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ABSTRACT 
Renewable energy (RE) sources will aid in the decarbonization of the energy sector, which would assist 
in alleviating the negative consequences of climate change. However, using RE resources for hybrid 
power generation has two technological challenges, uncertainty and variability owing to RE features, 
making estimating generated power availability difficult. Artificial intelligence techniques have been 
used in a variety of applications in power systems, but demand-side response (DR) is just lately 
receiving major research interest. The DR is highlighted as one of the most promising ways of providing 
the electricity system with demand flexibility; as a result, many system operators believe that growing 
the scale and breadth of the DR programme is critical. There are many different sorts of demand 
reduction programmes, and the most common classification is dependent on who begins the demand 
reduction. There are two types of DR schemes: (1) price-based programmes and (2) incentive-based 
programmes.  
Keywords:  demand response, renewable energy, artificial intelligence, machine learning. 

1  INTRODUCTION 
Demand response (DR) has grown in importance in recent years in endorsing energy systems’ 
stability and efficiency as a result of smart metering infrastructure and current improvements 
in information and communication technologies. It has the ability to manage inconsistencies 
in power demand (D) and supply (S) by managing elastic loads on the D-side [1]. In Energy 
Management System (EMS), a well-planned DR structure has major positive benefits for 
society. This includes increasing human comfort, promoting the use of renewable resources, 
lowering global energy consumption, and decreasing dependency on fuel resources linked 
with high carbon emissions [2]. 

     Consumers can participate in DR programmes by lowering or adjusting their energy 
use during peak hours as a result of time-based tariffs or other financial incentives [3]. The 
most energy-intensive segments of electricity systems are residential and industrial 
customers (CUs). Residential and industrial sectors consumed 58% of aggregate global 
power usage in 2018 (22% and 36%, respectively), according to the U.S. Energy Information 
Administration [4]. 

The Home Energy Management System (HEMS) is described in the residential segment 
as the best system for delivering services for energy management to efficient management 
and monitoring of power usage, and effective generation, and storage in smart homes [5]. 
The primary manageable residential appliances are divided into three classifications: (1) 
thermostatically controlled appliances, (2) non-thermostatically controlled appliances, and 
(3) electrical energy storage. 
     Increasing urbanization, the integration of additional RE generation resources, and the 
outlook of electric vehicles introduce new challenges for the control of the power grid. The 
effects of these problems can already be observed in places like California, where rolling 
blackouts are becoming increasingly frequent, especially during the summer, when 
consumers need electricity the most and D is at its highest. Some of these problems can be 
tackled through additional capital investments to oversize the power grid at the transmission 
and distribution levels and create a buffer for D/S volatility. However, proper control 
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techniques can reduce the need for such investments significantly. In the U.S., buildings 
represent about 70% of the total power usage, and it is estimated that DR has the potential to 
reduce peaks of electricity D by roughly 7% to 27%, depending on the region [6]. 
     The value of energy storage and DR can be assessed as a function of multiple factors, 
including the energy mix, how volatile the loads are, the costs of different energy generation 
and storage technologies, and what control systems are leveraged. Similarly, there are 
multiple tradeoffs between using centralized or distributed energy resources, which depend 
on the incremental unit costs of distributed energy resources and the incremental locational 
value of electricity [7]. Thus, there is a need for more simulation tools that can help in such 
kinds of assessments under diverse sets of conditions. 
     This paper is organized in five sections. Section 2 is a survey of literature on renewable 
energy demand-side response (DR). The applications of Artificial Intelligence (AI)/Machine 
Learning (ML) in the renewable energy sector are covered in Section 3. Section 4 discusses 
the problems of AI applications in DR management, followed by conclusions in Section 5. 

