K., & Dehury, C. K. (2018). Efficient data and
CPU-intensive job scheduling algorithms for healthcare
cloud. Computers & Electrical Engineering, 68, 119–139.
https://doi.org/10.1016/j.compeleceng.2018.04.001

Samorani, M., & LaGanga, L. R. (2015). Outpatient
appointment scheduling given individual day-depend-
ent no-show predictions. European Journal of
Operational Research, 240(1), 245–257. https://doi.org/
10.1016/j.ejor.2014.06.034

Sicari, S., Rizzardi, A., Grieco, L. A., Piro, G., & Coen-
Porisini, A. (2017). A policy enforcement framework
for Internet of Things applications in the smart health.
Smart Health, 3–4, 39–74. https://doi.org/10.1016/j.
smhl.2017.06.001

Sun, D., & Tang, H. (2017). Fast-FFA: A fast online
scheduling approach for big data stream computing
with future features-aware. International Journal of Bio-
Inspired Computation, 10(3), 205–217. https://doi.org/
10.1504/IJBIC.2017.086717

Sun, D., Zhang, G., Yang, S., Zheng, W., Khan, S. U., &
Li, K. (2015). Re-Stream: Real-time and energy-efficient
resource scheduling in big data stream computing envi-
ronments. Information Sciences, 319, 92–112. https://
doi.org/10.1016/j.ins.2015.03.027

ur Rehman, M. H., Chang, V., Batool, A., & Wah, T. Y.
(2016). Big data reduction framework for value creation
in sustainable enterprises. International Journal of
Information Management, 36(6), 917–928. https://doi.
org/10.1016/j.ijinfomgt.2016.05.013

Wu, P. Y., Cheng, C. W., Kaddi, C. D., Venugopalan, J.,
Hoffman, R., & Wang, M. D. (2017). Omic and electronic
health record big data analytics for precision medicine.
IEEE Transactions on Bio-Medical Engineering, 64(2),
263–273. https://doi.org/10.1109/TBME.2016.2573285

Xu, B., Da Xu, L., Cai, H., Xie, C., Hu, J., & Bu, F.
(2014). Ubiquitous data accessing method in IoT-based
information system for emergency medical services.
IEEE Transactions on Industrial Informatics, 10(2),
1578–1586. https://doi.org/10.1109/TII.2014.2306382

Xu, J., Ota, K., & Dong, M. (2018). Real-time awareness
scheduling for multimedia big data oriented in-memory
computing. IEEE Internet of Things Journal, 5(5),
3464–3473. https://doi.org/10.1109/JIOT.2018.2802913

Zhang, F., Cao, J., Khan, S. U., Li, K., & Hwang, K.
(2015). A task-level adaptive MapReduce framework
for real-time streaming data in healthcare applications.
Future Generation Computer Systems, 43–44, 149–160.
https://doi.org/10.1016/j.future.2014.06.009

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 2215

https://doi.org/10.1016/j.ejor.2010.10.026
https://doi.org/10.1016/j.ejor.2010.10.026
https://doi.org/10.1007/978-981-13-0059-2_6
https://doi.org/10.1155/2018/4059018
https://doi.org/10.1016/j.future.2018.03.005
https://doi.org/10.1016/j.future.2018.03.005
https://doi.org/10.1177/1687814016685294
https://doi.org/10.1177/1687814016685294
https://doi.org/10.1016/j.ejor.2016.02.017
https://doi.org/10.1007/s11227-015-1462-4
http://www.med.harvard.edu/aanlib/home.html
https://doi.org/10.1109/TC.2016.2550454
https://doi.org/10.1109/TC.2016.2550454
https://doi.org/10.1007/s10723-017-9408-0
https://doi.org/10.3233/978-1-61499-512-8-697
https://doi.org/10.1504/IJCISTUDIES.2009.515637
https://doi.org/10.1504/IJCISTUDIES.2009.515637
https://doi.org/10.1504/IJCISTUDIES.2009.025340
https://doi.org/10.1504/IJCISTUDIES.2009.025340
https://doi.org/10.1109/COMST.2018.2844341
https://doi.org/10.1109/COMST.2018.2844341
https://doi.org/10.3390/s17102302
https://doi.org/10.1016/j.future.2017.02.015
https://doi.org/10.1016/j.future.2017.02.015
https://doi.org/10.1016/j.jksuci.2017.12.007
https://doi.org/10.1016/j.compeleceng.2018.04.001
https://doi.org/10.1016/j.ejor.2014.06.034
https://doi.org/10.1016/j.ejor.2014.06.034
https://doi.org/10.1016/j.smhl.2017.06.001
https://doi.org/10.1016/j.smhl.2017.06.001
https://doi.org/10.1504/IJBIC.2017.086717
https://doi.org/10.1504/IJBIC.2017.086717
https://doi.org/10.1016/j.ins.2015.03.027
https://doi.org/10.1016/j.ins.2015.03.027
https://doi.org/10.1016/j.ijinfomgt.2016.05.013
https://doi.org/10.1016/j.ijinfomgt.2016.05.013
https://doi.org/10.1109/TBME.2016.2573285
https://doi.org/10.1109/TII.2014.2306382
https://doi.org/10.1109/JIOT.2018.2802913
https://doi.org/10.1016/j.future.2014.06.009

	Abstract
	Introduction
	Related work
	Gaussian relevance vector MapReduce-based annealed Glowworm optimization scheduling
	Gaussian relevance vector MapReduce for predictive analytics
	Annealed Glowworm optimization-based medical data scheduling

	Experimental settings
	Results and discussions
	Storage complexity
	Scheduling performance
	Scheduling time

	Conclusion
	Disclosure statement
	Orcid
	References

