
“© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.”

Beyond Fixation: Dynamic Window Visual Transformer

Pengzhen Ren1 Changlin Li2 Guangrun Wang3 Yun Xiao1*

Qing Du4* Xiaodan Liang5,6 Xiaojun Chang2,7

1Northwest University, China 2ReLER, AAII, University of Technology Sydney 3University of Oxford
4South China University of Technology 5Sun Yat-sen University 6 PengCheng Laboratory 7RMIT University

pzhren@foxmail.com, yxiao@nwu.edu.cn, duqing@scut.edu.cn, xiaojun.chang@uts.edu.au

{changlinli.ai, wanggrun, xdliang328}@gmail.com

Abstract

Recently, a surge of interest in visual transformers is to
reduce the computational cost by limiting the calculation of
self-attention to a local window. Most current work uses a
fixed single-scale window for modeling by default, ignoring
the impact of window size on model performance. How-
ever, this may limit the modeling potential of these window-
based models for multi-scale information. In this paper,
we propose a novel method, named Dynamic Window Vi-
sion Transformer (DW-ViT). The dynamic window strategy
proposed by DW-ViT goes beyond the model that employs
a fixed single window setting. To the best of our knowl-
edge, we are the first to use dynamic multi-scale windows
to explore the upper limit of the effect of window settings
on model performance. In DW-ViT, multi-scale informa-
tion is obtained by assigning windows of different sizes to
different head groups of window multi-head self-attention.
Then, the information is dynamically fused by assigning dif-
ferent weights to the multi-scale window branches. We con-
ducted a detailed performance evaluation on three datasets,
ImageNet-1K, ADE20K, and COCO. Compared with re-
lated state-of-the-art (SoTA) methods, DW-ViT obtains the
best performance. Specifically, compared with the current
SoTA Swin Transformers [34], DW-ViT has achieved con-
sistent and substantial improvements on all three datasets
with similar parameters and computational costs. In ad-
dition, DW-ViT exhibits good scalability and can be easily
inserted into any window-based visual transformers.1

1. Introduction

In computer vision (CV) tasks, the visual transformer
represented by Vision Transformer (ViT) [12] has shown
great potential. These methods have achieved impres-

*Corresponding author.
1Code release: https://github.com/pzhren/DW-ViT. This

work was done when the first author interned at Dark Matter AI.

4.4 4.6 4.8 5.0 5.2 5.4 5.6
FLOPs (G)

74.5

75.0

75.5

76.0

76.5

To
p-

1
Ac

c.
 (%

)

win=7

win=14

win=21

win=23

DW-T
MSW-Swin
l: Swin-T

Figure 1. Performance comparison of DW-ViT, Swin [34] and
Swin with multi-scale window (MSW-Swin) on ImageNet-1K [10]
as the window size increases. We use a purple broken line (l) to
indicate the performance and FLOPs changes of Swin-T [34] with
a single-scale window (win ∈ [7, 14, 21, 23]). The multi-scale
windows used by MSW-Swin and DW-T are all set to [7, 14, 21].

sive performance on tasks such as image classification
[40, 54], semantic segmentation [33, 56] and object detec-
tion [34, 60, 62].

In ViT, the complexity of the self-attention operation is
proportional to the square of the number of image patches.
This is unfriendly to most tasks in the CV field. Swin [34]
thus proposed to limit the calculation of self-attention to a
local window to reduce the computational complexity and
achieved some promising results. This local window self-
attention quickly attracted a significant amount of atten-
tion [7, 31, 55]. However, most of these methods [7, 31, 55]
use a fixed single-scale window (e.g., win = 7) by default.
The following questions accordingly arise: Is this window
size optimal? Does a bigger window entail better perfor-
mance? Is a multi-scale window more advantageous than
a single-scale window? Furthermore, will dynamic multi-
scale windows yield better results? To answer these ques-
tions, we evaluate the impact of window sizes on the model
performance. In Fig. 1, we report the change curve (l) of
top-1 accuracy and FLOPs (G) of Swin-T [34] under four
single-scale windows (win ∈ [7, 14, 21, 23]) on ImageNet-

https://github.com/pzhren/DW-ViT

A window A patch
!! !"DMSW

MSW-MSA

(a) DW-ViT (ours)

A window A patch
!! !"DMSW

MSW-MSA

(b) Swin Transformer

Figure 2. Comparison of DW-ViT’s multi-scale window (e.g.,
win1 = 6 and win2 = 3) and Swin-based single-scale win-
dow (e.g., win = 9). The number of patches in the local win-
dow is win × win. A dynamic multi-scale window (DMSW) is
a dynamic adaptive window module we designed for multi-scale
window multi-head self-attention (MSW-MSA). α is a learnable
parameter of the DMSW module. α1 and α2 are a possible weight
distribution scheme of DMSW.

1K [10]. In Swin [34], the window size has a very small
effect on the amount of model parameters.

