

Track substructure inclusions for reducing the risk of mud pumping in heavy haul tracks

by Joseph Arivalagan

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Professor Cholachat Rujikiatkamjorn and Distinguished Professor Buddhima Indraratna

University of Technology Sydney Faculty of Engineering and Information Technology

December 2022

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Joseph Arivalagan, declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Civil and Environmental Engineering/Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature removed prior to publication.

Joseph Arivalagan,

02 December 2022.

I would like to dedicate my thesis to my beloved parents

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to my supervisors, Distinguished Professor Buddhima Indraratna and Professor Cholachat Rujikiatkamjorn, for their guidance and enthusiastic support throughout my research study. Their valuable comments, criticisms, suggestions and encouragement are greatly appreciated. From the start of my PhD study, I have developed interpersonal and technical skills, and critical thinking and presentation skills due to their guidance and support, for which I am very grateful.

My sincere thanks to the technical staff at UoW, Cameron Neilson, Richard Bernt, Ritchie McClean, Travis Marshall and Duncan Best for helping me carry out the experiments, especially during the Covid 19 restrictions in 2020. I would like to say thank you to all technical staff at UTS laboratories, including Dr Lam Nguyen, Dr Mandeep Singh, Dr Chamindi Jayasuriya, for helping me to complete the experimental program. I am also grateful to my PhD colleagues for their continuous encouragement and helpful discussions during this research study. Sincere thanks to industry partner, Global Synthetics, for their technical and material support. I also extend my sincere thanks to Andy Warwick (Global Synthetics) and Richard Austin (Polyfabrics Australasia) for their assistance during the one-year industrial training. Many thanks to Bill Clayton for the professional editing of this thesis. To the various industry partners involved in this project - Australasian Centre for Rail Innovation (ACRI), Snowy Mountain Engineering Corporation (SMEC), Metro Trains Melbourne (MTM) and Sydney Trains, my sincere thanks for your constructive feedback during the progress meetings. I want to thank ITTC Rail and UTS for providing me with UTS IRS and FEIT scholarships, as well as all the academic and non-academic staff of Civil Engineering for their help during my stay at the University of Wollongong and the University of Technology Sydney.

I wish to extend my sincere thanks to my parents, (Late) Philippiah Joseph and Mary Grace Pakiyam and my brother Dr Joseph Philip Anpalahan and my entire family; I could not have achieved this without your endless support. Special gratitude to my girlfriend, Ms Pavithira Sivabalan, for her constant love, patience, and respect during the highs and lows of this PhD study. Finally, I would like to take this opportunity to thank everyone who has contributed to making this journey a successful one.

TABLE OF CONTENTS

CERTIFICATE OF ORIGINAL AUTHORSHIP	i
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	v
LIST OF FIGURES	xvi
LIST OF TABLES	XXV
LIST OF SYMBOLS	xxvii
LIST OF ABBREVIATIONS	xxviii
LIST OF PUBLICATIONS	XXX
ABSTRACT	xxxi
CHAPTER 1: INTRODUCTION	1
1.1 Study Background	1
1.2 Soil Fluidisation (Mud Pumping) and Soil Liquefaction	2
1.3 Problem Statement	
1.4 Research Hypotheses	4
1.5 Objectives and Scope of the Present Study	5
1.6 Innovations and Salient Outcomes	6
1.7 Organisation of Dissertation	7
CHAPTER 2: LITERATURE REVIEW	
2.1 General	
2.2 Rail Track Structure	
2.2.1 Track Components	
2.2.2 Track Response under Heavy Haul Loading	
2.2.2.1 Maximum Vertical Stress	
2.2.2.2 Stress Attenuation	
2.2.3 Track Instability and Characteristics of Subgrade Problems	14

2.3 Mechanisms of Mud Pumping/Subgrade Fluidisation	15
2.3.1 The Occurrence of Mud Pumping	15
2.3.1.1 Mud pumping Induced by Localised Suction	15
2.3.1.2 Subgrade Fluidisation under Cyclic Loads	16
2.3.1.3 Effects of Weather on Mud Pumping	20
2.3.1.4 Unstable Soft Foundations and Transition Zones	21
2.3.1.5 Ballast Mud Pumping	22
2.3.2 Key Factors Inducing Mud Pumping	23
2.3.2.1 The Source of Excess Fines	23
2.3.2.1.1 Migration of Fines and Change in Particle Size Distribution	25
2.3.2.2 Dynamic Loading	28
2.3.2.3 Role of Water, Drainage, and Effects of Degree of Saturation	28
2.3.3 Cyclic Response of Soft Subgrade and Potential Failures	30
2.3.3.1 Excess Pore Water Pressure and Axial Strain under Cyclic Load	30
2.3.3.2 Loading Frequency	32
2.3.3.3 Drainage Conditions	33
2.3.3.4 Stiffness Degradation	34
2.3.4 Internal Erosion Associated with the Filtration Process	35
2.4 Assessment of Mud Pumping	35
2.5 Solutions for Mud Pumping	37
2.5.1 Clean and Fouled Ballast	37
2.5.2 Enhanced Drainage Conditions	38
2.5.2.1 Use of Prefabricated Vertical Drains	38
2.5.2.2 Geosynthetic Composites/Inclusion	39
2.5.2.3 Chemical Stabilisation of Railway Foundation	40
2.6 Use of Geosynthetics in Practice	41
2.6.1 Geometry of Geotextile Filters	41

