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Abstract. The task of action detection aims at deducing both the ac-
tion category and localization of the start and end moment for each
action instance in a long, untrimmed video. While vision Transformers
have driven the recent advances in video understanding, it is non-trivial
to design an efficient architecture for action detection due to the pro-
hibitively expensive self-attentions over a long sequence of video clips.
To this end, we present an efficient hierarchical Spatio-Temporal Pyra-
mid Transformer (STPT) for action detection, building upon the fact
that the early self-attention layers in Transformers still focus on local
patterns. Specifically, we propose to use local window attention to en-
code rich local spatio-temporal representations in the early stages while
applying global attention modules to capture long-term space-time de-
pendencies in the later stages. In this way, our STPT can encode both
locality and dependency with largely reduced redundancy, delivering a
promising trade-off between accuracy and efficiency. For example, with
only RGB input, the proposed STPT achieves 53.6% mAP on THU-
MOS14, surpassing I3D+AFSD RGB model by over 10% and perform-
ing favorably against state-of-the-art AFSD that uses additional flow
features with 31% fewer GFLOPs, which serves as an effective and effi-
cient end-to-end Transformer-based framework for action detection.

Keywords: Action Detection, Efficient Video Transformers

1 Introduction

Action detection in lengthy, real-world videos is one of the crucial tasks in many
video analysis applications, e.g ., sports analysis, autonomous driving. Action de-
tection aims to localize and classify the action instances appearing in untrimmed
videos, which essentially depends on learning strong spatio-temporal represen-
tations from videos.

† Corresponding author.
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Fig. 1: Visualization of MViT [19]. We show the sampled input RGB frames,
encoded feature maps and attention maps from the 2nd block of MViT. We
find that such global attention in the early stages actually encodes local visual
patterns in each RGB frame, but it is relatively redundant in successive frames.
For illustration, a target query token in the middle frame (green anchor) only
attends to its nearby tokens in adjacent frames while rarely interacting with
tokens in distant frames (filled with red, the more darker the color, the higher
the attention score). Therefore, attending to all spatio-temporal tokens leads to
huge redundancy in encoding such local patterns.

To date, the majority of action detection methods [66,32,38,54,12] are driven
by 3D convolutional neural networks (CNNs), e.g ., C3D [56], I3D [10], to encode
video segment features from video RGB frames and optical flows [71]. 3D convo-
lution is compact and effective to aggregate contextual pixels within a small 3D
region, e.g ., 3×3×3, and thus reduce the spatio-temporal redundancy. However,
the limited receptive field hinders the CNN-based models to capture long-term
spatio-temporal dependencies. Alternatively, vision Transformers (ViTs) have
shown the advantage [50] of capturing global dependencies via the self-attention
mechanism in many computer vision tasks, such as image classification [18,55,47]
and video action recognition [4,75,19,24]. Hierarchical ViTs [19] divide Trans-
former blocks into several stages and progressively reduce the spatial size of
feature maps when the network goes deeper. However, the high-resolution fea-
ture maps of video clips in the early stages result in overlong token sequences.
For instance, given an input video clip with 256× 96× 96 RGB frames, the fea-
ture maps after the initial embedding layer requires more than 1000G Floating-
point Operations (FLOPs) for a standard multi-head self-attention layer, which
is impractical to train or evaluate. Therefore, how to efficiently handle spatio-
temporal dependencies across overlong video frames is a fundamental challenge
for action detection.

In this paper, we present an efficient Spatio-Temporal Pyramid Transformer
(STPT) to tackle both spatio-temporal redundancy and long-range dependency,
as illustrated in Fig. 2. Specifically, we propose a Local Spatio-Temporal Atten-
tion blocks (LSTA) to capture local patterns in the early stages while introducing
Global Spatio-Temporal Attention blocks (GSTA) to handle long-range spatio-
temporal relationships in the later stages. The motivation of this design comes
from two aspects. First, considering the spatial dimension in videos, previous
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studies in CNNs and ViTs [27,65,50] have shown that shallow layers tend to
capture local patterns in images (e.g ., texture, edges) while deep layers tend to
learn high-level semantics or capture long-range dependencies. Besides, target
motions across adjacent frames are subtle, which implies large temporal redun-
dancy when encoding video representations [21,62,33]. Therefore, it naturally
gives rise to the question of whether applying global attention at the early stages
to encode spatio-temporal representations is necessary. Second, we empirically
observe that heavy spatio-temporal redundancy exists in the shallow stages of
current video Transformers [51,4,1,75,8]. We take the 2nd block of MViT [19] as
an example and visualize its output features as well as the attention maps in
Fig. 1. We observe that the self-attention in the shallow layers mainly focuses on
neighboring tokens in a small spatial area and adjacent frames, rarely attending
to other tokens in distant frames. Hence, aggregating all the visual tokens via
self-attention in the early stages can bring noises to the informative local rep-
resentations and incurs huge computational redundancy. By leveraging LSTA
in the early stages, STPT significantly alleviates spatio-temporal redundancy
and inherently benefits spatio-temporal representation learning, as target mo-
tions are highly correlated in a local spatial region and temporally subtle across
adjacent frames.

To encourage locality inductive bias, recent studies propose to combine con-
volutions [63], MLPs [46] with Transformers or restrict self-attention within lo-
cal windows [41], achieving favorable performance with reduced computational
complexity. Moreover, from the theoretical perspective, locality inductive bias
suppresses the negative Hessian eigenvalues, thus assisting in optimization by
convexifying the loss landscape [48]. Different from these methods, we are the
pioneering work to build a pure Transformer model that encodes both compact
spatial and temporal locality while preserving the long-range dependency for the
action detection task.