As shown in Fig. 1, as the window size increases, the
performance of the model is found to be significantly im-
proved, but this is not absolutely monotonous. For exam-
ple, when the window size is increased from 21 to 23, the
performance of the model hardly improves or even drops.
Therefore, it is not feasible to simply increase the window
to improve the performance of the model. In addition, it is
difficult to choose the best window size from multiple alter-
native window sizes. And the optimal window settings of
different layers may also be different. A natural idea is to
mix information from windows of different scales for pre-
diction tasks. Based on this idea, we design a multi-scale
window multi-head self-attention (MSW-MSA) mechanism
for the window-based ViT. In Fig. 1, as shown in the re-
sults of Swin-T with MSW (MSW-Swin) and Swin-T with
a single-scale window, simply introducing the MSW mech-
anism for the W-MSA of the transformer cannot further ef-
fectively improve the performance of the model. For exam-
ple, the performance of MSW-Swin (win = [7, 14, 21]) is
lower than that of Swin-T with single-scale windows when
win = 21. It may be caused by suboptimal window settings
that impairs the performance of the model. This shows that
it may require more effort to protect ViT with MSW from
suboptimal window settings while retaining the advantages
of multi-scale windows. On the other hand, the dynamic
neural network [17] has been favored by a large number of
researchers because of its ability to adjust the structure and
parameters of the model adaptively according to the input.
Moreover, the dynamic network has been successfully ap-
plied in CNN [30, 43, 46, 47, 58, 67] and ViT [4, 55, 60].

Based on the above observations, in this paper, we pro-
pose a novel method, named Dynamic Window Vision
Transformer (DW-ViT). As far as we know, it is the first
method to use dynamic multi-scale windows to explore the
upper limit of the impact of window settings on model per-

Transformer Encoder

window (3×3)

patch (6×6)

36×36

Transformer Encoder

patch (12×12)36×36
A patch

A window

Figure 3. In the visual transformer, a schematic diagram of the
window self-attention calculation process. Assume that the num-
ber of pixels in the input image is H×W (e.g. 36×36). The image
is first split into ⌈H

p
⌉ × ⌈W

p
⌉ fixed-size patches (e.g. p = 6), and

then the self-attention calculation is limited to a fixed-size window
(i.e. each window has M ×M patches, e.g. M = win = 3). For
simplicity, patch and position embeddings are omitted here.

formance. In DW-ViT, we first obtain multi-scale informa-
tion by assigning different scale windows to different head
groups of multi-head self-attention in transformer. Then,
we realize the dynamic fusion of information by assigning
weights to the multi-scale window branches. In Fig. 2, we
present a comparison of DW-ViT’s multi-scale window and
single-scale window approaches based on Swin [34] class
methods. More specifically, in DW-ViT, MSW-MSA is re-
sponsible for the extraction of multi-scale window informa-
tion, while DMSW is responsible for the dynamic enhance-
ment of these multi-scale information. Through the above
two parts, DW-ViT can improve the model’s multi-scale in-
formation modeling capabilities dynamically while ensur-
ing relatively low computational complexity. As shown in
Fig. 1, the performance of DW-T with a dynamic window is
significantly better than that of Swin-T with a single fixed-
scale window, which we call ”beyond fixed”. Our main con-
tributions can be summarized as follows:

• The recently popular window-based ViT mostly ig-
nores the influence of window size on model perfor-
mance. This severely limits the upper limit of the
model’s performance. As far as we know, we are the
first to challenge this problem.

• We propose a novel plug-and-play module with a
dynamic multi-scale window for multi-head self-
attention in transformer. DW-ViT is superior to all
other ViTs that use the same single-scale window and
can be easily embedded into any window-based ViT.

• Compared with the state-of-the-art methods, DW-ViT
achieves the best performance on multiple CV tasks
with similar parameters and FLOPs.

2. Related Works
Window self-attention. In the ViT context, standard self-
attention splits each image into fixed-size patches [12, 49,

Dynamic
Window
Module
(DWM)

Stage 1

×%'

Pa
tc

h
M

er
gi

ng Dynamic
Window
Module
(DWM)

Stage 2

×%)

Pa
tc

h
M

er
gi

ng Dynamic
Window
Module
(DWM)

Stage 3

×%*

Pa
tc

h
M

er
gi

ng Dynamic
Window
Module
(DWM)

Stage 4

×%+

&×'×3

&
4 ×

'
4 ×*

&
8 ×

'
8 ×2*

&
16×

'
16×4*

&
32×

'
32×8*

Pa
tc

h
Pa

tit
io

n

Li
ne

r E
m

be
dd

in
g

Patch Embedding

&
4 ×

'
4 ×48

LN

DWM

LN

MLP

LN

DSW

LN

MLP

"%&' "%

"%

"̂%

"%('

"̂%('

LN

D
W

M

LN

M
LP

LN

D
SW

LN

M
LP

"̂%"%&' "%

"%
"̂%(' "%('

Figure 4. The architecture of the Dynamic Window Vision Transformer (DW-ViT).

