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Abstract
Medical reports have signicant clinical value to radiologists and specialists, especially 
during a pandemic like COVID. However, beyond the common diculties faced in the nat-
ural image captioning, medical report generation specically requires the model to describe 
a medical image with a ne-grained and semantic-coherence paragraph that should satisfy 
both medical commonsense and logic. Previous works generally extract the global image 
features and attempt to generate a paragraph that is similar to referenced reports; however, 
this approach has two limitations. Firstly, the regions of primary interest to radiologists are 
usually located in a small area of the global image, meaning that the remainder parts of the 
image could be considered as irrelevant noise in the training procedure. Secondly, there 
are many similar sentences used in each medical report to describe the normal regions of 
the image, which causes serious data bias. This deviation is likely to teach models to gen-
erate these inessential sentences on a regular basis. To address these problems, we pro-
pose an Auxiliary Signal-Guided Knowledge Encoder-Decoder (ASGK) to mimic radi-
ologists’ working patterns. Specically, the auxiliary patches are explored to expand the 
widely used visual patch features before fed to the Transformer encoder, while the external 
linguistic signals help the decoder better master prior knowledge during the pre-training 
process. Our approach performs well on common benchmarks, including CX-CHR, IU 
X-Ray, and COVID-19 CT Report dataset (COV-CTR), demonstrating combining auxil-
iary signals with transformer architecture can bring a signicant improvement in terms of 
medical report generation. The experimental results conrm that auxiliary signals driven 
Transformer-based models are with solid capabilities to outperform previous approaches 
on both medical terminology classication and paragraph generation metrics.
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1 Introduction

When you take a medical image in any hospital, you will receive a medical report. This 
medical report describes both normal and abnormal terminologies, and can assist radiol-
ogists and specialists in diagnosing and reviewing. However, writing medical reports is 
error-prone and time-consuming, especially during a pandemic like COVID-19, because 
radiologists may have to diagnose hundreds of images per day. Therefore, the topic of auto-
matically generating medical reports has attracted research attention from both articial 
intelligence and clinical medicine elds.

The most similar task to medical report generation in the computer vision eld is image 
captioning. Beyond the common diculties in natural image captioning, there are three 
more bottlenecks for medical report generation. Firstly, the amount of image-report pairs in 
existing datasets are considered small compared to the captioning datasets, which are insuf-
cient to learn visual representations; Secondly, it is hard to acquire the object features 
which are widely used in the natural image captioning tasks [1] from medical images. Only 
a few medical images can provide the well-annotated segmentation or location information 
of lesions; Thirdly, there are severe data deviation exists in these datasets. Some diseases 
are rare in nature, and their positive samples are hard to collect. Moreover, there are many 
similar sentences used in each report to describe the routine observation, which leads to 
the overtting problem and limits the generalization of neural approaches [18, 21, 33, 34].

Recently, many approaches have been designed to address these problems and achieved 
promising performance on automatically generating medical reports  [3, 12, 17, 21]. For 
example, Xue et al. [40] encode multiple image modalities to generate multi sentences. Li 
et al. [21] manually proposed several templates and Zhang et al. [45] encode and modeled 
visual contents relationships by the incorporation of graph module to generate ne-grained 
reports. With the success of Transformer  [36] in image captioning tasks, Chen et al.  [3] 
rstly proposed a memory-driven Transformer that can update the memory during generat-
ing process. Although achieving promising performances, R2Gen  [3] focuses on design-
ing extra modules, ignoring activating the characteristic learning ability of Transformer. 
Although achieving promising performances, existing approaches did not fully activate 
neural models’ potentiality, especially Transformer.

Inspired by the radiologists’ working patterns, in this paper, we explore auxiliary sig-
nals’ power to facilitate generating medical reports. Generally, when a radiologist describes 
a medical image, he/she will carefully inspect the suspicious regions after quickly brows-
ing the global image. Then, he/she will write a report that draws on the knowledge he/
she learned from the external medical domain and his/her working experience. As shown 
in Fig. 1, the suspicious region takes up only a tiny portion of the global image but has 
been treated equally to other regions in previous works. Therefore, other regions could 
be considered irrelevant noise that distracts the model. Although these regions may get 
more attention based on the self-attention mechanism in Transformer, Dosovitskiy et al. [6] 
pointed out that Transformer can learn a better visual representation when fed with original 
image patches instead of the encoded visual features. Using large extra corpora to pre-train 
the Transformer is an eective way to alleviate the corpus deviation in the training data-
sets [5, 31]. However, there is a considerable textual semantic gap between the medical and 
common domains.