2.6.1.1 Aperture Opening Sizes	. 44
2.6.1.2 Thickness of the Geotextiles	. 46
2.6.2 Design Criteria and The Performance of Geotextile Filter	. 46
2.6.2.1 Retention Criterion	. 47
2.6.2.2 Permeability Criterion	. 47
2.6.2.3 Clogging Criterion	. 48
2.6.2.4 Durability Criterion	. 48
2.6.2.5 Survivability Criterion	. 48
2.6.3 Mitigation of Particle Migration and Hydraulic Properties of Geotextiles	. 49
2.6.4 Prevention of Mud Pumping using Geosynthetics	. 50
2.6.4.1 Performance under Cyclic Loading Conditions	. 51
2.6.4.2 Prevention of Particle Migration	. 55
2.6.4.3 Geotextile/Soil Interlayer Characteristics	. 56
2.6.4.4 Effects of Standing Water	. 56
2.7 Use of Prefabricated Vertical Drains	. 58
2.7.1 Properties of Vertical Drains	. 58
2.7.2 Equivalent Drain Diameter	. 60
2.7.3 Filter Opening Size	. 61
2.7.4 Smear Effects and Well Resistance	. 61
2.7.5 Vertical and Radial Consolidation	. 62
2.7.6 Performance of PVDs under Cyclic Loading	. 64
2.7.6.1 Effectiveness at Dissipating Pore Water Pressure	. 64
2.8 Conventional Capping/Compacted Sand Blanket	. 66
2.9 Chapter Summary	. 67
CHAPTER 3: RESEARCH APPROACH AND METHODOLOGY	. 68
3.1 Introduction	. 68
3.2 Testing Materials	. 68

3.2.1 Soil Testing	69
3.2.2 Ballast Material	70
3.2.3 Geotextiles	70
3.2.3.1 Permeability/Permittivity of Geotextiles	71
3.2.4 Prefabricated Vertical Drain (PVD)	74
3.3 Testing Apparatus	75
3.3.1 Basic Dynamic Tests	75
3.3.1.1 Polycarbonate Cell	75
3.3.1.2 Vibrating Table	75
3.3.1.3 Hydraulic Actuator	75
3.3.2 Dynamic Filtration Tests (DFT)	77
3.3.2.1 Modified Dynamic Filtration Apparatus	77
3.3.2.2 Rigid Boundary Polycarbonate Cell	78
3.3.2.3 Miniature Pressure Transducers (MPs)	79
3.3.2.4 Body Transducers (Ps)	79
3.3.2.5 Amplitude Domain Reflectometry (ADR) Probes	79
3.3.2.6 Load Cell	80
3.3.2.7 Datalogger and Modules	80
3.3.2.8 A Micro-CT scanner	81
3.4 Loading Calculation at the Equivalent Depth Beneath the Sleeper	82
3.5 Test Program	84
3.5.1 Basic Dynamic Tests	84
3.5.2 Dynamic Filtration Setup	84
3.5.3 Dynamic Filtration Tests (DFT)	84
3.5.3.1 Phase 1: Undrained and Free Drainage Conditions	84
3.5.3.2 Phase 2: Performance of Different Geotextiles	85
3.5.3.3 Phase 3: Influence of Frequency and Amplitude (Geosynthetics)	86

3.5.3.4 Phase 4: Prefabricated Vertical Drains (PVDs)	86
3.5.3.5 Phase 5: Influence of Radial Drainage	86
3.5.3.6 Phase 6: Effects of Cyclic Stress and Frequency (PVD + Geocomp	osite)86
3.6 Test Procedures	88
3.6.1 Basic Dynamic Tests (BDT)	88
3.6.1.1 Case 1	88
3.6.1.1.1 Load Application	89
3.6.1.2 Case 2	89
3.6.1.2.1 Slurry Preparation	89
3.6.2 Dynamic Filtration Tests (DFT)	90
3.6.2.1 Testing Material	90
3.6.2.2. Compaction	90
3.6.2.3 Installation of PVD	91
3.6.2.4 Saturation	91
3.6.2.5 Consolidation	91
3.6.2.6 Interface Preparation	92
3.6.2.6.1 Saturation of Geotextile	92
3.6.2.6.2 Entrapped Air in Geosynthetics	92
3.6.2.7 Cyclic Load Application	
3.7 Test Analysis	
3.7.1 Basic Dynamic Tests (BDT)	
3.7.2 Dynamic Filtration Tests (DFT)	
3.8 Chapter Summary	95
CHAPTER 4: TESTING PROGRAM	96
BASIC DYNAMIC TESTS AND DYNAMIC FILTRATION TESTS	96
4.1 Introduction	96
4.2 Basic Dynamic Tests: Results and Discussions	97

4.2.1 Case 1	
4.2.1.1 Reduction in Water content	
4.2.1.2 Permittivity of the Geotextiles	
4.2.1.3 The Variations in Particle Size Distribution	
4.2.1.3.1 Estimating Pumped-up Fines from PSD analysis	
4.2.1.4 Clogging Behaviour of the Geotextile	
4.2.1.5 Issues Encountered during the Test	
4.2.2 Case 2	
4.2.2.1 Test Results and Discussions	
4.2.3 Summary: Filtration and Drainage Capacity of Geotextiles	107
4.2.4 Proposed Method to Assess the Performance of Geosynthetics	in Dynamic
Filtration Tests	
4.3 Dynamic Filtration Apparatus	
4.3.1 Features of Modified Hydraulic Apparatus	
4.3.2 Experimental Program	
4.3.3 Cyclic Tests without Capping/Free Drainage Tests	
4.3.4 Cyclic Tests with Geocomposite G1	
4.3.5 Effects of Test Repeatability	
4.4 Chapter Summary	
CHAPTER 5: SUBGRADE BEHAVIOUR INFLUENCED BY	DRAINAGE
CONDITIONS AT THE BALLAST SUBGRADE INTERFACE	115
5.1 Introduction	
5.2 Experimental Results and Discussion	
5.2.1 Undrained Cyclic Tests (Test T1)	
5.2.1.1 Excess Pore Water Pressure (EPWP) and Axial Strain (ϵ_a)	
5.2.1.2 Excess Pore Pressure Gradient (EPPG)	

