
UNIVERSITY OF TECHNOLOGY SYDNEY

Faculty of Engineering and Information Technology

Classifying Encrypted WiFi Traffic Us ing Deep

Learning Methods

by

Ying Li
Supervisor: Dr. Christy Jie Liang

Thesis for
Doctor of Philosophy

Sydney, Australia

2022

Certificate of Original Authorship

I, Ying Li declare that this thesis, is submitted in fulfilment of the requirements for
the award of Doctor of Philosophy, in the School of Computer Science, Faculty of
Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged.
In addition, I certify that all information sources and literature used are indicated
in the thesis. This document has not been submitted for qualifications at any other
academic institution.

This research is supported by the Australian Government Research Training Pro-
gram.

Signature:

Date: 1/12/2022

Production Note:
Signature removed prior to publication.

ABSTRACT

Classifying Encrypted WiFi Traffic Using Deep Learning Methods

by

Ying Li

Supervisor: Dr. Christy Jie Liang

In this thesis, the goal is to classify encrypted WiFi traffic using deep learning

methods.

1) Firstly, we investigate the possibility of making useful inferences from passively

observed WiFi traffic that is encrypted at both the transport layer as well as the

MAC layer. This is more challenging in comparison to making predictions from

the IP layer traffic due to the lack of any meta information. We identify content

from encrypted network traffic flows using video streaming as an example because

videos are highly popular on the Internet and are frequently misused in many ways

including the distribution of fake news, hate speech, and radical and propaganda

content. Besides, in network protection and situational awareness applications, there

is a strong need to identify whether certain known videos are being watched, either

by certain individuals or in a certain area. In the first work, we create a video

wireless traffic dataset that contains 10 YouTube videos collected at the WiFi layer.

And we demonstrate the possibility of identifying video content using different deep

learning models. We do experiments on this traffic dataset and show that our model

can achieve a good performance. Besides, we evaluate the longevity of our classifier

by making predictions two weeks apart. The results of this work will be further

elaborated in Chapter Three.

2) Secondly, not limited to video streaming, other types of traffics(e.g. web and

audio streaming) need to do classification due to the purpose of service management.

However, only a limited amount of work has looked into the possibility of building

a generic traffic classifier that can handle different classes of traffic. we show that

encrypted WiFi traffic fingerprinting can be generalized and applies to many com-

mon internet traffic types such as web, video streaming, and audio streaming. In

this work, we expand our video wireless traffic dataset to a general wireless traffic

dataset that includes web, video streaming, and audio streaming. And we propose

a novel hierarchical classifier that can make coarse-grained predictions (e.g. web,

video, or audio) as well as fine granular predictions (e.g. content providers/platforms

and exact content). Moreover, this approach allows us to estimate network usage

characteristics for the purpose of service management in large networks and also

identify unknown service providers for different traffic classes. This is explained in

detail in Chapter Four.

3) Finally, we investigate how to generate WiFi traffic samples by category au-

tomatically. A high-quality, high-volume dataset is very important for the deep

learning-based classifier. Specific to the network domain, the classifier is sensitive to

the dataset. For example, the network environment of an individual and an enter-

prise is different in terms of network transfer speed and network configures. Besides,

data collection is time-consuming. Therefore, a generator that can generate samples

by category automatically is needed. There are many existing generative models.

But, the labeled data is required when they generate samples by category. In this

work, we propose two novel generative models, namely infinite Gaussian mixture

auto-encoder(IGMVAE) and the infinite mixture of infinite Gaussian mixture auto-

encoder (I2GMVAE). IGMVAE is a variant of variational auto-encoder(VAE) with

an infinite Gaussian Mixture model (IGMM) as the prior distribution of the latent

variables. I2GMVAE is a variant of VAE with the infinite mixture of infinite Gaus-

sian Mixture model (I2GMM) as the prior distribution of the latent variables. They

are explained in detail in Chapter Five.

Acknowledgements

I would like to thank the following people. They give me great help and support

during my Ph.D. journey.

First and foremost I wish to thank my supervisor, Dr. Christy Jie Liang. It is

my great luck to meet her as my supervisor. Christy is very professional and kind.

She not only inspired me academically but also help me a lot in life. Her good

personality will affect me in my future life.

I would like to thank my co-supervisor, Prof. Richard Yida Xu. Richard is not

only a professional scholar but also a person who loves to share knowledge. He

gives us weekly courses on machine learning and computer technology. The most

amazing thing is that he can let us learn a lot of complicated knowledge in an

easy-to-understand way. His hardworking and kindness will benefit me for life.

I would also like to thank my co-supervisor, Prof. Massimo Piccardi. He helped

me a lot. Thanks so much for your patience and kindness.

I also want to thank Dr. Junyu Xuan. Junyu is a very professional and responsi-

ble scholar. We discussed the innovations, model details, and experiments together.

It is my pleasure to have a such good partner in the past few years.

I would also like to thank my research partners, including Suranga Seneviratne,

Guillaume Jourjon, Adriel Cheng, Darren Webb, Kanchana Thilakarathna, and

David B. Smith. We share knowledge and discuss experiment details every week.

Thank you for giving me an unforgettable and rewarding project experience.

I am grateful to all lab mates, including Yi Huang, Shuai Jiang, Wanming Huang,

Haodong Chang, Caoyuan Li, Xuan Liang, Jason Traish, Ziyue Zhang, Wei Huang,

Chen Deng, Congzhentao Huang, Chris Markos, Yunce Zhao, etc. We shared knowl-

edge and hiked together on weekend. Because of those mates, I had a pleasant and

meaningful time in Sydney.

Thanks to the CA panel Prof. Guandong Xu and Prof. Andrew Zhang.

Sincerely, I want to thank my parents, my sister, my husband, and my child.

Because of your support and encouragement, I can concentrate on my research and

move forward.

Thanks again to everyone who has helped me!

List of Publications

Conference Papers

C-1. Ying Li, Yi Huang, Suranga Seneviratne, Kanchana Thilakarathna, Adriel

Cheng, Guillaume Jourjon, Darren Webb and Richard Yi Da Xu, “Deep Con-

tent: Unveiling Video Streaming Content from Encrypted WiFi Traffic”, 17th

Int. Symp. on Network Computing and Applications – NCA 2018. (CORE

A conference)

Journal Papers

J-1. Ying Li, Yi Huang, Suranga Seneviratne, Kanchana Thilakarathna, Adriel

Cheng, Guillaume Jourjon, Darren Webb, David B. Smith and Richard Yi Da

Xu, “From Traffic Classes to Content: A Hierarchical Approach for Encrypted

Traffic Classification”, Computer Networks (CORE B journal)

J-2. Ying Li, Junyu Xuan, Yi Huang, Christy Liang and Richard Yida Xu, “In-

finite Gaussian Mixture Autoencoders for Data Generation”,Transactions on

Image Processing(ready to submit)

J-3. Yi Huang, Ying Li, Timothy Heyes, Guillaume Jourjon, Adriel Cheng, Suranga

Seneviratne, Kanchana Thilakarathna, Darren Webb and Richard Yi Da Xu,

“Probability Based Task Adaptive Siamese Open-Set Recognition for En-

crypted Network Traffic With Bidirectional Dropout Data Augmentation”,

Pattern Recognition Letters (CORE B journal)

J-4. Yi Huang, Ying Li, Guillaume Jourjon, Suranga Seneviratne, Kanchana Thi-

lakarathna, Adriel Cheng, Darren Webb and Richard Yi Da Xu, “CRAAE:

viii

Calibrated Reconstruction Based Adversarial AutoEncoder Model for Novelty

Detection”, Pattern Recognition Letters (Under Review, CORE B)

Contents

Certificate ii

Abstract iii

Acknowledgments v

List of Publications vii

List of Figures xiii

List of Tables xv

Abbreviation 1

1 Introduction 2

1.1 Background and Motivation . 2

1.1.1 Encrypted WiFi Traffic Analysis 2

1.1.2 Deep Learning based Traffic Classification Technology 3

1.1.3 Hierarchical Architecture for Traffic Classification 3

1.1.4 Data Augmentation Technology 4

1.2 Research Objectives . 4

1.3 Research Contributions . 7

1.4 Thesis Structure . 8

2 Literature Review 11

2.1 Network Traffic Classifier . 11

x

2.1.1 Network Traffic Classifier Foundation 11

2.1.2 Traffic Classification on HTTPS Communications 14

2.1.3 Traffic Classification in WiFi and Physical Layers 16

2.1.4 Hierarchical Traffic Classifier 17

2.1.5 Data Augmentation Methods for Network Traffic Classification 18

2.2 Related Deep Learning Techniques . 19

2.2.1 Deep Neural Networks . 19

2.2.2 Deep Generative Models . 21

2.2.3 Bayesian Nonparametric Models 24

3 Classifying Encrypted WiFi Videos Using Deep Learn-

ing Models 27

3.1 Introduction . 27

3.2 Method . 28

3.2.1 DASH Streaming . 28

3.2.2 Preprocessing & Feature Engineering 29

3.2.3 Classifier Architectures . 31

3.3 Experiments and Results . 33

3.3.1 Dataset and Evaluation Metric 33

3.3.2 Implemention Details . 35

3.3.3 Performance . 36

3.3.4 Performance Analysis . 39

3.4 Summary . 42

xi

4 Classifying EncryptedWiFi Traffic Using A Hierarchical

Classifier 43

4.1 Introduction . 43

4.2 Method . 44

4.2.1 Streaming and Other Time Sensitive Traffic 44

4.2.2 Architecture . 45

4.2.3 Training Process . 47

4.3 Experiments and Results . 47

4.3.1 Dataset . 47

4.3.2 Evaluation Metrics . 49

4.3.3 Implementation Details . 52

4.3.4 Results . 52

4.3.5 Result Analysis . 53

4.4 Summary . 57

5 Generating Samples by Category Using Bayesian Non-

parametric Autoencoders 58

5.1 Introduction . 58

5.2 IGMVAE . 60

5.2.1 Method . 60

5.2.2 Inference Process . 61

5.2.3 Architecture . 65

5.2.4 Training and Testing . 66

xii

5.3 I2GMVAE . 66

5.3.1 Method . 67

5.3.2 Inference Process . 69

5.3.3 Architecture . 71

5.3.4 Training and Testing . 72

5.4 Experiments and Results . 73

5.4.1 Dataset and Evaluation Metrics 73

5.4.2 Implementation Details . 74

5.4.3 Results . 74

5.4.4 Result Analysis . 78

5.5 Summary . 78

6 Conclusions and Future Work 80

6.1 Conclusions . 80

6.2 Future Work . 81

List of Figures

1.1 Thesis structure . 10

2.1 Literature review section structure 11

2.2 Illustration of stick-breaking construction 26

3.1 I/O graphs of different traffic flows for the same video 29

3.2 I/O graphs of a single run for 10 different videos 32

3.3 Architecture of different models . 34

3.4 Data collection setup . 35

3.5 Accuracy of various neural network models 38

3.6 Classification performance confusion matrix for models with F1

(number of packets (data) on down-link) 40

3.7 T-SNE embedding of the last layer 41

4.1 Hierarchical classifier architecture . 46

4.2 Classification performance confusion matrix for hierarchical models

with F6-combination . 54

4.3 I/O graphs of the same Stan video on different runs 55

xiv

4.4 I/O graphs of different HTTP traffic types on different content

providers. 55

5.1 Probabilistic graphical models for the IGMVAE(left) and

I2GMVAE(right). 61

5.2 The neural network architecture of IGMVAE. 66

5.3 The neural network architecture of I2GMVAE. 72

5.4 Cluster number decision curve of IGMVAE on YouTube. 75

5.5 Generated YouTube videos I/O graph of IGMVAE. 76

5.6 Cluster number decision curve of IGMVAE for the incremental

experiment (The blue color line is based on video 0 to 6. The orange

color line is based on video 0 to 9). 77

5.7 Visualisation of the latent variables on YouTube: (a) GMVAE

learns the latent variables with cluster number 5. (b) GMVAE

learns the latent variables with cluster number 10. (C) GMVAE

learns the latent variables with cluster number 25. (d) the latent

variables of IGMVAE(our). 77

List of Tables

3.1 Feature selection from wireless traffic data 30

3.2 Feature evaluation for CNN model 36

3.3 Feature evaluation for LSTM model 37

3.4 Feature evaluation for MLP model 38

3.5 MLP model accuracy with new dataset two weeks later 39

4.1 Hierarchical model results on dataset 1 (in percent) 50

4.2 Hierarchical model results on dataset 2 (in percent) 51

5.1 IGMVAE and I2GMVAE results (on YouTube) 75

Abbreviation

TLS - Transport Layer Security

WPA2 - WiFi Protected Access 2

VAE - Variational Auto-encoder

IGMVAE - Infinite Gaussian Mixture Auto-encoder

I2GMVAE - Infinite Mixture of infinite Gaussian Mixture Auto-encoder

IGMM - Infinite Gaussian Mixture Model

I2GMM - Infinite Mixture of Infinite Gaussian Mixture Model

HTTPS - Hypertext Transfer Protocol Secure

ML - machine learning

DL - Deep learning

MLP - Multi-Layer Perceptron

CNN - Convolutional Neural Network

RNN - Recurrent Neural Network

LSTM - Long Short-term Memory

ABC - Australian Broadcasting Corporation

SMH - Sydney Morning Herald

GANs - Generative Adversarial Nets

TCP -Transmission Control Protocol

P2P - Peer-to-peer Internet

AAE - Adversarial Auto-encoder

DASH - Dynamic Adaptive Streaming over HTTP

HAS - HTTP based Adaptive Streaming

GMM - Gaussian Mixture Model

GMVAE - Gaussian Mixture Auto-encoder

BNP - Bayesian Nonparametric

ELOB - Evidence Lower Bound

2

Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Encrypted WiFi Traffic Analysis

With the increasing scale of the network, the increasing variety of services, the

increasing number of users, and the increasingly complex network behavior, how to

effectively classify network traffic is an important issue for all network managers.

More than 95% websites are end-to-end encrypted [62; 38]. While Transport Layer

Security (TLS), the underlying security protocol behind HTTPS, provides confi-

dentiality for the message that is being exchanged between two parties, the wide

adoption of end-to-end encryption opens up several issues in terms of network man-

agement. For example, end-to-end encryption eliminates the possibility of traffic

analysis in the core network for intrusion detection and parental filtering. It also

hinders network optimizations carried out by telecommunication operators. Various

parties are using this limitation to distribute problematic content such as fake news,

copy-righted material, and propaganda videos.

Previous research explored the possibility of making inferences based on en-

crypted traffic flows by capturing network data packets at the IP layer [97; 4; 25].

This is viable because despite the message content being encrypted, the statistical

properties of traffic flow such as packet lengths, inter-packet times, burst sizes, and

burst intervals can still reveal information about the underlying encrypted traffic

that is in transit. Also, at the IP level, there are other useful meta-data such as IP

addresses, ports, and TLS header information.

3

In this thesis, we investigate the possibility of making useful inferences from

passively observed WiFi traffic that is encrypted at both the TLS and MAC layers.

This is more challenging in comparison to making predictions from the IP layer

traffic due to the lack of any meta information. As such, there is increasing interest

in making inferences and predictions from encrypted traffic flows.

1.1.2 Deep Learning based Traffic Classification Technology

Traditional traffic classification methods(e.g. port-based and payload-based meth-

ods) have some practical problems, such as dynamic ports and the widespread use of

Hypertext Transfer Protocol Secure (HTTPS). Thus, traffic classification technology

based on machine learning becomes the mainstream. It uses the statistical charac-

teristics of network flow to identify traffic content. These features can be packet

based or network flow based. The statistical characteristics based on data packets

take the data packets in the network flow as the research object, mainly involving

the size of packets, arrival interval, rate, etc. The statistical characteristics based

on network flow take the network flow as the research object, and its characteristics

mainly include flow size (e.g. number of packets, number of bits), duration, num-

ber of flag bits, etc. These methods are mainly used in application classification.

However, there is a strong need to do content classification. For example, whether

specific content has been watched by a specific person. Deep learning (DL) meth-

ods can incorporate feature learning into the process of building models, which can

express more complex information and more completely interpret the relationship

between features. It is more suitable for content identification.

1.1.3 Hierarchical Architecture for Traffic Classification

There are various types of traffic flows in real life and they can come from dif-

ferent providers. There is a need to build a generic traffic classifier that can handle

different types of traffic such as web, video streaming, and audio streaming. A

4

hierarchical architecture is able to exploit commonality in traffic from the same

data provider, but also cater for dedicated classifiers for poorly separated traffic

categories. Furthermore, a hierarchical approach also allows the estimation of net-

work usage characteristics for the purposes of service management in large networks,

which constitutes a first step toward identifying unknown service providers for dif-

ferent traffic classes.

1.1.4 Data Augmentation Technology

The quality and size of the dataset are important factors for the performance of

deep learning based classifiers. Specific to the network domain, the traffic classifier

is very sensitive to the network environment in which the data is captured. For ex-

ample, the traffic flows for the same content vary widely in different environments.

And it is also very sensitive to timeliness. There are also some differences in the

same content traffic of different periods. However, in most cases, we capture data in

a relatively single environment and over the same period. Therefore, how to auto-

matically generate high-quality samples is an important topic. Data augmentation

is a technique that expands a training dataset by generating more equivalent data

from limited data. It is an effective method to overcome the lack of training data

and is currently widely used in various fields of deep learning. There are many data

argument methods, amount of which generative models are commonly used. This

thesis proposed two novel generative models that can generate high-quality samples

by categories automatically.

1.2 Research Objectives

The vast majority of Internet traffic is now end-to-end encrypted. While en-

cryption provides user privacy and security, it has made network surveillance an

impossible task. Recent advances in machine learning techniques have shown great

promise in extracting content fingerprints from encrypted traffic captured at various

5

points in IP core networks. Nonetheless, content fingerprinting from listening to

encrypted wireless traffic is a challenging task due to the difficulty in distinguishing

re-transmissions and multiple flows on the same link. Therefore, in the thesis, we

investigate how to classify WiFi traffic using deep learning methods.

Through this thesis, we show the potential of fingerprinting internet traffic by

passively sniffing WiFi frames in air, without connecting to the WiFi network by

leveraging deep learning methods. In addition, we construct a hierarchical model to

perform a classification of various types of traffic data. Besides, we investigate how

to automatically generate training samples by category using deep learning methods.