54]. These patches are expanded as a sequence of tokens,
which are then fed to the transformer encoder after being
encoded. The calculation amount of this standard self-
attention is still huge. Subsequent work [22, 54, 56] has
continued to try to reduce the computational complexity of
standard self-attention. In particular, Swin [34] proposes
to limit the calculation of self-attention to a local window.
This window self-attention strategy reduces the computa-
tional complexity of MSA from O(N2) to O(N) (here N
is the number of image patches). The schematic diagram
of the window-based self-attention calculation process in
ViT is shown in Fig. 3. This window self-attention mech-
anism quickly attracted the attention of a large number of
researchers [7,55,60]. However, these works all use a fixed
single-scale window. They ignored the impact of window
size on model performance. This may limit the upper limit
of the impact of window configuration on model perfor-
mance. In Fig. 1, the performance comparison of Swin [34]
under different single-scale windows just verifies this idea.
Based on the above observations, we filled this gap and ex-
plored in detail the effect of window size on model perfor-
mance, which is a supplement to the above work.

Multi-scale information in ViT. Multi-scale information
has been successfully applied in the field of convolution.
To obtain more comprehensive information, the model not
only needs small-scale information but also large-scale in-
formation. For example, Inception [44, 45], Timeception
[23], MixConv [48] and SKNet [30], among others, obtain
multi-scale information by using different sizes of convo-
lution kernels. In addition, some works [15, 55] also try
to use the output of CNN as the input of ViT to improve
the ability of ViT to model local information. In particu-
lar, CrossFormer [55] uses multi-scale convolution to pro-
vide multi-scale information for the ViT input. Recently,
due to the popularity of ViT in the CV field, many re-
searchers have attempted to introduce multi-scale informa-
tion into ViT. The pyramid structure in CNN is a widely
borrowed idea. For example, T2T [62] reduces the length
of the token sequence stage by stage by aggregating adja-
cent patches, while PVT [54] reduces the feature dimen-
sion by modifying self-attention. BossNAS [27] searches
for the downsampling position of multi-stage transformers.
Further, P2T [56] introduces pyramid pooling into the self-

attention of the transformer. Similarly, Focal self-attention
[60] also incorporates multi-scale information into the cal-
culation of each self-attention. More directly, CrossVit [4]
has designed a two-branch transformer encoder with image
tokens of different sizes. All of these improve the model’s
ability to model multi-scale information to varying degrees.
However, the above-mentioned method either has a large
amount of calculation due to the global self-attention, or
it is difficult to expand due to the complex design. In our
work, we design a multi-scale window mechanism for MSA
to enhance its modeling capabilities in the context of multi-
scale information. This MSW-MSA strategy applies to most
types of W-MSA computing and exhibits good expansion.
Dynamic multi-branch network. Recently, dynamic net-
works [17, 28, 29] are popular because they can flexibly ad-
just the structure and parameters of the network according
to the input and have better adaptive capabilities. In a dy-
namic multi-branch network, a common strategy is to assign
corresponding weights to different branches according to
their importance to achieve a large-capacity, more versatile,
and flexible network structure. For example, early works on
this topic [13, 24] used real-valued weights to dynamically
rescale the representations obtained from different experts.
In addition, SKNet [30], ACNet [53], TreeConv [52], and
ResNeSt [64] propose a simple split-attention mechanism
that dynamically adjusts the weight of the information ob-
tained by different convolution kernels or branches. This
strategy can obtain dynamic feature representations for dif-
ferent samples with a small computational cost, thereby im-
proving the model’s expressive ability. In our work, the pro-
posed multi-scale window self-attention module has a natu-
ral affinity with the above-mentioned dynamic multi-branch
network. Accordingly, we propose a dynamic multi-scale
window (DMSW) module for MSW-MSA. This DMSW
strategy enables DW-ViT to integrate information from win-
dows of different scales in a dynamic manner so that the
model can obtain better expressive capabilities.

3. Method

3.1. Overall Architecture

To facilitate proper comparison while maintaining its
high-resolution task processing capabilities, DW-ViT fol-

lows the architectural design outlined in [34, 54, 65]. Fig. 4
presents the overall architecture of DW-ViT. The model
comprises four stages. To generate hierarchical feature rep-
resentation, the i-th stage consists of a feature compres-
sion layer and si Dynamic Window Module (DWM) trans-
former layers. More specifically, in Stage 1, similar to the
ViT [12, 34], the RGB image is split into non-overlapping
patches (the patch size is set to 4 × 4; that is, the compres-
sion ratio in the spatial dimension is 4). The original RGB
pixel value of each patch is concatenated (i.e. after patch
concatenation, the dimension is 4 × 4 × 3 = 48) and pro-
jected to an arbitrary dimension (denoted as C) through a
linear embedding layer. The feature dimension of the cor-
responding patch embedding layer output is H

4 × W
4 × C.