2  RENEWABLE ENERGY DR 
Price-based programmes and incentive-based programmes are the two categories of DR 
programmes. CUs in price-based schemes modify their energy use patterns as a response to 
changes in power prices. Unlike price-based programmes, control equipment is installed at 
the CU’s location in incentive-based programmes. The Load Servicing Entities (LSEs) can 
use this technology to switch particular electric appliances at specific periods. 
     In price-based programmes, these members can save money by limiting their power use 
during peak hours or by receiving incentive payments in incentive-based programmes. 
Gathering DR resources to compete for ancillary services in the marketplaces can assist 
LSEs. DR, by actively participating in the power balance, adds to the overall dependability 
and stability of the power system. Furthermore, it aids in the avoidance or postponement of 
the building or implementation of distribution and transmission infrastructure [8]. By 
providing required information about individual consumers, such as their electricity 
consumption habits, load profiling plays a critical role in the formulation of lucrative D 
programmes. 

2.1  Price-based DR programs 

CUs alter their power use in accordance with the price set by LSE in price-based schemes, 
such as (1) Time Of Use (TOU), (2) Critical Peak Pricing (CPP), and (3) Real Time Pricing 
(RTP). Only the overall electrical use of a day, month, or even more extended period is sent 
to the LSE without smart meters. Consumers with similar overall consumption but varying 
peak consumption are charged the same amount. Load profiling may be done with the use of 
smart meters to help the LSE establish time-variant pricing in order to optimize profit and 
increase DR. 
     Creating an optimization model and solving it based on load profiling is the basic 
approach to pricing design. A three-stage technique for TOU design was developed by 
Mahmoudi-Kohan et al. [9]. Various rates are optimized for CUs belonging to different 
clusters independently after determining the CUs’ eagerness to purchase power. A simulation 
with 300 clients revealed that clustering with a lower CDI might result in higher profits. 
Conditional Value at Risk (CVaR) is applied by Mahmoudi-Kohan et al. [10]. The stochastic 
programming model was used using the same clustering approach and acceptance function 
as shown by Mahmoudi-Kohan et al. [9]. 
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     Mahmoudi-Kohan et al. show that load profiling was performed to discover CUs with 
comparable peaks in the overall curve [11]. CUs with high elasticity are given priority in a 
cost reduction model. The limitation states that the overall load decrease must equal or exceed 
the retailer’s power shortfall. Panapakidis et al. used load profiling to extract typical load 
curves and then determined the pricing for each standard curve [12]. For an industrial CU, a 
comparison was made between yearly load profiling and seasonal load profiling. The findings 
revealed that taking into account the impact of seasonal pricing variations in the pool market 
might boost earnings. Maigha and Crow offered load profiling-based optimum TOU 
structures instead of pricing design [13]. A performance parameter for clustering algorithms 
is the granularity of the cluster’s sensitivity, that relates to a scenario in which clusters 
comprise fewer than two hours and are scattered throughout the day. A case study confirmed 
that among the examined strategies, Gaussian mixture models performed the best. 

2.2  Incentive-based DR programs 

In incentive-based schemes, the residential CU has a contract with the programme 
administrator (such as an “aggregator” or “service provider”) under which the programme 
administrator may be authorized to execute various control measures aimed at lowering 
power prices. The following DR programmes are often accessible in this category: (1) Direct 
Load Control (DLC), (2) Interruptible Tariffs, (3) Demand Bidding Programs, and (4) 
Emergency Programs [14]. Since it invades the CU’s privacy, the DLC technique is deemed 
intrusive. 
     The administrator has authority over the operation of the client’s appliance until the CU 
gets the agreed-upon payment in DLC. Interruptible tariffs are available to both “industrial” 
and “residential” consumers, and they basically provide multiple pricing layers according to 
the agreement between the energy provider and the client. The quantity of energy utilized is 
not reduced by load interruption, but it does shift load operation to off-peak hours [15]. CUs 
can take part in the electricity trading market by proposing to adjust their patterns of 
consumption, reschedule their loads, or reduce their usage through D-bidding. During times 
of high D or when the grid is disrupted by unanticipated occurrences, emergency programmes 
are implemented. Participants in these programmes limit their consumption to relieve grid 
stress in emergency circumstances, and they are compensated with compensation depending 
on the required amount of load reduction [16]. 
     Furthermore, the temperature sensitivity of home power was the subject of Albert and 
Rajagopal’s research while segmenting electrical consumers [17]. A novel probabilistic 
graphical model was used to simulate each CU’s thermal regimes, with each concealed state 
representing the usage of heating or cooling equipment. Effective duration and effective 
thermal response sensitivity were used to classify the consumers. Because of the large 
potential for the usage of heating and/or cooling equipment, the thermal profile of consumers 
is critical for DR. 