Accordingly, to mimic the behavior of medical experts and address the above-
mentioned learning diculties, we propose an Auxiliary Signal-Guided Knowledge 
(ASGK) approach including two kinds of auxiliary signals to improve a Transformer to 
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generate medical reports. Firstly, we automatically nd a suspicious region where the 
pre-trained neural visual extractor paid the most attention. After resizing and cutting, 
the auxiliary patches are concatenated to the original patch features before being fed to 
the encoder. These patches ensure that the Transformer will learn better visual hidden 
representations. Then, we collect a medical corpus to pre-train the decoder, in which 
all the sentences that record related medical knowledge are easily accessed online. The 
pre-training steps can improve the model robustness to alleviate the training corpus 
deviation and decrease the sensitivity to similar linguistic patterns.

We further introduce a new COVID-19 CT Report (COV-CTR) dataset for use in 
validating the robustness and generalization ability of ASGK. Since December 2019, 
the novel COVID-19 virus has caused a global pandemic and infected millions of peo-
ple across 200 countries. A key step in controlling the infection is that of identify-
ing infected people. In addition to the Reverse Transcription Polymerase Chain Reac-
tion (RT-PCR) tests, lung CT scan analysis has emerged as another essential testing 
method. Therefore, an accurately written report could assist patients and doctors to 
understand their health condition. We invited three radiologists with more than ve 
years of working experience to apply their diagnostic skills to the public COVID-CT 
dataset [47] and use this information to construct the COV-CTR dataset.

We test our approach on the large-scale Open-IU [4], CX-CHR dataset [21] and 
our COV-CTR dataset. We adopt CIDER-D  [37], ROUGE-L  [23] and BELU  [28] as 
the metrics for evaluating our approach. Comprehensive experiments demonstrate that 
ASGK improves performance in terms of both tag classication and report genera-
tion. Our ablation studies also provide insight that enables us to determine how ASGK 
works well.

The main contributions of this paper are three-fold as follows:

– We identify and produce two kinds of auxiliary signals, namely the internal fusion 
visual features and the external medical linguistic information to facilitate graph 
encoding and medical knowledge learning respectively.

– We design a medical tag graph encoder to transfer input features into higher-level 
information and adopt Generative Pre-Training (GPT) [31] as our natural language 
decoder to generate accurate and robust medical reports.

– We invite three radiologists with more than ve years of experience to apply their 
diagnostic skills to the COVID-19 CT images [47] and use this information to con-
struct a new medical report dataset, COVID-19 CT Report which will be available.

Fig. 1  Two samples from CX-CHR and our COV-CTR datasets. Red bounding boxes annotated by a radi-
ologist indicate the regions that he pays more attention to describing this image. The red text describes the 
abnormalities. Underlined text indicates alignment between ground truth reports and generated reports
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2  Related work

2.1  Medical report generation

Compared with natural image captioning [1, 22], medical reports generation is a more chal-
lenging research topic. The models should have the capability to detect all visual ground-
ings, classify them accurately, and generate multi-sentences to describe both normal and 
abnormal terminologies. Most existing medical report generation approaches are based on 
the encoder-decoder frameworks. At the beginning, Jing et al. [13] rstly proposed a data-
driven neural network composing of a convoluational neural network and a LSTM [10] to 
simultaneously predict medical tags and generate a single sentence report by employing a 
co-attention mechanism over both visual and textual features. To generate multi-sentences, 
Xue et al. [40] proposed a multi-level recurrent generation model that consists of a topic 
level LSTM and a word-level LSTM, they also concentrated the front and later views to 
fuse multiple images modalities. These concepts have been regarded as successful prac-
tices and employed by the following works [7, 21, 45]. Compared with the LSTM, Trans-
former [36] has great eectiveness in processing long sequence information. Thus, Chen 
et al. [3] proposed a memory-driven Transformer to generate the report, in which the criti-
cal information from the previous generation process can be incorporated into the Trans-
former. In contrast, Wang et al. [39] proposed a region-level extractor instead of the global 
features by a selective search algorithm.