Finally, the proposed efficient Transformer is equipped with a temporal fea-
ture pyramid network (TFPN) to progressively reduce the spatial and temporal
dimension and enlarge the receptive field into different scales. The multi-scale
spatio-temporal feature representations are further utilized to predict the tem-
poral boundaries and categories via an anchor-free prediction and refinement
module.

In summary, our contributions are in three folds:

– We propose an efficient and effective Spatio-Temporal Pyramid Transformer
(STPT) for action detection, which reduces the huge computational cost and
redundancy while capturing long-range dependency in spatio-temporal repre-
sentation learning.

– We devise local window attention to enhance local representations while reduc-
ing the spatio-temporal redundancy in shallow layers and retain the long-range
dependency in deep layers with global self-attentions, achieving a favourable
balance between efficiency and effectiveness.

– Finally, we conduct extensive experiments on standard benchmarks, i.e., THU-
MOS14 and ActivityNet 1.3, by using pure RGB frame input. Compared with
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the methods that combining additional flow features, our STPT achieves state-
of-the-art results with reduced computational complexity, which makes a sub-
stantial stride for Transformer on the task of video action detection.

2 Related Work

2.1 Action Detection

Action detection aims at localizing the temporal boundaries of human activities
in untrimmed videos and classifying the action categories [57]. Most existing
works [22,32,38] utilize CNN-based models [56,10,49,60] pretrained on large-
scale datasets (e.g ., Kinetics400 [10]) to extract spatio-temporal representations
from a stack of RGB frames and/or optical flow frames. Anchor-based meth-
ods [22,66,13] retrieve fine-grained proposals by adjusting pre-defined multi-scale
anchors while actionness-guided methods [38,36,77] instead learn the boundary
confidence or actionness scores at all the temporal positions of the input video,
which are matched and served as proposal candidates. Another line of research
resorts to multi-scale towers [13,23] or temporal feature pyramids [37,74,40] to
tackle the variation of action duration, utilizing high-resolution feature maps
for short actions and feature maps with large receptive field for long actions,
respectively. Recently, a new anchor-free detector [35] directly predicts the dis-
tance to the action boundaries and the action category for each frame. However,
the local receptive field of 3D convolutions leads to the loss of temporal depen-
dencies on untrimmed videos. To capture the action dependencies across frames,
prior works introduce graph models [72,32,3,67,76], RNNs [7,6,70], and tempo-
ral Transformers [44,54,11] to capture these temporal relationships. However,
the aforementioned methods rely on pre-extracted features from 3D convolution
backbones and use head-only learning manner. In contrast, our STPT devises a
pure Transformer model for efficiently and effectively learning spatio-temporal
representations in an end-to-end manner, which encodes local patterns and global
dependency via flexible token affinity learning in shallow and deep layers, respec-
tively.

2.2 Video Transformers

ViTs are pushing the boundaries of recent video understanding research. In par-
ticular, VTN [45], LightVideoFormer [31] and STAM [51] introduce temporal
Transformers to encode inter-frame relationships over the extracted image-level
feature maps. ViViT [1], TimeSformer [4] and VidTr [75] propose to factorize
along spatial and temporal dimensions on the granularity of encoder, attention
block or dot-product computation. Similarly, SCT [73] proposes image chunk
attention and shifted attention to model spatial and temporal relationships re-
spectively. SMAVT [8] aggregates information from tokens located at the same
spatial location within a local temporal window, while SIFAR [20] turns spatio-
temporal patterns in video into purely spatial patterns in images, showing an
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Fig. 2: Overall architecture of the proposed spatio-temporal pyramid Trans-
former. Given an input video Xin, our STPT is utilized to encode spatio-
temporal representations and detect existing action instances. In the shallow
layers, local blocks that constrain self-attention into local 3D windows tend to
encode local patterns while reducing spatio-temporal redundancy. In deeper lay-
ers, global blocks retain long-range dependency over the token sequence. Features
from the last stages are fed to the temporal feature pyramid network to predict
the temporal boundaries and action categories via an anchor-free prediction and
refinement module. Please refer to Sec. 3.1 for additional details.

image classifier can undertake the task of video understanding. However, these
studies lack hierarchical structure or model spatio-temporal dependencies sep-
arately, which may not be sufficient for the task of action detection. Targeting
on these issues, MViT [19] presents a hierarchical Transformer to progressively
shrink the spatio-temporal resolution of feature maps while expanding the chan-
nel as the network goes deeper. VideoSwin [42] proposes shifted window attention
to limit the computation within a small local window, while Uniformer [33] uni-
fies the spatio-temporal MobileNet block and self-attention and proposes an al-
ternative multi-head relation aggregator. Different from the above methods, our
model is purely Transformer based and jointly learns spatio-temporal represen-
tation. By flexibly involving locality constraint in early stages and data-specific
global self-attentions in later stages, our model well addresses the challenges of
spatio-temporal redundancy and dependency for action detection.