These generated patch tokens are then used as the input of
the DWM transformer layers, and the number (i.e. H

4 × W
4)

of tokens remains unchanged during this process. Similarly,
Stages 2–4 uses a similar structure. The difference is that
the feature compression ratio of the patch merging layer in
each stage is 2, while the number of channels is doubled.
That is, the resolutions of the output features for Stages 2–4
are H

8 × W
8 , H

16 × W
16 , and H

32 × W
32 , and the correspond-

ing channel dimensions are 2C, 4C, and 8C, respectively.
The combination of output features at different stages can
be used as the input of task networks such as classification,
segmentation, and detection.

3.2. Dynamic Window Module

As shown in Fig. 5, the DWM we designed comprises
two main parts: a multi-scale window multi-head self-
attention module (MSW-MSA) and a dynamic multi-scale
window module (DMSW). The former is responsible for the
capture of multi-scale window information, while the latter
is responsible for the dynamic adaptive weighting of this
information.

3.2.1 Multi-Scale Window Multi-head Self-Attention

Fig. 5 (left) presents an architecture diagram of MSW-MSA
with h heads and nwin scale windows. Here we take h = 6
and nwin = 3 as an example. The multi-head h of MSA is
evenly divided into nwin groups, which perform multi-head
self-attention at different scales window to capture multi-
scale window information. A group of windows here can be
set to Win = {wini, i = 1, ..., nwin}. Specifically, assume
the input feature map x ∈ RH×W×C ; we thus have the
following output of MSW-MSA:

yMSW-MSA = MSW-MSA(x)

= Concat({W-MSAwini
(ŷi)}),

ŷi = Spliti(x̂) ∈ R
h

nwin
×H×W×C

h , i = 1, ..., nwin,

x̂ = Reshape(x) ∈ Rh×H×W×C
h ,

(1)

where the i-th branch ŷi is divided into ⌈ H
wini

⌉ × ⌈ W
wini

⌉
windows in the spatial dimension. Each window is ex-
panded into a token sequence of length wini × wini and
used as the input of the i-th branch W-MSAwini

of MSW-
MSA. The structure of W-MSA is illustrated in Fig. 3.
The output of W-MSAwini is reconstructed as H × W in
the spatial dimension, and the final output dimension is
H × W × C

nwin
. The outputs of these branches are con-

catenated in the channel dimension and used as the output
of the entire MSW-MSA module.

3.2.2 Dynamic Multi-Scale Window

The output yMSW-MSA ∈ RH×W×C of the multi-branch
structure MSW-MSA can naturally be used as the input
of DMSW. yMSW-MSA = Concat({W-MSAwini

(∗), i =
1, ..., nwin}) retains the multi-scale information of window
groups of different scales in the channel dimension. To this
end, we designed an dynamic multi-scale window informa-
tion weighting module DMSW for MSW-MSA.

In more detail, DMSW uses the integrated information
of all branches to generate corresponding weights for each
branch, then integrates the information of different branches
via weighting. The DMSW structure diagram is presented
on the right of Fig. 5. This process is divided into two main
steps: Fuse and Select. The former is responsible for in-
tegrating the information of all branches, while the latter
generates corresponding weights for each branch based on
the global information and completes the fusion of branch
information. Specifically, the details of these two parts are
as follows:
Fuse: It mainly consists of a pooling layer Fgp and two
pairs of fully connected layers Ffc and activation layers Fa.
The calculation process is as follows:

yFuse =δ2(Ffc2(Fgp(δ1(ŷFuse)))),

ŷFuse = Ffc1(yMSW-MSA),
(2)

where Fa = δ is the GELU [20] function. The spe-
cific dimension setting is presented in Fig. 5 (right), where
yFuse ∈ R1×1×C′

and C ′ is set to C
2nwin

.
Select: It consists of two parts. The first part is composed of
a set of fully connected layers Fα = {Fαi,i=1,2,...,nwin

} and
a softmax layer to generate corresponding weights for each
branch, while the second contains two linear mapping layers
to restore the channel dimension of the fused features. The
specific calculation process is as follows:

ySelect = Ffc4(Ffc3(

nwin∑
i

αi × W-MSAwini(ŷi))),

αi =
eFαi

(yFuse)∑nwin

i eFαi
(yFuse)

, i = 1, 2, ..., nwin,

(3)