This thesis proposes to achieve the following three research objectives:

Research Objective 1○: Classifying encrypted WiFi videos using deep learning

models

Videos are highly popular and are frequently misused in many ways that include

distribution of fake news, hate speech, and radical and propaganda content[37; 21;

23]. In network protection and situational awareness applications, there is a strong

need to identify whether certain known videos are being watched, either by certain

individuals or in a certain region. We designed three deep learning methods for en-

crypted WiFi videos classification: (a) Multi-Layer Perceptron (MLP). We selected

multiple features as shown in Chapter 3. If only one feature has been chosen, the

input size is 1*500. In this case, we can explore feeding this vector into multiple

fully-Connect layers. (b) Convolutional Neural Network (CNN). Schuster et al. [97]

apply a CNN model to classify the content of the traffic. This is similar to the

goal of our work. The CNN model used in [97] reported excellent performance, and

we implement this model as a reference architecture to evaluate the performance

of our models. Note that the CNN model in our case is applied to data captured

through sniffing WiFi wireless signals as opposed to wired traffic. (c) Recurrent

Neural Network (RNN). The behavior of the different video traffic exhibits different

6

patterns with respect to time. We propose using RNNs because of their superiority

in training time sequence data. Specifically, we utilize the Long short-term memory

model (LSTM) which addresses the vanishing gradient problem in classical RNN.

These models are presented in Chapter 3.

Research Objective 2○: Classifying encrypted WiFi traffic using a hierarchical

classifier

Not just limited to video content, we generalize our model to more types of

traffic (e.g. audio and text). Besides, there are multiple content providers for differ-

ent types of traffic. For example, video content provider contains YouTube video,

Netflix, and Stan. Audio content provider contains YouTube Music, Spotify, and

Xiami. Web content provider contains Wikipedia, Australian Broadcasting Corpora-

tion (ABC), and Sydney Morning Herald (SMH). However, most existing approaches

only classify content for one type of data. We aim to design a model that can clas-

sify data hierarchically. We present a hierarchical classifier to make coarse grained

predictions (e.g. web, video, or audio) as well as fine granular predictions (e.g. con-

tent providers’ platforms and exact content). We observe that traffic flows from

the same type of data provider have great similarity, and hence hierarchical classi-

fiers for coarse grain predictions can be deployed. On the other hand, in [119], the

authors show that separability between different traffic flow/application categories

is uneven, with some categories harder to identify. Thus, certain traffic categories

would demand dedicated classifiers. We show that a hierarchical classifier is able to

exploit commonality in traffic from the same data provider, but also cater for dedi-

cated classifiers for poorly separated traffic categories. Furthermore, we show that

a hierarchical approach also allows the estimation of network usage characteristics

for the purposes of service management in large networks, which constitutes a first

step toward identifying unknown service providers for different traffic classes.

This model is presented in Chapter 4.

7

Research Objective 3○: Generating samples by category using Bayesian non

parametric based autoencoders

Deep learning classifiers are largely dependent on the quality and quantity of

the dataset. Especially for the network domain, the classifier is very sensitive to

the timeliness and the network environment in which the data is captured. There

are many existing generative models like VAE [54] and Generative adversarial nets

(GANs) [36] that can generate samples based on the data distribution. For VAE [54],

the prior probability of latent space is a standard Gaussian distribution. However,

using the same prior distribution of different categories makes it hard to generate

data for a certain category. In some cases, we broadly collect data in a certain area,

which makes we do not have label information. To circumvent this problem, in this

work, we proposed two novel generators based on VAEs and Bayesian Nonparametric

models (BNP), which can generate samples of a certain category without the labeled

data required.

These two models are presented in Chapter 5.

1.3 Research Contributions

To achieve the above three research objectives, we have proposed novel modeling

methods described in Chapter 3 to Chapter 5. In each chapter, computational

machine learning methods are designed and optimized based on the main research

objectives. The contributions of this thesis of each work are summarized as follows

(Ch3 to Ch5):

Ch3: Classifying encrypted WiFi video content using deep learning

methods

In Chapter 3, (1) We demonstrate the possibility of making predictions from

encrypted WiFi traffic by building deep learning based classifiers that are able to

identify specific videos from a closed set of videos. (2) We show that our models

8

are able to achieve 97% accuracy in identifying videos from a closed set of 10 videos

purely based on passive measurements collected at the WiFi layer. (3) we evaluate

the longevity of our classifier by making predictions two weeks apart and show that

our classifier is still able to maintain the same level of accuracy.

Ch4: Classifying encrypted WiFi traffic using a hierarchical classifier

In Chapter 4, (1) We build a hierarchical traffic classifier that is able to make

coarse-grained and fine-grained predictions about encrypted traffic flows by leverag-

ing weight-sharing features in convolutional neural networks. (2) We show that our

hierarchical classifier can achieve over 95% accuracy in identifying traffic types such

as web, video streaming, and audio streaming as well as identifying content providers

of traffic and the exact content consumed by the user. (3) We also demonstrate its

potential for classifying previously unseen content to its corresponding traffic type

and content provider.

Ch5: Generating samples by category using Bayesian nonparametric

autoencoders

In Chapter 5, (1) We point out the importance of Bayesian nonparametric models

in generating samples by categories. (2) We proposed two novel generative models

based on VAE and Bayesian nonparametric models. (3) We compare our model with

a state-of-art GMVAE proposed for the same generation task. We show that our

models can achieve a better clustering and generation effect. (4) We explored the

possibility that our models can adapt to incremental data and scale to new clusters.

1.4 Thesis Structure

This thesis mainly talks about classifying WiFi traffic using deep learning meth-

ods. The structure is shown in Figure 1.1 and introduced below:

9

• Chapter 1: This chapter introduces the backgrounds and motivations. Our

research objectives, contributions, and this thesis structure are discussed in

this chapter.

• Chapter 2: This chapter reviews the related work. The current traffic classifi-

cation research progress is included in this chapter.

• Chapter 3: This chapter represents video streaming classification using three

deep learning models. The data collection work, model structure, and experi-

ment results are introduced in this chapter.

• Chapter 4: This chapter represents WiFi traffic classification, which is not

only limited to video traffic but also audio and web. The chapter can seem

like an extension of Chapter 3, which generalize video traffic to different types

of traffic. The dataset, model architecture, and experiment results are included

in this chapter.

• Chapter 5: This chapter introduced two novel generative models. The model

definition, model architecture, and experiment results are discussed in this

chapter.

• Chapter 6: A work summary and future research work are discussed in this

chapter.

10

Ā

Ā

Ā

Ā

Ā

Ā

Ā

Ā

Ā

Figure 1.1 : Thesis structure

11

Chapter 2

Literature Review

In this chapter, we first review the traffic classification methods and techniques,

aiming to give a general background knowledge of traffic classification. Then, we

introduce involved machine learning techniques that are associated with the the-

sis works, including deep learning models, Bayesian non-parametric models, and

generative models, respectively. The literature review structure is shown in Figure

2.1

Bayesian Nonparametric Models

Network Traffic Classifier

Deep Learning Techniques

Foundation

Traffic classification on HTTPS
and Physical Layers

Hierarchical traffic classifier

Data augmentation methods for
network traffic classification

Deep Neural Networks

Deep Generative Models

[Ch3] Classifying encrypted WiFi videos
using deep learning models

[Ch4] Classifying encrypted WiFi traffic
using a hierarchical classifier

[Ch5] Generating samples by category
using Bayesian Nonparametric VAEs

Figure 2.1 : Literature review section structure

2.1 Network Traffic Classifier

2.1.1 Network Traffic Classifier Foundation

With the increasing scale of the network traffic, how to effectively carry out

network management and control, traffic intrusion detection, and network planning

12

and construction is an important issue for all current Internet service providers

and network operators. Traffic classification plays an important role in network

management and supervision. For the existing network traffic classification methods,

according to the technology used, it can be divided into port-based [1], payload-based

[75; 98] and machine learning-based methods.

Port-based methods are more practical when there are limited types of appli-

cation services, that is, a limited number of different types of application services

can be identified according to well-known port numbers. Sen et al. [99] adopt a

passive measurement method to classify the traffic of 3 popular file sharing systems

(Gnutela, FastTrack, DirectConnect) based on the port-based identification. Moore

et al. [77] used the toolkit CoralRef to extract the port information, and successfully

realized the identification of the KaZaA stream (TCP port 1214). However, with

the rapid development of peer-to-peer Internet (P2P), many applications are using

dynamic port allocation. Additionally, to avoid traffic detection and filtering, var-

ious applications have adopted the port hopping technology [71], HTTP tunneling

and anonymization technology [60; 108]. At the same time, the wild use of network

addresses translation technology makes port-based method can only achieve about

50% accuracy [75]. Wei et al. [64]used the port-based method on three datasets

respectively and found that port-based methods are easily affected by the exter-

nal environment, and the classification accuracy is only 31%. Besides, more and

more application traffic is tunneled through HTTPS traffic [90], which limits the

performance of port-based methods [95].

Payload-based methods are traffic detection and control technology based on the

application layer. It reorganizes the application layer information by deeply reading

the content of the IP packet payload, to obtain the content of the application, and

then classify the traffic according to the policy defined by the system. Karagianis

et al. [51] studied 9 common applications and achieved traffic classification by ex-

13

tracting the first 16 bytes of each packet and combined with port heuristic rules.

Sen et al. [98] focused on five traffic classifications (Kaza, Gnutela, eDonkey, Di-

rectConnect, BitTorent) by fully extracting the packet payload. The experimental

results showed the false positive rate and false negative rate of the five applications

are less than 5%. Moore [98] analyzes the defects of the port-based method in de-

tail, and uses 9 identification methods to construct a traffic identification system

based on content characteristics. It shows that this system has a better recognition

accuracy on 10 common network services. The payload-based methods have a high

recognition accuracy and fine classification granularity, which has a significant effect

on ensuring network management. However, with the wide adoption of end-to-end

encryption, payload-based methods face huge challenges [84; 3].

Machine learning-based (ML) methods also known as statistics-based methods,

have become the most popular technology in the field of traffic classification due

to their advantages of wide classification range and the ability to process high-

dimensional data. It have shown their effectiveness to classify encrypted traffic [101;

19; 79; 5; 6; 11; 17; 9; 40; 44; 45; 66; 69; 72; 112; 118; 61; 96; 106; 107; 114; 30; 67].

ML methods learn the patterns of different classes of network flows. In this case,

three main parts of work are completed, namely characterizing traffic flows [24],

modeling traffic flows [87], and extracting specific patterns [26].

Zuev et al. [125] first proposed a probabilistic model-based naive Bayes method,

its recognition rate can reach 67%. However, in practice, it is difficult to guarantee

the two preconditions of the naive Bayes method: the flow characteristics are inde-

pendent and obey a Gaussian distribution. Based on that, Moore et al. [76] used a

fast correlation-based filter algorithm [122] to extract the top 10 attribute features

that are beneficial to traffic classification and used the kernel density estimation

to fit the distribution function, which makes recognition accuracy is significantly

improved, reaching more than 90%. In addition, Moore et al. [10] constructed a

14

three-layer Bayesian neural network structure (246 input units, 10 output units, and

several intermediate node layers), and adopted the minimum risk decision-making

strategy to realize traffic recognition, and the recognition accuracy reached above

95%. However, this type of method has limitations. For example, the number of

layers of network structure and the number of neurons are hard to determine and

it has an over-fitting problem. Nguyen et al. and Hong et al. [78; 46] also did some

research based on naive Bayes methods. ML-based methods have a good classifica-

tion performance, but it is difficult to ensure that the limited training samples can

fully reflect the real distribution characteristics with potential instability.

2.1.2 Traffic Classification on HTTPS Communications

Website fingerprinting and inferring user activities

Previous work explored the possibility of fingerprinting websites. Initially, these

started as means of making inferences from the traffic in Tor network [82; 113] and

later it was shown that the same attacks are feasible for HTTPS traffic flows [18; 83]

as well. Chen et al. [18] shows that due to some basic characteristics of web applica-

tions can cause serious user information leakage. By observing HTTPS traffic, very

detailed personal information can be inferred, such as a user’s disease information,

medications, household income, and investment secrets. For example, the authors

demonstrated that when a user tries to find a specialist via the website OnlineHealth,

the website search pops a drop-down list box based on the user’s location requesting

a very-low-entropy input (i.e limited number of doctor and specialty combinations).

As a result, the attacker is able to identify the doctor, revealing the users’ exact

illness simply through the payload size of data. Recently, Panchenko et al. [83] used

a dataset of over 120,000 web pages to show that fingerprinting websites using a

collection of web pages under the same domain is not only realistic but also highly

accurate. In addition, Rimmer et al. [93] proposed a deep learning-based automatic

15

feature learning process that allows scaling the website fingerprinting to thousands

of websites.

Video streaming

Schuster et al. [97] proposed a convolutional neural network to identify the exact

videos from a closed set on YouTube, Amazon, Vimeo, and Netflix by observing the

traffic in the network layer (e.g IP traffic observed in a router). The authors showed

that packet bursts in encrypted streams correspond to DASH segment requests from

the client, and that burst sizes are highly correlated with the sizes of the underlying

segments. Using statistical features of the traffic flows such as down/up/all bytes

per second and packets per second, the authors were able to achieve over 90%

accuracy in all the platforms. In a similar study, Reed and Kranch [92] developed

a system to identify the Netflix video being delivered by a TCP connection using

the information provided by TCP/IP headers. The authors created a fingerprint

database of 42,027 Netflix videos and showed that an accuracy of over 99.99% can

be achieved. Bu et al. [15] proposed a network-in-network structure and showed

that it can achieve accuracies of 98.3% and 98.5% for traffic type classification

and application classification, respectively. Jin et al. [20] proposed a lightweight

and online approach for large volumes of encrypted traffic classification with high

accuracy and less training time. Recently Schuster et al. presented the first ever

use of CNNs to detect not only the type of traffic but also the content of encrypted

traffic [97]. In their proposal, the authors were able to identify which videos were

downloaded over HTTPS from several video providers using features that consist

of temporal representations of the traffic. The authors obtain very high accuracies

within each video provider. Similar to [97], the authors of [69] proposed a CNN

model to identify the class of traffic based on the characteristics of the sequence of

packets in a given flow.

16

Instant messaging

Coull and Dyer [25] have investigated the encrypted traffic flows of the Apple

iMessage service. The authors showed that it is possible for an eavesdropper to learn

information about user actions, like the language of messages, the length of the mes-

sages by observing the sizes of encrypted packets and achieves 96% accuracy. Park

and Kim [85] proposed a supervised learning framework to identify fine-granular

user activities such as joining/leaving a chat room, adding/blocking a friend, and

viewing a specific user profile in another messaging app, Kakao Talk.

VOIP and audio

Several works have investigated the side-channel information leaks in audio and

voice over IP applications [116; 117; 115; 124]. Wright et al. [116] showed that due

to the variable bit rate codecs used in Skype, the phrases spoken within a call can

be identified by the lengths of encrypted VoIP packets. Using a hidden Markov

model trained on speaker- and phrase-independent data, the authors were able to

detect the presence of some phrases within encrypted VoIP calls with recall and

precision exceeding 90% simply by leveraging the packet lengths of the UDP based

RTP protocol. Zhu and Fu [124] extended the work and showed that the distribution

packet lengths can also be used to identify exact speakers in a VOIP call.

2.1.3 Traffic Classification in WiFi and Physical Layers

One of the non-trivial aspects of side-channel attacks is the possibility of making

inferences through WiFi sniffing. By the time packets are sniffed at the WiFi layer,

the packets are already encrypted twice. Several works described above highlighted

that the traffic artifacts of HTTPS flows are still visible in WiFi frames allowing the

possibility of fingerprinting content consumed by the user [65; 18]. In addition to

inferring direct activities of the users whilst online, Li et al. [63] showed that long-

17

term observation of encrypted traffic flow also reveals demographic information such

as gender and education level.

Recent research has successfully identified video streaming content in encrypted

traffic without using deep learning techniques [91; 41]. In particular [91] focused on

identifying video streaming using a Variable Bit Rate algorithm within encrypted

WiFi traffic using similarity metrics and statistical machine learning. In a similar

manner, but with the addition of DASH streaming, [41] identified video streaming

within WiFi traffic. In their latest work [41], the authors adopted an approach sim-

ilar to [91] by modeling various video streaming traffic. They also applied multiple

statistical machine learning techniques but did not propose a generic method appli-

cable to deep learning techniques. Overall, both methods obtained similar accuracies

of 90%.

More recently, O’Shea et al. [80] further extended the side-channel attacks to the

physical layer and showed that the burstiness created in the application layer is still

visible in the physical layer and can be leveraged to make inferences about the actual

communication taking place over the radio interface. Using the IQ symbols in the

physical layer, the authors trained an LSTM recurrent neural network that is able

to identify some fine granular traffic types such as YouTube, Spotify, and GitHub

activities. Similar physical layer fingerprints were also found in LTE networks [56].

2.1.4 Hierarchical Traffic Classifier

A limited amount of work has looked into the possibility of building a generic

traffic classifier that can handle different classes of traffic such as web, video stream-

ing, and audio streaming. For instance, Grimaudo et al. [39] proposed a hierarchical

classifier that classifies IP traffic into over twenty fine grain classes with four high-

level classes. However, in this work, the ”unknown” classes are identified at the top

of the hierarchy and as a result, the classifier can not relate the unknown traffic

18

types to much closer existing classes. Also, the methodology is based on a ”hier-

archy of classifiers” rather than a single unified classifier. Yu et al. [121] proposed

a hierarchical multi-class SVM classifier mostly focusing on various types of P2P

traffic. Moreover, it has to be noted that both of these works operated at the IP

traffic level where flow information is available.

2.1.5 Data Augmentation Methods for Network Traffic Classification

Deep learning (DL) methods have been increasingly applied to solve encrypted

traffic classification problems. However, the performance of a classifier is largely

dependent on the quality and quantity of datasets. And, it is very sensitive to the

timeliness and the network environment in which the data is captured. In [49],

the authors show how model performance is affected when the testing and training

datasets are collected at different geographical locations.

Data imbalance is another problem encountered by most DL methods[35]. Most

specifically, in the network domain, some protocols/applications over other types

of traffic[43]. Data balancing was proposed to overcome biases encountered when

training models with imbalanced data [22]. Yu et al. [42] proposed a GAN-based

Traffic Augmentation (TA-GAN) for imbalanced traffic classification. It is an end-

to-end framework that integrates the generation of the minority traffic samples with

the training of the target classifier. In addition, Hasibi et al. [43] proposed a novel

traffic data generation method using LSTM networks to generate traffic flows and

estimate kernel density for replicating the numerical features of each class. Most

recently, Pan et al. [111] proposed a novel traffic data generation approach named

PacketCGAN based on the use of conditional GAN, which can control the modes

of data to be generated. PacketCGAN uses Conditional GAN to generate specified

samples with the input of applications’ types as conditional and thereby achieve data

balancing. There is still a lot of research space for data argument. More especially,

in the network domain, the collection of labeled Internet traffic requires a specific

19

setup in a private network (e.g., lab), to capture the traffic and filter it based on

specific parameters [95]. In this case, how to generate samples without labeled data

is an important issue.

2.2 Related Deep Learning Techniques

In this section, we review some deep learning models in detail that are used in the

following chapters. Since the remaining chapters focus more on the corresponding

models for the specific thesis objects, we introduce them here.