3 Method

3.1 Overall Architecture

The overall architecture of STPT is illustrated in Fig. 2. Let Xin ∈ RT×H×W×3

be an input video clip, where T , H and W represent the number, height and
width of RGB frames, respectively. First, we divide the frame volume Xin into a
series of overlapping 3D cubes, with the size of 3× 7× 7. Then we exploit a 3D
PatchEmbed module to aggregate contextual pixels from each cube and project
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each cube into dimension of 96, serving as the initial input for the subsequent
pipeline. In practice, the 3D PatchEmbed module is a 3 × 7 × 7 depth-wise
convolution with stride 2×4×4 and zero paddings. As a result, the input tensor
Xin is downsampled to T

2 × H
4 × W

4 .
Next, we divide the entire backbone into 4 stages. Letting s ∈ [1, 2, 3, 4] be the

index of each stage, we employ Ls ∈ [1, 2, 11, 2] blocks at each stage, in which
STPT Local Blocks are used to encode local spatio-temporal representations
in the first two stages, and STPT Global Block are used to tackle long-term
dependencies in the later stages. At the same time, from the 2nd stage, the spatial
and temporal dimensions are gradually downsampled by the 3D PatchEmbed
module. Following [19], by increasing the output dimension of the final MLP layer
in the previous stage, the channel dimensions are gradually expanded before the
transition to the next stage. The feature maps with different resolutions from the
last two stages are then fed to the temporal feature pyramid network (TFPN) to
obtain multiple resolution feature maps. Finally, the prediction and refinement
modules are used to predict the start frame, end frame and the category of
each anchor point on the multi-scale feature maps. The detailed architecture
specifications are provided in Table 1.

3.2 Block Design in STPT

Formally, each STPT Block consists of three key modules: Conditional Positional
Encoding (CPE), Multi-Head Spatio-Temporal Attention (MSTA), and multi-
layer perceptron (MLP). Formally, letting Xl−1 be the input of the l-th block,
each block can be formulated as

Xl−1 = CPE(Xl−1) +Xl−1 (1)

X ′
l−1 = MSTA(LN(Xl−1)) +Xl−1 (2)

Xl = MLP(LN(X ′
l−1)) +X ′

l−1 (3)

where LN(·) indicates the layer normalization [2] and MLP consists of two FC
layers with GELU [26] non-linearity in between. Specifically, we first leverage
CPE to integrate the spatio-temporal position information into each token. Then
the MSTA module, which can be the Local spatio-temporal Attention (LSTA)
or Global spatio-temporal Attention (GSTA), aggregates each token with its
contextual tokens, followed by an MLP to perform channel mixing. As discussed
above, we encode fine and local spatial-temporal representations in the early
stages using LSTA and high-level semantics with long-term dependencies in the
deep layers using GSTA, respectively. In the next, we elaborate the design for
each module.
Conditional positional encoding. Since actions in videos are both spatial
and temporal variant, we need to explicitly encode position information for all
the visual tokens. Previous works [19,1,4] commonly adopt absolute positional
encodings [18]. However, the length of token sequences is much longer for action
detection compared to the one pretrained for action recognition tasks (e.g ., 128×
24×24 vs. 8×56×56), which makes it difficult to utilize a fixed absolute positional
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Table 1: Architecture specification of STPT. For the s-th stage, we denote Ps as
the patch size, Ss as the kernel stride and Rs as the reduction ratio, where each
dimension corresponding to the temporal size, height and width, respectively.
Ls and Cs refer to the the number of blocks and the channel dimension at the
s-th stage, respectively. Furthermore, we denote Wsl as the window size at the
l-th block in the s-th stage. We adopt an expanding ratio of 4 for all MLP layers
in each block.

Output Size Layer Name STPT

Stage1 T
2
× H

4
× W

4

PatchEmbed
P1 = 3 × 7 × 7
S1 = 2 × 4 × 4

C1 = 96

Local Block
L1 = 1

W11 = 8 × 8 × 8
R1 = 2 × 8 × 8

Stage2 T
2
× H

8
× W

8

PatchEmbed
P2 = 3 × 3 × 3
S2 = 1 × 2 × 2

C2 = 192

Local Block

L2 = 2
W21 = 8 × 6 × 6
W22 = 16 × 4 × 4
R2 = 2 × 2 × 2

Stage3 T
4
× H

16
× W

16

PatchEmbed
P3 = 3 × 3 × 3
S3 = 2 × 2 × 2

C3 = 384

Global Block
L3 = 11

R3 = 2 × 2 × 2

Stage4 T
8
× H

32
× W

32

PatchEmbed
P4 = 3 × 3 × 3
S4 = 2 × 2 × 2

C4 = 768

Global Block
L4 = 2

R4 = 1 × 1 × 1

encoding from a pretrained model. To tackle these problems, we make the spatio-
temporal positional embedding conditioned on input features and extend the
CPE proposed in [17] to the video domain, which can be formulated as

CPE(X) = DWConv(X), (4)

where DWConv refers to a 3D depth-wise convolution with zero paddings. Pre-
vious works [17,28] have shown that tokens on the borders can be aware of their
absolute positions when using convolutional layers with zero paddings. There-
fore, the absolute position for each token can be encoded by progressively sliding
convolutional kernels on the feature maps, justifying the design of our proposed
CPE for introducing positional information into input features.
Local spatio-temporal attention. As discussed in Sec. 1, global attention is
redundant to encode local patterns in the shallow layers, thus leading to high
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computational cost owing to the high-resolution feature maps. Given an embed-
ding X ∈ RT×H×W×d with channel dimension d, the complexity of self-attention
is O(T 2H2W 2d) [58]. Here, we propose to replace self-attention with LSTA to
alleviate the redundancy.