3  AI AND ML APPROACHES 
The capacity of a smart grid with integrated RE to decrease CU suffering while maintaining 
fair power costs is critical to its future success. In order to balance the energy generation and 
delivery options, and AI/ML-enabled DR program may incorporate CUs into the decision-
making process. The ever-increasing need for energy has dramatically widened the gap 
between D/S during rush hours, resulting in a huge increase in the financial worth of grid-
connected electricity. 
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3.1  Artificial neural network based DR management 

Artificial Neural Network (ANNs) are computer models that are based on the biological 
nervous system. It is divided into two categories: (1) “single hidden layer ANN” and (2) 
“deep learning”. In the case of DR, a “single hidden layer ANN” is used to classify 
consumers, loads, and prices, whereas deep learning aids in predicting consumer reaction 
behavior, controlling household equipment, clustering consumers, and so on. Table 1 
summarizes recent developments. 

Table 1:  ANN based DR management. 

Reference Year Technique(s) Objective(s)

Shirsat and Tang [18] 2021 Linear regression, MD-
RNN

Determine the CU’s heat 
sensitivity 

Ruan et al. [19] 2020 NNLMS model Speed up the distributed DR 
mechanism

Hafeez et al. [20] 2020 
ANN-based forecast 
engine, a DA-GmEDE-
based HEMC

Lower power bills, relieve the 
PAR 

Lu and Hong [21] 2019 RL, DNN  

Stimulate D-side involvement, 
boost SP and CU profitability, 
and enhance system 
dependability

Lu et al. [22] 2019 ANN, multi-agent RL Determine the best judgments 
for diverse appliances 

 
     Shirsat and Tang proposed a system for determining distinct CUs’ consumption reduction 
potential and generating mixed distributions to assess their reduction capabilities [18]. They 
utilize these distributions to create simulations for a stochastic knapsack problem with risk 
aversion. The stochastic CU selection issue has been addressed for the first-time employing 
mixture distributions and CVaR as an empirical risk metric. To predict the load decrease 
during a DR event, their suggested model relies on the sensitivity of consumers’ consumption 
to external temperature. 
     The delayed convergence of existing distributed DR systems makes it difficult to develop 
dependable smart grid applications. To deal with this problem, Ruan et al. present a novel 
distributed procedure, the neural-network-based Lagrange multiplier selection, that 
significantly reduces iterations while avoiding oscillation [19]. The major enhancement is in 
an LSE forecast technique, which uses a specifically developed neural network (NN) to 
record consumers’ pricing reaction attributes.  
     In the smart grid, Hafeez et al. presented a unique framework for effective HEMS to lower 
power bills, relieve the Peak-to-Average Ratio (PAR), and get the desirable balance between 
energy costs and user discomfort [20]. For efficient energy management, the forecasting 
software anticipates price-based DR signals and usage of energy trends. The home energy 
management controller (HEMC) timetables home equipment based on the anticipated energy 
usage patterns and pricing signals. For performance validation, the suggested day-ahead grey 
wolf modified enhanced differential evolution algorithm (DA-GmEDE) based approach is 
compared to two benchmark strategies: day-ahead genetic algorithm and day-ahead game-
theory.  
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     Lu and Hong developed a real-time incentive-based DR algorithm with Reinforcement 
Learning (RL) and Deep Neural Network (DNN) for smart grid systems, with the goal of 
assisting the Service Provider (SP) in acquiring energy resources from its various CUs to 
balance energy variations and improve grid dependability [21]. To address future 
uncertainties, the SP can only access the price from the wholesale power market and energy 
D from its CUs for the present hour due to the intrinsic nature of real-time electricity markets.  
     Lu et al. suggested an hour-ahead DR method for HEMS, based on AI, with the goal of 
reducing the user’s energy bill and level of discomfort [22]. A stable price forecasting model 
based on ANN is proposed to overcome future pricing uncertainty. Multi-agent RL is used 
in conjunction with anticipated pricing to make the best selections for various appliances.  