5.2.1.3 Variation in Particle Size Distribution (PSD) and Water Content 120
5.2.1.3.1 Fluidised Particles
5.2.2 Fee Drainage Conditions (Test T2) 123
5.2.2.1 Mid-test Observations – Interlayer Creation 124
5.2.2.2 EPWPs and Axial Strains (ε)125
5.2.2.3 Excess Pore Pressure Gradients (EPPGs) 127
5.2.2.4 Change in Particle Size Distribution (PSD) and Moisture Content 127
5.2.2.4.1 Variation in Water content
5.3 Chapter Summary 130
CHAPTER 6: THE ROLE OF GEOTEXTILES IN PREVENTING PARTICLE
MIGRATION AND SUBGRADE FLUIDISATION 131
6.1 Introduction
6.2 Experimental Setup132
6.3 Experimental Results and Discussion (Different Geotextiles) 132
6.3.1 Generation of Excess Pore Water Pressures (EPWP)
6.3.2 Development of Axial Strain
6.3.3 Development of Excess Pore Pressure Gradients (EPPG) 137
6.3.4 Particle Size Distribution (PSD)
6.3.5 Water Content (w/c)
6.3.6 Interface (Subgrade/Ballast) 142
6.3.7 Clogging, Permeability and Trapped Fines
6.3.8 Results of Micro CT scan 144
6.4 Effects of Cyclic Stress and Frequency 147
6.4.1 Introduction147
6.4.2 Effects of Cyclic Stress
6.4.2.1 Generation of EPWP148

0. 1 .2.2 Axial Su'alli	149
6.4.2.3 Development of EPPG	
6.4.2.4 Particle Size Distribution (PSD)	
6.4.2.5 Water Content	
6.4.2.6 Clogging and Interface (subgrade/geotextile) Confinement	153
6.4.3 Effects of Loading Frequency	
6.4.3.1 Generation of EPWP	
6.4.3.2 Axial strain	155
6.4.3.3 Development of Excess Pore Pressure Gradients (EPPG)	
6.4.3.4 Particle Size Distribution	156
6.4.3.5 Clogging and Interface (subgrade/geotextile) Confinement	
6.4.3.6 Water Content	159
6.5 Chapter Summary	
CHADTED 7. DESIGN CHIDELINES	
CHAPTER /: DESIGN GUIDELINES	
USE OF GEOSYNTHETICS IN RAIL TRACKS VULNERABLE	
USE OF GEOSYNTHETICS IN RAIL TRACKS VULNERABLE PUMPING	161 To MUD 161
USE OF GEOSYNTHETICS IN RAIL TRACKS VULNERABLE PUMPING	161 TO MUD 161
USE OF GEOSYNTHETICS IN RAIL TRACKS VULNERABLE PUMPING	TO MUD
USE OF GEOSYNTHETICS IN RAIL TRACKS VULNERABLE PUMPING 7.1 Track Substructure 7.2 Mud Pumping Mechanisms 7.3 Characteristics of Vulnerable Subgrade Soils	TO MUD
USE OF GEOSYNTHETICS IN RAIL TRACKS VULNERABLE PUMPING	TO MUD 161 161
 USE OF GEOSYNTHETICS IN RAIL TRACKS VULNERABLE PUMPING	TO MUD TO MUD 161 161 161
 USE OF GEOSYNTHETICS IN RAIL TRACKS VULNERABLE PUMPING	TO MUD TO MUD 161 161 161 162 165 169 169
 USE OF GEOSYNTHETICS IN RAIL TRACKS VULNERABLE PUMPING 7.1 Track Substructure 7.2 Mud Pumping Mechanisms 7.3 Characteristics of Vulnerable Subgrade Soils. 7.4 Functions of Geotextiles 7.5 Performance of Geotextiles. 7.5.1 Cyclic load and frequency 7.5.2 Dynamic Filtration Tests. 	TO MUD TO MUD 161 161 161 162 165 169 169 170
USE OF GEOSYNTHETICS IN RAIL TRACKS VULNERABLE PUMPING 7.1 Track Substructure 7.2 Mud Pumping Mechanisms 7.3 Characteristics of Vulnerable Subgrade Soils 7.4 Functions of Geotextiles 7.5 Performance of Geotextiles 7.5.1 Cyclic load and frequency 7.5.2 Dynamic Filtration Tests 7.6 Critical Factors that Affect the Performance of Geotextiles	TO MUD TO MUD 161 161 161 161 162 165 169 169 169 170 171

CHAPTER 8: EFFECTIVENESS OF A COMBINED PREF.	ABRICATED
VERTICAL DRAIN-GEOCOMPOSITE SYSTEM IN PREVENTING	SUBGRADE
INSTABILITY	
8.1 Introduction	
8.2 Experimental Setup	
8.2.1 Prefabricated Vertical Drains (PVDs)	
8.2.2 A combined PVD-Geocomposite System	
8.2.3 Preparation of PVDs	
8.3 Experimental Results and Discussion	
8.3.1 Excess pore water pressures (EPWPs)	
8.3.2 Axial Strain	
8.3.3 Generation of excess pore pressure gradients (EPPG)	
8.3.4 PSD and Clogging	
8.3.5 Water content	
8.4 Radial Drainage	
8.4.1 Experimental Setup	
8.4.2 Results and Discussions	
8.4.3 Horizontal EPPG developed at Critical Layers of Subgrade	
8.5 Effects of Cyclic Stress and Frequency	
8.5.1 Introduction	
8.5.2 Effect of Cyclic Stress	
8.5.2.1 Excess Pore Water Pressure	
8.5.2.2 Excess Pore Pressure Gradient	
8.5.2.3 Water content and Particle Migration	
8.5.3 Effect of Frequency	
8.5.3.1 Excess Pore Water Pressure and Axial Strain	
8.5.3.2 Excess Pore Pressure Gradient	