Following the design of multi-head self-attention, LSTA first projects X into
query Q ∈ RT×H×W×d, key K ∈ RT×H×W×d, and value V ∈ RT×H×W×d with
linear transformations. For each tensor, we evenly divide it into w1 × w2 × w3

partitions (sub-windows). Without loss of generality, we assume T%w1 = 0,
H%w2 = 0 and W%w3 = 0, and thus each sub-window contains THW

w1w2w3
tokens.

We force each query token only attends to tokens within the same local 3D
window, which helps encode local patterns via joint spatial-temporal relation
aggregation and reduce the computational redundancy in the early stages.

To further improve the efficiency, we follow [61,19] to reduce both the spa-
tial and temporal resolution of the keys and values within each local window,
i.e., K̄ = RK(K) ∈ RT ′×H′×W ′×d and V̄ = RV (V ) ∈ RT ′×H′×W ′×d, where
K̄, V̄ are resolution-reduced keys and values, and RK , RV denote two inde-
pendent reduction operations (e.g ., depth-wise convolution). T ′, H ′ and W ′

are the reduced temporal dimension, height and width. Thus, each sub-window
of K̄ and V̄ contains T ′H′W ′

w1w2w3
tokens after being divided into w1 × w2 × w3

partitions. Specifically, the computational cost for each sub-window becomes
O( THW

w1w2w3
× T ′H′W ′

w1w2w3
× d), and the total cost of LSTA is O(T

′H′W ′

w1w2w3
× THWd),

which is significantly efficient when T ′

w1
≪ T , H′

w2
≪ H and W ′

w3
≪ W and grows

linearly with THW if T ′

w1
, H′

w2
and W ′

w3
are fixed.

By applying LSTA in the early stages, the model significantly alleviates
spatio-temporal redundancy and efficiently encodes local spatio-temporal rep-
resentations.

Global spatio-temporal attention. To capture long-term dependencies, we
employ GSTA in the deep layers. For more efficient aggregation, GSTA also uses
the feature maps with reduced spatio-temporal resolution as the keys and values
in the self-attention operations. Given a query token, GSTA compares it with
all the tokens for aggregation. In this way, we ensure that the model captures
global dependencies in the last stages. By combining LSTA in the shallow layers,
the model forms an efficient and effective way of learning the spatio-temporal
representations for action detection.

Relation to existing video Transformers. While [4,1] are based on space-
time attention factorization, our method can encode the target motions by jointly
aggregating spatio-temporal relations, without loss of spatio-temporal correspon-
dence. Compared with MViT [19] which entirely utilizes global self-attentions,
our model can resolve the long-range dependency while simultaneously reduc-
ing the local spatio-temporal redundancy. By removing the local redundancy
in the early stages, our model outperforms MViT with a lower computational
cost. Moreover, different from the spatio-temporal MobileNet block used in Uni-
former [33], our LSTA is data-dependent [48,25] and flexible in terms of window
size without introducing extra parameters, while the kernel parameters are fixed
for the 3D convolutions in the spatio-temporal MobileNet block. Different from
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VideoSwin [42], we do not use shifted window mechanism to get a trade-off be-
tween locality and dependency. Compared with [14,16,34] which alternatively
process local and global information within each block, we encode local and
global spatio-temporal representations in the shallow and deep layers separately,
tackling both redundancy and dependency in a concise manner.

3.3 Temporal Feature Pyramid

Given an untrimmed video, action detection aims to find the temporal bound-
aries and categories of action instances, with annotation denoted by {ψn =
(tsn, t

e
n, cn)}Nn=1, where N is the number of action instances. For the n-th action

instance ψn, t
s
n, t

e
n and cn refer to the start time, end time and action label,

respectively. As shown in Fig. 2, we first forward the video input Xin into the
backbone to encode the spatio-temporal representations. The 3D feature maps
extracted from the last two stages are then fed to TFPN to obtain multi-scale
temporal feature maps. The motivation comes from the fact that multi-scale
feature maps contribute to tackle the variation of action duration [13,23,64].
Specifically, we construct anM -level temporal feature pyramid {fm}Mm=1, where
fm ∈ RTm×C′

and Tm is the temporal dimension of the m-th level. The TFPN
contains two 3D convolution layers followed by four 1D convolutional layers to
progressively forms a featural hierarchy.

After obtaining the temporal feature pyramid, an anchor-free prediction and
refinement module as in [35] is utilized to predict the boundary distances and
class scores at each location i on fm. Concretely, a two-branch tower includ-
ing several temporal convolutional layers is employed to map fm into two latent
representations. The latent representations are then processed by a classification
head and a localization head to get the class label ŷCi and boundary distances

(b̂si , b̂
e
i ) for each location i, respectively. To improve the confidence of the predic-

tions, we further adjust the boundary distances with features extracted from a
small region at the coarse boundary predicted above to obtain the modified off-
set as (∆b̂si , ∆b̂

e
i ), and the refinement action category label as ŷRi . To obtain high

quality proposals, we additionally predict the quality confidence η following [77].
Formally, for the i-th temporal location in the m-th TFPN layer, the final pre-
dicted start time t̂sm,i, end time t̂em,i and class label ŷm,i can be formulated in
the following form:

t̂sm,i = b̂sm,i +
1

2
(b̂em,i − b̂sm,i)∆b̂

s
i , (5)

t̂em,i = b̂em,i +
1

2
(b̂em,i − b̂sm,i)∆b̂

e
i , (6)

ŷm,i =
1

2
(ŷCm,i + ŷRm,i)ηm,i. (7)

In the training process, we use a multi-task loss function based on the output
of coarse and refined predictions, which can be formulated as

L = λclsLcls + λlocLloc + λqLq, (8)
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where Lcls, Lloc and Lq are losses corresponding to the classification, boundary
regression and quality confidence prediction tasks, respectively, and λcls, λloc,
λq are hyperparameters to balance the contribution of each task to the total
loss. For the classification task, we use focal loss [39] between the predicted
action scores from both prediction and refinement modules and the ground-
truth categories, i.e., Lcls = LC

focal +LR
focal. The localization loss includes tIoU

(temporal Interaction over Union) loss for the predicted coarse boundaries and
L1 loss for refined offsets, respectively, i.e., Lloc = LC

tIoU + LR
L1. For the quality

prediction task, Lq is computed in the same way as in [35].