2.2.1 Deep Neural Networks

Deep neural networks consist of multi-layer perceptrons. It stimulates the in-

ternal operations of neurons through functions including parameters and weights,

simulates the connections between neurons with the superposition of nonlinear oper-

ations, finally realizes the reintegration of information, and then outputs the results

of classification or prediction. For the difference between the output result of the

neural network and the real result, the neural network will adjust the corresponding

weight layer by layer through the gradient to narrow the difference, to achieve the

best performance.

MLP is a neural network model, which can solve the linear inseparable problem

that cannot be solved by a single-layer perceptron. The neurons in the input layer

receive the input signal, and each neuron in the hidden layer and the output layer

is fully connected. When the multilayer perceptron is used for classification, the

number of input neurons is the dimension of the input data, the number of output

neurons is the number of categories, and the number of hidden layers and hidden

layer neurons depends on the specific situation. MLP is a basic architecture in deep

learning models and is still used in many applications.

CNN is wildly used in image-based applications. Neocognitron [31] can be con-

20

sidered the first implementation of CNN, although there is no global supervised

learning process like the backpropagation algorithm in Neocognitron. The convolu-

tion and downsampling are inspired by the Hubel-Wiesel concept [48]. Based on this

work, LeCun et al. used a backpropagation algorithm to design a CNN, which is

known as LeNet [58]. LeNet is a classic CNN structure, and many subsequent works

have been improved on this basis. The basic structure of a CNN model consists of

an input layer, multiple convolutional layers, multiple pooling layers, multiple fully

connected layers, and an output layer. The convolutional layer consists of multiple

feature maps, and each feature map consists of multiple neurons, each of which is

connected to the local area of the feature map in the previous layer through a convo-

lution kernel. The convolution kernel is a weight matrix (e.g. 3∗3 or 5∗5 for 2D) [58].

The convolutional layer of CNN extracts different features of the input through the

convolution operation. The pooling layer follows the convolutional layer. The Pool-

ing layer chooses a certain way to reduce the dimension of the feature map(e.g. max

pooling, average pooling). It can not only reduce the amount of computation but

also effectively avoid overfitting. After multiple convolutional and pooling layers,

one or more fully connected layers are connected. Similar to MLP, each neuron in

the fully connected layer is fully connected to all neurons in the previous layer. Fully

connected layers can integrate class-discriminative information in convolutional and

pooling layers [94]. Compared with MLP, the weight sharing of convolutional layers

in CNN reduces the complexity of the network model and reduces overfitting, and

thus obtains a better generalization ability [47].

RNN [123] is a type of neural network model for processing and predicting se-

quence data. The neural network with recurrent structure overcomes many limi-

tations of traditional machine learning methods. Traditional Neural networks can

only process one input at a time, that is, the previous input and the next input are

unrelated. However, some tasks require handling sequences, that is, the previous in-

put is related to the following input. For example, when we understand the meaning

21

of a sentence, it is not enough to understand each word of the sentence in isolation.

RNN and its variant networks have been successfully applied to a variety of tasks,

especially when there is a certain time dependency in the data. However, RNNs are

usually difficult to train. After many loops, the gradient tends to disappear. Aiming

at this problem, LSTM [102] was proposed, which can maintain long-term memory

of information and has better performance for processing long sequences.

2.2.2 Deep Generative Models

Unsupervised generative models

VAE is a deep generative model based on the structure of the auto-encoder [54].

The encoder maps the samples to the latent variables in a low-dimensional space,

and then restores the latent variables to reconstructed samples through the decod-

ing process. It assumes that the prior of latent variables is a normal distribution.

This assumption is based on computation convenience, without considering ratio-

nality, which will inevitably affect the generation ability of the model. Importance

weighted autoencoders [16] is one of the most important improvement methods for

VAE models. From the perspective of the variational lower bound, it improves the

performance of the generative model by weakening the role of the encoder in the

variational lower bound.

Many deep generative models generate high-resolution image samples combined

with CNN. Deep convolutional inverse graphics network [57] integrates convolutional

layers into VAE. The structure of the deep convolutional inverse graphics network is

the same as VAE. It replaces the encoder and decoder in the VAE from the original

fully connected layers to the convolutional and deconvolutional layers. Adversarial

autoencoders(AAE) [73] is a generative model that applies the idea of adversarial to

the VAE training process. The main difference between these two is that VAE uses

the KL divergence of the prior distribution and posterior distribution to constrain

22

the hidden variables, while AAE constructs a pseudo-prior distribution to match

the real posterior distribution, which attaches an adversarial network at the hidden

variable layer. This adversarial network consists of a generator and a discriminator.

The generator of AAE uses the same neural network as the encoder to fake the distri-

bution of the hidden variables close to the real, and the discriminator is responsible

for distinguishing the samples obtained from the true and false distributions.

Generative adversarial nets (GANs) [36] is commonly used in the field of image

generation. It converts the difficult-to-solve likelihood function into a neural net-

work, allowing the model to train the appropriate parameters to fit the likelihood

function. It consists of a generator and a discriminator. The goal of the generator

is to generate realistic fake samples so that the discriminator cannot distinguish

between true and false. The goal of the discriminator is to correctly distinguish

whether the data is a real sample or a fake sample from the generator. In this pro-

cess, these two components need to continuously optimize their generating ability

and discriminative ability, and the result is to find the Nash equilibrium between

these two. When the discriminator cannot make a correct judgment, the generator

learns the true data distribution. The discriminator and generator use convolutional

and deconvolutional networks, and each layer uses batch normalization.

Wasserstein GAN(WGAN) [8] theoretically analyzed the defects of the original

GAN, and proposed to replace the KL divergence and JS divergence with Wasser-

stein distance. This change improved the stability of the model. Deep convolu-

tional generative adversarial networks (DCGAN) [88] is an important improvement

of GAN. It selects the best generator and discriminator architecture from various

structures so that the stability has been significantly improved. The deconvolution

structure in the generator has a limited size of the mapping area on the image,

which makes it difficult for DCGAN to generate high-resolution images. The new-

generation GANs, such as BigGAN [14], use residual networks to highly improve the

23

generative ability. It can handle image details very well and generate very realistic

512 × 512 natural scene images. But, a large scaled training set is required in the

training process.

Supervised and semi-supervised generative models

Now, let’s review generative models that can generate samples by category. Aux-

iliary deep generative models(ADGM) [70] represent label information with one-hot

vectors, which enables VAE to process supervised data, essentially adding a con-

ditional constraint to the encoder. This model adds label factors when learning

samples so that VAE can generate corresponding types of samples according to the

specified labels. GMVAE [27] replaces one single normal distribution with a Gaus-

sian mixture as the latent variables’ prior distribution. Their target is unsupervised

clustering learning, while the number of categories is required.

Mirza and Osindero [74] proposed a novel way to train GAN, which feeds label

data y to determine which category data be generated. The original GAN generated

images randomly. Therefore, the authors consider adding some conditional infor-

mation, such as category labels, so that the image generation can proceed in the

specified direction. Specifically, Conditional GAN adds conditional information y

to the input of the generator and the discriminator, and only the images generated

by the generator can pass the discriminator only if they are real enough and match

the conditions. Zhiyue et al. [68] proposed a category-aware GAN(CatGAN). It

measures the distance between real samples and generated samples in each category

and then guides the model to generate high-quality category samples by reducing

this distance.

The above methods focus on data generation by category. And the label infor-

mation is needed in the training process.

24

2.2.3 Bayesian Nonparametric Models

In traditional mixture modeling approach models, the number of parameters in

the model is fixed and does not change with the change of the data. However, the

BNP methods determine the complexity of the model according to the observed

data. Furthermore, BNP models allow for increased complexity as more data are

observed. For example, for unsupervised clustering tasks, BNP methods can learn

the cluster number automatically from the data itself. Compared to parameter-

ized models (e.g. K-means, Gaussian mixture mode), it is much better to set the

number of clusters empirically. Because of the nonparametric nature of their prior

distribution, they have a strong ability to describe the data [32]. This is an im-

portant advantage of non-parametric models. Analyzing data using BNP models

generally follows the pattern of Bayesian data analysis. Each model describes the

data generation process that contains hidden variables. This procedure clarifies the

statistical assumptions made by the model and specifies the joint probability distri-

bution of hidden and observed variables. Given an observed dataset, data analysis

is performed by posterior inference, computing the conditional distribution of the

hidden variables given the observed data. posterior inference finds the distribution

of hidden structures that might generate the observed data. The difference between

BNP and other Bayesian models is the assumption that the hidden structure grows

with the data. Its complexity, such as the number of mixture components or the

number of factors, is a part of the posterior distribution. It does not need to be

specified in advance but is determined as part of the data analysis.

The following will briefly introduce the models and inference methods that we

used in the thesis.

25

Dirichlet Process

Dirichlet process (DP) is a stochastic process defined in probability measure

proposed by Ferguson in 1975 [29], and its parameters are centralized parameter

α > 0 and base probability distribution G. It is denoted as G − DP (a,G). The

probability distribution obtained by the Dirichlet process is discrete and therefore

it is very suitable for constructing mixture models. For example, Antoniak et. [7]

constructed a Dirichlet process mixture in 1974 by adding a generative probability

to each data point.

xi ∼ p(x|θi) (2.1)

where θi ∼ G are the parameters of the probability distribution generated data

point.

Stick-breaking construction [100] is a constructive formulation of the Dirichlet

process. Specifically, a stick of unit length is cut, and each cut is in proportion to

the random variable of the beta distribution:

vk = Beta(1, α), πk = vk

k−1∑
j=1

(1 − vj) (2.2)

As shown in Figure 2.2, for a 1 unit length stick, a v1 length is cut for the first

time, and the vk proportional length of the remaining part is cut each time after

that. The Dirichlet process of cutting sticks is the basis of variational inference [12].

Variational Inference

The variational inference method is a widely used approximate optimization

method [105]. Many problems have been solved in the fields of physics, statistics,

financial analysis, and control science. In the field of machine learning, variational

inference methods also have many applications. Through variational analysis, non-

26

𝑣! 1 − 𝑣!
𝜋!

𝑣" 1 − 𝑣"
𝜋"

𝑣# 1 − 𝑣#
𝜋#

Figure 2.2 : Illustration of stick-breaking construction

optimization problems can be transformed into optimization problems. Some diffi-

cult problems can also be solved by the variational approximate method [110].

In the variational Bayesian method, given the dataset D and the posterior dis-

tribution p(θ|D). The variational method defines the approximate distribution of

the posterior distribution as q(θ). Using Jason’s inequality, evidence lower bound

(ELOB) of the log-likelihood can be obtained.

log p(D) ≥ Eq[log p(θ,D)] − Eq[log q(θ)] (2.3)

By maximizing the ELOB, the optimization process can be completed. There-

fore, the idea of variational inference is to transform the original problem into an

optimization problem to solve the approximate distribution q(θ) and combine an

effective optimization algorithm to complete the task of Bayesian inference [13; 13].

There are some parameters θ and hidden variables h in the model. The optimization

can be solved by the variational expectation maximization method: by introducing

the mean-field assumptionq(θ, h) = q(θ)q(h). And then the variational expectation-

maximization algorithm can be performed iteratively [81].

27

Chapter 3

Classifying Encrypted WiFi Videos Using Deep

Learning Models

This chapter aims to achieve our objective 1○: Classifying encrypted WiFi videos

using deep learning models.

3.1 Introduction

As introduced in Chapter 1, more than 95% of global Internet traffic is currently

end-to-end encrypted [62; 38]. It makes there a strong need to make inferences and

predictions from encrypted traffic flows. Previous research explored the possibility of

making inferences based on encrypted traffic flows by capturing network data packets

at the IP layer [97; 4; 25]. This is viable because despite the message content being

encrypted, the statistical properties of traffic flow such as packet lengths, inter-

packet times, burst sizes, and burst intervals can still reveal information about the

underlying encrypted traffic that is in transit. Also, at the IP level, there are other

useful meta-data such as IP addresses, ports, and TLS header information.

This work investigates the possibility of making useful inferences from passively

observed WiFi traffic that is encrypted at both transport layer and MAC layer. This

is more challenging in comparison to making predictions from the IP layer traffic

due to the lack of any meta information.

Videos are highly popular on the Internet but are frequently misused in many

ways. Therefore, we focus on identifying traffic flows from a set of known online

videos. To summarize this chapter’s work, we list the main contributions as follows:

28

• We demonstrate the possibility of making predictions from encrypted WiFi

traffic by building deep learning-based classifiers that are able to identify spe-

cific videos from a closed set of videos when they are streamed from a popular

video service, i.e. YouTube via Dynamic Adaptive Streaming over HTTP

(DASH).

• We show that a simple Multi-Layer Perception architecture is able to achieve

97% accuracy in identifying videos from a closed set of 10 videos purely based

on passive measurements collected at the WiFi layer.

• Finally, we evaluate the longevity of our classifier by making predictions two

weeks apart and show that our classifier is still able to maintain the same level

of accuracy.

3.2 Method

3.2.1 DASH Streaming

Video streaming over the Internet has shifted to what is commonly referred as

HTTP-based Adaptive Streaming (HAS). HAS works by encoding multiple versions

of original content with different bit rates and resolutions. The encoding bit rates

recommended by YouTube for video streaming are 8, 5, and 1Mbps for video res-

olutions of 1080p, 720p, and 360p respectively for frame rates up to 30fps. Each

version of the video is split into smaller chunks (or segments), typically 2-4 seconds

in length. These chunks are then stored on a web server which can be accessed

by clients on demand using simple HTTP GET requests from a video streaming

client running one of the HAS algorithms. Since HTTP operates on top of TLS,

all data including HTTP headers are encrypted and can only be decrypted at the

endpoints. For each video, the relationships between the chunks and video infor-

mation are stored in a manifest file. A user trying to stream a particular video is

29

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140 160 180

D
ow

nl
in

k
da

ta
 p

ac
ke

t c
ou

nt

Time (Seconds)

Run 1
Run 2
Run 3
Run 4

Figure 3.1 : I/O graphs of different traffic flows for the same video

first presented with this manifest file. The client video player (known as the DASH

player) uses information from a server manifest file and current network conditions

to dynamically adapt the stream.

As a result, streaming video with the DASH player creates a traffic profile that

typically contains periodic spikes of downloads of potentially different magnitude

based on the network condition (illustrated in Figure 3.1). These spikes are related

to downloading the next series of chunks of the video followed by a waiting time until

the user has played a certain percentage of the downloaded chunk. In particular, we

can see in Figure 3.1 how the DASH player adapts to various network conditions by

requesting different quality chunks, e.g. “Run 4” contains fewer packets compared

to other runs.

3.2.2 Preprocessing & Feature Engineering

Data Filter

The WiFi captures include any data packet transmitted on our selected channel

within proximity of the air environment. These packets were encrypted by IEEE

802.11 protocol using WiFi protected access 2 (WPA2), therefore it was impossible

to extract any layer 3 and above protocol information such as port numbers or to

30

Table 3.1 : Feature selection from wireless traffic data

Traffic Direction Feature Name

Uplink F1. Number of Packets (data)
Downlink F2. Number of Bytes (data)
Combination (up and down) F3. Number of Packets (non-data)

F4. Number of Bytes (non-data)
F5. Minimum packet size
F6. Maximum packet size
F7. Average packet size
F8. Variance packet size

apply deep packet inspection. Instead, we obtain several basic parameters from the

MAC layer, for instance, the frame size, frame type, frame duration time, radio

information including signal strength and noise level, and MAC addresses of the

source and destination.

Frame Type Identification

According to the IEEE 802.11 protocol, the MAC frames of the filtered target

data are divided into three types: management frames, control frames, and data

frames, of which data frames are most closely related to video classification. Hence,

data packets are selected from the target laptop using the packet size parameter to

only capture frames with a size greater than or equal to the minimum packet size

in a wired network.

Feature Engineering

The captured data consists of the first three minutes of each video stream. This

traffic is later grouped into up-link, down-link, and combination (up and down)

frames. For each group, we binned each feature in 500 bins of 0.36 seconds for ease

of statistical computations. Features are generated from a sliding window over these

bins.

31

In each temporal bin, we compute the features that characterize the dynamic

aspect of the traffic: number of packets in data frames, number of bytes in data

frames, number of packets in management and control frames, and number of bytes

in management and control frames. In addition, the traffic waveform of MPEG-

DASH video streaming from YouTube fluctuates depending on the video content.

Accordingly, four additional features, namely the minimum size of packets, maxi-

mum size of packets, average size of packets, and variance of packet size, all within

the studied time period, are constructed to further characterize video streaming

traffic. These features are summarised in Table 3.1.

3.2.3 Classifier Architectures

Convolutional Neural Network Model

As explained in Section 2, Schuster et al. [97] apply a CNN model to classify the

content of the traffic. This is similar to the goal of our work. The CNN model used

in [97] reported excellent performance, and we implement this model as a reference

architecture to evaluate the performance of our models. Note that the CNN model

in our case is applied to data captured through sniffing WiFi wireless signals as

opposed to wired traffic. The architecture of the CNN model in Figure 3.3(a) is

cascaded by an input layer, three convolution layers, a max pooling layer, and two

fully connected layers.

Long Short-Term Memory Model

The behavior of the different video traffic exhibits different patterns with respect

to time as illustrated in Figure 3.2.

32

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140 160 180

Pa
ck

et
 c

ou
nt

Time (Seconds)

Video 1

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140 160 180
Time (Seconds)

Video 2

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140 160 180
Time (Seconds)

Video 3

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140 160 180
Time (Seconds)

Video 4

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140 160 180
Time (Seconds)

Video 5

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140 160 180

Pa
ck

et
 c

ou
nt

Time (Seconds)

Video 6

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140 160 180
Time (Seconds)

Video 7

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140 160 180
Time (Seconds)

Video 8

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140 160 180
Time (Seconds)

Video 9

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140 160 180
Time (Seconds)

Video 10

Figure 3.2 : I/O graphs of a single run for 10 different videos

33

These graphs are exported from WireShark’s statistic tools, where the X-axis is

the time sequence with 1s interval and the Y-axis is the count of data packets on

the down-link flow. The distribution of the spikes in different video traffic follows

a specific time sequence. This indicates that the time correlation of the feature

values is crucial. Hence, we propose using RNNs because of their superiority in

training time sequence data. Specifically, we utilize LSTM models which address

the vanishing gradient problem in classical RNNs.

As shown in Figure 3.3(b), the input to the LSTM network is a fixed-size 500×1

array in which 500 denotes time steps and 1 denotes a single feature. This network

has two hidden layers and each hidden layer has 32 neural nodes.

Multi-Layer Perceptron Model

During training, if just one feature was chosen the input to our network is a

fixed-size 500 array. The array is passed through a stack of Fully-Connected layers.

Through experiments, we acquired a high classification accuracy using two hidden

layers and one dropout layer. The first hidden layer has 300 neural nodes and the

second hidden layer has 100 neural nodes as shown in Figure 3.3(c).