8.5.3.3 Water content and Trapped Fines	194
8.6 Chapter Summary	196
CHAPTER 9: NUMERICAL STUDY OF GEOSYNTHETICS IN SOFT SOI	LS 197
9.1 Introduction	197
9.2. 2D Finite Element (FE) Model	197
9.3 FE Model to Simulate Railway Tracks	198
9.3.1 Case 1: Modelling Track Behaviour at Sandgate Project	198
9.3.2 Case 2: Conventional Railway Track	200
9.4 Material Parameters	201
9.5 Dynamic Load Calculations	204
9.5.1 Sleeper/Ballast Contact Pressure	205
9.5.2 Dynamic Load Used in FEM	206
9.5.3 Train Speed and Frequency	207
9.6 Geosynthetic Inclusions in Railway Tracks	208
9.6.1 Prefabricated Vertical Drains	208
9.6.2 Drainage Layer at the Subgrade Surface (Geotextiles)	209
9.7 Results and Discussions	209
9.7.1 Case 1: Modelling Track Behaviour at Sandgate Project	210
9.7.1.1 Influence of Geotextile	210
9.7.1.2 Effectiveness of PVDs	211
9.7.1.3 The combined PVD-Geotextile System	213
9.7.2 Case 2: Modelling Railway Tracks with and without PVDs	215
9.8 Limitations of this Study	218
9.9 Chapter Summary	219
CHAPTER 10: CHULLORA FIELD TRIAL	220
10.1 Introduction	220
10.2 Chullora Site Investigation	221

10.3 Railway Track Design	222
10.4 Improved Drainage at Chullora Field Trial	223
10.5 Geosynthetic Inclusions	225
10.6 Instrumentation	228
10.7 Laboratory and Field Investigations	231
10.7.1 Particle Size Distribution and Proctor Curve	231
10.7.2 38-mm Diameter Cored Samples (Compacted Capping)	232
10.7.3 Compacted Ballast Density	234
10.8 Track Construction – Instrumented Control Section	234
10.9 Test Outcomes and Contributions	236
10.10 Chapter Summary	237
CHAPTER 11: CONCLUSIONS AND RECOMMENDATIONS	238
11.1 General Synopsis	238
11.2 Conclusions	239
11.2.1 Factors Causing Subgrade Fluidisation in Railway Tracks	239
11.2.1.1 Excess Pore Pressure Gradient (EPPG)	239
11.2.1.2 Loading Characteristics	240
11.2.1.3 Characteristics of Soft Subgrade	240
11.2.1.4 Abrupt Change in Water Content	240
11.2.1.5 Pumping of Fine Particles	241
11.2.2 Application of Geosynthetics in Preventing Subgrade Fluidisation	241
11.2.3 Numerical Modelling	243
11.2.4 Chullora Field Trial	244
11.3. Industry Implications	244
11.4 Limitations of the Study	245
11.5 Recommendations for Future Research Work	246
12. REFERENCES	248

LIST OF FIGURES

Figure 1. 1: Subgrade mud pumping (Courtesy: Prof. Indraratna) 1
Figure 1. 2: (a) The installation of PVDs (b) geotextiles (Courtesy: Global Synthetics) 5
Figure 2. 1: Mud pumping sites in (a) Ashfield, New South Wales (Tennakoon et al. 2014)
(b) Queensland (Indraratna et al. 2012), (c) The United Kingdom (Ghataora et al. 2017)
and (d) Mansfield, Massachusetts (Aw 2007) 11
Figure 2. 2: The vertical stress transmission under concrete and wood ties (modified after
Li et al. (2015))
Figure 2. 3: Vertical cyclic stresses σ_{vr} generated at the ballast layer (modified after
Indraratna et al. (2010a)) 14
Figure 2. 4: Initiation of mud pumping proposed after Takatoshi (1997) (a) Floating tie
between sleeper and ballast, (b) High pore water pressure, (c) Fine migration by suction,
and (d) Mud pumping 16
Figure 2. 5: Photos showing the evolution of the interface (a) after saturation, (b) after
monotonic loading, and (c) after cyclic loading (after Duong et al. (2014a)) 17
Figure 2. 6: The effect of dry density inducing subgrade fluidisation (a) Critical CSRs and
(b) residual axial strain (after Indraratna et al. 2020d)
Figure 2. 7: Rainy test section with fouled ballast (Li & Wilk 2020) 20
Figure 2. 8: Peat boils and voids between the sleeper and the ballast (after Wheeler et al.
2017)
Figure 2. 9: Sources of excess fines inducing mud pumping under loads
Figure 2. 10: Plasticity chart of soft soil at mud pumping sites (Arivalagan et al. 2021). 25
Figure 2. 11: The relationship of equilibrium pore pressure to the level of cycled stress
(after Sangrey et al. (1969))
Figure 2. 12: Triaxial tests under confining pressure of 100 kPa (a) Axial strain and (b)
EPWPs (modified after Wang et al. (2013))

Figure 2. 13: Dissipation of EPWP after cyclic loads (after Ni (2012))
Figure 2. 14: The effect of cyclic stress ratio on the degradation index (f=1 Hz, OCR=1
modified after Zhou & Gong (2001))
Figure 2. 15: Geosynthetic installation into the soft subgrade
Figure 2. 16: Fine particle migration across soil/geotextile interface (modified after
Christopher & Fischer (1992))
Figure 2. 17: Unit cell equipment for three-dimensional (3D) loading (after Alobaidi &
Hoare (1998b))
Figure 2. 18: Behaviour of geotextiles (a) One-dimensional unit cell - Left and (b) Three-
dimensional unit cell – Right (Alobaidi & Hoare 1998b)
Figure 2. 19: Total mass percentages of subgrade – with and without geotextile (modified
after Kermani et al. (2018)) 56
Figure 2. 20: The effect of standing water (modified after Alobaidi & Hoare (1994)) 57
Figure 2. 21: (a) Plastic core and filter of a PVD ad (b) Drainage channels and the cross-
section of two different PVDs (modified after Chai et al. (2004))
Figure 2. 22: Arrangement of vertical drain in a unit cell, and the smear zone
Figure 2. 23: Variations of (a) Horizontal permeability and (b) Vertical permeability
(modified after Indraratna & Redana (1998))63
Figure 2. 24: Excess pore pressure and changes in volumetric strain under undrained and
partially drained conditions (modified after Hyodo et al. (1992))
Figure 2. 25: Generation of EPWPs with and without PVDs (modified after Singh et al.
(2020a))
Figure 3. 1: PSD of subgrade soils (after Arivalagan et al. (2021))
Figure 3. 2: Plasticity Index (modified after Arivalagan et al. (2021))
Figure 3. 3: Photos of Basic Dynamic Test (Case 1) and schematic illustration (1)
Hydraulic actuator (2) Test sample (3) Data logger (4) Camera (5) Computer76
Figure 3. 4: Basic Dynamic Test (Case 2)