4 Experiments

4.1 Datasets and Settings

Datasets. We present our experimental results on the commonly-used bench-
marks THUMOS14 [29] and ActivityNet 1.3 [9]. THUMOS14 dataset is com-
posed of 413 temporally annotated untrimmed videos with 20 action categories.
We use the 200 videos in the validation set for training and evaluate our method
on the 213 videos in the test set. ActivityNet 1.3 is a large-scale action un-
derstanding dataset for action recognition, action detection, proposal generation
and dense captioning tasks, which contains 19,994 temporally labeled untrimmed
videos with 200 action categories. We follow the former setting [38] to split this
dataset into training, validation and testing sets based on the proportion of 2:1:1.
Metrics. We adopt mean Average Precision (mAP) at certain tIoU thresholds
as the evaluation metric. On THUMOS14, we use tIoU thresholds {0.3, 0.4, 0.5,
0.6, 0.7}; on ActivityNet 1.3, we choose 10 values in the range of [0.5, 0.95] with
a step size of 0.05 as tIoU thresholds following the official evaluation API.
Implementation details.We build our STPT based on MViT [19]. The pipeline
and architecture specifications have shown in Fig. 2 and Table 1, respectively.
Follow common practice [35], we train and evaluate our model in an end-to-end
manner, which takes as input pure RGB frames without using additional optical
flow features. On THUMOS14, we sample RGB frames at 10 frames per second
(fps) and split a video into clips, where each clip contains 256 frames. Adjacent
clips have a temporal overlap of 30 and 128 frames at training and testing, re-
spectively. For ActivityNet 1.3, we sample a clip of 768 frames at dynamic fps for
each video. We set the spatial resolution as 96× 96 and use data augmentation
including random crop and horizontal flipping in training. For a fair compari-
son, we pretrain all the models on Kinetics400 [10] for 30 epochs under the same
settings following [19]. Our model is trained for 16 epochs and 12 epochs on
THUMOS14 and ActivityNet 1.3, respectively, using Adam [30] with a learning
rate of 5 × 10−6 for backbone and 1 × 10−4 for other modules, and the weight
decay is set to 1×10−3 and 1×10−4 for the two datasets. In post-processing, we
apply soft-NMS [5] to suppress redundant predictions, where the tIoU threshold
is set to 0.5 for THUMOS14 and 0.85 for ActivityNet 1.3. λloc is set to 10 for
THUMOS14 and 1 for ActivityNet 1.3, and λcls, λq is set to 1.



An Efficient STPT for Action Detection 11

Table 2: Performance comparison with state-of-the-art methods on THUMOS14,
We measure the performance by mAP at different tIoU thresholds and average
mAP in [0.3 : 0.1 : 0.7]. “*” indicates that the models are trained in an end-to-
end manner. We measure the computational cost by GFLOPs based on a clip of
256× 96× 96 frames for them. “Flow” indicates using optical flow features.

Methods GFLOPs Backbone Flow 0.3 0.4 0.5 0.6 0.7 Avg.

BSN [38] 455.4 TS ✓ 53.5 45.0 36.9 28.4 20.0 36.8
BMN [36] 455.4 TS ✓ 56.0 47.4 38.8 29.7 20.5 38.5

G-TAD [67] 444.2 TSN ✓ 54.5 47.6 40.2 30.8 23.4 39.3
TAL [13] 157.0 I3D ✓ 53.2 48.5 42.8 33.8 20.8 39.8

A2Net [69] 157.0 I3D ✓ 58.6 54.1 45.5 32.5 17.2 41.6
G-TAD+PGCN [72] 157.0 I3D ✓ 66.4 60.4 51.6 37.6 22.9 47.8

BMN-CSA [53] 455.4 TS ✓ 64.4 58.0 49.2 38.2 27.8 47.5
AFSD* [35] 162.2 I3D ✓ 67.3 62.4 55.5 43.7 31.1 52.0
DCAN [15] 444.2 TSN ✓ 68.2 62.7 54.1 43.9 32.6 52.3

R-C3D* [66] 453.3 C3D 44.8 35.6 28.9 - - -
GTAN [43] 107.0 P3D 57.8 47.2 38.8 - - -
AFSD* [35] 84.4 I3D - - 45.9 35.0 23.4 43.5

BCNet+PGCN [68] 81.8 I3D 69.8 62.9 52.0 39.8 24.0 49.7
DaoTAD [59] 81.8 I3D 62.8 59.5 53.8 43.6 30.1 50.0

167.6 MViT [19] 68.0 62.5 54.2 43.6 30.6 51.8
120.9 VideoSwin [42] 69.5 64.1 54.7 42.6 27.7 51.7
116.1 TimeSformer [4] 67.6 61.9 53.0 41.9 27.9 50.5

Ours* 111.2 STPT 70.6 65.7 56.4 44.6 30.5 53.6

4.2 Main Results

We compare our STPT with state-of-the-art approaches on the two datasets in
Table 2 and Table 3. We also report the backbone used by each method, e.g .,
I3D [10], TS [52], TSN [60], P3D [49], and whether the optical flows are used.
For models that are end-to-end trainable, we directly report the computational
cost for the whole model. For methods utilizing pre-extracted features or pre-
generated action proposals, we also calculate the computational cost for the
offline feature extraction stage under identical input settings for fair comparison.