In
pu
t win2ℱ#$

96

Multi-Scale Window Multi-

Head Self-Attention Module

softmax

ℱ!" ℱ#$+ℱ,ℱ,

Dynamic Multi-Scale Window Module

ℱ#$ ℱ#$ℱ#$

win1

win2

win3

Multi-head

ℎ×&×'×*ℎ

ℎ
0-./×H×'×

*
ℎ H×'×*/0-./

H×'×*/0-./

H×'×*/0-./

H×'×*

H×'×* 1×1×*

1×1×*′

1×1×*/0-./

H×'×*/0-./

H×'×*

H×'×*
splitreshape concat

W-MSA

ℎ
0-./×H×'×

*
ℎ

ℎ
0-./×H×'×

*
ℎ

Figure 5. Dynamic Window Module (DWM). DWM has two main parts: Multi-Scale Window Multi-Head Self-Attention Module (MSW-
MSA) and Dynamic Multi-Scale Window Module (DMSW).

where αi ∈ R1×1× C
nwin . The DMSW module output is as

follows:
yDMSW = ySelect + ŷFuse. (4)

Moreover, yDMSW ∈ RH×W×C is also the output of the
entire DWM.

3.3. Dynamic Window Block

The DW block is constructed by replacing the standard
MSA module in the Transformer block with DWM. In ad-
dition, because DWM is designed for multi-scale informa-
tion, it does not specifically design for cross-window in-
formation exchange. In the interests of simplicity, follow-
ing the design presented in [34], we retain the Swin’s [34]
shifted window strategy. DWM with shifted window strat-
egy is defined as a dynamic shifted window (DSW) block.
Each DWM (or DSW) block consists of two LayerNorm
(LN) layers and a two-layer MLP with GELU nonlinear-
ity. DSW achieves cross-window information exchange by
moving the feature ⌊win

2 ⌋ patches to the upper left in the
spatial dimension. When the feature is reconstructed, it
moves ⌊win

2 ⌋ patches to the lower right to restore the spa-
tial position of the feature. Alternate stacking of DWM and
DSW is used to avoid a decline in information exchange.
Specifically, two successive DWM blocks are calculated as
follows:

ẑl = DWM(LN(zl−1)) + zl−1,

zl = MLP(LN(ẑl)) + ẑl,

ẑl+1 = DSW(LN(zl)) + zl,

zl+1 = MLP(LN(ẑl+1)) + ẑl+1,

(5)

where ẑl and zl respectively define the output of the DWM
(DSW) module and MLP module in the l-th block.
Position encoding. For a local window with M × M
patches, following [1,34,39], we added a set of relative po-
sition bias B = {Bi ∈ RM2

i ×M2
i , i = 1, 2, ..., nwin} to the

similarity calculation of each head of DWM self-attention.
For the W-MSAwini

of the i-th scale local window, we have

the window self-attention calculation of Qi as follows:

Attention(Qi,Ki, Vi) = SoftMax(
QiK

T
i√
d

+Bi)Vi, (6)

where Qi,Ki, Vi ∈ RM2
i ×d are query, key, and value ma-

trices, while M2
i is the number of patches in the i-th scale

window, and d is the Qi/Ki dimension. In addition, we pa-
rameterized a bias matrix set B̂ = {B̂i, i = 1, ..., nwin}.
Specifically, for B̂i, because the relative position on each
axis lies in the range of [−Mi + 1,Mi − 1], a small-sized
bias matrix B̂i ∈ R(2Mi−1)×(2Mi−1) is parameterized, and
the values in Bi are taken from B̂i.

3.4. Model Configuration

To facilitate fair comparison, following [34], we set the
two configuration models as DW-T and DW-B. Their con-
figuration details are summarized in Tab. 1. In particular,
according to the results in Fig. 1 and the size of the output
features in each stage on ImageNet [10], for the DW-T with
three heads in the first stage, we set Win1 = [7, 14, 21].
For Stages 2–4, we adjust the window according to the size
of the output feature of each stage (when the size of the
window and the output feature are equal, the standard self-
attention is calculated at this time). Similarly, for DW-B,
Win1 = [7, 12, 17, 22]. For all experiments, the query di-
mension of each head is d = 32, while the expansion layer
of each MLP is α = 4.

3.5. Complexity Analysis

The computational complexity of the DWM block
is composed of two main parts: Ω(SMW-MSA) and
Ω(DMSW). For an image with h × w patches, their com-
putational complexity is as follows2:

Ω(SMW-MSA) = 4hwC2 + 2hw
C

nwin

nwin∑
i

win2
i . (7)

Ω(DMSW) = (1 + hw(1 +
1

nwin
))

C2

nwin
. (8)

2The calculation of SoftMax is ignored here.