Beyond designing backbone networks, prior medical knowledge is another resource 
to advance the medical report generation researches. Most recently, Liu et  al.  [24] also 
explored radiologists’ working patterns which is similar to our work. In particular, they 
enhanced the report generation procedure by retrieving the similar reports according to the 
input visual features. While we utilized the external medical knowledge to alleviate the tex-
tual bias, more evidence of our advantages are provided in the experimental section.

2.2 Medical image analysis with auxiliary signals

With success if deep learning networks in many elds [16, 20, 46], recent works [11, 35] 
discussed the application of deep learning technologies to the eld of medical image anal-
ysis. Medical knowledge graph is adopted as a kind of prior knowledge to facilitate the 
medical image analysis and achieves signicant improvements [2, 9, 17, 24, 26, 27, 42, 
44, 45, 48]. However, due to the diculty associated with accessing and annotating medi-
cal images, many researchers have attempted to use self-supervised learning to loosen the 
requirements of training data. The core of self-supervised learning involves the design of 
various proxy tasks that provide auxiliary signals for training deep neural networks [14]. 
Furthermore, auxiliary signals are widely applied as the basic structure for image analysis. 
Adopting auxiliary signals to guide training has advantages in terms of boosting model 
performance and improving model robustness. Zhuang et al. [49] found that auxiliary sig-
nals are likely to benet 3D neural networks for brain hemorrhage classication and brain 
tumor segmentation.

2.3  Language model pre‑training

Natural language decoders are another critical part of the image captioning process. Recent 
breakthroughs in the eld of pretrained language models, such as ELMO [30], BERT [5], 
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and XLNet [41], have demonstrated the eectiveness of auxiliary signals for a widespread 
range of natural language processing tasks. For example, the new state-of-the-art GPT-2 
[32] reveals that pretraining allows models to learn a language’s syntactic and semantic 
information via unsupervised learning, which is then transferred to other tasks. However, 
directly applying these models to medical domain datasets often yields unsatisfactory 
results due to the existence of a domain gap between general corpora and medical corpora. 
To tackle this problem, Habibi et al. [8] proposes a completely generic method based on 
deep learning and statistical word embedding, while Lee et  al.  [15] pretrains BERT on 
medical corpora.

3  Approach

3.1  Problem setup

Similar to the previous studies  [13, 17, 21, 45], the task of medical report generation 
involves asking a model to generate a topic related paragraph consisting of a series of sen-
tences to describe a medical image of a patient case. We represent the image as I and the 
report as S =


w1, w2, ..., wlwi ∈ 


 , where wi presents the index of word in  the vocabu-

lary of all words contained in the datasets. To generate ne-grained and semantically 
coherent sentences, we propose a graph encoder-decoder framework that rst encodes 
inputs feature vectors to a medical tag graph and then decodes them to a medical report. 
We represent the medical tag as G = (V , E) , where V =


vi


i=1∶Nt

 and E =


ei,j


i,j=1∶Nt

 is a 
set of edges. In our task, we represent each node feature vi by its detected tag classication 
probability, then encode the correlation between each of the two tags as edge weights. Nt 
represents the total number of medical tags composes abnormal terminologies, such as 
“pneumothorax” and “colon shadow”, and normal terminologies such as “normal spine”, 
“normal intercostal space” and so on.

Generally, when a radiologist describes a image, he will inspect the abnormal region 
carefully after quickly browsing the global image, then write a report that reects both 
his inspection and the knowledge obtained from external medical domain information and 
his working experience. To mimic this pattern, we rstly pretrain the framework with the 
external medical signals collected from an appropriate website in order to correctly phrase 
and learn medical knowledge. Subsequently, the internal visual fusion signals facilitate 
graph encoding and bridge the gap between linguistic and visual domain. More details 
regarding these internal visual fusion signals are described in Section 3.3.

3.2  The structure of ASGK

An overview of our approach is shown in Fig. 2. The main structure of ASGK comprises a 
medical graph encoder and natural language decoder.