On THUMOS14 dataset, our STPT, which only uses RGB frames, outper-
forms previous RGB models by a large margin and achieves comparable perfor-
mance with methods using additional optical flows, reaching mAP 70.6%, 65.7%,
56.4% at tIoU thresholds 0.3, 0.4, 0.5, respectively. Specifically, our STPT pro-
vides 53.6%, a +10.1% average mAP boost over AFSD RGB model under identi-
cal settings. Besides, our model also outperforms the two-stream AFSD at most
tIoU thresholds with less computational cost (111.2 vs. 162.2 GFLOPs).

On ActivityNet, with significant reduction of computational cost, our STPT
also achieves comparable performance with the existing RGB models. Specifi-
cally, STPT still obtains slightly better mAPs than AFSD RGB model on all
thresholds with less computational cost (134.1 vs. 248.7 GFLOPs). Notably,
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Table 3: Action localization results on ActivityNet 1.3 (validation set), measured
by mAP(%) at different tIoU thresholds, and the average mAP in [0.5 : 0.05 :
0.95].

Models GFLOPs Backbone Flow 0.5 0.75 0.95 Avg.

TAL [13] 471.3 I3D ✓ 38.2 18.3 1.3 20.2
A2Net [69] 471.3 I3D ✓ 43.6 28.7 3.7 27.8
BSN [38] 1367.0 TS ✓ 46.5 30.0 8.0 30.0
BMN [36] 1367.0 TS ✓ 50.1 34.8 8.3 33.9

G-TAD [67] 1367.0 TS ✓ 50.4 34.6 9.0 34.1
BMN-CSA [53] 1367.0 TS ✓ 52.4 36.7 5.2 35.4

AFSD* [35] 478.0 I3D ✓ 52.4 35.3 6.5 34.4
DCAN [15] 1367.0 TS ✓ 51.8 36.0 9.5 35.4

R-C3D* [66] 1360.0 C3D 26.8 - - 12.7
GTAN [43] 320.0 P3D 52.6 34.1 8.9 34.3
AFSD* [35] 248.7 I3D 50.5 33.4 6.5 32.9

172.4 MVIT [19] 50.1 32.7 5.9 32.2
153.7 VideoSwin [42] 49.6 32.1 5.6 31.9
140.6 TimeSformer [4] 51.1 33.3 6.0 33.1

Ours* 134.1 STPT 51.4 33.7 6.8 33.4

most previous models use optical flows to enhance motion modeling. However,
the adoption of an ensemble of flow features requires pre-extracting flow features
using [71], which prevents these methods from end-to-end learning and also in-
troduces huge computational cost. In contrast, our STPT can effectively encode
the spatio-temporal representations from pure RGB frames, which is completely
end-to-end trainable and computationally efficient.

It is worth to note that, compared with other representative video Transform-
ers, our STPT achieves the best mAP on THUMOS14 and ActivityNet, which
demonstrates the advantages of our architecture design that applying LSTA in
shallow layers and GSTA in deeper layers in realizing the trade-off between local-
ity and dependency. We also provide more comparison with other representative
video Transformers in the supplementary.

4.3 Ablation Study

Effect of LSTA. As discussed in Sec. 1, MViT [19] suffers from heavy spatio-
temporal redundancy in the shallow layers. We also investigate the computa-
tional cost of each layer and find that the heavy computation is caused by the
global attention in the first two stages. To this end, we replace global atten-
tion with our efficient LSTA in the first two stages. As shown in Table 2, our
STPT improves baseline MViT, which actually uses global self-attention in all
the stages, by 1.4% on average mAP while reducing FLOPs by 55.4G on THU-
MOS14. Furthermore, we also compare our LSTA with factorized space-time
attention in [4,1]. As shown in Table 2 and Table 3, our LSTA leads to higher
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Table 4: Effect of our architecture design principle. We evaluate the performance
of several combinations of blocks in terms of mAP. L/G refers to LSTA/GSTA
blocks used in each stage. All models are equipped with CPE. The number of
temporal tokens is set to 128, and the window size of temporal dimension for
LSTA is set to 8.

Type GFLOPs 0.3 0.4 0.5 0.6 0.7 Avg.

LLLL 101.8 64.7 59.4 50.8 40.0 26.5 48.3

LLLG 102.7 67.6 62.1 54.2 42.2 29.4 51.3

LGGG 151.4 69.4 63.5 55.0 42.9 29.2 52.0

GGGG 167.6 68.0 62.5 54.2 43.6 30.6 51.8

LLGG 111.4 69.1 63.7 55.2 44.2 29.3 52.3

Table 5: Effect of window size in terms of temporal dimension on THUMOS. We
compare the performance (in mAP) and computational cost (in GFLOPs) for
different scales of local window in each LSTA block. The number of temporal
tokens is set to 128. Experiments are conducted on models without using CPE.