Output Size Layer Name DW-T DW-B

Stage 1 H
4 × W

4

Patch Embedding p1 = 4;C1 = 96 p1 = 4;C1 = 128

DWM
[

Win1 = [7, 14, 21]
h1 = 3, C1 = 96

]
× 2

[
Win1 = [7, 12, 17, 22]
h1 = 4, C1 = 128

]
× 2

Stage 2 H
8 × W

8

Patch Merging p2 = 2;C2 = 192 p2 = 2;C2 = 256

DWM
[

Win2 = [7, 14, 21]
h2 = 6, C2 = 192

]
× 2

[
Win2 = [7, 12, 17, 22]
h2 = 8, C2 = 256

]
× 2

Stage 3 H
16 × W

16

Patch Merging p3 = 2;C3 = 384 p3 = 2;C3 = 512

DWM
[

Win3 = [7, 14, 14]
h3 = 12, C3 = 384

]
× 6

[
Win3 = [7, 12, 14, 14]
h3 = 16, C3 = 512

]
× 18

Stage 4 H
32 × W

32

Patch Merging p4 = 2;C4 = 768 p4 = 2;C4 = 1024

DWM
[

Win4 = [7, 7, 7]
h4 = 24, C4 = 768

]
× 2

[
Win4 = [7, 7, 7, 7]

h4 = 32, C4 = 1024

]
× 2

Table 1. Configuration details of DW-ViT. Here, pi × pi is the size of the patch in the i-th stage, and is also the downsampling ratio of
the feature in the spatial dimension. Ci is the number of feature channels, while Wini and hi are the window combination used by the
MSW-MSA module and the number of heads used by the MSA in transformer respectively.

The total computational complexity of DWM is as follows:

Ω(DWM) =Ω(SMW-MSA) + Ω(DMSW)

=(1 + 4nwin +
hw + nwin

hwnwin
)
hw

nwin
C2+

2hw
C

nwin

nwin∑
i

win2
i .

(9)

Since both wini and nwin are constants, the total computa-
tional complexity of DWM does not significantly increase.
The computational complexity of DWM is still O(N).

4. Experiments
We conduct a performance comparison with the state-of-

the-art (SoTA) methods on an upstream task, ImageNet-1K
image classification [10], and two downstream tasks: se-
mantic segmentation on ADE20K [66], and object detection
and instance segmentation on COCO 2017 [32]. Finally, we
ablate the important modules of DW-ViT.

4.1. Image Classification on ImageNet-1K

Experimental Settings We benchmark DW-ViT on
ImageNet-1K [10]. ImageNet-1K contains 1.28M training
images and 50K test images from 1000 categories. To test
the effectiveness of DW-ViT and conduct a fair comparison
with similar methods [4, 7, 34], we carefully avoid using
any tricks that provide unfair advantage [25, 51]. Specifi-
cally, following the settings in [7, 34], DW-ViT was trained
for 300 epochs with a batch size of 1024 using the AdamW
optimizer [35]. The cosine decay learning rate scheduler
and 20 epochs of a linear warm-up are used. The initial
learning rate and weight decay are set to 0.001 and 0.05,
respectively. In training, [50]’s augmentation and regular-
ization strategies are used. Following the settings in [34],
the repeated enhancement [21] and EMA [37] strategy are
abandoned.
Results Tab. 2 reports the performance comparison of
DW-ViT and state-of-the-art methods on ImageNet-1K.

Method #param. (M) FLOPs (G) Top-1 (%)

ConvNet
ResNet50 [19] 26 4.1 76.6
ResNet101 [19] 45 7.9 78.2
X50-32x4d [58] 25 4.3 77.9
X101-32x4d [58] 44 8.0 78.7
RegNetY-4G [38] 21 4.0 80.0
RegNetY-8G [38] 39 8.0 81.7
RegNetY-16G [38] 84 16 82.9

Transformer
DeiT-Small/16 [49] 22 4.6 79.9
CrossViT-S [4] 27 5.6 81.0
T2T-ViT-14 [62] 22 5.2 81.5
TNT-S [16] 24 5.2 81.3
CoaT Mini [59] 10 6.8 80.8
PVT-Small [54] 25 3.8 79.8
CPVT-GAP [62] 23 4.6 81.5
CrossFormer-S† [55] 28 4.5 81.5
Swin-T [34] 28 4.5 81.3
DW-T 30 5.2 82.0
ViT-Base/16 [11] 87 17.6 77.9
DeiT-Base/16 [49] 87 17.6 81.8
T2T-ViT-24 [62] 64 14.1 82.3
CrossViT-B [4] 105 21.2 82.2
TNT-B [16] 66 14.1 82.8
CPVT-B [8] 88 17.6 82.3
PVT-Large [54] 61 9.8 81.7
Swin-B [34] 88 15.4 83.3
DW-B 91 17.0 83.8

Table 2. Performance comparison on ImageNet-1K. All models
are trained and evaluated at 224×224 resolution. CrossFormer-S†

shows the performance in the case of single-scale embedding.