3.2  ML based DR management 

ML is a set of techniques for identifying patterns in empirical data and turning them into 
useable models. supervised learning, unsupervised learning, and RL are the three basic forms 
of ML used in DR algorithms, as shown in Table 2. 

Table 2:  ML based DR management. 

Reference Year Technique(s) Objective(s)

Yang et al. [23] 2022 KELM, APVMD, CSCA Power price forecasting 
tool

Pallonetto et al. [24] 2022 LSTMs, SVM Load data forecasting 
comparison

Wicaksono et al. [25] 2021 DNN, LSTM, CNN, 
Hybrid

Estimating DR program’s 
dynamic electricity pricing 

Uimonen et al. [26] 2020 RF, NNMs Power curtailment at a low 
cost

Pallonetto et al. [27] 2019 
ML approaches for data 
modeling and optimization 
algorithm

Deployment of DR 
techniques 

 
     Yang et al. created an enhanced electricity price forecasting model using adaptive data 
pretreatment, sophisticated optimization, kernel-based model, and optimum model selection 
technique [23]. An Adaptive Parameter-Based Variational Mode Decomposition (APVMD) 
method is developed to achieve appropriate data preprocessing outcomes. The Chaotic Sine 
Cosine Algorithm (CSCA) is used to design and implement a leave-one-out optimization 
strategy for developing effective Kernel-Based Extreme Learning Machine Models (KELM) 
and APVMD.  
     Pallonetto et al. assess and evaluate the two most often used short-term load forecasting 
methods [24]. They teach the basics of Long Short-Term Memory Networks (LSTMs) and 
Support Vector Machines (SVM), as well as the typical techniques of short-term load 
forecasting. Preprocessing of data and feature selection are then performed based on the 
features of the electrical load dataset. One-hour ahead load forecasting and Peak and valley 
load forecasting one day ahead are done using the LSTMs and SVM models.  
     Wicaksono et al. create a system that uses pricing and incentive-based DR programmes 
to engage manufacturing power CUs [25]. Instead of centralized data integration, the system 
uses data from heterogeneous systems on both the D/S sides, which are linked by semantic 
middleware. The semantic middleware uses an ontology as its integrated information model. 
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ML algorithms are being developed to anticipate the power provided by RE sources as well 
as the electricity consumed by manufacturing users based on their operations.  
     Uimonen et al. offered a solution to the problem of selecting acceptable escalators from a 
vast pool in order to meet the aim of power curtailment at a low cost, and they highlighted 
the escalator attributes that make the best DR candidates [26]. They examine four different 
calculating methods that differ in computation speed and accuracy. The primary answer is 
the simulation-based model that was previously created and improved. The random forest 
(RF) and neural network models (NNMs) give a solution based on the simulation-based 
model’s output, with the goal of increasing computation speed.  
     Pallonetto et al. evaluated the performance of control algorithms in the residential sector 
for the deployment of DR techniques [27]. A calibrated building simulation model was 
constructed and used to evaluate the effectiveness of DR techniques in combination with 
thermal zone management under various time-of-use power tariffs. Two DR algorithms were 
used to manage an integrated heat pump and thermal storage system, one based on a rule-
based approach and the other on a predictive-based ML method. A common DR pricing 
scheme was used to compare the two algorithms. 

3.3  Nature-inspired algorithm based DR management 

In search processes, nature-inspired algorithms (NIA) are used to forecast the sequence of 
activities required to attain the stated goals. Evolutionary algorithms, biological swarms, and 
physical processes are all frequent DR methods, as shown in Table 3. 

Table 3:  NIA based DR management. 