Window size GFLOPs 0.3 0.4 0.5 0.6 0.7 Avg.

[1,1,1] 110.4 67.0 61.5 53.6 41.3 28.3 50.3

[4,4,4] 110.6 67.8 62.4 53.4 41.6 28.1 50.6

[8,8,8] 110.8 67.6 62.5 53.1 42.1 29.1 50.9

[8,8,16] 110.8 69.5 63.6 55.6 44.9 29.5 52.7

[16,16,16] 111.1 66.3 61.1 52.7 41.5 28.7 50.1

mAP scores than other attention designs with less computational cost, indicating
the effectiveness and efficiency of the proposed module.

Effect of the architecture design. To explore the effect of our architecture de-
sign principle in STPT, we investigate all the possible combinations of LSTA (L)
and GSTA (G). As shown in Table 4, when only using LSTA, the computational
cost is light (LLLL). However, the mAP drops dramatically, since the network
lacks the capacity of learning global dependency without GSTA. A significant
improvement can be observed when replacing LSTA with GSTA in the 3rd stage,
which indicates the importance of learning global dependency in the deeper lay-
ers for action detection. However, when applying GSTA in all stages (GGGG),
the model leads to worse results and introduces heavy computational overhead
(111.2G vs 166.6G). The main reason is that, without locality constraints, the
model cannot extract detailed spatio-temporal patterns in the early stages. In
our experiments, we choose LSTA and GSTA in the first two stages and the last
two stages respectively to achieve a preferable balance between efficiency and
effectiveness.

Effect of the window size. We compare the results of different window sizes
in LSTA in terms of the temporal dimension. As shown in Table 5, LSTA is
beneficial from the suitable window size. Moreover, it becomes equivalent to
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Table 6: The effect of CPE when varying the number of temporal tokens on the
performance (in mAP at different tIoU thresholds) and computational cost (in
GFLOPs) on (a) THUMOS14 and (b) ActivityNet 1.3.

Length GFLOPs 0.3 0.4 0.5 Avg.

64 83.2 68.2 62.2 53.0 50.7
64+CPE 84.7 68.2 62.5 54.3 51.1

128 110.8 69.5 63.6 55.6 52.7
128+CPE 111.2 70.6 65.7 56.4 53.6

(a) THUMOS14

Length GFLOPs 0.5 0.75 0.95 Avg.

192 181.5 49.8 32.3 5.3 32.0
192+CPE 182.3 50.9 33.4 6.9 33.0

96 133.6 50.9 33.2 6.1 32.8
96+CPE 134.1 51.4 33.7 6.8 33.4

(b) ActivityNet 1.3

encode spatial patterns without temporal information when using only [1,1,1] in
LSTA, where the model can not capture the motion variation of local patterns
in the shallow layers, leading to performance drop for action detection. However,
the setting of [16,16,16] leads to 0.5% average mAP drop compared to [8,8,8],
showing that too large temporal window size brings noise to informative local
representations, which also demonstrates the importance of involving locality
inductive bias in early stages.
Effect of CPE. We verify the effectiveness of CPE in our STPT for the ac-
tion detection task under the settings with different numbers of input tokens
along temporal dimension. We carefully change the temporal stride in the first
PatchEmbed layer, using dilated kernels to ensure more video frames are encoded
into the token sequence while keeping the length of video clips identical to the
setting in previous works [35]. Despite varying the number of input tokens, as
shown in Table 6, CPE provides consistent performance gain on both datasets
under all settings, with trivial computational cost introduced, e.g ., 0.9% aver-
age mAP improvement on THUMOS14 and 1.0% average mAP improvement on
ActivityNet 1.3 under the setting of 128 and 192, respectively.

5 Conclusion and Future Work

In this paper, we have proposed a novel STPT, which tackles the challenges of
both computational redundancy and long-range dependency in spatio-temporal
representation learning for the task of action detection. Specifically, STPT ap-
plies LSTA in shallow layers to encode local patterns with reduced spatio-
temporal redundancy and employs GSTA in the later stages to handle global
dependencies. Extensive experiments on THUMOS14 and ActivityNet 1.3 have
demonstrated that our STPT achieves a promising balance between accuracy
and efficiency for the task of action detection. Future work may include extend-
ing our STPT to other dense prediction tasks in the video recognition field, e.g .,
video segmentation and video captioning.
Acknowledgment. This work was partially supported by the NSFC under
Grant (No.61972315), Shaanxi Province International Science and Technology
Cooperation Program Project-Key Projects No.2022KWZ-14.
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Appendix

We organize our supplementary material as follows.

– In Sec. A, we present an illustrated example of LSTA.
– In Sec. B, we compare the per-category performance of different models on

THUMOS14 and provide attention visualization from the last layer on the
two selected action instances.

– In Sec. C, we present additional experiment results on ActivityNet 1.3.
– In Sec. D, we provide supplementary comparison results with other repre-

sentative video Transformers.

A Additional Illustration of LSTA

We further illustrate LSTA in Fig. 3. From left to right, for each input tensor
of size T × H ×W , we first evenly divide it into w1 × w2 × w3 sub-windows,
where T , H and W refer to the temporal size and height, width, respectively.
Next, each query token only attends to tokens within the same 3D local window.
Last, we further reduce both the spatial and temporal resolution of the keys and
values within each 3D local window for better efficiency.

