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ABSTRACT

Classifying Encrypted WiFi Traffic Using Deep Learning Methods

by

Ying Li

Supervisor: Dr. Christy Jie Liang

In this thesis, the goal is to classify encrypted WiFi traffic using deep learning

methods.

1) Firstly, we investigate the possibility of making useful inferences from passively

observed WiFi traffic that is encrypted at both the transport layer as well as the

MAC layer. This is more challenging in comparison to making predictions from

the IP layer traffic due to the lack of any meta information. We identify content

from encrypted network traffic flows using video streaming as an example because

videos are highly popular on the Internet and are frequently misused in many ways

including the distribution of fake news, hate speech, and radical and propaganda

content. Besides, in network protection and situational awareness applications, there

is a strong need to identify whether certain known videos are being watched, either

by certain individuals or in a certain area. In the first work, we create a video

wireless traffic dataset that contains 10 YouTube videos collected at the WiFi layer.

And we demonstrate the possibility of identifying video content using different deep

learning models. We do experiments on this traffic dataset and show that our model

can achieve a good performance. Besides, we evaluate the longevity of our classifier

by making predictions two weeks apart. The results of this work will be further

elaborated in Chapter Three.

2) Secondly, not limited to video streaming, other types of traffics(e.g. web and



audio streaming) need to do classification due to the purpose of service management.

However, only a limited amount of work has looked into the possibility of building

a generic traffic classifier that can handle different classes of traffic. we show that

encrypted WiFi traffic fingerprinting can be generalized and applies to many com-

mon internet traffic types such as web, video streaming, and audio streaming. In

this work, we expand our video wireless traffic dataset to a general wireless traffic

dataset that includes web, video streaming, and audio streaming. And we propose

a novel hierarchical classifier that can make coarse-grained predictions (e.g. web,

video, or audio) as well as fine granular predictions (e.g. content providers/platforms

and exact content). Moreover, this approach allows us to estimate network usage

characteristics for the purpose of service management in large networks and also

identify unknown service providers for different traffic classes. This is explained in

detail in Chapter Four.

3) Finally, we investigate how to generate WiFi traffic samples by category au-

tomatically. A high-quality, high-volume dataset is very important for the deep

learning-based classifier. Specific to the network domain, the classifier is sensitive to

the dataset. For example, the network environment of an individual and an enter-

prise is different in terms of network transfer speed and network configures. Besides,

data collection is time-consuming. Therefore, a generator that can generate samples

by category automatically is needed. There are many existing generative models.

But, the labeled data is required when they generate samples by category. In this

work, we propose two novel generative models, namely infinite Gaussian mixture

auto-encoder(IGMVAE) and the infinite mixture of infinite Gaussian mixture auto-

encoder (I2GMVAE). IGMVAE is a variant of variational auto-encoder(VAE) with

an infinite Gaussian Mixture model (IGMM) as the prior distribution of the latent

variables. I2GMVAE is a variant of VAE with the infinite mixture of infinite Gaus-

sian Mixture model (I2GMM) as the prior distribution of the latent variables. They

are explained in detail in Chapter Five.
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