3.3 Experiments and Results

3.3.1 Dataset and Evaluation Metric

To explore the feasibility of eavesdropping attacks over an encrypted wireless

network, we configured a laptop to connect to an 802.11n WiFi access point using

channel 6 of the 2.4 GHz spectrum with WAP2 encryption. From this laptop, we

repeatedly downloaded the same 10 videos from YouTube.∗ On a separate laptop,

we used AirPcap Nx from Riverbed† to passively capture all the frames available

∗List of YouTube videos is presented on
https://cloudstor.aarnet.edu.au/plus/s/kZekE1nN3r0Xvog

†https://www.riverbed.com

https://www.riverbed.com

34

64 ReLU
0.5 Dropout

10 x 1
Softmax32 ReLU

500 x 1
Input layer

conv
1 x 16

conv
1 x 16

conv
1 x 16

max
pooling

1 x 6
Dense Dense

32 ReLU 32 ReLU
0.5 Dropout

32 ReLU
0.7 Dropout

(a) CNN Model

Input Layer
(1 x 500 time steps)

Dense Layer

Dense Layer

Softmax Layer

(b) LSTM Model

500 x 1
Input layer

300 x 1

100 x 1
0.5 Dropout

10 x 1
Softmax

(c) MLP Model

Figure 3.3 : Architecture of different models

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

35

Figure 3.4 : Data collection setup

on this channel regardless of the Ethernet address within the frame. This setup is

illustrated in Figure 3.4.

Overall, we captured wireless traffic in a campus environment of 10 videos for

more than 300 times for each video. For each video, we only captured the first three

minutes of the stream. In addition, a registered YouTube Red account was used to

avoid advertisements. These files were later post-processed using the Scapy Python

library to extract frames associated with the targeted laptop Ethernet address. We

called this dataset as YouTube traffic dataset. We shuffle the captured traffic and

then split them into training and testing sets in ratios of 80% and 20% respectively.

We adapt classification Accuracy for evaluation. The accuracy represents the

proportion of correctly predicted samples in all samples. It is the most intuitive

evaluation metric in classification problems. As our dataset is balanced, accuracy is

a good measure of our models.

3.3.2 Implemention Details

We implement our models with Tensorflow [2]. The batch size is set as 64. We

use Adam optimizer [53] and set learning rate as 0.0001. The activation function is

ReLU [34]. The batch normalization decay and batch normalization epsilon are set

as 0.5 and 0.001. The total training epoch number is 100.

Internet

Streaming server
E.g. YouTube

Simulated by
continuously streaming

a video from a set of
10.

Target user

WiFi
Network

Attacker
Simulated by

eavesdropping the
encrypted WiFi channel.

36

Table 3.2 : Feature evaluation for CNN model

Feature Name Down-link Up-link Sum

Packet number (data) 0.96714 0.97183 0.96870
Packet size (data) 0.96575 0.96714 0.96870
Packet number (non-data) 0.96714 0.97500 0.96870
Packet size(non-data) 0.96714 0.97183 0.96870
Minimum packet size 0.96244 0.94992 0.93740
Maximum packet size 0.96557 0.95305 0.96714
Average packet size 0.97027 0.94992 0.96400
Variance packet size 0.94053 0.91862 0.96557

3.3.3 Performance

In this section, we evaluate and demonstrate the effects of using our selected

features in combination with the three neural network models outlined above.

Classification Performance on CNN Model

As previously mentioned, during the data collection period about 3,198 video

streaming samples of 10 videos were captured from YouTube Red. The input of the

CNN model is a 500 × 1 array where 500 denotes the number of temporal bins of

0.36 seconds and 1 denotes one feature. Each feature is utilized one by one to train

the model and the corresponding test accuracy results are presented in Table 3.2.

The performance of the CNN model, as shown in Figure 3.5 and Figure 3.6(a),

is on par with results from Schuster et al. [97]. As mentioned in Chapter 1, our data

in this thesis was captured by WireShark through AirPcap, not directly through the

WLAN interface. Thus, there is much more noise in our captured data compared

to the wired data from [97]. However, the accuracy of the trained model appears to

be robust against such noise.

37

Table 3.3 : Feature evaluation for LSTM model

Feature Name Down-link Up-link Sum

Packet number (data) 0.93427 0.95931 0.93114
Packet size (data) 0.90923 0.90141 0.94366
Packet number (non-data) 0.93271 0.96088 0.93271
Packet size(non-data) 0.90767 0.93897 0.83881
Minimum packet size 0.94679 0.86385 0.87793
Maximum packet size 0.79186 0.90454 0.90767
Average packet size 0.78247 0.89202 0.95775
Variance packet size 0.83099 0.71831 0.85916

Classification Performance on LSTM Model

We configured the LSTM model to select a single feature at a time. However, the

input to the LSTM model is different from that of the CNN model because it is a

sequence of 500 steps corresponding to the number of temporal bins of 0.36 seconds

from the traffic traces. The corresponding test accuracy results are presented in

Table 3.3.

Similarly, as with the CNN model, we applied each feature to train the LSTM

model. As we can see in Figure 3.5, the LSTM model performs relatively well to de-

tect and classify the video with an accuracy ranging from 72% for packet size variance

to 96% for the number of packets in the sliding window in the uplink. In particu-

lar, we see that the LSTM model performs slightly worse than the state-of-the-art

CNN model [97]. To better understand these results we present in Figure 3.6(b) the

confusion matrix of the LSTM model.

Classification Performance on MLP Model

Here, a video streaming flow is represented as a 500× 1 array input to the MLP

model with only one feature chosen. To seek the optimal MLP configuration scheme,

hyper-parameters such as feature selection, the number of hidden layers, the number

of nodes in each hidden layer, and the choice of activation function were evaluated

38

 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

F1 F2 F3 F4 F5 F6 F7 F8

Ac
cu

ra
cy

 %

(a) Down-link frames

 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

F1 F2 F3 F4 F5 F6 F7 F8

Ac
cu

ra
cy

 %

(b) Up-link frames

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

F1 F2 F3 F4 F5 F6 F7 F8

Ac
cu

ra
cy

 %

(c) Up and down combined

Sum

0.97183
0.97340
0.97496
0.96714
0.87950
0.96244
0.96714

0.71830 0.70423 0.96870

by both empirical analyses and experimental results. The test accuracy results are

presented in Table 3.4.

The results demonstrate that the MLP structure with 500 × 1 input (i.e. only

one feature was selected) and 2 hidden layers could provide excellent performance

(shown in Figure 3.5).

We observe from Figure 3.5 that, surprisingly, feature F3 “Number of Packets

(non-data)” achieved the best performance not only on down-link traffic but also on

bi-direction traffic. Examining up-link traffic, feature F2 “Number of Bytes (data)”

performed best. Combining the traffic direction and feature type, the “Number

of Packets (non-data)” on down-link traffic of video streaming trained the most

accurate model (accuracy of 97.5%). Note that increasing the number of hidden

Feature Name Down-link Up-link

0.97340 0.96714
0.96557 0.97027
0.97496 0.96401
0.97183 0.96714
0.95149 0.88420
0.96244 0.91393
0.96244 0.86072

Packet number (data)
Packet size (data)
Packet number (non-data)
Packet size(non-data)
Minimum packet size
Maximum packet size
Average packet size
Variance packet size

CNN LSTM MLP
Figure 3.5 : Accuracy of various neural network models

Table 3.4 : Feature evaluation for MLP model

39

Table 3.5 : MLP model accuracy with new dataset two weeks later

Feature Name Down-link Up-link Combined

Number of Packets (data) 0.95667 0.96334 0.97334
Number of Bytes (data) 0.95667 0.96334 0.97000
Number of Packets (non-data) 0.95334 0.96334 0.96000
Number of Bytes (non-data) 0.97000 0.95667 0.96000
Minimum packet size 0.95000 0.85000 0.86334
Maximum packet size 0.95000 0.89667 0.95667
Average packet size 0.97000 0.81667 0.97000
Variance packet size 0.67334 0.67667 0.97334

layers and changing the position of the dropout layer did not achieve any further

gain in performance.

To better understand the performance of our MLP classifier, we present in Fig-

ure 3.6(c) the confusion matrix for all ten videos based on the optimum model.

Other feature combinations were also validated using an MLP model with an

input vector of 500 × k entries where k denotes the number of features. The input

vector was constructed by splicing the 500× 1 vectors of different features together.

The performance was lower than those obtained using a single feature.

To demonstrate time independence of the MLP model, we captured the traffic

flows for the same 10 videos after 2 weeks and tested it again on the MLP model.

The results are shown in Table 3.5. It is clear that the performance of the model on

new test sets and old test sets is maintained.

3.3.4 Performance Analysis

In this thesis, three neural network architectures were implemented and used to

train a video classification model. The results aforementioned showed that all models

achieve similar performance. Next, we analyze the three deep learning architectures

in detail and clarify the limitations of our models.

40

1 2 3 4 5 6 7 8 9 10

Predicted video ID

1

2

3

4

5

6

7

8

9

10

Tr
ue

 v
id

eo
 ID

0

20

40

60

80

100

(a) CNN

1 2 3 4 5 6 7 8 9 10

Predicted video ID

1

2

3

4

5

6

7

8

9

10

Tr
ue

 v
id

eo
 ID

0

20

40

60

80

(b) LSTM

1 2 3 4 5 6 7 8 9 10

Predicted video ID

1

2

3

4

5

6

7

8

9

10

Tr
ue

 v
id

eo
 ID

0

20

40

60

80

100

(c) MLP

Figure 3.6 : Classification performance confusion matrix for models with F1 (number
of packets (data) on down-link)

Firstly, we focus on the optimal model structure to explore the underlying factors

for acquiring high MLP performance. In the MLP architecture, each of F1, F2,

F3, and F4 which are directly obtained from the captured traffic files could achieve

excellent performance on down-link, up-link, and combination of bi-directional links.

Intuitively, it is expected that the number of packets in the data frame provides the

best performance because the video contents are encapsulated in data frames. This

result can be explained by the number of packets per second of different videos

as shown in Figure 3.2. This figure validates that the fluctuation of ”number of

packets” along with time is a crucial characteristic to distinguish between videos.

This was also demonstrated in [97] for the case of a wired network capture. On the

other hand, it is worth noting that non-data frames can also be exploited to classify

video streaming accurately. This demonstrates that not only the bursts generated

by video content but also the interaction information between server and client carry

information.

In addition, the performance of other features (F5, F6, F7, and F8) generated

from the originally captured data is not stable. From Figure 3.1, it is clear that the

traffic waveforms of the same video captured at different times share many common

characteristics, especially the time sequence of wave peak and wave trough. However,

the amplitude variation of these waves is dependent on the WiFi signal environment

41

0.0 0.2 0.4 0.6 0.8 1.0
t-SNE component 1

0.0

0.2

0.4

0.6

0.8

1.0

t-S
NE

 c
om

po
ne

nt
 2

t-SNE embedding of the la t layer
Video 1
Video 2
Video 3
Video 4
Video 5
Video 6
Video 7
Video 8
Video 9
Video 10

Figure 3.7 : T-SNE embedding of the last layer

due to the DASH rate adaptation. Therefore, the probable reason that the generated

features could not provide steady or reliable performance is that the noise would

be magnified by the generated features. This would result in overfitting during the

model training.

Next, we analyze the performance of both CNN and LSTM models. CNNs

are advantageous in the image processing field [59]. However, seeking suitable and

related features to generate meaningful convolution in other application domains is

a challenge, in spite of prior work [97]. It is worth noting that the paper [97] stated

significant noise in traffic as a limitation of their model. As we sniff the traffic signal

using AirPcap, the same drawback applies. Moving to the LSTM model, LSTM

schemes can classify dynamic time sequence behavior and can process arbitrary

input series of time sequence using its internal memory. Video streaming is by

definition a time sequence, hence our consideration of LSTM. Even though we do

not use video content but focus on fingerprints extracted from the original video,

the performance of the LSTM model is considered satisfactory.

In order to better visualize the optimal MLP classification, we apply t-SNE on

the output of the last hidden layer of the original dataset and present the result in

42

Figure 3.7. In this figure, we can see that some videos can overlap, in particular

videos 2 and 7. This can be explained by their relatively close streaming pattern as

shown in Figure 3.2.

3.4 Summary

In this chapter, we present three deep learning models to classify encrypted WiFi

video traffic. we investigated the possibility of discovering video-streaming content

from passively observed WiFi traffic that is encrypted at both transport layer and

MAC layer.

In order to unveil this WiFi video traffic, we proposed three types of neural

networks, namely a Recurrent Neural Network and a Multi-Layer Perceptron, and

a Convolutional Neural Network to analyze the captured traffic. Overall, we have

demonstrated that by leveraging the particular DASH pattern of each video, the

MLP model was able to achieve 97% accuracy in identifying videos from a closed

set of 10 videos in encrypted WiFi traffic. This high accuracy was later re-evaluated

when, two weeks after the original data collection, we collected a new set of data,

and using the same original model we were able to obtain similar performance. Thus

demonstrating the robustness of our approach.

43

Chapter 4

Classifying Encrypted WiFi Traffic Using A

Hierarchical Classifier

4.1 Introduction

We introduced the models for video traffic classification in Chapter 3. Not only

videos but also audios and websites need to be classified.

This work investigates the possibility of classifying traffic flows using a hierar-

chical architecture. It can make coarse-grained predictions (e.g. web, video, or

audio) as well as fine granular predictions (e.g. content providers/platforms and

exact content). Furthermore, we show that a hierarchical approach also allows the

estimation of network usage characteristics for the purposes of service management

in large networks, which constitutes a first step toward identifying unknown service

providers for different traffic classes.

To summarize this chapter’s work, we list the main contributions as follows:

• We extend the idea of content fingerprinting to build a hierarchical traffic

classifier that is able to make coarse-grained and fine-grained predictions about

encrypted traffic flows by leveraging weight sharing features in convolutional

neural networks.

• We show that our hierarchical classifier can achieve over 95% accuracy in

identifying traffic types such as web, video streaming, and audio streaming as

well as identifying content providers of traffic and the exact content consumed

by the user.

44

• we demonstrate its potential for classifying previously unseen content to its

corresponding traffic type and content provider.

4.2 Method

As stated in Chapter 1, there are different traffic flows using HTTPS communi-

cation such as video, audio, and web traffic. It is challenging to classify these traffic

flows especially when they are encrypted. In this section, we explain the design of a

hierarchical traffic classifier that is able to identify different HTTPS content types at

the higher level and at lower levels and identify different content providers/platforms

and their exact content.

4.2.1 Streaming and Other Time Sensitive Traffic

As stated in Chapter 3, video streaming over the Internet has shifted to what is

commonly referred to as HAS. Similarly, other types of encrypted web traffic have

unique temporal patterns. We illustrate this in Figure 3.1 using example I/O graphs

of each HTTPS content type from three platforms. We selected YouTube, Netflix

and Stan as the three video platforms, YouTube Music, Spotify and Xiami as the

audio platforms, Wikipedia, ABC and SMH as the Web websites, and we randomly

choose some videos, songs and web pages.

As shown in Figure 3.1, video traffic fluctuates significantly due to DASH. Audio

streaming starts with a large burst and steadies afterward. For web browsing, the

traffic peaks can have larger time gaps corresponding to surfing patterns. Also,

it is noticeable that for the same HTTPS content type, the traffic patterns are

completely different across platforms due to the changes in encoding and the specifics

of streaming protocols. For example, among video platforms, Netflix loads most of

the data at the beginning of each playback, while YouTube loads data periodically.

Similarly, Spotify loads data periodically during the playback, while Xiami loads

everything at the start.

45

4.2.2 Architecture

We show the network architecture of our hierarchical classifier in Figure 4.1. The

model consists of four parts: i) common module, ii) traffic type classification module,

iii) content provider classification module, and iv) content classification module.

The common module consists of two convolution layers that extract the shallow

features from the original data before being fed into next the classification modules.

This allows the reduction of the number of parameters by weight sharing and has

been used successfully in image classification tasks [119].

The traffic type classification module that classifies HTTPS traffic types (e.g.

video, audio, and web), consists of 1 convolution layer, 1 max pooling layer, 1

fully connected layer, 1 dropout layer and 1 fully connected layer. The content

provider classification module is used to classify the traffic source, i.e. the content

platform where the traffic comes from. Based on the prediction of the traffic type

classification module, the output of the common module is fed into the content

provider classification module with corresponding weights which have been trained

for video, audio and web text types separately. The architecture of this module is the

same as the traffic type classification module. Similarly, the content classification

module is utilized to classify the sub-classes based on the result from the content

provider classification module. The output of the first CNN layer of the content

provider classification module is fed into this module. This module is comprised of

2 convolution layers, 2 max pooling layers, 2 fully connected layers and 1 dropout

layer. The filter size of convolution layers in our hierarchical classifier is 1× 16 and

each convolution layer has 32 filters. The filter size of max pooling layers is 1 × 6.

This architecture also allows handling previously unknown content towards an

open-set classification. From our hierarchical approach, the classifier is able to

identify at least the type of content if a new content provider is detected. For

example, if a new video content platform emerges and thus has not been seen during

46

Figure 4.1 : Hierarchical classifier architecture

the training phase, our traffic type classification module will still classify the traffic

as video because of the common characteristics of video traffic.

Here, we utilize a CNN module as the unit of the hierarchical classifier for three

reasons. CNN models are known for their hierarchical feature extraction capabilities.

For example, multiple works that studied the filter responses of image classifying

CNNs [28; 33; 103] demonstrated that filters of the initial layers learn to identify

high level patterns such as lines, and the filters in deep layers learn to identify more

complex shapes such as people and texture. Such behavior would fit well into the

structure of our dataset where different levels of granularities are required first to

identify traffic type, next the platform, and finally the exact content. Besides, a

CNN module can extract features through filters layer by layer from original data

at different granularity levels which is suitable for our multiple level hierarchical

structure. In our hierarchical classifier data set, there are video, audio, and web

traffic, three types of traffic from different content providers. Thus, it is intuitive to

utilize a CNN module to extract features on different granularity levels to identify

47

the traffic type and content providers.

4.2.3 Training Process

As previously mentioned, our classifier model is divided into three levels. Cor-

responding to the three-level network structure, each sample has three labels, that

is, traffic type label, content provider label, and content label.

We trained the whole model in three stages. In the first stage, training data

and their traffic type labels are fed into the common module and the traffic type

classification module to classify HTTPS traffic. After this training, the weights of

the two modules are fixed. In the second stage, we separately fed video, audio

and web page data flows through the pre-trained common module and then fed the

output of the common module into the corresponding content provider classification

module based on the classification result of the traffic type module. In this stage, we

trained the content provider classification module with the corresponding label. At

the final stage, we trained the content classification module by freezing the weights

of the pre-trained module. The details are shown in Algorithm 1.