Reference Year Technique(s) Objective(s) 

Singh et al. [28] 2021 

Black Widow Optimization, 
Technique for Order of 
Preference by Similarity to 
Ideal Solutions

Improves the load 
factor and system 
dependability 

Bui et al. [29] 2020 SI, ABC Optimize power costs 
of smart HEMS 

Makhadmeh et al. [30] 2019 GA, GWO Minimize the 
electricity bill and PAR 

Ullah and Hussain [31] 2019 GA, MFO, TG-MFO Lower energy costs 
Silva and Han [32] 2019 ACO Overall cost reduction 

 
     To overcome the uncertainty associated with solar and wind power output, Singh et al. 
used a stochastic-based scenario development and reduction strategy [28]. Unlike other 
techniques, the flexible load responsive model is developed for each DR programme in order 
to quantify the sensitivity of consumer engagement. TOU, CPP, RTP, and a mix of both TOU 
and CPP are used to modify predicted load D. The suggested problem is analyzed on a three-
feeder microgrid (MG) test system, and Black Widow Optimization is used to find the best 
scheduling configuration for DR programmes. 
     By incorporating the notion of swarm intelligence (SI) into connected devices, Bui et al. 
offer a computational intelligence model for IoT applications [29]. Decentralized 
management of smart HEMS is taken into account, in which linked appliances make 
individual decisions for optimizing power costs of smart HEMS by exchanging information 
with one another. They are divided into two primary categories: (a) they propose a framework 
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for decentralized management in smart HEMS; and (b) the artificial bee colony (ABC) 
algorithm, a typical SI technique, has been applied to connected appliances in terms of 
communication and collaboration with one another to optimize the EMS’ performance. 
     For the Power Scheduling Problem (PSP), Makhadmeh et al. used the Multi-Objective 
Grey Wolf (GWO) optimizer [30]. PSP is handled by setting household equipment to a 
certain time horizon to reduce power bills and PAR while also improving user comfort. To 
produce an optimal schedule, the multi-objective function is formalized and used in GWO. 
The suggested multi-objective GWO is evaluated using seven consumption profiles and 
seven real-time energy prices with distinct features. The suggested algorithm’s performance 
is evaluated using three criteria: electricity bill, PAR, and user comfort level.  
     Ullah and Hussain suggested two bio-inspired heuristic algorithms for an EMS in smart 
homes and buildings: the Moth-Flame Optimization (MFO) method and the Genetic 
Algorithm (GA) [31]. The performance of these devices in terms of energy cost reduction, 
PAR minimization, and end-user discomfort minimization is examined. Then, to meet the 
aforementioned goals, a hybrid version of GA and MFO called Time-constrained Genetic-
Moth-Flame Optimization (TG-MFO) is presented. To provide optimal end-user comfort, 
TG-MFO not only combines GA, and MFO, but also integrates time limitations for each 
appliance. In the literature, many energy optimization strategies have been presented.  
     Appliance scheduling using heuristic algorithms is being studied as a possible option for 
managing the energy D/S gap during peak hours. However, because of the potential for early 
convergence, the validity of Ant Colony Optimization (ACO) based scheduling has been 
questioned. As a result, Silva and Han suggested a mutation operator integrated ACO 
scheduling method with pre-defined consumption limits to reduce energy costs and waiting 
time while addressing ACO’s contested shortcoming [32]. The comparative study verifies 
the suggested work’s superiority in terms of cost reduction, peak load reduction, waiting time 
reduction, and PAR reduction, indicating its potential to become a mainstream solution for 
D-side management challenges. 

3.4  Multi-agent based DR management 

A multi-agent system (MAS) is a “computerized system” that is composed of multiple 
intelligent agents that communicate with each other. Multiple interacting intelligent agents 
can be used in DR projects to enable successful planning, choices, and methods for RE 
resources. “Coalitional game theory”, “mechanism design”, and “automated negotiation” are 
the three subsections of MAS. They also help with DR programmes, as shown in Table 4. 
     A three-layer MAS optimization model including Distributed Management System 
(DMS) agent, MG Central Controller (MGCC) agent and MG Controllable Element (MGCE) 
agent are built by Li et al. [33]. Then the DR power and heat load mechanism is constructed, 
with the real-time production of new energy generation and the Energy Storage System (ESS) 
as optimization objects and the operational cost, environmental cost, and wind and solar 
abandonment cost as optimization targets. They suggest an improved particle swarm 
optimization approach based on an adaptive-weight and chaotic search to solve this problem. 
Finally, three scenarios are presented to demonstrate that the ESS and DR may lower the cost 
of MGs while also encouraging new energy use, as well as the superiority of the enhanced 
algorithm. 
     Vázquez-Canteli et al. introduced CityLearn, which is an OpenAI Gym environment, and 
a simulated framework for the implementation of RL for DRM and urban energy 
management [34]. CityLearn guarantees that, at any time, the heating and cooling energy D  
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Table 4:  Multi-agent based DR management. 