Methods of comparison include the classic and the latest
ConvNet-based [19, 38, 58] and Transformer-based [4, 34,
55] models. All models are trained and evaluated at 224 ×
224 resolution. As shown in Tab. 2, with similar parame-
ters and FLOPs, DW-ViT still has obvious advantages com-
pared with other current state-of-the-art methods. Specifi-
cally, compared with Transformer baseline DeiT [49], the
performance of DW-T and DW-B are improved by 2.1%
and 2.0%, respectively. At the same time, under the same
settings, compared with Swin [34], DW-T and DW-B also
achieved performance gains of 0.7 and 0.5 points, respec-
tively, with the help of dynamic windows. This shows that
DW-ViT as a general visual feature extractor can obtain bet-
ter feature representation. In addition, it is worth mention-
ing that as an independent module, DWM can be flexibly
embedded in any window-based ViT model [7, 31, 55] like

Backbone Method #param.
(M)

FLOPs
(G) mIoU +MS

ResNet-101 [19] DANet [36] 69 1119 45.3 -
ResNet-101 OCRNet [63] 56 923 44.1 -
ResNet-101 DLab.v3+ [6] 63 1021 44.1 -
ResNet-101 ACNet [14] - - 45.9 -
ResNet-101 DNL [61] 69 1249 46.0 -
ResNet-101 UperNet [57] 86 1029 44.9 -
HRNet-w48 [41] DLab.v3+ [6] 71 664 45.7
ResNeSt-101 [64] DLab.v3+ [6] 66 1051 46.9 -
ResNeSt-200 [64] DLab.v3+ [6] 88 1381 48.4 -
PVT-S [54] S-FPN [26] 28 - 39.8
PVT-M S-FPN 48 219 41.6 -
PVT-L S-FPN 65 283 42.1 -
CAT-S [31] S-FPN 41 214 42.8 -
CAT-B S-FPN 55 276 44.9 -
Swin-T [34] UperNet [57] 60 945 44.5 45.8
Swin-B [34] UperNet [57] 121 1188 48.1 49.7
DW-T UperNet [57] 61 953 45.7 46.9
DW-B UperNet [57] 125 1200 48.7 50.3

Table 3. Performance comparison on the ADE20K [66] val. The
single-scale and multi-scale evaluation results are presented in the
last two columns. The FLOPs (G) are calculated at an input reso-
lution of 1024× 1024.

Swin [34] to improve the model’s dynamic modeling capa-
bilities for multi-scale information. Compared with these
ViTs [7,31,55] that use a fixed single-scale window, DWM
enables DW-ViT to have a larger model capacity and per-
form better in terms of adaptability and scalability.

4.2. Semantic Segmentation on ADE20K
ADE20K [66] is also a widely used semantic segmenta-

tion dataset. It contains 20K training images, 2K verifica-
tion images, and 3K test images, covering a total of 150
semantic categories. DW-ViT and UperNet [57] in mm-
segmentation [9] are used as the backbone and segmenta-
tion methods respectively. The pre-trained backbone used is
DW-ViT trained on ImageNet-1K. Following the settings in
[34], the input size of the image is 512× 512, AdamW [35]
is used as the optimizer (the initial learning rate is 6×10−5,
weight decay is 0.01, and a linear learning rate decay is
used), and the model is trained with a batch size of 16 and
160K iterations. For multi-scale evaluation (+MS), the scal-
ing ratio is between 0.5 and 1.75.

The performance comparison between DW-ViT and
other methods on ADE20K val is shown in Tab. 3. As
shown in Tab. 3, DW-ViT achieves the best performance
compared to many state-of-the-art methods. Specifically,
under similar FLOPs and parameters, compared with Swin
[34], DW-ViT improves the single-scale evaluation by 1.2
and 0.6 points, respectively. Compared with other meth-
ods, DW-ViT has also obtained competitive results. Com-
pared with Swin, DW-ViT has a more obvious advantage
(e.g. 0.7 → 1.2) in ADE20K than in ImageNet. This shows
that the dynamic window mechanism of DW-ViT has more
obvious advantages in downstream tasks such as more com-
plex image datasets.

4.3. Object Detection on COCO

Further, we benchmark DW-ViT on object detection
and instance segmentation with COCO 2017 [32]. COCO
contains 118K training, 5K validation, and 20K test im-
ages. The pre-trained model used is DW-ViT trained on
ImageNet-1K. DW-ViT is used as the visual backbone and
is then plugged into a representative object detection frame-
work. We here consider two representative object detec-
tion frameworks: Mask R-CNN [18] and Cascade Mask R-
CNN [2]. All models are trained on the training images
and the results are reported on the validation set. The same
settings were used for all frameworks. Specifically, we use
multi-scale training [3,42], the AdamW [35] optimizer (the
initial learning rate, weight decay and batch size are 0.0001,
0.05, and 16), and a 3 × schedule (it has 36 epochs, and the
learning rate decays by 10 × between epochs 27 and 33). It
is implemented based on MMDetection [5].