4.3 Experiments and Results

4.3.1 Dataset

We configured a laptop to connect to an 802.11n WiFi access point using channel

6 of the 2.4 GHz spectrum with WPA2 encryption. From this laptop, we repeatedly

downloaded the same video, audio, and web browsing content. In particular, we first

selected 30 different videos on Netflix, Stan, and YouTube; 10 songs on YouTube

Music, Spotify, and Xiami; and 10 web page lists from Wikipedia, ABC News, and

Sydney Morning Herald every three minutes.∗ In a university environment, we ac-

∗The lists of videos, songs, and web pages are presented on
https://cloudstor.aarnet.edu.au/plus/s/enerU4Gg54SShdC

48

Algorithm 1 Hierarchical training process

Required: NNcomm,NNtype,NNprovider,NNcontent

Required: Ktype, Kprovider = number of traffic type categories, number of content
provider categories
Required: X,Y1,Y2,Y3 =data, traffic type label, content provider label, con-
tent label
Update NNcomm and NNtype through minimizing cross-entropy loss:

Ltype = −ŷ1 log(NNtype(x))

for k = 1 to Ktype do
Update NNprovider k through minimizing cross-entropy loss:

Lprovider = −ŷ2 log(NNprovider(x))

end for
for k = 1 to Kprovider do

Update NNcontent k through minimizing cross-entropy loss:

Lcontent = −ŷ3 log(NNcontent(x))

end for

cessed the selected content via a web browser over 100 times and we captured the

first three minutes of each stream in the eavesdropper computer. On this eavesdrop-

per laptop, we used AirPcap Nx from Riverbed to passively capture all the frames

available on this channel regardless of the Ethernet address within the frame. We

note that in the case of YouTube Music and Video, we also used a premium account

to remove advertisements. Furthermore, to simulate simple web surfing, we opened

18 URLs one by one at 10 seconds intervals to obtain one three-minutes sample

of web surfing. Finally, we filtered the captured traffic to record only data frames

from and to a target MAC address, which we can consider as a unique identifier and

therefore that a single user corresponds to a given MAC address.

Overall, we collected two datasets. Dataset 1 contains 9,000 samples in total

consisting of 3,000 samples each for video, audio, and web. And within each content

provider of video, audio, and web, there are diverse sub-classes; that is, 10 videos,

10 songs, and 10 lists of web pages, respectively. Dataset 2 is an imbalanced dataset

49

that contains 15,000 samples, in which 9,000 samples from video, 3,000 samples

from audio and 3,000 samples from web pages. And within each content provider

of video, audio, and web, there are 30 videos, 10 songs and 10 lists of web pages

respectively. For dataset 1, We divided it following a 70-30 partition where 70% of

data was used as the closed set. In other words, samples of 7 videos, 7 songs and

7 lists of web pages were used to train and test the hierarchical model in a closed

set scenario and the other 30% of data which includes samples of 3 videos, 3 songs

and 3 lists of web pages were used as unknown data to test the performance of our

model akin to a more generic setup (also referred hereafter as real-world setup). For

the closed set classification, we shuffle the 70% of captured traffic and then split it

into training, development and testing sets in 60% :20% :20% ratio.

4.3.2 Evaluation Metrics

We adopt four popular classification metrics Accuracy, Precision, Recall, and

F1-score for evaluation.

Accuracy represents the proportion of correctly predicted samples in all samples.

It is the most intuitive evaluation metric in classification problems. But, when the

proportion of samples of different categories is very unbalanced, the category with

a large proportion tends to be the most important factor affecting the accuracy. In

this case, we have to consider other evaluation metrics including precision, recall,

and F1-score. Precision refers to the ratio of correctly classified positive samples

to the number of samples predicted as positive by the classifier. This is a statistic

focusing on the samples determined by the classifier to be positive. Recall refers

to the ratio of correctly classified positive samples to the number of true positive

samples. This is a statistic focusing on the real positive samples. Precision and

recall are a trade-off relationship. F1 score is the harmonic mean of precision and

recall.

50

Table 4.1 : Hierarchical model results on dataset 1 (in percent)

Feature F3-Downlink F1-Combination F6-Combination

Accuracy Precision Recall F1-
score

Accuracy Precision Recall F1-
score

Accuracy Precision Recall F1-
score

Traffic
Type

98.22 98.23 98.22 98.21 99.03 99.03 99.03 99.03 98.70 98.70 98.70 98.70

Content Provider Classification Module

Video 97.54 97.71 97.54 97.54 97.05 97.08 97.05 97.05 98.53 98.54 98.53 98.52
Audio 98.28 98.37 98.28 98.29 99.51 99.5 99.51 99.51 99.75 99.76 99.75 99.75
Web 98.10 98.10 98.10 98.10 98.81 98.81 98.81 98.81 99.05 99.06 99.05 99.05

Content Classification Module

YouTube
(V)

96.35 96.36 96.35 96.34 95.62 95.77 95.62 95.65 95.62 95.66 95.62 95.61

Netflix 67.18 72.71 67.18 67.74 53.44 60.70 53.44 50.70 54.20 60.34 54.20 52.67
Stan 55.40 61.68 55.40 52.64 55.40 56.65 55.40 55.19 54.68 53.95 54.68 54.17
Spotify 24.03 19.71 24.03 20.99 17.83 20.11 17.83 8.72 24.03 22.28 24.03 19.95
Xiami 18.98 31.86 18.98 19.26 16.79 16.17 16.79 13.20 26.28 27.48 26.28 23.06
YouTube
(M)

97.16 97.66 97.16 97.21 99.29 99.32 99.29 99.29 100 100 100 100

ABC 99.30 99.33 99.30 99.30 98.59 98.62 98.59 98.59 99.29 99.33 99.30 99.30
WikiPedia 88.89 89.10 88.89 88.78 96.53 97.04 96.53 96.58 95.83 96.52 95.83 95.82
SMH 97.76 97.80 97.76 97.74 94.03 94.76 94.03 93.98 97.02 97.10 97.02 97.01

51

Table 4.2 : Hierarchical model results on dataset 2 (in percent)

Feature F3-Downlink F1-Combination F6-Combination

Accuracy Precision Recall F1-
score

Accuracy Precision Recall F1-
score

Accuracy Precision Recall F1-
score

Traffic
Type

99.46 99.46 99.46 99.46 99.42 99.42 99.42 99.42 98.88 98.88 98.88 98.88

Content Provider Classification Module

Video 98.05 98.09 98.05 98.06 98.11 98.13 98.11 98.11 97.30 97.30 97.30 97.29
Audio 99.02 99.02 99.02 99.02 99.51 99.51 99.51 99.51 99.75 99.76 99.75 99.75
web 98.33 98.34 98.33 98.33 99.29 99.29 99.29 99.29 99.05 99.06 99.05 99.05

Content Classification Module

YouTube
(V)

80.45 81.51 80.45 80.19 64.43 69.30 64.43 61.87 72.63 74.47 72.63 72.76

Netflix 87.57 88.37 87.57 87.29 71.65 77.19 71.65 70.89 62.14 64.08 62.15 61.78
Stan 49.54 54.02 49.54 49.27 46.75 52.51 46.75 46.47 33.40 32.98 32.98 32.98
Spotify 27.13 23.14 23.14 24.052 20.16 8.12 20.16 10.44 20.38 21.19 19.380 12.70
Xiami 24.09 47.17 24.09 16.25 18.25 36.10 18.25 14.72 16.06 17.52 16.06 11.58
YouTube
(M)

85.11 87.46 85.11 85.14 100 100 100 100 98.58 98.58 98.58 98.57

ABC 99.30 99.33 99.30 99.30 100 100 100 100 98.59 98.66 98.59 98.59
WikiPedia 95.14 95.49 95.14 95.12 98.61 98.68 98.61 98.61 97.22 97.27 97.22 97.22
SMH 98.51 98.58 98.51 98.50 99.25 99.30 99.25 99.25 97.76 97.93 97.76 97.79

52

4.3.3 Implementation Details

We implement our model with Tensorflow. The batch size is set as 64. We use

Adam optimizer and set the learning rate as 0.0001. The number of training epochs

is 300.

4.3.4 Results

We present the performances of our hierarchical classifier on dataset 1 and

dataset 2, respectively. On dataset 1, we observed that for the first level, data

flows are identified as video, audio or web page with an accuracy of 99.0%. For the

second level, we can further identify from which content provider the flows come.

For video flows, it can be identified as YouTube, Netflix or Stan with accuracy

of 97.5% as well as audio and web page flow can be identified as Spotify, Xiami,

Youtube Music and ABC, SMH, Wikipedia with an accuracy of 98.3% and 98.1%

respectively. Finally, at the content level, our model identified the deep content of

flows with an accuracy for YouTube, Netflix, Stan, Spotify, Xiami, YouTube music,

ABC, WikiPedia and SMH of 96.4%, 67.2%, 55.4%, 24.0%, 19.0%, 97.2%, 99.3%,

88.9% and 97.8% respectively.

In dataset 2, we observed that at the first level, the accuracy can reach 99.4%. At

the second level, the accuracy of video, audio and web can reach 98.1%, 99.0% and

98.3% respectively. Finally, at the content level, our model identified the content

of flows with accuracy for YouTube, Netflix, Stan, Spotify, Xiami, YouTube Music,

ABC, Wikipedia and SMH of 80.5%, 87.6%, 49.5%, 27.1%, 24.1%, 85.1%, 99.3%,

95.1% and 98.5% respectively.

In practice, it is difficult to create a classifier for all existing traffic classes, as

well as keep up to date with any new content providers. This problem, known as

the open-set problem, cannot be tackled directly with our hierarchical approach.

However, our approach could mitigate the problem, at traffic type and content

53

provider levels. For example, our approach can identify video content from unknown

providers. Similarly, we can map unknown content to the correct content provider

platform. To demonstrate this possibility, we tested our model with 3 videos, 3

songs and 3 web page lists that were never shown at training time. Our hierarchical

model could identify content provider with a very high accuracy (average of 96.3%).

The individual content provider identification accuracies were: YouTube - 95.3%,

Netflix - 98.5%, Stan - 100%, Spotify - 90.1%, Xiami - 100%, YouTube Music - 99.3

Wikipedia - 96.4%, ABC - 74.3%, and SMH - 98.0%.

4.3.5 Result Analysis

These results are elaborated in the form of confusion matrices. From this figure,

we can see the classification capability of traffic type classifier is balanced on video,

audio and web traffic types with an accuracy of over 99%. For content provider

classifiers, the classification performs unevenly depending on the content provider.

The classification performance is detailed in Table 4.1, where content classification

accuracy on Stan and Netflix is lower than on YouTube. From the confusion matrix

of content classifiers, we also found that some of the videos (7th video on YouTube)

are consistent with the ones, as well as audios (3rd audio on YouTube music) and

web pages (1st and 3rd web pages on wiki) are misclassified to other classes with

higher probability.

Next, we analyze the performance of content classification, which varies signifi-

cantly compared to content provider classification.

For video, the flows from YouTube perform significantly better than those from

Netflix and Stan. The main reason for this result is that video data from YouTube is

collected primarily from the first three minutes of each YouTube video run. However,

Netflix and Stan data are not entirely extracted from the first three minutes of

each video run because Netflix and Stan platforms (websites) play videos from the

54

(a) Traffic type classi-
fier

(b) Content provider
classifier-Video

(c) Content provider
Classifier-Audio

(d) Content provider
classifier-Web

(e) Content classifier-YouTube (f) Content classifier-YouTube
Music

(g) Content classifier-Wiki

Figure 4.2 : Classification performance confusion matrix for hierarchical models with
F6-combination

previous playing segment.

As shown in Figure 4.3, the pattern of the same Stan video on different runs

is different. That explains why the classification performance of Netflix and Stan

videos is unsatisfactory. We plan to investigate in future work the full extent of

the consequences induced by this data collection by comparing the results with new

capture data.

For audio, the YouTube Music classifier performs reasonably well. However,

classifiers for Spotify and Xiami do not achieve favorable results. As shown in

Figure 4.4, there is a characteristic of Spotify and Xiami traffic flows that they only

have one or few peaks at the beginning, which means the information that can be

used to identify the specific song is limited. But for YouTube music, the traffic flows

not only have some peaks in the beginning but also have some fluctuation in the rest

of the flows, which explains why only the audio flows from YouTube Music can be

55

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140 160 180

Stan_run5

Time (Seconds)

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140 160 180

Stan_run10

Time (Seconds)

0
200
400
600
800

1000
1200
1400
1600

0 20 40 60 80 100 120 140 160 180

Stan_run13

Time (Seconds)

Figure 4.3 : I/O graphs of the same Stan video on different runs

0
100
200
300
400
500
600
700
800
900

1000

0 20 40 60 80 100 120 140 160 180

Audio: Youtube Music

Time (Seconds)

Pa
ck

et
 c

ou
nt

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0 20 40 60 80 100 120 140 160 180

Audio: Xiami

Time (Seconds)

0
200
400
600
800

1000
1200
1400
1600

0 20 40 60 80 100 120 140 160 180

Audio: Spotify

Time (Seconds)

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100 120 140 160 180

Video: YouTube

Time (Seconds)

Pa
ck

et
 c

ou
nt

0
200
400
600
800

1000
1200
1400
1600
1800

0 20 40 60 80 100 120 140 160 180

Video: Stan

Time (Seconds)

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100 120 140 160 180

Video: Netflix

Time (Seconds)

0
200
400
600
800

1000
1200
1400
1600
1800

0 20 40 60 80 100 120 140 160 180

Web: Wikipedia

Time (Seconds)

Pa
ck

et
co

un
t

0
200
400
600
800

1000
1200
1400
1600
1800

0 20 40 60 80 100 120 140 160 180

Web: SMH

Time (Seconds)

0

500

1000

1500

2000

2500

0 20 40 60 80 100 120 140 160 180

Web: ABC

Time (Seconds)

Figure 4.4 : I/O graphs of different HTTP traffic types on different content providers.

classified with high accuracy. In terms of content size, audio is significantly smaller

compared to video, as a result, service providers tend to download the requested song

rather than stream similar to a video. Xiami and Spotify I/O graph in Figure 4.4

depicts this behavior. As a result, the proposed hierarchical classifier failed to

identify Xiami and Spotify audio content. In contrast, YouTube music still achieves

a very high accuracy as they are streamed in real-time similar to YouTube videos.

For web pages, the performance of Wikipedia, ABC and SMH are outstanding

56

with an accuracy of around 99%. However, this accuracy might be induced by our

browsing method. Indeed, we use a simple way to simulate web browsing, that is,

opening 18 web pages at 10 seconds interval every 3 minutes. As shown in Figure 4.4,

the content of web page generates distinct traffic signatures. Therefore, it is possible

to identify the list of web pages according to the flow pattern. However, in a real

situation, the dynamic web content such as advertisement frames of web pages

will result in an uncertain flow pattern and, consequently, increase the difficulty of

identification.

For the experiment on dataset 2, we noticed that, at the first and second levels,

the performance remains at the same level as experiment 1. Nonetheless, we found

that, for video and audio content classification (i.e., the third level), the accuracy

decreased by approximately 10%-15%. The flows from YouTube perform worse than

experiment 1. The main reason for this result is that the content of the additional 20

YouTube videos is similar (i.e, they all belong to the nature category). Nonetheless,

in practice, this can be resolved by changing the model architecture at the third

level (e.g., by adding more layers) so that the model can handle a large number of

classes.

Finally, we highlight that, dataset 2 is unbalanced, in which the video data is

three times the number of the audio or web data. However, we noticed that at the

first and second levels, the values of precision, recall and F1 score were very close

to each other indicating that our model has a better balance between precision and

recall.

To summarize, we can conclude that our hierarchical model has excellent per-

formance for both traffic type classifier and content provider classifier. For content

classifiers, video and web page flows can be correctly classified with good perfor-

mance, but it does not classify well for audio flows except for those flows from

YouTube Music.

57

4.4 Summary

In this chapter, we showed that it is possible to build a hierarchical traffic clas-

sifier that can identify traffic type, content provider, and exact content by passively

observing encrypted traffic flows. We showed the feasibility of this approach for the

most common traffic types on the internet: web, video, and audio. Our approach

is suitable for targeted surveillance applications. For example, law enforcement can

use a solution similar to ours to monitor user activities in an apartment block by

passively observing encrypted WiFi traffic. They will be able to isolate suspects

who may be visiting a specific website or watching a specific video. A similar hier-

archical approach can also be used to make inferences about target user activities

when they are using VPNs. VPNs add an extra layer of encryption (analogous to

what is happening in WiFi) and few works already demonstrated single-level traf-

fic classification over VPN traffic [52; 114]. Such work can be extended using the

hierarchical approach we propose here.

58

Chapter 5

Generating Samples by Category Using Bayesian

Nonparametric Autoencoders

This chapter aims to achieve our objective 3○: generating samples by category using

Bayesian nonparametric based autoencoders.

5.1 Introduction

As introduced in Chapter 1, the quality and quantity highly affect the per-

formance of deep learning classifiers. Generative models are wildly used for data

argumentation. The generated samples can add to the training process to increase

the performance of the classifier. In this chapter, we introduce two novel generative

models, namely IGMVAE and I2GMVAE.

VAE is an important generative model, in which the prior distribution of latent

variables is a standard Gaussian distribution. However, using the same prior distri-

bution of different categories makes it hard to generate data for a certain category.

In fact, latent variables sometimes contain category information. For example, if

we use MNIST data [81] to train the VAE, we can observe latent variables of dif-

ferent digits actually from different clusters in the latent variable space. GMVAE

[55] replaces the original distribution with a Gaussian mixture model(GMM) [104].

For GMVAE, the number of classes needs to be given before generating the data

[32]. But, in some cases, we do not have labeled data (including the number of

categories). To the best of our knowledge, there are currently no generative models

for this situation. As mentioned in chapter 2, BNP approaches estimate the number

of categories from the observed data. So we do not need to specify the number of

59

categories in advance. Besides, BNP models allow future data to exhibit previously

unseen clusters. So that when new data is added, the model can automatically do

an adjustment to adapt to the new data.

IGMM [89] and I2GMM [120] are two type of classic BNP models. Based on

that, we propose two variants of the VAE with IGMM and I2GMM as the prior

distribution of latent space.

To verify the effectiveness of our models, we do experiments on a YouTube traffic

dataset [65]. The experiment results show that compared with GMVAE, our model

achieves a better clustering and generation effect. And, our models generate data

by category without labeled information in the training process, while the number

of categories should be specified in the GMVAE model. Moreover, when there are

new data added in, our models have the ability to adjust the cluster number and

generate the new clusters’ samples.

To summarize this chapter’s work, we list the main contributions as follows:

• We propose two novel generative models based on VAE and BNP models.

• We test our models in a YouTube video dataset. The results show that our

models can generate samples by category without label information added in

the training process.

• We compare our model with a state-of-art GMVAE proposed for the same

generation task [27]. We show that our models can achieve a better clustering

and generation effect.

• We explored the possibility that our models can adapt to incremental data

and scale to new categories.

60

5.2 IGMVAE

In the thesis, we propose a novel generated model, namely IGMVAE. In this

section, we explain the design of our IGMVAE model.