3.2.1  Medical graph encoder

This component is built to encode the input features into higher level information, i.e. a 
medical tag graph. In the medical graph, each node denotes one detected medical tag, the 
features of which are the classication probabilities and can be written as (1).
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where Wv is a projection matrix of size N × d ; here, d represent the dimension of the input 
features, and N is the number of total tags. Given that the truth edge information is not 
available in our case, we conduct an attention operation to learn edge weights automati-
cally, which can be written as follows:

where Norm is the normalization operation, while Attention is executed as a scaled dot-
product operation. Then the medical tag graph is incorporated with the prior medical 
knowledge which is represented as a set of nodes of size N with initialized features and 
edges via attention mechanism following by [17], which can be written as follows:

To enhance the correlation between each of the nodes, we employ a multi-head self atten-
tion operation on G to get the nal graph. We further treat medical tag detection as a multi-
label classication task and adopt BCE loss to maximize the prediction scores

where Wv is a projection matrix of size N × d ; here, d represent the dimension of the input 
features, yi is the ground truth label, and vi is the nal graph tag features.

3.2.2  Natural language decoder

Inspired by GPT [31], we design a natural language decoder consisting of N = 3 blocks, 
similar to the Transformer decoder, to interpret the medical tag graph and enable semantic 

(1)V = Sigmoid(Wvfinput )

(2)ei,j = Norm(Attention(Wvvi, Wvvj))

(3)G = att(Gprior, V , E)

(4)Ltagcls = −

N−1

i=0

yi log vi + (1 − yi) log(1 − vi)

Fig. 2  An overview of our ASGK approach. The ASGK model consists of a medical graph encoder and a 
natural language decoder. The medical graph encoder encodes input features into the corresponding medi-
cal tag graph, while the natural language decoder transfers high-level information to sentences or reports. 
The external signals guide the pretraining procedure, while the internal signals guide the model to bridge 
linguistic and visual information. T and MCS represent threshold and max connection select operation 
respectively
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alignment in the visual and linguistic domain. The structure of the block is presented in 
Fig.  2. This block applies a masked, multi-head self-attention operation to the medical 
report or sentences tokens T =


t1, t2, ..., tl


 embedded from Glove vectors pretrained on 

our datasets. We use [31] to maximize the likelihood in the following formulation:

where P is the conditional probability of the next token prediction, modeled using a neural 
network with parameters  and history sentences. Then, followed by position-wise feed 
forward layers, the natural language decoder aims to produce an output distribution over all
token vocabulary.

where IW is the index of input tokens in the vocabulary, IP is the index of the token’s posi-
tion, We is the pretrained wording embedding matrix, and Wp is the position embedding 
matrix.

3.3  Auxiliary signal‑guide learning

3.3.1  Pretraining with external auxiliary signals

The direct application of general pretrained language models to medical domain tasks leads 
to unsatisfactory results, since the word distributions dier from those of those of general 
and medical corpora. To resolve this problem, we collect medical textual information from
an appropriate website to construct a large-scale medical textbook. This textbook provides 
sucient information about medical knowledge, including the symptoms, manifestations 
and other information about COVID-19 and thoracic diseases. Before feeding it into the 
medical graph encoder, we divide the medical textbook into sentences and embed the word 
tokens with embedding vectors, which are trained in our datasets using Glove [29]. After 
embedding, sentences are encoded using a single-layer GRU with 1024 hidden units to 
produce the external medical auxiliary signals.

3.3.2  Training with internal auxiliary signals

Evidently, the quality of the encoded medical graph will signicantly aect the accuracy 
of the generated reports. Therefore, we produce internal fusion visual signals to facilitate 
medical graph encoding and bridge the gap between linguistic and visual information. As 
shown in Fig. 2, we rst classify the global image using DenseNet-121 and obtain the fea-
ture maps fc ∈ R7∗7∗1024 before the nal pooling layers and output from last pooling lay-
ers fg ∈ R1∗1024 . To produce the mask, we perform a threshold operation on a heat map 
acquired by (9) and select the max connected area:

(5)Lt(T) = −


i

log P(tit1, ..., ti−1;)

(6)h0 =IWWe + IPWp,

(7)Hl =(hl−1, V , E)∀l ∈ [1, N],

(8)Pi =Sof tmax(hNWT
e
)
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We adopt another DenseNet to extract the attended region features fl ∈ R1∗1024 from the 
nal pooling layers, then perform the element-wise operation on fg and fl to produce the 
fusion signals ff  . To balance the deviation in medical tags, we optimize the parameters of 
three branch via focal loss, as follows:

where yi represents the label, pi represents the prediction probability,  is a hyper-parame-
ter set according to diverse datasets, and (1 − p∗

i
) is treated as a modulating factor with a 

tunable focusing parameter  ≥ 0 . We set  to 0.25 and  to 2 in our task.