Resolution:	128×12×12 #	window:	16×2×2

3D	local	window
# token:	8×6×6

A	query	token
Multi-head	
Attention

Spatio-temporal	
Reduction

𝑄 𝐾 𝑉

split

8×6×6

4×3×3

Fig. 3: An illustrated example of LSTA.

B Attention Visualization on THUMOS14

In Fig. 4, we show the per-category AP@0.5 of I3D, MViT and the proposed
STPT on THUMOS14 with RGB input only. It demonstrates that our STPT
surpasses the other two models in most categories. It is also notable that our
STPT outperforms other models by a large margin on some action categories,
e.g ., TennisSwing, LongJump.

We further provide attention visualization of different models on the two ex-
ample action instances selected from THUMOS14 in Fig. 5 and Fig. 6. For each
video instance, we show the sampled input RGB frames and use Grad-CAM
to generate the corresponding attention in the last layer. Due to the local re-
ceptive field of 3D convolutions, I3D lacks the capacity of learning long-term
dependencies in the videos, leading to inaccurate and irrelevant attention. Al-
ternatively, MViT applies global attention in all the stages, which brings noises
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Fig. 4: Per-category AP@0.5 on THUMOS14.

Input

I3D

MViT

STPT

Fig. 5: Attention visualization of different models for an action instance of “Ten-
nisSwing”.

to the informative spatio-temporal representations and struggles to focus on key
objects or actions, e.g ., the tennis racket or the jumping action. Different from
both cases, by flexibly involving locality constraint in early stages and apply-
ing global attention in later stages, our STPT efficiently encodes local patterns
and captures global dependencies in a concise manner, enabling learning strong
spatio-temporal representations from videos.
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Table 7: Effect of our architecture design principle. We evaluate the performance
(in mAP) and computational cost (in GFLOPs) of several combinations of blocks
on ActivityNet 1.3. L/G refers to LSTA/GSTA used in each stage. Models are
equipped with CPE. The number of temporal tokens is set to 96.

Type GFLOPs 0.5 0.75 0.95 Avg.

LLLL 121.0 49.9 32.4 3.3 31.7

LLLG 126.2 50.0 32.5 3.5 31.8

LGGG 152.2 50.3 32.5 6.8 32.7

GGGG 172.4 50.1 32.7 5.9 32.2

LLGG 134.1 51.4 33.7 6.8 33.4

Table 8: Effect of window size in terms of temporal dimension. We compare the
performance (in mAP) and computational cost (in GFLOPs) for different scales
of a local window in each LSTA block.

Window Size GFLOPs 0.5 0.75 0.95 Avg.

[1,1,1] 133.9 50.3 33.0 4.0 32.1

[4,4,4] 134.0 50.4 33.2 4.1 32.3

[8,8,8] 134.1 51.0 33.5 5.7 32.9

[8,8,16] 134.1 51.4 33.7 6.8 33.4

[16,16,16] 134.4 49.7 32.0 5.6 32.0

Table 9: More comparisons (mAP(%) at different tIoU thresholds) with other
ViT models on THUMOS14 and ActivityNet 1.3.

Backbone GFLOPs 0.3 0.4 0.5 0.6 0.7 Avg.

DualFormer 112.2 68.5 63.0 54.4 41.8 27.7 51.1
RegionViT 181.3 68.6 62.7 53.5 41.7 28.8 51.1
Twins 119.8 69.7 62.7 54.1 43.2 28.7 51.7
Uniformer 134.2 68.7 63.6 54.6 42.0 28.7 51.5
Ours 111.2 70.6 65.7 56.4 44.6 30.5 53.6

(a) THUMOS14

Backbone GFLOPs 0.5 0.75 0.95 Avg.

DualFormer 171.1 50.7 33.1 5.4 32.7
RegionViT 241.1 51.3 33.4 6.2 32.8
Twins 140.2 51.1 33.2 5.2 32.7
Uniformer 185.5 50.7 32.8 5.2 32.6
Ours 134.1 51.4 33.7 6.8 33.4

(b) ActivityNet 1.3
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I3D

MViT

STPT

Input

Fig. 6: Attention visualization of different models for an action instance of
“LongJump”.

C More Results on ActivityNet 1.3

We provide more results on ActivityNet 1.3 in Table 7 and Table 8. In Ta-
ble 7, we report the performance and the computational cost of all the possible
combinations of LSTA (L) and GSTA (G) on ActivityNet 1.3. Without using
GSTA, the model LLLL is computationally efficient but lacks the capacity of
learning global dependency, resulting in the lowest mAP scores compared with
other structures. Alternatively, applying GSTA in all the stages leads to heavy
computational cost (134.1G vs. 172.4G). However, the mAP scores drop at all
thresholds as the model cannot extract detailed spatio-temporal patterns in the
early stages. Thus, for ActivityNet, we choose LSTA and GSTA in the first two
stages and the last two stages respectively, in order to achieve a favourable bal-
ance between efficiency and effectiveness. As shown in Table 8, with comparable
FLOPs, the model with the window size of [8,8,16] for LSTA outperforms the
other settings at all thresholds.
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D Comparison with other video Transformers

Compared with DualFormer, RegionViT and Twins, which alternatively pro-
cess local and global information within each block, we leverage local LSTA in
the early stages to remove local redundancy and utilize global GSTA in the
deeper layers to model the long-term dependencies. Different from the factor-
ized space-time attention used in RegionViT, we encode the target motions by
jointly aggregating spatio-temporal relations. As shown in Table 9, our STPT
consistently achieves better performance with fewer FLOPs than other methods
on both datasets.
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