5.2.1 Method

Based on VAE, we replace the Gaussian distribution with IGMM as the prior

distribution over latent variables. we choose the IGMM as priors because it is an

extension of Gaussian distribution and GMM. We assume the data point is from

an IGMM, then infer the data point is from which underlying distribution pattern.

IGMM learns the cluster number by itself. So that we do not have to specify the

number of categories like GMM. Besides, IGMM will assign samples that do not

belong to the training set to new clusters. This characteristic allows our models to

do incremental learning.

Consider the generative model

p(y, x, z, π) =
N∏
i

p(yi|xi)p(xi|zi)p(zi|π)
∞∏
k

p(πk|α) (5.1)

where an observed sample y is generated under the following process:

vk ∼ Beta(1, α)

πk = vk

k−1∏
j=1

(1 − vj)

G =
∞∑
k=1

πkδwk

for each sample i :

zi ∼ C({π})

xi ∼ N (µx(zi, θ), σx(zi, θ))

yi ∼ N (µy(xi, ϕ), σy(xi, ϕ))

(5.2)

61

Figure 5.1 : Probabilistic graphical models for the IGMVAE(left) and
I2GMVAE(right).

where y is generated from a neural network with parameter ϕ and the input

x. And µy, and σy are calculated by this neural network. Furthermore, p(x|z) is

an IGMM specified by another neural network model parameterized by θ and with

input z. µy,and σy are calculated by this neural network. z is a one-hot vector

sampled from π, which means which component has been chosen from IGMM. The

generation probability graph is showed in Figure 5.1.

5.2.2 Inference Process

We truncated at K, it means that vK = 1. The variational probability distribu-

tions are defined as

q(vk) = Beta(τv,k,1, τv,k,2), for k = 1 : K − 1

q(πk) = δ(vk

k−1∏
i=1

(1 − vi))

for each sample i :

q(zi|yi) = C(µz(yi, ν), σz(yi, ν))

q(xi|yi) = N (µx(yi, δ), σx(yi, δ))

(5.3)

𝛼
𝜋 𝜔

𝛾

z

x

y

K

I

𝛼
𝜋

z

x

y

K

I

1 z

J

2

62

Where x is estimated by a neural network model parameterized by δ and y. z is

estimated by a neural network model parameterized by ν and y. The last layer of

this neural network is Gumbel softmax [50].

The model is trained by optimizing the ELOB, which can be written as:

Lelbo = E

[
p(y, x, z, π)

q(x, z, π|y)

]
(5.4)

Applying independence assumption, we get the decomposition:

q(x, z, π|y) =
N∏
i

q(xi|yi)q(zi|yi)
K∏
k

q(πk) (5.5)

The low bound can be then written as:

Lelbo =Eq [log p(y|x)] −KL [q(x|y)||p(x|z)]

−KL [q(z|y)||p(z|π)] −KL [q(π)||p(π)]

(5.6)

The terms in the ELOB includes reconstruction loss term, x KL-divergence loss

term, z KL-divergence loss term and π KL-divergence loss term respectively.

Where the reconstruction loss term can be computed by the corresponding loss

function,

Eq [log p(y|x)] = −ylog(ŷ) − (1 − y)log(1 − ŷ) (5.7)

The x KL-divergence loss term can be calculated by the KL distance formula of

two Gaussian distributions,

KL [q(x|y)||p(x|z)] = − 1

2
[log

σo(y)

σx(z)
− σo(y)

σx(z)
− µo(y) − µx(z)

σx(z)
+ 1] (5.8)

63

The z KL-divergence loss term can be calculated by the KL distance formula,

KL [q(z|y)||p(z|π)]

=Eq[log
q(z)

p(z)
]

=Eq

[
K∑
k=1

q(z|y)k [log q(z|y)k − log πk]

]

=
K∑
k=1

q(z|y)k log q(z|y)k − Eq

[
K∑
k=1

q(z|y)k log πk

]

=
K∑
k=1

q(z|y)k log q(z|y)k −
K∑
k=1

q(z|y)kEq(π) log πk

=
K∑
k=1

q(z|y)k log q(z|y)k

−
K∑
k=1

q(z|y)k

[
Eq(π) log vk +

k−1∑
j=1

Eq(π) log(1 − vj)

]

=
K∑
k=1

q(z|y)k [log q(z|y)k]

−
K∑
k=1

q(z|y)k

[
ψ(τk,1) − ψ(τk,1 + τk,2) +

k−1∑
j=1

(ψ(τj,2) − ψ(τj,1 + τj,2))

]
(5.9)

The π KL-divergence loss term is calculated in the following,

KL [q(π)||p(π)] =

[
K∑
k=1

Eq log q(πk) −
K∑
k=1

Eq log p(πk)

]
(5.10)

64

where,

Eq log p(πk)

=Eq

[
log p(vk) +

k−1∑
j=1

log p(1 − vj)

]

=Eq log p(vk) +
k−1∑
j=1

Eq [log p(1 − vj)]

=Eq

[
log

(1 − vk)
α−1

B(1, α)

]
+

k−1∑
j

Eq

[
log

(1 − vj)
α−1

B(α, 1)

]
=Eq [(α− 1) log(1 − vk) − logB(1, α)]

+
k−1∑
j=1

Eq [(α− 1) log(1 − vj) − logB(α, 1)]

=(α− 1)(ψ(τk,2) − ψ(τk,2 + τk,1)) − logB(1, α)

+
k−1∑
j=1

[(α− 1)(ψ(τj,2) − ψ(τj,2 + τj,1)) − logB(α, 1)]

(5.11)

where,

Eq log q(πk)

=Eq

[
log q(vk) +

k−1∑
j=1

log q(1 − vj)

]

=Eq log q(vk) +
k−1∑
j=1

Eq [log q(1 − vj)]

=Eq log

[
v
τk,1−1

k (1 − vk)
τk,2−1

B(τk,1, τk,2)

]
+

k−1∑
j

Eq

[
log

(1 − vj)
τj,2−1v

τj,1−1
j

B(τj,2, τj,1)

]

=Eq [(τk,1 − 1) log vk + (τk,2 − 1) log(1 − vk) − logB(τk,1, τk,2)]

+
k−1∑
j=1

Eq [(τj,1 − 1) log vj + (τj,2 − 1) log(1 − vj) − logB(τj,2, τj,1)]

=(τk,1 − 1)Eq log vk + (τk,2 − 1)Eq log(1 − vk) − logB(τk,1, τk,2)

+
k−1∑
j=1

[(τj,1 − 1)E log vj + (τj,2 − 1)E log(1 − vj) − logB(τj,2, τj,1]

65

=(τk,1 − 1) [ψ(τk,1) − ψ(τk,1 + τk,2)] + (τk,2 − 1) [ψ(τk,2) − ψ(τk,2 + τk,1)]

− logB(τk,1, τk,2)

+
k−1∑
j=1

[(τj,1 − 1)[ψ(τj,1) − ψ(τj,1 + τj,2)] + (τj,2 − 1) [ψ(τj,2) − ψ(τj,2 + τj,1)]

− logB(τj,2, τj,1) (5.12)

The above is the calculation process of the ELOB which optimizes our model in

the following experiments.

5.2.3 Architecture

In this section, we introduce the architecture of our model. The whole model

contains an encoder and a decoder.

The encoding process consists of two neural networks:

• The label information z generated model

q(zi|yi) = C(µz(yi, ν), σz(yi, ν)).

• The hidden variable x generated model

q(xi|yi) = N (µx(yi, δ), σx(yi, δ)).

where C(·) is Gumbel-softmax function[50].

The decoding process consists of two neural networks:

• The sample y reconstructed model

p(yi|xi) = N (µy(xi, ϕ), σy(xi, ϕ)).

• The hidden variable x reconstructed model

p(xi|zi) = N (µx(zi, θ), σx(zi, θ)).

These neural networks architecture is shown in Figure 5.2.

66

5.2.4 Training and Testing

We use four loss terms in the training stage, which are Lrec, Lgaus, Lcateg and

Lstickbreaking, corresponding to the reconstruction loss term, x KL-divergence loss

term, z KL-divergence loss term and π KL-divergence loss term in ELOB respec-

tively. Below we give the pseudo-code about how the updates are performed on the

IGMVAE model.

As shown in Algorithm 2, the parameters are updated by optimizing the whole

loss. At the test stage, the cluster number is learned by giving a threshold to π.

5.3 I2GMVAE

As introduced above, we use IGMM as the prior distribution of latent variables.

Sometimes, the data points that form different categories are very similar (e.g. dig-

De
ns
e
51
2

Re
LU

De
ns
e
51
2

Re
LUInput 𝒚

D
en

se
 6
4

D
en

se
 6
4

De
ns
e
51
2

Re
LU

De
ns
e
51
2

Re
LU

De
ns
e
K

G
um

be
l s
of
tm

ax

Input 𝒙 Output 𝒛

q(𝒛|𝒙)

Input 𝒛

D
en

se
 6
4

D
en

se
 6
4

De
ns
e
51
2

Re
LU

De
ns
e
51
2

Re
LU

D
en

se
 2
8*
28

Si
gm

oi
dInput 𝒙 Output 𝒚

p(𝒚|𝒙)

p(𝒙|𝒛)

q(𝒙|𝒚)

Figure 5.2 : The neural network architecture of IGMVAE.

67

Algorithm 2 Training process of IGMM

Required: Traffic dataset Y
Required: α, K
Feed forward y to q(x|y) and q(z|y),and get latent variable x and z .
Feed forward latent variable x and z to p(y|x) and p(x|z), and get faked sample
y′.
Calculate the whole loss

Ligmvae = Lrec + Lgaus + Lcateg + Lstickbreaking

Update parameter τ , encoder parameters q(x|y), q(z|y) and decoder parameters
p(y|x), p(x|z) with Ligmvae.

ital 3 and digital 8). For this problem, we propose using I2GMM as the prior

distribution over latent variables. I2GMM is an extension of IGMM, which is more

suitable for more flexible modeling of datasets with skewed and multimodal cluster

distributions. Unlike IGMM, which uses a single Gaussian per cluster, I2GMM uses

a single IGMM per cluster. It seems like a two-level IGMM, which has a better

clustering effect on the dataset.

5.3.1 Method

Consider the generative model

p(y, x, z1, z2, ω, π) =
N∏
i

p(yi|xi)p(xi|zi,1, zi,2)p(zi,1|π)p(zi,2|ω, zi,1)
K∏
k

p(πk)
J∏
j

p(ωk,j)

(5.13)

where an observed sample y is generated under the following process:

68

vk ∼ Beta(1, α)

πk = vk

k−1∏
j=1

(1 − vj)

⟨µk,Σk⟩ ∼ NIW(0, I, κ0,m0)

G =
∞∑
k=1

πkδ⟨µk,Σk⟩

for each k :

Hk = N (µk,Σk/κ)

vk,j ∼ Beta(1, γ)

ωk,j = vk,j

j−1∏
h=1

(1 − vk,h)

wk,j ∼ Hk

Gk =
∞∑
j=1

ωk,jδwk,j

for each image i :

zi,1 ∼ Categorical({π})

zi,2 ∼ Categorical({ωzi,1})

xi ∼ N (µx(zi,1, zi,2, θ), σx(zi,1, zi,2, θ))

yi ∼ N (µy(xi, ϕ), σy(xi, ϕ))

(5.14)

where y is generated from a neural network with parameter ϕ and the input

x. And µy,and σy are calculated by this neural network. p(x|z1, z2) is an I2GMM

specified by another neural network model parameterized by θ and with input z1 and

z2 . z1 is a one-hot vector sampled from π, which means which IGMM component has

been chosen from I2GMM. z2 is a one-hot vector sampled from ω, which means which

Gaussian component has been chosen from the corresponding IGMM component.

The generation probability graph is showed in Figure 5.1.

69

5.3.2 Inference Process

We truncated at K, it means that vK = 1. And at J , it means that vk,J = 1 The

variational probability distributions are defined as,

q(vk) =Beta(τk,1, τk,2), for k = 1 : K − 1

q(πk) =δ(vk

k−1∏
i=1

(1 − vi))

q(vk,j) =Beta(ζk,j,1, ζk,j,2), for k = 1 : K, j = 1 : J − 1

q(ωk,j) =δ(vk,j

j−1∏
i=1

(1 − vk,i))

for each sample i :

q(zi,1|yi) =C(µz,1(yi, ν), σz,1(yi, ν))

q(zi,2|yi) =C(µz,2(yi, ξ), σz,2(yi, ξ))

q(xi|yi) =N (µx(yi, δ), σx(yi, δ))

(5.15)

Where x is estimated by a neural network model parameterized by δ and y. z1

is estimated by a neural network model parameterized by ν and y. z2 is estimated

by a neural network model parameterized by ξ and y.

The generative model is trained with the variational inference objective, which

can be written as:

Lelbo = E

[
p(y, x, z1, z2, π, ω)

q(x, z1, z2, π, ω|y)

]
(5.16)

Applying the independence assumption, we get the decomposition:

q(x, z1, z2, π, ω|y)

=
N∏
i

p(yi|xi)p(xi|zi,1, zi,2)p(zi,1|π)p(zi,2|ω, zi,1)
K∏
k

[
p(πk|α)

J∏
j

p(ωk,j|γ)

]
(5.17)

70

The low bound can be then written as:

Lelbo = Eq [log p(y|x)] −KL [q(x|y)||p(x|z1, z2)]

−KL [q(z1|y)||p(z1|π)] −KL [q(z2|y)||p(z2|ω, z2)]

−KL [q(π)||p(π)] −KL [q(ω)||p(ω)]

(5.18)

The terms in the ELOB include the reconstruction loss term, x KL-divergence

loss term, z1 KL-divergence loss term, z2 KL-divergence loss term, π KL-divergence

loss term, and ω KL-divergence loss term respectively.

The x KL-divergence loss term can be calculated by the KL distance formula of

two Gaussian distributions, the derived process is the same as equation 5.8. The

z1 KL-divergence loss term’s derived process is the same as equation 5.9. The π

KL-divergence loss term’s derived process is the same as equation 5.10. For the

variable z2, the derivation is as follows:

KL [q(z2|y)||p(z2|ω, z1)]

=Eq(z2,ω,z1) log
q(z2)

p(z2)

=
J∑

j=1

q(z2|y)j log q(z2|y)j

− Eq(ω,z2)

[
K∑
k=1

q(z1|y)k log q(ωk|z2)

]

=
J∑

j=1

q(z2|y)j log q(z2|y)j

−
K∑
k=1

q(z1|y)kEq(ω,z2) log q(ωk|z2)

=
J∑

j=1

q(z2|y)j log q(z2|y)j

−
K∑
k=1

q(z1|y)kEq(ω)

[
J∑

j=1

q(z2|y)j logωk,j

]

71

=
J∑

j=1

q(z2|y)j log q(z2|y)j

−
K∑
k=1

q(z1|y)K

[
J∑

j=1

q(z2|y)jEq(ω) logωk,j

]
(5.19)

where,

Eq(ω) logωk,j = ψ(ζk,j,1 + ζk,j,2)] +

j−1∑
l=1

[ψ(ζk,l,2) − ψ(ζk,l,1 + ζk,l,2)] (5.20)

For the variable ω, the derivation is as follows:

KL [q(ω)||p(ω)]

=
K∑
k=1

KL [q(ωk)||p(ωk)]

=
K∑
k=1

[
J∑

j=1

Eq log q(ωk,j) −
J∑

j=1

Eq log p(ωk,j)

] (5.21)

5.3.3 Architecture

The encoding process consists of three neural networks:

• The level1 label information zi,1 generated model

q(zi,1|yi) = C(µz,1(yi, ν), σz,1(yi, ν)).

• The level2 label information zi,2 generated model

q(zi,2|yi) = C(µz,2(yi, ξ), σz,2(yi, ξ)).

• The hidden variable x generated model

q(xi|yi) = N (µx(yi, δ), σx(yi, δ)).

where C(·) is Gumbel-softmax[50].

72

Figure 5.3 : The neural network architecture of I2GMVAE.

The decoding process consists of two neural networks:

• The sample y reconstructed model

p(yi|xi) = N (µy(xi, ϕ), σy(xi, ϕ)).

• The hidden variable x reconstructed model

p(xi|zi) = N (µx(zi,1, zi,2, θ), σx(zi,1, zi,2, θ)).

These neural networks architecture is showed in Figure 5.3.

5.3.4 Training and Testing

We use six loss terms in the training stage, which are Lrec, Lgaus, Lcateg1, Lcateg2,

Lstick−breaking1 and Lstick−breaking2, corresponding to the reconstruction loss term, x

KL-divergence loss term, z1 KL-divergence loss term, z2 KL-divergence loss term,

π KL-divergence loss term and ω KL-divergence loss term in ELOB respectively.

Below we give the pseudo-code about how the updates are performed on I2GMVAE

𝒛 𝟏
𝒛 𝟐

De
ns
e
64

De
ns
e
51

2

Re
LU

De
ns
e
51

2

Re
LU

De
ns
e
28

*2
8

Si
gm

oi
d

Input 𝒚
De

ns
e
51

2

Re
LU

De
ns
e
51

2

Re
LU

De
ns
e
64

De
ns
e
64

De
ns
e
51

2

Re
LU

De
ns
e
51

2

Re
LU

De
ns
e
K

G
um

be
l

so
ft
m
ax

De
ns
e
51

2

Re
LU

De
ns
e
51

2

Re
LU

De
ns
e
K

G
um

be
l

so
ft
m
ax

Input 𝒙

Output 𝒛𝟏

Output 𝒛𝟐

q(𝒙|𝒚)

q(𝒛𝟏|𝒙)

q(𝒛𝟐|𝒙)

De
ns
e
64

Output 𝒚Input 𝒙

p(𝒙|𝒛𝟏, 𝒛𝟐)
p(𝒚|𝒙)

73

model.

Algorithm 3 Training process of I2GMM

Required: Traffic dataset Y
Required: α , γ, K, J
Feed forward y to q(x|y), q(z1|y) and q(z2|y) ,and get latent variable x, z1 and z2.
Feed forward latent variable x, z1 and z2 to p(y|x) and p(x|z), and get faked
sample y′.
Calculate the whole loss

Li2gmvae = Lrec + Lgaus + Lcateg1 + Lcateg2 + Lstick−breaking1 + Lstick−breaking2

Update parameter τ , ζ, encoder parameters q(x|y), q(z1|y), q(z2|y)and decoder
parameters p(y|x), p(x|z1, z2) with Li2gmvae.

5.4 Experiments and Results

5.4.1 Dataset and Evaluation Metrics

We evaluate our models on a wireless YouTube traffic dataset [65]. This dataset

contains 10 YouTube videos. Each category has 300 samples.