4  Experiments

4.1  Datasets

We invited three Chinese radiologists with more than ve years of working experience 
to apply their diagnostic skills to the public COVID-CT [47] and use these image-report 
pairs to construct the COV-CTR. All the images are lung CT-scans and collected from the 
published papers. The references to these papers are listed in [47]. Notably, the quality of 
these images are degraded in following aspects: the Hounseld unit (HU) values are lost; 
the number of bits per pixel is reduced; the resolution of images is reduced. However, as 
explained in [47], experienced radiologists are able to make an accurate diagnosis from 
low quality CT images. For example, given a photo taken by smart phone of the original 
CT image, experienced radiologists can make an accurate diagnosis by just looking at the 
photo, though the CT image in the photo has much lower quality than the original CT 
image. Likewise, the quality gap between CT images in papers and original CT images will
not largely hurt the accuracy of diagnosis.

For each image in COV-CTR, we present the related reports and the impression which 
indicates the patient is COVID or not. There are 349 and 379 images for COVID and Non-
COVID, respectively. More details and comparisons with other datasets are reported in 
Table  1 Medical report generation tasks aim to describe all the visual grounding in the 
image with medical terminologies. Therefore, one CT scan is enough for neural models to 
diagnose.

We conduct experiments on both Chinese annotated CX-CHR, COV-CTR dataset 
and English described Open-IU dataset in order to validate the robustness and gener-
alization ability of ASKG. CX-CHR is a large-scale chest X-ray dataset, constructed by 
a professional medical institution, that consists of 35,609 patients and 45,598 images 
paired with their corresponding Chinese diagnostic reports. We collect 173 medical 
tags comprising 155 abnormal terminologies and 28 normal terminologies from the 
‘ndings’ section and annotate paired images with these tags. Moreover, the COV-CTR 
datasets consist of 728 images (349 for COVID-19 and 379 for Non-COVID) collected 

(9)H = max
k


f k

c


, k ∈ 1 ∶ 0124

(10)p∗
i
=


pi, if yi = 1

1 − pi, otherwise

(11)Lfocal = −

N−1

i=0

(1 − p∗
i
) log p∗

i
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from published papers and their corresponding paired Chinese reports. We perform the 
same operation described above and collect 68 tags (50 abnormalities and 18 normali-
ties). We adopt the same Chinese textbook when conducting experiments on two Chi-
nese datasets. We tokenize all reports and the medical textbook and lter tokens with 
a minimum frequency of three, which results in 27683 unique Chinese tokens covering 
over 98.7% of words in the corpus including four special tokens pad, eos, sep and unk. 
On both Chinese datasets, we randomly split the data into training, validation, and test-
ing sets using a ratio of 7 : 1 : 2; there is no overlap between these branches.

We perform the same operations on the Open-IU dataset to clarify the perfor-
mance of our ASKG to generate English medical reports, we collected medical papers’ 
abstracts from Pubmed to construct the English Medical Textbook and provide the 
external signals with 2791 unique English tokens. Then we included 20 nding key-
words as disease categories the same as [45] to extract the internal signals.

4.2  Evaluation metrics

Following [17], we adopt three kinds of metrics to evaluate our approach. Firstly, we 
use area under the curve (AUC) to evaluate the performance of all medical tag classi-
cations. We compare our approach with existing approaches, including conventional 
natural image captioning models and typical medical report generation pipelines on 
the metrics including CIDER-D [37], ROUGE-L [23], BLEU [28] and clinical ecacy. 
Most existing medical report generation approaches adopt the BLEU-4 as the primary 
metric. However, as shown in Fig.  3, the model achieves a high BLEU value in the 
rst epoch, where all outputs of models are the same. Obviously, BLEU has limits 
on evaluating medical reports. Compared with BLEU, CIDER pays more attention to 
the dierent words between each sentence, and most of the words describe abnormal 
terminologies in this task. Therefore, we adopt the CIDER as our primary metric. As
discussed in [19, 45], these metrics can not provide reliable evaluation results. We also 
conduct human evaluation, inviting senior radiologists to judge the quality of gener-
ated reports. Specically, we randomly select 200 samples from the testing set and 
generate corresponding medical reports using CoAtt [13] and our approach. Then we 
invite senior radiologist to nd which predicted reports are described the given images 
more accurately.