Figure 3. 5: Photo of dynamic filtration apparatus (Arivalagan et al. 2021)
Figure 3. 6: Schematics of Dynamic Filtration Apparatus (DFA)
Figure 3. 7: Trapezoidal approximation of load distribution at the ballast/subgrade
interface
Figure 3. 8: (a) Basic dynamic test setup (b) Modified Dynamic filtration test setup 85
Figure 4. 1: Accumulated water at the top of geocomposite G1
Figure 4. 2: Cyclic test with geocomposite G1 (a) Removal of ballast, (b) Ballast particles
with accumulated water
Figure 4. 3: Variations in volume density of (a) soil collected near the interface and (b)
slurry collected from the top of geotextile G2101
Figure 4. 4: Change in volume density (a) soil prepared for testing and (b) soil collected
at the interface after cyclic testing (Geocomposite G1) 102
Figure 4. 5: Geocomposite G1 (magnification = $0.209x$) (a) After Saturation, (b) Top
(after cyclic loading), and (c) Bottom (after cyclic loading) 103
Figure 4. 6: Geotextile G2 after cyclic testing
Figure 4. 7: Photos of tested G1 (magnification = $0.209x$) in (a) T39, and (b) T43 104
Figure 4. 8: Photos of (a) Test setup, (b) Slurry after testing in T43, and (c) Removal of
slurry to determine the water content of soil at the interface (soil/geotextile $-T43$) 106
Figure 4. 9: Excess pore water pressure (a) With geotextile and (b) Free drainage test. 110
Figure 4. 10: Ballast/Subgrade Interface (a) Before Testing (b) After 500 cycles 111
Figure 4. 11: Photo of subgrade surface (magnification = $0.2x$) (a) with geotextile (after
100,000 cycles) (b) without geotextile (free drainage – Only after 500 cycles) 111
Figure 4. 12: Cyclic tests under free drainage conditions (No geosynthetics/Capping). 112
Figure 4. 13: Cyclic tests with geocomposite G1 113
Figure 5. 1: Dynamic filtration test setup for undrained cyclic test
Figure 5. 2: Generation of EPWP and Axial strain (modified after Arivalagan et al. (2021)
Note: EPP _{T1} – Excess pore pressure for Test T1 after 500 cycles (N>500) 118

Figure 5. 3: Six layers of base soil profile (DFA)
Figure 5. 4: Excess Pore Pressure Gradients for Test T1 120
Figure 5. 5: Volume density of (a) collected slurry, and (b) Middle soil (at 100 mm from
the interface) using Malvern particle analyser
Figure 5. 6: Particle size distributions under undrained cyclic tests (modified after
Arivalagan et al. (2021)) 121
Figure 5. 7: Liquidity Index of the soil – Test T1 (after Arivalagan et al. (2021)) 122
Figure 5. 8: Free drainage test – Dynamic filtration test setup 123
Figure 5. 9: 'Interlayer creation' due to penetration of ballast into subgrade in 'Free
drainage test' (T2) at 500 cycles
Figure 5. 10: Photos of (a) saturated specimen, fluidised specimen after (b) 500 cycles,
and (c) 100,000 cycles under free drainage conditions (Test T2) 125
Figure 5. 11: Free drainage Tests (a) EPWP, and (b) Axial strain 126
Figure 5. 12: Development of EPPG - Free drainage Test (T2) 128
Figure 5. 13: Particle size distribution (Free drainage tests)
Figure 5. 14: Liquidity Index of the soil (modified after Arivalagan et al. (2021)) 129
Figure 6. 1: The experimental setup with geotextile
Figure 6. 2: Excess pore water pressure developed in Test G1 134
Figure 6. 3: Excess pore water pressure - Tests G2 and G1(after Arivalagan et al. (2021))
Figure 6. 4: Excess pore water pressure - Tests G3 and G1 (after Arivalagan et al. (2021))
Figure 6. 5: Excess pore water pressure - Tests G1 and G5 136
Figure 6. 6: Axial strain - Tests T1, T2, G1, G2 and G3 (after Arivalagan et al. (2021))
Figure 6. 7: EPPGs for Tests T1and G1 (after Arivalagan et al. (2021) 138
Figure 6. 8: EPPGs for Tests G1 and G3 (after Arivalagan et al. (2021))

Figure 6. 9: PSD analysis using Malvern Particle Analyzer (Mastersizer)
Figure 6. 10: Particle migration under cyclic load for (a) Test G1 and (b) Test G2 by
Malvern Particle Analyzer
Figure 6. 11: Water contents after $N = 100,000$ cycles – Tests G1, G2, G3, G4, T1, and
T1 (after Arivalagan et al. (2021))141
Figure 6. 12: Top surface of subgrade after cyclic loading (magnification = $0.273x$) (a)
Test G1 and (b) Test G2 142
Figure 6. 13: Photos of tested geotextiles (magnification = $0.209x$) after 100,000 cycles
(a) Test G1 (b) Test G2 (c) Test G3 and (d) Test G4 144
Figure 6. 14: (a) Core sample locations, and (b) Images of cross-sections captured using a
micro CT scanner
Figure 6. 15: CT scan images of cored samples (magnification = $2.1x$) at the interface (a)
Test G1, (b) Test G3, and (c) Test G4 146
Figure 6. 16: CT scan images of cored samples (magnification = $2.1x$) at 50 mm from the
interface (a) Test G1, (b) Test G3, and (c) Test G4146
Figure 6. 17: EPWPs - Tests G-70-5, G-85-5, and G-100-5 (Arivalagan et al. 2021) 148
Figure 6. 18: Axial strains under different cyclic deviatoric stresses (Tests G-70-5, G-85-
5, and G-100-5: after Arivalagan et al. (2021))
Figure 6. 19: Development of EPPGs (Tests G-70-5, G-85-5, and G-100-5) 150
Figure 6. 20: Variations in PSD after cyclic load for Test G-85-5 151
Figure 6. 21: Variation in PSD after cyclic load for Test G-100-5 151
Figure 6. 22: Water content after 100,000 cycles (Tests T1, T2, G-70-5, G-85-5, and G-
100-5 after Arivalagan et al. (2021))
Figure 6. 23: Top surface of subgrade after 100,000 cycles (a) G-70-5 and (b) G-100-5