We compare our models with state of art GMVAE of the same target of our

models from clustering and generation aspects. We adopt three popular clustering

metrics Unsupervised Clustering Accuracy (ACC), Normalized Mutual Information

(NMI), Adjusted Rand Index (ARI), and one generation metric bits/dim. ACC is

an unsupervised form of classification accuracy. It uses a mapping function to map

between predicted labels and ground truth labels. This mapping is necessary because

unsupervised algorithms may use a different label than the ground truth to represent

the same cluster. NMI measures the distance between cluster assigned labels and

ground truth labels by measuring the mutual information between cluster assigned

label and ground truth labels. It is normalized by the mean entropy of ground labels

and cluster assigned labels. ARI is a modified version of the Rand index. The Rand

74

index computes a similarity measure between two clusters by computing all pairs of

samples and counts assigned in the same or different clusters in the predicted and

true clusters. Bits/dim is a common measurement for sample generation. It is the

total discrete log-likelihood is normalized by the dimensionality of the samples (e.g.,

500× 1 = 500 for our dataset) [109].

5.4.2 Implementation Details

We implement our model with Pytorch [86]. The batch size is set as 64. We use

the Adam optimizer, and the learning rate is 0.001. We use binary cross-entropy to

compute the reconstruction loss. The initial temperature used in Gumbel-softmax

is set as 1. And we decay Gumbel temperature every epoch. The temperature decay

rate and minimum temperature are 0.0138 and 0.5. For IGMVAE, the max cluster

number K is set as 500. The initial α is set as 1. For I2GMVAE, the max cluster

number K and J are set as 10 and 30. The initial α and γ are set as 1. The total

training number is 100.

5.4.3 Results

We evaluate 1) whether our models learn a meaningful category discriminable

latent space and can generate samples by category; 2) whether our models can do

incremental learning when new categories data are added in training; 3) and we

compare our two models with the state of art GMVAE [55].

IGMVAE Performance

In the first experiment, we compare our IGMVAE model with GMVAE. For

GMVAE, we need manually set the cluster number. In this experiment, we set it

5, 10, 25, 50, and 100 to observe how cluster number affects the performance. For

our model, the cluster number is learned by itself. As Figure 5.4 shows, the data

is classified into other clusters rather than the top 18 high probability clusters with

75

Figure 5.4 : Cluster number decision curve of IGMVAE on YouTube.

Table 5.1 : IGMVAE and I2GMVAE results (on YouTube)

ACC ↑ NMI ↑ ARI ↑ bits/dim ↓

GMVAE-5 0.435 0.514 0.372 15.10
GMVAE-10 0.691 0.689 0.578 15.10
GMVAE-25 0.499 0.604 0.388 15.48
GMVAE-100 0.510 0.612 0.399 15.23
IGMVAE(our) 0.588 0.679 0.527 14.94
I2GMVAE(our) 0.882 0.897 0.816 15.09

a very small probability (close to zero), so the model automatically determines the

cluster number is 18. The performance are detailed in Table 5.1. We observed that

our method can achieve 0.59 cluster accuracy, 0.68 ARI score, 0.53 NMI score, and

14.94 bits/dim.

To better understand that our models realize sample generation. We visualize

the generative samples of every cluster generated by generative network q(y|x). In

Figure 5.5, we can observe that our model can generate similar samples of the same

cluster.

Furthermore, as we introduced in 5.2, IGMM has the ability to identify new

categories, that is, the data that does not belong to the original training dataset

76

Figure 5.5 : Generated YouTube videos I/O graph of IGMVAE.

can be assigned to new clusters. So that we did an experiment called incremental

experiment to test the adaptability of our model to the new categories data. In this

experiment, we separate the dataset into two parts. One is base dataset(video 0 to

6), another is incremental dataset(video 7 to 9). This experiment consists of two

stages. In the first stage, we feed the base dataset into the model, and the cluster

number is learned by itself. In the second stage, we add the incremental dataset and

the new cluster number is learned. The learned number of clusters of these stages

is shown in Figure 5.6. We observed that when the incremental dataset was added,

the cluster number changed from 12 to 16, which means the model has the ability

to learn new clusters.

I2GMVAE Performance

The model automatically determines the cluster number is 20. The performance

of our I2GMVAE on YouTube video dataset is detailed in Table 5.1. We observed

that our method can achieve 0.88 cluster accuracy, 0.90 ARI score, 0.81 NMI score,

and 15.09 bits/dim.

77

Figure 5.6 : Cluster number decision curve of IGMVAE for the incremental exper-
iment (The blue color line is based on video 0 to 6. The orange color line is based
on video 0 to 9).

(a) GMVAE latent variables with cluster
number 5

(b) GMVAE latent variables with cluster
number 10

(c) GMVAE latent variables with cluster
number 50

(d) GMVAE latent variables

Figure 5.7 : Visualisation of the latent variables on YouTube: (a) GMVAE learns
the latent variables with cluster number 5. (b) GMVAE learns the latent variables
with cluster number 10. (C) GMVAE learns the latent variables with cluster number
25. (d) the latent variables of IGMVAE(our).

78

5.4.4 Result Analysis

In order to better visualize the effect of clustering, we map the latent variables to

2-dimensional data space. As shown in Figure 5.7, we can observe that the clustering

ability of GMVAE is variate and unstable with different the number of clusters we

are given. For our model, the cluster number is learned by itself and the clustering

effect is stable and better.

And from Table 5.1, we can also see that the clustering performance of GMVAE

is heavily dependent on the cluster number we set in training. When the given

number of clusters is the same as the ground truth (10 for the YouTube video

dataset), the performance is the best. The bigger the gap between the given cluster

number and the ground truth, the worse the performance. For our two models,

the clustering performances are slightly worse than GMVAE when the given cluster

number is the ground truth, but better than it in other cases. Besides, the generative

effect of our two models remains the same as GMVAE.

5.5 Summary

In this chapter, we first proposed a novel generative model, namely IGMVAE,

which is a variant of VAE with IGMM priors. We showed that this model has the

ability to generate samples for a specific cluster. And it has a good clustering ability

without the cluster number given. Besides, we showed that our model has the ability

to adopt new categories samples and learn the new clusters.

We next extended the idea of using a nonparametric Bayesian model as prior

distribution of latent variables and proposed another novel generative model, namely

I2GMVAE, which is a two-level IGMVAE. We can understand it as a two-level of

clustering. First, we do a coarse-grained clustering of the dataset, and then do a

fine-grained clustering for each upper-level cluster. We showed that this method can

generate data hierarchically and achieve a good performance.

79

We evaluate our two models on the traffic dataset compared with GMVAE. The

results show that our models achieve better clustering performance and remain at

the same level of generative effect.

80

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Network traffic classification is an important work in modern network manage-

ment and security systems. Today, with the explosion of network traffic and HTTPS

has become the norm for many forms of communication over the Internet, traditional

traffic classification methods(e.g. port-based and payload-based methods) have some

practical problems, such as dynamic ports and encryption applications. So, deep

learning technology based on traffic statistical characteristics gains more attention.

This thesis has conducted a study on deep learning based Wifi traffic classifica-

tion. We proposed a series of models corresponding to this traffic content classifica-

tion and thus formed three Research Objective: 1○ Classifying encrypted WiFi

videos using deep learning models; 2○ Classifying encrypted WiFi traffic using a

hierarchical classifier; 3○ Generating samples by category using Bayesian nonpara-

metric based autoencoders. The proposed machine learning models for the three

objectives are discussed in Chapter 3-5.

In chapter 3, we demonstrate the possibility of making predictions from en-

crypted WiFi traffic by building deep learning based classifiers that are able to

identify specific videos. For video traffic classification, we proposed three novel

neural network models and show that our models are able to achieve around 97%

accuracy in identifying videos from a closed set of 10 videos purely based on passive

measurements collected at the WiFi layer.

In chapter 4, not just limited to video content, there are different types of traffic

81

like audio and text, and there are many content providers that need to be classi-

fied. So that we present a novel hierarchical traffic classifier that is able to make

coarse-grained and fine-grained predictions about encrypted traffic flow by leveraging

weight sharing features in convolutional neural networks. Besides, we demonstrate

our model’s potential for classifying previously unseen content to its corresponding

traffic type and content provider.

In chapter 5, we point out the importance of automatically generating traffic

data in the network traffic domain. And we proposed two novel generative models,

namely IGMVAE and I2GMVAE. Specially, in our IGMVAE model, we use IGMM

as the prior distribution of latent variables. In our I2GMVAE model, we use IGMM

as the prior distribution of latent variables. We show that our two models are able

to generate samples by categories and have a good generative performance.

6.2 Future Work

The future research can be extended in but not limited to the following aspects:

• Our experiments are based on one assumption. We use the YouTube Red

member account to avoid advertisements when collecting data. However, in

actual scenarios, we cannot guarantee that there are no advertisements at the

beginning or middle of the videos. In future work, we aim to develop methods

to identify and preprocess advertising data.

• There is another assumption during data collection. That is, the starting point

of the video is supposed to be known. Although it is essential to estimate and

identify the video start point in a real scenario, to simplify the data collection,

we ignored this procedure. In future work, we aim to address this issue, such

as using traffic type classification techniques and increasing data capture time.

• Given that the classification accuracy over Spotify and Xiami is affected by the

82

single-peak shape of their traffic, we plan to try to improve the performance

by adding more dedicated pre-training data or exploring peak detection algo-

rithms.

• In practice, it is difficult to create a classifier for all existing traffic classes,

as well as keep up to date with any new content providers. How to solve the

open-set problem, such as the traffic does not appear in the dataset.

• How to fine-tune the learned classifier to the new traffic data with a small cost

and efficiently use the newly collected data to update the previously trained

model.

• We can combine our proposed generative model with our classifier, which

allows generation and classification to be performed simultaneously.

• We can further explore the generation effect of the fusion of the BNP model

and other generative models, such as GAN.

• How to design a lightweight and fast data preprocessing algorithm. In practice,

we can ensure that a large amount of data can be processed quickly and target

data can be quickly identified.

83

Bibliography

[1] “Internet asigned numbers authority (iana),” https://www.iana.org.

[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard et al., “{TensorFlow}: a system for

{Large-Scale} machine learning,” in 12th USENIX symposium on operating

systems design and implementation (OSDI 16), 2016, pp. 265–283.

[3] G. Aceto, A. Dainotti, W. De Donato, and A. Pescapé, “Portload: taking the

best of two worlds in traffic classification,” in 2010 INFOCOM IEEE

Conference on Computer Communications Workshops. IEEE, 2010, pp. 1–5.

[4] R. Alshammari and A. N. Zincir-Heywood, “Investigating two different

approaches for encrypted traffic classification,” in Sixth Annual Conference

on Privacy, Security and Trust. IEEE, 2008, pp. 156–166.

[5] ——, “Machine learning based encrypted traffic classification: Identifying ssh

and skype,” in 2009 IEEE symposium on computational intelligence for

security and defense applications. IEEE, 2009, pp. 1–8.

[6] ——, “How robust can a machine learning approach be for classifying

encrypted voip?” Journal of Network and Systems Management, vol. 23,

no. 4, pp. 830–869, 2015.

[7] C. E. Antoniak, “Mixtures of dirichlet processes with applications to bayesian

nonparametric problems,” The annals of statistics, pp. 1152–1174, 1974.

[8] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial

networks,” in International conference on machine learning. PMLR, 2017,

pp. 214–223.

84

[9] D. J. Arndt and A. N. Zincir-Heywood, “A comparison of three machine

learning techniques for encrypted network traffic analysis,” in 2011 IEEE

Symposium on Computational Intelligence for Security and Defense

Applications (CISDA). IEEE, 2011, pp. 107–114.

[10] T. Auld, A. W. Moore, and S. F. Gull, “Bayesian neural networks for

internet traffic classification,” IEEE Transactions on neural networks,

vol. 18, no. 1, pp. 223–239, 2007.

[11] L. Bernaille and R. Teixeira, “Early recognition of encrypted applications,”

in International Conference on Passive and Active Network Measurement.

Springer, 2007, pp. 165–175.

[12] D. M. Blei and M. I. Jordan, “Variational inference for dirichlet process

mixtures,” Bayesian analysis, vol. 1, no. 1, pp. 121–143, 2006.

[13] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”

Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022, 2003.

[14] A. Brock, J. Donahue, and K. Simonyan, “Large scale gan training for high

fidelity natural image synthesis,” arXiv preprint arXiv:1809.11096, 2018.

[15] Z. Bu, B. Zhou, P. Cheng, K. Zhang, and Z.-H. Ling, “Encrypted network

traffic classification using deep and parallel network-in-network models,”

IEEE Access, vol. 8, pp. 132 950–132 959, 2020.

[16] Y. Burda, R. Grosse, and R. Salakhutdinov, “Importance weighted

autoencoders,” arXiv preprint arXiv:1509.00519, 2015.

[17] Z. Cao, G. Xiong, Y. Zhao, Z. Li, and L. Guo, “A survey on encrypted traffic

classification,” in International Conference on Applications and Techniques

in Information Security. Springer, 2014, pp. 73–81.

85

[18] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel leaks in web

applications: A reality today, a challenge tomorrow,” in 2010 IEEE

Symposium on Security and Privacy. IEEE, 2010, pp. 191–206.

[19] G. Cheng and Y. Hu, “Encrypted traffic identification based on n-gram

entropy and cumulative sum test,” in Proceedings of the 13th International

Conference on Future Internet Technologies, 2018, pp. 1–6.

[20] J. Cheng, Y. Wu, E. Yuepeng, J. You, T. Li, H. Li, and J. Ge, “Matec: A

lightweight neural network for online encrypted traffic classification,”

Computer Networks, vol. 199, p. 108472, 2021.

[21] C. Cimpanu, “Video streams leak what you’re watching to attackers with

over 95% accuracy,” https://www.bleepingcomputer.com/news/security/

video-streams-leak-what-youre-watching-to-attackers-with-over-95-percent-accuracy/,

2017.

[22] cisco, “Nbar2 or next generation nbar,”

https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/

network-based-application-recognition-nbar/qa c67-697963.html, 2019.

[23] CISCO, “VNI complete forecast highlights,”

https://www.cisco.com/c/dam/m/en us/solutions/service-provider/

vni-forecast-highlights/pdf/Global 2021 Forecast Highlights.pdf, 2021.

[24] K. C. Claffy, “Internet traffic characterization.” 1995.

[25] S. E. Coull and K. P. Dyer, “Traffic analysis of encrypted messaging services:

Apple imessage and beyond,” ACM SIGCOMM Computer Communication

Review, vol. 44, no. 5, pp. 5–11, 2014.

[26] C. Dewes, A. Wichmann, and A. Feldmann, “An analysis of internet chat

https://www.bleepingcomputer.com/news/security/video-streams-leak-what-youre-watching-to-attackers-with-over-95-percent-accuracy/
https://www.bleepingcomputer.com/news/security/video-streams-leak-what-youre-watching-to-attackers-with-over-95-percent-accuracy/
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/network-based-application-recognition-nbar/qa_c67-697963.html
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/network-based-application-recognition-nbar/qa_c67-697963.html
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf

86

systems,” in Proceedings of the 3rd ACM SIGCOMM conference on Internet

measurement, 2003, pp. 51–64.

[27] N. Dilokthanakul, P. A. Mediano, M. Garnelo, M. C. Lee, H. Salimbeni,

K. Arulkumaran, and M. Shanahan, “Deep unsupervised clustering with

gaussian mixture variational autoencoders,” arXiv preprint

arXiv:1611.02648, 2016.

[28] D. Erhan, Y. Bengio, A. Courville, and P. Vincent, “Visualizing higher-layer

features of a deep network,” University of Montreal, vol. 1341, no. 3, p. 1,

2009.

[29] T. S. Ferguson, “A bayesian analysis of some nonparametric problems,” The

annals of statistics, pp. 209–230, 1973.

[30] Y. Fu, H. Xiong, X. Lu, J. Yang, and C. Chen, “Service usage classification

with encrypted internet traffic in mobile messaging apps,” IEEE

Transactions on Mobile Computing, vol. 15, no. 11, pp. 2851–2864, 2016.

[31] K. Fukushima and S. Miyake, “Neocognitron: A self-organizing neural

network model for a mechanism of visual pattern recognition,” in

Competition and cooperation in neural nets. Springer, 1982, pp. 267–285.

[32] S. J. Gershman and D. M. Blei, “A tutorial on bayesian nonparametric

models,” Journal of Mathematical Psychology, vol. 56, no. 1, pp. 1–12, 2012.

[33] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies

for accurate object detection and semantic segmentation,” in Proceedings of

the IEEE conference on computer vision and pattern recognition, 2014, pp.

580–587.

[34] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural

networks,” in Proceedings of the fourteenth international conference on

87

artificial intelligence and statistics. JMLR Workshop and Conference

Proceedings, 2011, pp. 315–323.

[35] S. E. Gómez, L. Hernández-Callejo, B. C. Mart́ınez, and A. J.

Sánchez-Esguevillas, “Exploratory study on class imbalance and solutions for

network traffic classification,” Neurocomputing, vol. 343, pp. 100–119, 2019.

[36] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in

Advances in neural information processing systems, 2014, pp. 2672–2680.

[37] Google, “Video Streams Leak What You’re Watching to Attackers With

Over 95% Accuracy,” https://www.bleepingcomputer.com/news/security/

video-streams-leak-what-youre-watching-to-attackers-with-over-95-percent-accuracy/,

2018.

[38] ——, “HTTPS encryption on the web,” https://transparencyreport.google.

com/https/overview?hl=en&load os region=chrome-usage:1;series:

page-load;groupby:os&lu=load os region, 2022, online; accessed 12-6-2022.

[39] L. Grimaudo, M. Mellia, and E. Baralis, “Hierarchical learning for fine

grained internet traffic classification,” in 2012 8th International Wireless

Communications and Mobile Computing Conference (IWCMC). IEEE,

2012, pp. 463–468.

[40] C. Gu, S. Zhang, and Y. Sun, “Realtime encrypted traffic identification using

machine learning.” J. Softw., vol. 6, no. 6, pp. 1009–1016, 2011.

[41] J. Gu, J. Wang, Z. Yu, and K. Shen, “Walls have ears: Traffic-based

side-channel attack in video streaming,” in IEEE INFOCOM 2018-IEEE

Conference on Computer Communications. IEEE, 2018, pp. 1538–1546.

https://www.bleepingcomputer.com/news/security/video-streams-leak-what-youre-watching-to-attackers-with-over-95-percent-accuracy/
https://www.bleepingcomputer.com/news/security/video-streams-leak-what-youre-watching-to-attackers-with-over-95-percent-accuracy/
https://transparencyreport.google.com/https/overview?hl=en&load_os_region=chrome-usage:1;series:page-load;groupby:os&lu=load_os_region
https://transparencyreport.google.com/https/overview?hl=en&load_os_region=chrome-usage:1;series:page-load;groupby:os&lu=load_os_region
https://transparencyreport.google.com/https/overview?hl=en&load_os_region=chrome-usage:1;series:page-load;groupby:os&lu=load_os_region

88

[42] Y. Guo, G. Xiong, Z. Li, J. Shi, M. Cui, and G. Gou, “Ta-gan: Gan based

traffic augmentation for imbalanced network traffic classification,” in 2021

International Joint Conference on Neural Networks (IJCNN), 2021, pp. 1–8.