Table 1  Statistics of COV-CTR, 
CX-CHR and Open-IU Statistics COV-CTR CX-CHR IU X-Ray

Patients − 35,609 3867
Images 728 45,598 7470
Normalities − 18 −
Abnormalities − 155 −
Vocabulary Size 235 27683 2791
Max. Sen. Num. 14 24 18
Max. Sen. Len. 37 38 42
Max. Rep. Len. 127 216 173
Avg. Sen. Len. 8.197 7.111 6.997
Avg. Rep. Len. 77.274 64.858 32.450
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4.3  Training details

The whole network is implemented using a PyTorch framework based on Python 3.6 and
trained on two GeForce RTX 2080Ti GPUs. We adopt DenseNet-121 with no pretraining 
as the backbone to extract visual features. There are three steps in our training process: 
external auxiliary signal-guide pretraining, DenseNet pretraining, and internal auxiliary 
guide training. In the rst step, the maximum length of the sentence is 300 (padded with 
0s), and the word embedding dimension is 300. We train ASGK for 30 epochs until conver-
gence. The natural language decoder consists of three blocks. We adopt ADAM for opti-
mizing and the training rate is 5e-4. For the second step, we resize the image to 224 × 224 
for both global and region images. The batch size is 32. We jointly train two DenseNets for 
50 epochs until convergence. The learning rate starts from 1e-2 and delays by 0.1 every 10 
epochs until 1e-5. We threshold the heat map by 0.7 to acquire region images. We adopt 
the model that achieves the best performance on test datasets as a visual extractor in the 
third step. In the nal step, we resize the images to 224 × 224 and train the entire network 
for 30 epochs until convergence. The learning rates for the visual extractor and ASGK are 
1e-5 and 5e-4, respectively. We also adopt the ADAM optimizer to minimize the loss func-
tion. Among the multi-tasks, we set all loss weights to 1.

5  Results and analysis

5.1  Automatic evaluation

Table 2 summarizes the performances on the automatic evaluation metrics of dierent 
models. The results on both datasets indicate that ASGK outperforms all existing state-
of-the-art models through its exploitation of auxiliary signals to guide the framework in 
knowledge pretraining and knowledge transfer procedures. The results demonstrate the 
robustness and superior generalization ability of ASGK. We also combine our medi-
cal graph encoder with V-Bert  [5] and V-GPT [31] in order to validate the capability 
of the language-to-vision transfer. We adopt CIDER-D as the main metric to validate 

Fig. 3  We evaluate our model each epoch and report BLEU-4 and CIDER values on validation and testing 
sets
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our model. On the large-scale CX-CHR dataset, ASGK signicantly boosts performance 
compared with other baselines, it increases the CIDER score by 51.0, 35.0, 39.5, 22.1 
and 22.7 respectively. However, ASGK only acheives a slightly low ROUGE-L score 
than the CoAtt [13] method. ASGK also outperforms other baselines in COV-CTR 
dataset.

Compared with the results present in Table  3, ASKG performed better than 
TieNet [38], CARG [25], SentSAT [43] and SentSAT+KG [45]. The most Cider score 
indicates that our generated reports have the least redundancy as there are many simi-
lar sentences used in each medical report to describe the normal terminology in which 
patients care less.

Table 2  Evaluation metrics on CH-CHR and COV-CTR datasets comparing ASGK with other methods

C and R are short for CIDER-D and ROUGE-L. B-n denotes that the BLEU score uses up to n-grams. Hit 
represents the human evaluation results
The bold numbers are the largest in each column

Dataset Model C R B@1 B@2 B@3 B@4 Hit(%)

CX-CHR CoAtt 273.5 64.5 64.7 57.5 52.5 48.7 8.0
HRGR 289.5 61.2 67.3 58.7 53.0 48.6 −
KERP 285.0 61.8 67.3 58.8 53.2 47.3 −
V-BERT 302.4 63.7 68.6 60.1 54.1 50.3 19.0
V-GPT 301.8 63.0 67.9 59.6 54.0 48.7 −
SAT 311.2 63.3 62.3 55.2 53.9 48.1 −
R2Gen 310.2 63.3 68.1 60.2 54.3 50.1 −
Ours 324.5 64.1 68.6 60.8 55.8 52.3 20.0