Reference Year Technique(s) Objective(s)

Li et al. [33] 2020 DMS agent, MGCC 
agent, MGCE agent 

Encompass the DR of electrical 
and heat load, as well as the ESS 

Vázquez-Canteli 
et al. [34] 2020 Multi-agent, single-

agent RL algorithms  

Customize the incentive function 
and select reward modes (central-
agent or multi-agent) 

Golmohamadi et 
al. [35] 2019 DRP, IDRA, RDRA  

Provide up/down-regulation for 
the power system in case of a 
deficiency or excess of 
generation

Li et al. [36] 2018 
Stackelberg–Cournot 
game model with two 
stages

Integrate RE and DR into the 
wholesale power market 

Leo et al. [37] 2018 JADE in Eclipse IDE Stabilize and optimize the MG 
 
of the building are satisfied regardless of the actions of the controller. The actions of the RL 
controller are automatically overridden to satisfy such constraints of thermal energy D. This 
allows the controllers to focus on shaping the curve of electricity consumption without 
running the risk of interfering with the comfort of the occupants or the desired temperatures. 
     Golmohamadi et al. provide a unique market-based strategy for integrating the flexibility 
potential of diverse, responsive CUs, such as the residential and industrial sectors, into a 
power system with substantial intermittent power penetration [35]. The ultimate goal was to 
offer up/down control for the power system in the event of a generating deficiency or surplus. 
The complex challenge was divided into a multi-agent framework to achieve the goal. As a 
result, three types of agents were studied: DR Provider (DRP), Industrial DR Aggregators 
(IDRA), and Residential DR Aggregators (RDRA). The time-oriented DR programme was 
developed to optimize the overall cost of energy and regulation by allowing the DRP to trade 
DR opportunities in three consecutive floors of the electricity market, namely the day-ahead, 
adjustment, and balancing markets, in order to ensure power system flexibility. Instead of 
subsidizing D-side flexibility, the DRAs might exchange DR values in a competitive 
framework based on D bids. 
     Li et al. propose a novel RES and DR programme integration architecture to increase 
energy efficiency and system resilience [36]. They propose a two-stage Stackelberg–Cournot 
game model to describe energy trading behaviors among power utilities, RES-based MGs, 
and DR players. In the suggested paradigm, the power utility is the leader, while RES-based 
MGs and DR participants coordinated via an aggregator are the followers. Furthermore, using 
a risk-controlled game model, a CVaR assessment is used to quantify the intermittency of 
RES and the uncertainty of DR, which might lead to a more dependable energy trading 
strategy for both the forwards and spot markets. Finally, they provide a computational 
approach that accelerates the optimal reaction dynamics on the follower side. 
     Leo et al. create a simulation model for dynamic energy management that takes into 
account the intermittent nature of solar power, randomness of load, dynamic grid pricing, and 
variation of critical loads, and chooses the best possible action every hour to stabilize and 
optimize the micro-grid using Java Agent Development Environment (JADE) in Eclipse IDE 
[37]. Additionally, environmental factors are detected by an Arduino Mega microcontroller 
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and sent to MAS agents. MAS improves responsiveness, stability, adaptability, and fault 
tolerance, resulting in increased operational efficiency and cost and environmental savings. 