[43] R. Hasibi, M. Shokri, and M. Dehghan, “Augmentation scheme for dealing

with imbalanced network traffic classification using deep learning,” arXiv

preprint arXiv:1901.00204, 2019.

[44] G. He, B. Xu, L. Zhang, and H. Zhu, “Mobile app identification for

encrypted network flows by traffic correlation,” International Journal of

Distributed Sensor Networks, vol. 14, no. 12, p. 1550147718817292, 2018.

[45] Z. Hejun and Z. Liehuang, “Encrypted network behaviors identification

based on dynamic time warping and k-nearest neighbor,” Cluster

Computing, vol. 22, no. 2, pp. 2571–2580, 2019.

[46] M.-h. HONG, R.-t. GU, H.-x. WANG, Y.-m. SUN, and Y.-f. JI, “Identifying

online traffic based on property of tcp flow,” The Journal of China

Universities of Posts and Telecommunications, vol. 16, no. 3, pp. 84–88, 2009.

[47] J.-T. Huang, J. Li, and Y. Gong, “An analysis of convolutional neural

networks for speech recognition,” in 2015 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015, pp.

4989–4993.

[48] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and

functional architecture in the cat’s visual cortex,” The Journal of physiology,

vol. 160, no. 1, p. 106, 1962.

[49] H. A. H. Ibrahim, O. R. A. Al Zuobi, M. A. Al-Namari, G. MohamedAli,

and A. A. A. Abdalla, “Internet traffic classification using machine learning

approach: Datasets validation issues,” in 2016 Conference of Basic Sciences

and Engineering Studies (SGCAC). IEEE, 2016, pp. 158–166.

89

[50] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with

gumbel-softmax,” arXiv preprint arXiv:1611.01144, 2016.

[51] T. Karagiannis, A. Broido, M. Faloutsos, and K. Claffy, “Transport layer

identification of p2p traffic,” in Proceedings of the 4th ACM SIGCOMM

conference on Internet measurement, 2004, pp. 121–134.

[52] C. Kattadige, K. N. Choi, A. Wijesinghe, A. Nama, K. Thilakarathna,

S. Seneviratne, and G. Jourjon, “Seta++: Real-time scalable encrypted

traffic analytics in multi-gbps networks,” IEEE Transactions on Network and

Service Management, vol. 18, no. 3, pp. 3244–3259, 2021.

[53] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv preprint arXiv:1412.6980, 2014.

[54] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv

preprint arXiv:1312.6114, 2013.

[55] D. P. Kingma, S. Mohamed, D. Jimenez Rezende, and M. Welling,

“Semi-supervised learning with deep generative models,” Advances in neural

information processing systems, vol. 27, 2014.

[56] K. Kohls, D. Rupprecht, T. Holz, and C. Pöpper, “Lost traffic encryption:

fingerprinting lte/4g traffic on layer two,” in Proceedings of the 12th

Conference on Security and Privacy in Wireless and Mobile Networks.

ACM, 2019, pp. 249–260.

[57] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum, “Deep

convolutional inverse graphics network,” Advances in neural information

processing systems, vol. 28, 2015.

[58] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

90

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998.

[59] Y. LeCun et al., “Lenet-5, convolutional neural networks,” URL:

http://yann. lecun. com/exdb/lenet, p. 20, 2015.

[60] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C.

Lynch, J. Postel, L. G. Roberts, and S. Wolff, “A brief history of the

internet,” ACM SIGCOMM Computer Communication Review, vol. 39,

no. 5, pp. 22–31, 2009.

[61] S. Leroux, S. Bohez, P.-J. Maenhaut, N. Meheus, P. Simoens, and

B. Dhoedt, “Fingerprinting encrypted network traffic types using machine

learning,” in NOMS 2018-2018 IEEE/IFIP Network Operations and

Management Symposium. IEEE, 2018, pp. 1–5.

[62] Let’s Encrypt, “Let’s Encrypt Stats,” https://letsencrypt.org/stats/, 2022,

online; accessed 12-6-2022.

[63] H. Li, H. Zhu, and D. Ma, “Demographic information inference through

meta-data analysis of wi-fi traffic,” IEEE Transactions on Mobile

Computing, vol. 17, no. 5, pp. 1033–1047, 2018.

[64] W. Li, M. Canini, A. W. Moore, and R. Bolla, “Efficient application

identification and the temporal and spatial stability of classification schema,”

Computer Networks, vol. 53, no. 6, pp. 790–809, 2009.

[65] Y. Li, Y. Huang, R. Xu, S. Seneviratne, K. Thilakarathna, A. Cheng,

D. Webb, and G. Jourjon, “Deep content: Unveiling video streaming content

from encrypted wifi traffic,” in 17th Int. Symp. on Network Computing and

Applications. IEEE, 2018, pp. 1–8.

https://letsencrypt.org/stats/

91

[66] J. Liu, Y. Fu, J. Ming, Y. Ren, L. Sun, and H. Xiong, “Effective and

real-time in-app activity analysis in encrypted internet traffic streams,” in

Proceedings of the 23rd ACM SIGKDD international conference on

knowledge discovery and data mining, 2017, pp. 335–344.

[67] Y. Liu, J. Chen, P. Chang, and X. Yun, “A novel algorithm for encrypted

traffic classification based on sliding window of flow’s first n packets,” in

2017 2nd IEEE International Conference on Computational Intelligence and

Applications (ICCIA), 2017, pp. 463–470.

[68] Z. Liu, J. Wang, and Z. Liang, “Catgan: Category-aware generative

adversarial networks with hierarchical evolutionary learning for category text

generation,” in Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 34, no. 05, 2020, pp. 8425–8432.

[69] M. Lotfollahi, M. Jafari Siavoshani, R. Shirali Hossein Zade, and

M. Saberian, “Deep packet: A novel approach for encrypted traffic

classification using deep learning,” Soft Computing, vol. 24, no. 3, pp.

1999–2012, 2020.

[70] L. Maaløe, C. K. Sønderby, S. K. Sønderby, and O. Winther, “Auxiliary deep

generative models,” in International conference on machine learning.

PMLR, 2016, pp. 1445–1453.

[71] A. Madhukar and C. Williamson, “A longitudinal study of p2p traffic

classification,” in 14th IEEE international symposium on modeling, analysis,

and simulation. IEEE, 2006, pp. 179–188.

[72] E. Mahdavi, A. Fanian, and H. Hassannejad, “Encrypted traffic classification

using statistical features.” ISeCure, vol. 10, no. 1, 2018.

[73] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adversarial

autoencoders,” arXiv preprint arXiv:1511.05644, 2015.

92

[74] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv

preprint arXiv:1411.1784, 2014.

[75] A. W. Moore and K. Papagiannaki, “Toward the accurate identification of

network applications,” in International workshop on passive and active

network measurement. Springer, 2005, pp. 41–54.

[76] A. W. Moore and D. Zuev, “Internet traffic classification using bayesian

analysis techniques,” in Proceedings of the 2005 ACM SIGMETRICS

international conference on Measurement and modeling of computer systems,

2005, pp. 50–60.

[77] D. Moore, K. Keys, R. Koga, E. Lagache, and K. C. Claffy, “The

{CoralReef} software suite as a tool for system and network administrators,”

in 15th Systems Administration Conference (LISA 2001), 2001.

[78] T. T. Nguyen and G. Armitage, “Training on multiple sub-flows to optimise

the use of machine learning classifiers in real-world ip networks,” in

Proceedings. 2006 31st IEEE Conference on Local Computer Networks.

IEEE, 2006, pp. 369–376.

[79] B. Niemczyk and P. Rao, “Identification over encrypted channels,” BlackHat

USA, 2014.

[80] T. J. O’Shea, S. Hitefield, and J. Corgan, “End-to-end radio traffic sequence

recognition with recurrent neural networks,” in 2016 IEEE Global

Conference on Signal and Information Processing (GlobalSIP). IEEE, 2016,

pp. 277–281.

[81] J. Palmer, K. Kreutz-Delgado, B. Rao, and D. Wipf, “Variational em

algorithms for non-gaussian latent variable models,” Advances in neural

information processing systems, vol. 18, 2005.

93

[82] A. Panchenko, “Website fingerprinting in onion routing based anonymization

networks,” in Proceedings of the 10th annual ACM workshop on Privacy in

the electronic society. ACM, 2011, pp. 103–114.

[83] ——, “Website fingerprinting at internet scale.” in NDSS, 2016.

[84] B. Park, Y. Won, J. Chung, M.-s. Kim, and J. W.-K. Hong, “Fine-grained

traffic classification based on functional separation,” International Journal of

Network Management, vol. 23, no. 5, pp. 350–381, 2013.

[85] K. Park and H. Kim, “Encryption is not enough: Inferring user activities on

kakaotalk with traffic analysis,” in International Workshop on Information

Security Applications. Springer, 2015, pp. 254–265.

[86] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style,

high-performance deep learning library,” Advances in neural information

processing systems, vol. 32, 2019.

[87] V. Paxson, “Empirically derived analytic models of wide-area tcp

connections,” IEEE/ACM transactions on Networking, vol. 2, no. 4, pp.

316–336, 1994.

[88] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning

with deep convolutional generative adversarial networks,” arXiv preprint

arXiv:1511.06434, 2015.

[89] C. Rasmussen, “The infinite gaussian mixture model,” Advances in neural

information processing systems, vol. 12, 1999.

[90] A. Razaghpanah, A. A. Niaki, N. Vallina-Rodriguez, S. Sundaresan,

J. Amann, and P. Gill, “Studying tls usage in android apps,” in Proceedings

94

of the 13th International Conference on emerging Networking EXperiments

and Technologies, 2017, pp. 350–362.

[91] A. Reed and B. Klimkowski, “Leaky streams: Identifying variable bitrate

dash videos streamed over encrypted 802.11n connections,” in 2016 13th

IEEE Annual Consumer Communications Networking Conference (CCNC),

Jan 2016, pp. 1107–1112.

[92] A. Reed and M. Kranch, “Identifying https-protected netflix videos in

real-time,” in Proceedings of the Seventh ACM on Conference on Data and

Application Security and Privacy. ACM, 2017, pp. 361–368.

[93] V. Rimmer, D. Preuveneers, M. Juarez, T. Van Goethem, and W. Joosen,

“Automated website fingerprinting through deep learning,” arXiv preprint

arXiv:1708.06376, 2017.

[94] T. N. Sainath, B. Kingsbury, A.-r. Mohamed, G. E. Dahl, G. Saon,

H. Soltau, T. Beran, A. Y. Aravkin, and B. Ramabhadran, “Improvements

to deep convolutional neural networks for lvcsr,” in 2013 IEEE workshop on

automatic speech recognition and understanding. IEEE, 2013, pp. 315–320.

[95] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab, “A review on machine

learning–based approaches for internet traffic classification,” Annals of

Telecommunications, vol. 75, no. 11, pp. 673–710, 2020.

[96] B. Saltaformaggio, H. Choi, K. Johnson, Y. Kwon, Q. Zhang, X. Zhang,

D. Xu, and J. Qian, “Eavesdropping on fine-grained user activities within

smartphone apps over encrypted network traffic,” in 10th USENIX

Workshop on Offensive Technologies (WOOT 16), 2016.

[97] R. Schuster, V. Shmatikov, and E. Tromer, “Beauty and the burst: Remote

identification of encrypted video streams,” in 26th USENIX Security

Symposium, 2017, pp. 1357–1374.

95

[98] S. Sen, O. Spatscheck, and D. Wang, “Accurate, scalable in-network

identification of p2p traffic using application signatures,” in Proceedings of

the 13th international conference on World Wide Web, 2004, pp. 512–521.

[99] S. Sen and J. Wang, “Analyzing peer-to-peer traffic across large networks,”

in Proceedings of the 2nd ACM SIGCOMM Workshop on Internet

measurment, 2002, pp. 137–150.

[100] J. Sethuraman, “A constructive definition of dirichlet priors,” Statistica

sinica, pp. 639–650, 1994.

[101] T. Seyed Tabatabaei, M. Adel, F. Karray, and M. Kamel, “Machine

learning-based classification of encrypted internet traffic,” in International

Workshop on Machine Learning and Data Mining in Pattern Recognition.

Springer, 2012, pp. 578–592.

[102] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo,

“Convolutional lstm network: A machine learning approach for precipitation

nowcasting,” Advances in neural information processing systems, vol. 28,

2015.

[103] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional

networks: Visualising image classification models and saliency maps,” arXiv

preprint arXiv:1312.6034, 2013.

[104] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models

for real-time tracking,” in Proceedings. 1999 IEEE computer society

conference on computer vision and pattern recognition (Cat. No PR00149),

vol. 2. IEEE, 1999, pp. 246–252.

[105] M. Struwe and M. Struwe, Variational methods. Springer, 2000, vol. 991.

96

[106] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Appscanner:

Automatic fingerprinting of smartphone apps from encrypted network

traffic,” in 2016 IEEE European Symposium on Security and Privacy

(EuroS&P). IEEE, 2016, pp. 439–454.

[107] ——, “Robust smartphone app identification via encrypted network traffic

analysis,” IEEE Transactions on Information Forensics and Security, vol. 13,

no. 1, pp. 63–78, 2017.

[108] A. Tongaonkar, R. Keralapura, and A. Nucci, “Challenges in network

application identification.” in LEET, 2012.

[109] A. Van Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recurrent neural

networks,” in International conference on machine learning. PMLR, 2016,

pp. 1747–1756.

[110] M. J. Wainwright, M. I. Jordan et al., “Graphical models, exponential

families, and variational inference,” Foundations and Trends® in Machine

Learning, vol. 1, no. 1–2, pp. 1–305, 2008.

[111] P. Wang, S. Li, F. Ye, Z. Wang, and M. Zhang, “Packetcgan: Exploratory

study of class imbalance for encrypted traffic classification using cgan,” in

ICC 2020 - 2020 IEEE International Conference on Communications (ICC),

2020, pp. 1–7.

[112] Q. Wang, A. Yahyavi, B. Kemme, and W. He, “I know what you did on your

smartphone: Inferring app usage over encrypted data traffic,” in 2015 IEEE

conference on communications and network security (CNS). IEEE, 2015,

pp. 433–441.

[113] T. Wang and I. Goldberg, “Improved website fingerprinting on tor,” in

Proceedings of the 12th ACM workshop on Workshop on privacy in the

electronic society. ACM, 2013, pp. 201–212.

97

[114] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, “End-to-end encrypted

traffic classification with one-dimensional convolution neural networks,” in

2017 IEEE international conference on intelligence and security informatics

(ISI). IEEE, 2017, pp. 43–48.

[115] A. M. White, A. R. Matthews, K. Z. Snow, and F. Monrose, “Phonotactic

reconstruction of encrypted voip conversations: Hookt on fon-iks,” in 2011

IEEE Symposium on Security and Privacy. IEEE, 2011, pp. 3–18.

[116] C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M. Masson, “Spot

me if you can: Uncovering spoken phrases in encrypted voip conversations,”

in 2008 IEEE Symposium on Security and Privacy (sp 2008). IEEE, 2008,

pp. 35–49.

[117] ——, “Uncovering spoken phrases in encrypted voice over ip conversations,”

ACM Transactions on Information and System Security (TISSEC), vol. 13,

no. 4, p. 35, 2010.

[118] Q. Xu, Y. Liao, S. Miskovic, Z. M. Mao, M. Baldi, A. Nucci, and

T. Andrews, “Automatic generation of mobile app signatures from traffic

observations,” in 2015 IEEE conference on computer communications

(INFOCOM). IEEE, 2015, pp. 1481–1489.

[119] Z. Yan, H. Zhang, R. Piramuthu, V. Jagadeesh, D. DeCoste, W. Di, and

Y. Yu, “Hd-cnn: hierarchical deep convolutional neural networks for large

scale visual recognition,” in Proceedings of the IEEE international conference

on computer vision, 2015, pp. 2740–2748.

[120] H. Z. Yerebakan, B. Rajwa, and M. Dundar, “The infinite mixture of infinite

gaussian mixtures,” Advances in neural information processing systems,

vol. 27, 2014.

98

[121] J. Yu, H. Lee, Y. Im, M.-S. Kim, and D. Park, “Real-time classification of

internet application traffic using a hierarchical multi-class svm.” KSII

Transactions on Internet & Information Systems, vol. 4, no. 5, 2010.

[122] L. Yu and H. Liu, “Feature selection for high-dimensional data: A fast

correlation-based filter solution,” in Proceedings of the 20th international

conference on machine learning (ICML-03), 2003, pp. 856–863.

[123] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network

regularization,” arXiv preprint arXiv:1409.2329, 2014.

[124] Y. Zhu and H. Fu, “Traffic analysis attacks on skype voip calls,” Computer

Communications, vol. 34, no. 10, pp. 1202–1212, 2011.

[125] D. Zuev and A. W. Moore, “Traffic classification using a statistical

approach,” in International workshop on passive and active network

measurement. Springer, 2005, pp. 321–324.

	Title Page
	Certificate of Original Authorship
	Abstract
	Acknowledgements
	List of Publications
	Contents
	List of Figures
	List of Tables
	Abbreviation
	Introduction
	Background and Motivation
	Encrypted WiFi Traffic Analysis
	Deep Learning based Traffic Classification Technology
	Hierarchical Architecture for Traffic Classification
	Data Augmentation Technology

	Research Objectives
	Research Contributions
	Thesis Structure

	Literature Review
	Network Traffic Classifier
	Network Traffic Classifier Foundation
	Traffic Classification on HTTPS Communications
	Traffic Classification in WiFi and Physical Layers
	Hierarchical Traffic Classifier
	Data Augmentation Methods for Network Traffic Classification

	Related Deep Learning Techniques
	Deep Neural Networks
	Deep Generative Models
	Bayesian Nonparametric Models

	Classifying Encrypted WiFi Videos Using Deep Learning Models
	Introduction
	Method
	DASH Streaming
	Preprocessing & Feature Engineering
	Classifier Architectures

	Experiments and Results
	Dataset and Evaluation Metric
	Implemention Details
	Performance
	Performance Analysis

	Summary

	Classifying Encrypted WiFi Traffic Using A Hierarchical Classifier
	Introduction
	Method
	Streaming and Other Time Sensitive Traffic
	Architecture
	Training Process

	Experiments and Results
	Dataset
	Evaluation Metrics
	Implementation Details
	Results
	Result Analysis

	Summary

	Generating Samples by Category Using Bayesian Nonparametric Autoencoders
	Introduction
	IGMVAE
	Method
	Inference Process
	Architecture
	Training and Testing

	I²GMVAE
	Method
	Inference Process
	Architecture
	Training and Testing

	Experiments and Results
	Dataset and Evaluation Metrics
	Implementation Details
	Results
	Result Analysis

	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