COV-CTR CoAtt 67.2 74.8 70.9 64.5 60.3 55.2 25.0
SAT 65.9 72.3 69.7 62.1 56.8 51.5 −
AdaAtt 68.2 72.6 67.6 63.3 59.6 51.4 −
V-BERT 68.4 74.7 71.0 65.3 60.6 55.8 26.0
V-GPT 68.0 74.6 70.8 64.5 60.0 54.9 −
R2Gen 67.2 73.2 69.3 61.1 55.9 51.8 −
TopDown 63.1 72.1 70.5 65.3 60.9 56.1 −
Ours 68.4 74.6 71.2 65.9 61.1 57.0 27.0

Table 3  Comparison of report 
generation models on three 
metrics on the Open-IU dataset

As some of their works are outsourced, we directly use the results 
reported in their papers
The bold numbers are the largest in each column

Model Bleu-4 Cider-D Rouge-L

CARG [25] 11.3 − 35.4
KERP [17] 16.2 28.0 33.9
TieNet [38] 8.1 − 31.1
SentSAT [43] 14.3 26.8 35.9
SentSAT+KG [45] 14.7 30.4 36.7
Ours 12.5 30.6 27.9
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5.2  Medical tags classication

The AUCs of medical tag classication, which contains both normal and abnormal termi-
nologies on both datasets, are presented in Table 4. Our framework, which is guided by two 
auxiliary signals, outperforms the baseline on both datasets. Baseline outputs are predicted 
by a DenseNet-121 without pretraining. We attempt to boost the performance through the 
use of internal auxiliary signals and the adaptation of focal loss to balance the deviation. 
This demonstrates that internal auxiliary signals eectively promote the medical graph 
encoder and facilitate the medical tag classication.

5.3  Human evaluation

Given 200 random images from these two datasets equally, we invited three radiologists 
to evaluate the corresponding outputs of our methods, CoAtt [13] and Vison-Bert [5]. 
They are encouraged to select a more accurate result from each pair. The human evalua-
tion results are presented in Table 2. It shows that in the CX-CHR and COV-CTR datasets, 
radiologists thought 20% , and 27% portions of our reports are more accurate than others’ 
respectively, and while they thought 53% , and 22% portions of results are same. The human 
evaluation demonstrates that our method is capable of generating accurate and semantic-
coherent reports.

5.4  Visualization

An illustration of heat maps, suspicious regions, is presented in Fig. 4. It is clear from the 
results that suspicious regions suggest the region on which the model should focus. For 

Fig. 4  Sample output of our approach on both CX-CHR and COV-CTR datasets. We use the outputs before 
the last pooling layer in DenseNet-121 to generate heat maps, then threshold them by  = 0.7 to produce the 
suspicious regions
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example, in the rst row, the auxiliary region focuses on the inferior lobe of the left lung 
which presents a shadow. In the fourth row, moreover, the auxiliary region focuses the infe-
rior pleural of the left lung, which covers ground-glass opacity, one of the symptoms of 
COVID-19.

Figure 5 shows the illustration of medical tag graphs, and paragraphs of medical reports. 
The medical tag graph demonstrates that ASGK is capable of encoding input features into 
a high-level knowledge graph; as we lack the ground truth of the corresponding graph, we 
train in an end-to-end way to encode the graph. The generated reports demonstrate the high 
quality and provide signicant alignment with the ground truth.

5.5  Ablation studies

We conduct ablation experiments to compare the performance of the two auxiliary sig-
nals. Table 4 presents the results of automatic evaluation metrics and tag classication. The 
baseline represents the direct training of the ASGK model without any auxiliary signals. In 
addition to extra notes, we adopt focal loss as our training strategy.

Fig. 5  Sample output of our approach on both CX-CHR and COV-CTR datasets. In the medical tag graphs, 
we show the nodes whose value (which is equal to the classication probability) exceeds 0.5 and edges 
whose weights are more than 0.3. To read the image clearly, we show the values of some edges in the 
appropriate places. The underlined text indicates alignment between ground truth reports and generated 
reports
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5.5.1  Do internal auxiliary signals help?

From Table 4, we can determine that auxiliary signals signicantly boost the tag classication 
performance and improve the quality of generated reports. The internal auxiliary signal-guided 
learning outperforms the automatic metrics 15.6% , 1.4% and 0.6% respectively, and also per-
forms 4.5% better than the baseline in terms of classication accuracy on the CX-CHR data-
set. The quality of the medical tag graphs signicantly impacts the natural language decoder. 
We produce internal auxiliary signals to mimic radiologists’ working patterns, since abnormal 
regions provide richer visual features. These experiments demonstrate that focusing on abnor-
mal regions benets the detection of medical tags and the generation of medical reports.