4  DISCUSSION 
DR indicates changes in energy consumption patterns, such as through financial incentives 
or improved consumption optimization, in order to better match the power supply in power 
systems [1]. It has complicated impacts on integration costs in general, making it significant 
for various cost components in addition to profile costs [2]. DR can reduce profile costs in 
the long run by decreasing peak D and boosting capital utilization while deferring the need 
for network improvements, hence affecting grid-related integration costs. In the short term, 
it has an impact on power markets, which might affect balancing costs. 
     Rocha et al. describe a novel energy planning methodology based on AI methods for smart 
homes [38]. This study takes into account power price variations, equipment priority, 
operational cycles, and a battery bank to anticipate distributed generation. When smart houses 
with and without distributed generation and battery banks were examined, the method’s 
efficiency revealed a 51.4% cost savings. 
     The majority of the research on DR programmes for residential CUs focuses on 
developing a model of household loads that may be used to identify an electric usage pattern. 
This is accomplished by using either a grid-oriented approach, which models end-user 
consumption as a whole in terms of general characteristics such as gross domestic product 
and unemployment rate, or a scenario-oriented approach, by Appling a bottom-up technique, 
in which the load profile is created by aggregating the electric consumption of numerous 
domestic appliances or a variety of families [39]. Such research uses a simulation-based 
optimization analysis to estimate the advantages of providing disaster recovery services to 
residential clients [40]. 
     According to several stakeholders, the primary challenges to DR are inadequate 
programme design and low CU engagement. Because better programme design may enhance 
client engagement, there is a strong link between these two obstacles. The bulk of currently 
used DR systems, which are based on highly centralized control ideas, need the collection 
and processing of a considerable quantity of local data from a central location. This 
demonstrates a great deal of complexity at the central coordinating point, which has an impact 
on the scalability of such DR methods. As a result, in all DR deployments, the majority of 
the controllable D concerns large commercial or industrial clients who fail to include a 
significant number of modest residential CUs. 
     We discovered that RL could adapt to its surroundings and acquire CU preferences 
through a feedback control loop throughout the review process, which appears promising for 
MG planning. When a large amount of data is available, RL algorithms can be effective, and 
system control is based on real-time judgments. 
     Modeling and computation processes are growing significantly more challenging as issue 
sizes become larger. Market operators must hedge against the more complicated structure in 
today’s restructured energy markets by providing market players with adapting tools to the 
new market structure. To deal with such a challenge, MAS is a way to break down a large 
problem into smaller pieces. In this method, different agents may simply replicate the market 
model, which can then be expanded by additional entities. 
     MAS is particularly effective at solving complicated issues. A wide range of applications 
employs MAS. Gazafroudi et al. describe a MAS for the intelligent use of power in a smart 
home, resulting in increased energy efficiency [41]. MAS method has been widely embraced 
in the bottom-up approach because of its scalability and capacity to mimic the stochastic 
nature of household consumption as well as the dynamic interactions between residences and 
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the grid. The power system literature has various MAS-based applications, including (1) 
electricity market, (2) voltage regulation, (3) load restoration, (4) load shedding, and (5) the 
smart grid area. 
     Pallonetto et al. examined the implementation of D-side management methods in the 
residential sector using a rule-based and predictive ML algorithm [42]. The rule-based system 
saved 20.5% on electrical end-use expenditures compared to the baseline scenario, while the 
predictive algorithm saved 41.8%. For utility generating costs, both strategies are saved in 
the same range. 

5  CONCLUSIONS 
Through price modifications or incentives, a DR programme encourages end-users to modify 
their power consumption habits to match RE sources’ availability. The adoption of DR 
systems is a steady but sluggish trend aimed at maximizing the usage of RE in residential 
homes and many industries, including manufacturing. We analyzed four AI approaches, 
namely (1) ANNs, (2) ML, (3) NIAs, and (4) MAS, which have been utilized in DR programs 
to support RE dissemination. We discovered a DR program based on ANN that helped to 
reduce load shedding, enhance the PAR, engage in energy management schemes, and 
optimize load D, among other things. ML techniques were used for clustering, to reduce peak 
consumption, and for optimal bidding strategy to reduce the uncertainty of consumer’s D and 
flexibility. The NIA was employed to optimize the scheduling of distributed energy 
resources, provide incentive-based DR management, control smart devices, and benefit the 
aggregator. For optimization purposes, a multi-agent-based DR program enabled bidding 
strategy, energy management, and power trading. 
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