Figure 6. 24: (a) Photo of saturated geotextile, Photos of tested geotextiles after 100,000
cycles (b) Test G-70-5 (c) Test G-85-5, and (d) Test G-100-5 (after Arivalagan et al.
(2021))
Figure 6. 25: Excess pore water pressure (Tests G-70-3 and G-70-5: after Arivalagan et
al. (2021))
Figure 6. 26: Excess pore pressure gradient (Tests G-70-3 and G-70-5) 157
Figure 6. 27: Fine particle accumulation under cyclic load for Test G-70-3 157
Figure 6. 28: Photos of (a) saturated geotextile and getiles after 100,000 cycles (b) Test
G-70-1 (c) Test G-70-3, and (d) Test G-70-5
Figure 6. 29: Bottom surface of tested geotextiles (a) Test G-70-5 and (b) Test G-70-3158
Figure 6. 30: Water contents after $N = 100,000$ cycles (Tests T1, T2, G-70-1, G-70-3, and
G-70-5: after Arivalagan et al. (2021))
Figure 7. 1: Subgrade mud pumping and loss of contact between sleeper and ballast
(Courtesy: Prof Buddhima Indraratna)
Figure 8. 1: Cyclic Tests using PVDs
Figure 8. 2: A combined PVD and Geocomposite system 176
Figure 8. 3: Development of excess pore water pressure – Tests P, G and P+G
(Arivalagan et al. 2022)
Figure 8. 4: Developed EPWPs – Tests U and P+G 180
Figure 8. 5: Axial strain – Tests P, G, F, and P+G (Arivalagan et al. 2022) 181
Figure 8. 6: Excess pore pressure gradient – Tests p, G, and P+G 182
Figure 8. 7: Particle size distribution – Tests U and P+G 183
Figure 8. 8: Water content at 100,000 cycles – Tests U, F, G, P, and P+G (Arivalagan et
al. 2022)
Figure 8. 9: MPs installed at different locations from the centreline
Figure 8. 10: Excess pore water pressure developed inside the subgrade soil (Arivalagan
et al. 2022)

Figure 8. 11: Excess pore water pressure (T1 and T2)
Figure 8. 12: Excess pore pressure gradient (Arivalagan et al. 2022)
Figure 8. 13: Experimental setup under different cyclic stress and frequency 189
Figure 8. 14: Generation of excess pore water pressure under different cyclic stresses. 190
Figure 8. 15: Excess pore pressure gradient – Tests PG-70-5 and PG-85-5 (Arivalagan et
al. 2022)
Figure 8. 16: Water content at 100,000 cycles
Figure 8. 17: Photos of the subgrade surface (a) PG-70-5 and PG-100-5 192
Figure 8. 18: PSD of Top and Middle Soil after 100,000 cycles – PG-85-5 193
Figure 8. 19: Fine particles that accumulated at the bottom of the geocomposites (a) Tests
PG-70-5 and Test PG-100-5
Figure 8. 20: Generation of (a) EPWPs, (b) Axial strains, (c) EPPGs, and (d) measured
water content at 100,000 cycles (Arivalagan et al. 2022)
Figure 9. 1: Sandgate rai track and foundation (Indraratna et al. 2010b) 199
Figure 9. 2: FE Mesh for railway foundation with PVDs installed at 2 m spacing 201
Figure 9. 3: Drainage medium at the subgrade surface
Figure 9. 4: Generation of EPWPs with and without geotextiles
Figure 9. 5: Generation of EPWPs with and without PVDs (20t and 15Hz, PVD at 1.5 m
spacing)
Figure 9. 6: Generation and dissipation of EPWPs with a rest period
Figure 9. 7: Displacement contours after 1000 cycles using PVDs (20t and 15 Hz) 213
Figure 9. 8: Generation of EPWPs with a combination of PVD and geotextile filter 214
Figure 9. 9: Generation of EPWPs under different axle loads (No PVDs)
Figure 9. 10: Generation of EPWPs under increased axle loads (with PVDs) 216
Figure 9. 11: The rate of dissipation of EPWPs at 0.5m depth
Figure 9. 12: Variation in the cyclic EPWPs at different frequencies (f=8, 15 and 20 Hz)

Figure 10. 1: Plan view of all the sections in Chullora Track
Figure 10. 2: Soil sampling at the instrumented control section (SPT 0-0.5 m) 221
Figure 10. 3: (a) Existing track in Chullora, and (b) Excavation at the instrumented
control section (ICS)
Figure 10. 4: (a) Chullora track after heavy rainfall - Construction of sumps, and (b)
Dewatering system
Figure 10. 5: Drainage layer at subgrade level
Figure 10. 6: Cess drain construction – 300 mm diameter ag-pipe installation 225
Figure 10. 7: Subgrade soil at Instrumented control section
Figure 10. 8: Installation of Terram Hydrotex on subgrade soil – Geocomposite G1 227
Figure 10. 9: Installation of Bidim A44 on compacted capping layer 227
Figure 10. 10: (a) Woven geotextile at capping/ballast interface (ECOFLEX), (b) Rubber
geogrids at capping/ballast interface (EARS), and (c) MastaTEX nonwoven geotextile to
protect ag-pipes
Figure 10. 11: Instrumentation of ICS section (scale: 1:20)
Figure 10. 12: Plan view of ICS instrumentation (a) subgrade/capping interface and (b)
Capping/ballast interface (Eng.Analysis)
Figure 10. 13: (a) Instrumentation at the capping/ballast interface, (b) Settlement Plates
and (c) Pressure cell
Figure 10. 14: (a) Wide angle PTZ camera and (b) Data Acquisition System (DAQ) 230
Figure 10. 15: Properties of Capping material (a) PSD and (b) Proctor compaction Test
Figure 10. 16: (a) Coring samples at different locations, (b) Cored specimen inside the
cylindrical tube, and (c) Extruded specimen for laboratory testing