5.5.2  What is the use of focal loss?

Radiologists are asked to describe all of their observations on one medical image, which 
leads to serious data deviation on medical tag labels and reports. Typically, each image 
contains three to ve normal tags and a few abnormal terminologies. To alleviate the 
deviation in multi-label classication tasks, we adopt focal loss in order to optimize the 
parameters in DenseNet and the medical tag decoder. When the second and third rows are 
compared, the performance shows its capability to balance deviation and improve AUC 
metrics. Without focal loss, the performances on AUC metrics decrease by 0.9% and 0.7% 
respectively on the two datasets.

5.5.3  Are external auxiliary signals useful?

The external auxiliary signals guide the pretraining procedure to assist the model in memo-
rizing and phrasing medical knowledge. As expected, ASGK benets a lot from the pre-
training procedure. The performance on automatic metrics are boosted substantially from 
289.7% to 317.2% and 59.1% to 66.9% on the two datasets respectively, which indicates that 
external auxiliary signal-guided training is capable of generating accurate and semantically 

Table 4  Ablation studies for dierent auxiliary signals

IA, EA and CE are short for “internal auxiliary signals”, “external auxiliary signals’ and “cross entropy”. 
Four metrics are adopted to evaluate our model on two datasets
The bold numbers are the largest in each column

Dataset Model CIDER-D ROUGE-L BLEU-4 AUC 

CX-CHR baseline 289.7 61.3 48.3 78.7
baseline+IA+CE 304.6 62.5 48.9 82.1
baseline+IA 305.3 62.7 49.1 83.2
baseline+EA 317.2 63.8 52.0 79.3
baseline+IA+EA 324.5 64.1 52.3 85.9

COV-CRT baseline 59.1 68.3 52.5 72.7
baseline+IA+CE 61.3 70.2 54.1 79.0
baseline+IA 62.8 70.5 54.2 79.7
baseline+EA 66.9 72.0 55.6 74.5
baseline+IA+EA 68.4 74.6 57.0 80.4
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coherent sentence. However, it improves the classication accuracy slightly, by 0.6% , and 
1.8% respectively on the two datasets, which demonstrates that exploiting medical domain 
knowledge primarily promotes the natural language decoder. Furthermore, our ndings 
show that without external auxiliary signals, the model fails to alleviate the data bias and is 
therefore prone to repeating several specic words and sentences in one report.

Overall, the internal signals mainly facilitate the medical tag encoder’s eectiveness in 
generating ne-grained sentences and describing more medical tags. The external signals 
enable the natural language decoder to generate more semantically coherent sentences.

6  Broader impacts

This work practically analyzes a meaningful task combined with the computer vision and 
natural language processing task, medical report generation. Especially when pandemic 
happens like COVID-19, robust and accurate medical report generation technology is of 
great clinical value, which can reduce the burden on doctors and enable people to more 
accurately grasp their health status. We propose an anthropomorphic model, mimicking 
radiologists’ working patterns, to promote the medical report generation task via acquiring 
easily-accessed auxiliary signals. This approach may inspire those researchers who have 
limited access to medical image resources to dig deeper into adopting unsupervised learn-
ing methods to acquire more auxiliary signals to supervised this task and achieve state-of-
the-art performances. However, it still needs more eort to provide theoretical interpreta-
tion for these auxiliary signals. And our algorithm should be utilized carefully in clinical 
practice since medical decisions may lead to live-or-death consequences.

7  Conclusions and future work

In this paper, we proposed an Auxiliary Signal-Guided Knowledge Encoder-Decoder 
approach that mimics radiologists’ working patterns to generate ne-grained and semanti-
cally coherent medical reports. We investigated how to best crop the auxiliary region from 
the global medical image, how to exploit medical domain knowledge from medical text-
book, and how these auxiliary signals work. Experiments demonstrate that ASGK outper-
forms existing methods and boosts the performance of medical report generation tasks on 
report generation and tag classication on two medical datasets. Moreover, we have con-
structed and released a new medical report dataset, COV-CTR, to contribute to the com-
munity. In the future, we plan to focus on building a general captioning framework guided 
by auxiliary signals to encode and decode general corpora knowledge.
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