Figure 10. 17: (a) Measuring the water content, (b) Soil specimens collected from the
field ,and (c) Determining the moisture content and density in the laboratory (Courtesy:
Dr Mandeep Singh)
Figure 10. 18: (a) Nuclear density gauge/Non-destructive density Test and (b) the
Schmidt Test
Figure 10. 19: Determining the bulk density of compacted ballast in the field (compaction
of 150 mm thick layer)
Figure 10. 20: Laying capping material on the drainage layer, and (b) Compaction of
capping
Figure 10. 21: (a) Pouring ballast on the instrumentation units, and (b) compaction of 150
mm thick ballast layer
Figure 10. 22: Final stages of track construction (a) Laying sleepers and rails, (b)
Construct ballast shoulders, and (c) Tamping Ballast voids
Figure 10. 23: (a) Solar powered data acquisition system and (b) Completed track at
Chullora

LIST OF TABLES

Table 2. 1: Characteristics of soil subjected to mud pumping reported in previous studies
Table 2. 2: Cyclic response of soft subgrade and potential failures in a Nutshell – Key
themes
Table 2. 3: Application of geotextiles/geocomposites in a Nutshell – Key themes 42
Table 2. 4: Use of prefabricated vertical drains in a Nutshell – Key themes 59
Table 3. 1: Properties of tested geosynthetics (* Geocomposites)
Table 3. 2: Properties of tested PVD 74
Table 3. 3: Experimental Phases
Table 4. 1: Water content for geotextiles G1 and G2 98
Table 4. 2: Hydraulic conductivity of the geotextiles
Table 4. 3: The trapped fine particles 100
Table 4. 4: Test Results of T39 and T43105
Table 4. 5: Permittivity of G1 106
Table 6. 1: Experimental plan using different geotextiles 133
Table 6. 2: Trapped fine particles 143
Table 6. 3: Experimental plan under different cyclic loading conditions 147
Table 7. 1: Characteristics of soil subjected to mud pumping reported in previous studies
Table 7. 2: Properties of subgrade at South Coast (SC) rail line, NSW, Australia (Nguyen
& Indraratna 2021)
Table 7. 3: Retention criteria of a soil/geotextile filtration system
Table 7. 4: Geotextile specifications
Table 7. 5: Effectiveness of different geotextiles (Arivalagan et al. 2021)

Table 7. 6: Performance of Geocomposite (G1) under different axle loads and speeds
(Arivalagan et al. 2021)
Table 8. 1: Effects of cyclic stress and frequency (Phase 6_Chapter 3)
Table 9. 1: Sandgate Soft soil parameters (adapted from Indraratna et al. (2010b)) 201
Table 9. 2: Model parameters used in Case 2 (adopted from Indraratna et al. (2012b)) 202
Table 9. 3: Material parameters for different subgrades (adapted from Punetha et al.
(2021))
Table 9. 4: Selected axle load and speed of trains (Indraratna et al. 2010a; Indraratna et al.
2018; Israr 2016)
Table 9. 5: Staged loading application (Dynamic analysis in the time domain, f=15Hz)
Table 10. 1: Standard Penetration Test at ICS 222
Table 10. 2: Design parameters used for track design calculation
Table 10. 3: Properties of selected Geosynthetics 226
Table 10. 4: Type of sensors used in Instrumented control section (40 m section) 230
Table 10. 5: Notations used for instrumentation of the track

LIST OF SYMBOLS

- ϵ_a Cyclic axial strain
- N Number of cycles
- Nc Critical number of cycles
- f Frequency
- Of- Filtration opening size (f%)
- d_f Filament diameter (geotextile)

n - Porosity

- t_{GT} Thickness of the geotextile
- μ_{GT} Mass per unit area of the geotextile
- ρ_f Density of the fibres
- i_{LG}- Hydraulic gradient across a soil thickness (L) and the geotextile
- i_s Rereference gradient in the soil

 γ_d - Dry density

- D_x Soil particle size in mm for which x% of the soil is finer
- Cu Coefficient of uniformity of the subgrade soil
- $k_{\rm H}$ Horizontal permeability
- k_V-Vertical permeability
- O₉₅ Apparent opening size of geotextile filter
- K_a Reduction factor considering the effect of loading and partial clogging (geotextiles)
- mvr Coefficient of volume compressibility
- Ks Hydraulic conductivity of the soil
- K_{GS} Hydraulic conductivity of a soil/geotextile composite
- $S_{\rm r}$ Degree of Saturation
- Vw Volume of water
- V_v Volume of voids
- P'_a Average contact pressure at the sleeper and the ballast interface
- P_d Design wheel load incorporating dynamic effects
- Ps Static wheel load
- D_w Diameter of the wheel
- \emptyset Dimensionless impact factor (>1.0).
- F Factor depending on the type of sleeper and the track maintenance
- U_h Average degree of consolidation
- T_h-Time factor
- q_r Maximum rail seat load

LIST OF ABBREVIATIONS

- ADR Amplitude Domain Reflectometry
- AOS Aperture Opening Size
- BDT Basic Dynamic Test
- BFI Ballast Fouling Index
- CL Low Plasticity Clay
- CPT Cone Penetration Test
- CSL Critical State Line
- CSR Cyclic Stress Ratio
- CSRc Critical Cyclic Stress Ratio
- DBPF Dirty Ballast Pumping Failure
- DFA Dynamic Filtration Apparatus
- DFT Dynamic Filtration Test
- EARS Energy Absorbing Rubber Seam
- EPF Erosion Pumping Failure
- EPP/EPWP Excess Pore Water Pressure
- EPPG Excess Pore Pressure Gradient
- FE Finite Element
- FI Fouling Index
- GPR Ground Penetration Radar
- GR Gradient Ratio
- HCR Hydraulic Conductivity Ratio
- HS Hardening Soil
- ICS Instrumented Control Section
- LL Liquid Limit
- LVDT Linear Variable Differential Transformer
- MC Mohr-Coulomb
- MP Miniature Pressure Transducer
- NC Normally Consolidated
- OC Over Consolidated
- OCR Over Consolidation Ratio
- OMC Optimum Moisture Content
- P Body Pressure Transducer

- PF Percent Fouling
- PI Plastic Index
- PL Plastic Limit
- PP Percent Passing
- PSD Particle Size Distribution
- PVC Percentage Void Contamination
- PVD Prefabricated Vertical Drains
- RC Relative Compaction
- RIBS Rubber Intermixed Ballast System (RIBS)
- SPT Standard Penetration Test
- SS Soft Soil
- USCS Unified Soil Classification System
- VCI Void Contamination Index
- VWC Volumetric Water Content

LIST OF PUBLICATIONS

- Arivalagan, J., Rujikiatkamjorn, C., Indraratna, B., and Warwick, A. (2021). 'The Role of Geosynthetics in Reducing the Fluidisation Potential of Soft Subgrade under Cyclic Loading', Geotextiles and Geomembranes, vol. 49, no. 5, pp. 1324-38. https://doi.org/10.1016/j.geotexmem.2021.05.004.
- Arivalagan, J., Rujikiatkamjorn, C., Indraratna, B., and Warwick, A. (2022).
 'Effectiveness of a Geocomposite-PVD System in Preventing Subgrade Instability and Fluidisation under Cyclic Loading', Geotextiles and Geomembranes, vol. 50, no. 4, pp. 607-617. <u>https://doi.org/10.1016/j.geotexmem.2022.03.001</u>.
- Indraratna, B., Singh, M., Nguyen, T., Rujikiatkamjorn, C., Malisetty, R. S., Arivalagan, J., Nair, L (2021). 'Internal Instability and Fluidisation of Subgrade Soil under Cyclic Loading', Indian Geotechnical Journal. <u>https://doi.org/10.1007/s40098-022-00616-0</u>.
- Arivalagan, J., Rujikiatkamjorn, C., Indraratna, B., and Warwick, A. (2023).
 'Effectiveness of Geosynthetics at Preventing Subgrade Instability under Cyclic Loading', Geo-Congress 2023 (Paper submitted).
- Arivalagan, J., Rujikiatkamjorn, C., Indraratna, B., and Warwick, A. (2023).
 'Cause-and-Effect of Subsoil Fluidization and Preventive Measures by Geosynthetic Drainage' 14th Australia and Newzealand Conference on Geomechanics (under preparation).
- Arivalagan, J., Rujikiatkamjorn, C., Indraratna, B., and Warwick, A. (2022)
 'Effectiveness of geosynthetics in preventing subgrade instability and fluidization under heavy haul loading', Australian Geomechanics Journal. (Under preparation).

AWARDS: Winner of AGS NSW Research Award 2022, Australian Geomechanics Society (Jul 2022) and Runner-up of the 2021 UTS FEIT Research Showcase (Nov 2021)

ABSTRACT

In recent times the demand for railway transportation has increased rapidly all over the world because a sustainable mode of transportation is needed to convey passengers and other commodities. However, subgrade soil with low bearing capacity is susceptible to instability under unfavourable drainage conditions. Subgrade soils with low/medium plasticity characteristics that undergo high cyclic stress levels are prone to fluidisation due to the rapid increase in excess pore water pressure (EPWP). Subsequently, subgrade can become unstable which leads to fines being pumped into the ballast/subballast layer (mud pumping). Excessive fine content, EPWPs, applied cyclic stress and frequency are the primary factors that induce particle migration and associated mud pumping. However, the actual mechanisms and cost-effective solutions to prevent subgrade fluidisation were not thoroughly understood due to its complexity and limitations.

In this study, a series of laboratory experiments were carried out to examine the following aspects of mud pumping: (1) the occurrence of subgrade fluidisation by simulating various drainage conditions, (2) the role geotextiles play in stabilising subgrade/ballast interface, and (3) the effectiveness of a prefabricated vertical drain (PVD) and geocomposite system in reducing the fluidisation potential using dynamic filtration apparatus (DFA). Soil specimens were tested at loading frequencies ranging from 1.0 to 5.0 Hz and cyclic deviator stresses from 40 to 70 kPa, simulates a maximum axle load of 35 tonnes. The axial strain (ε_a), EPWPs, and time-dependent excess pore pressure gradient (EPPG) that developed under undrained (impermeable) and free drained (no capping) conditions were used to define the failure criteria. The results showed that geocomposite with an effective filter membrane could prevent the migration of particles under typical train loading (25 tonnes). However, when the cyclic deviatoric stress increased (up to 35-40 tonnes of axle loading), the ability of geocomposites to alleviate the EPWP diminished.

The effectiveness of PVDs was also assessed under various loading conditions. The combined PVD-geocomposite system could reduce the accumulation of EPWPs and continuously dissipate them as the number of cycles increases, thereby providing a viable solution for mitigating the effects of subgrade fluidisation. Design guides were introduced with the field applications at Chullora, NSW. Finally, a numerical study was carried out to evaluate the use of geosynthetics under typical rail track conditions. The predictions revealed the efficiency of geosynthetics at regulating and dissipating the generation of EPWPs under train loading.

Keywords: Subgrade fluidisation; Mud pumping; Geosynthetics; Excess pore water pressure