The performance comparison of object detection and in-
stance segmentation on the COCO2017 val dataset is shown
in Tab. 4. Compared with other state-of-the-art methods,
DW-ViT achieves the best performance in both object de-
tection frameworks. Specifically, compared with the Trans-
former baseline DeiT-S [49], DW-T is improved by 3.5
points. Compared with Swin [34], DW-ViT has achieved
an improvement of more than 0.7 points in object detection
and instance segmentation under the two object detection
frameworks. At the same time, compared with Swin, the
parameters and FOLPs of DW-ViT have not increased sig-
nificantly, which once again demonstrates the superiority of
the dynamic window mechanism. In addition, the results
of the two detection frameworks show that DW-ViT can be
easily embedded into different frameworks like other back-
bones.

4.4. Ablation Study
To explore the effects of each component of DW-ViT, we

compared the performance of Swin-T with single-scale win-
dow, MSW-Swin, and DW-ViT with and without DMSW
mechanism. Specifically, we set epoch = 50; for all other
settings, we adopt the default settings presented Swin [34].
Single-scale windows are taken from [7, 11, 14, 17, 21, 23],
and multi-scale windows are set to [7, 14, 21]3. Their per-
formance on ImageNet-1K [10] are shown in Tab. 5.

In Tab. 5, DMSW shows three states (’1’, ’-’, ’✓’).
MSW-MSA + ’1’ refers to removing the dynamic weight
generation and directly assigning the same weight (13) to all
branches. MSW-MSA + ’-’ (MSW-Swin) denotes removing
the entire DMSW module, while, MSW-MSA + ’✓’ means
normal DW-T. The performance of MSW-Swin is lower
than that of Swin-T with win = 21. This may be due to the

3We adopted the original settings in Swin [34] and modified only the
window size. When the window size is larger than the input feature, the
global self-attention is performed at this time.

Method #param. (M) FLOPs (G) APbox APbox
50 APbox

75 APmask APmask
50 APmask

75

Mask R-CNN [18]
ResNet50 [19] 44 260 41.0 61.7 44.9 37.1 58.4 40.1
PVT-Small [54] 44 245 43.0 65.3 46.9 39.9 62.5 42.8
ViL-Small [65] 45 174 43.4 64.9 47.0 39.6 62.1 42.4
Swin-T [34] 48 264 46.0 68.2 50.2 41.6 65.1 44.8
DW-T 49 275 46.7 69.1 51.4 42.4 66.2 45.6
ResNeXt101-64x4d [58] 102 493 44.4 64.9 48.8 39.7 61.9 42.6
PVT-Large [54] 81 364 44.5 66.0 48.3 40.7 63.4 43.7
ViL-Base [65] 76.1 365 45.7 67.2 49.9 41.3 64.4 44.5
Swin-Base [34] 107 496 48.5 69.8 53.2 43.4 66.8 46.9
DW-B 111 505 49.2 70.6 54.0 44.0 68.0 47.7

Cascade Mask R-CNN [2, 18]
DeiT-S† [49] 80 889 48.0 67.2 51.7 41.4 64.2 44.3
ResNet50 [19] 82 739 46.3 64.3 50.5 40.1 61.7 43.4
Swin-T [34] 86 745 50.5 69.3 54.9 43.7 66.6 47.1
DW-T 87 754 51.5 70.5 55.9 44.7 67.8 48.5
X101-64 [58] 140 972 48.3 66.4 52.3 41.7 64.0 45.1
Swin-B [34] 145 982 51.9 70.9 56.5 45.0 68.4 48.7
DW-B 149 992 52.9 71.6 57.5 45.7 69.0 50.0

Table 4. Performance comparison of object detection and instance segmentation on the COCO2017 val dataset. Two object detection
frameworks are used: Mask R-CNN [18] and Cascade Mask R-CNN [2]. The FLOPs (G) are calculated at an input resolution of 1280×800.
† indicates that additional deconvolution layers are used to generate hierarchical features.

Method Window #param. (M) FLOPs (G) Top-1 (%)

Swin-T

7
11
14
17
21
23

28.29
28.31
28.34
28.35
28.36
28.36

4.49
4.69
4.89
5.06
5.34
5.49

74.31
75.18
75.83
76.31
76.28
76.24

DW-T DMSW

MSW-MSA
([7, 14, 21])

1
-
✓

29.05
28.33
29.77

5.18
5.07
5.18

73.43
76.10
76.68

Table 5. Performance comparison of Swin and DW-ViT on
ImageNet-1K [10] under different window and module settings.

sub-optimal window setting that impairs the performance of
the model to a certain extent. The performance comparison
between DW-T and MSW-MSA + ’1’ further shows that
this dynamic window mechanism achieves a very signifi-
cant improvement (i.e. 3.3%). In addition, with the help of
the dynamic window mechanism, the performance of DW-
ViT is better than all ViTs that use the same single-scale
window. This shows that this dynamic window weighting
mechanism does play a very important role in DW-ViT.

5. Conclusion
The size of the window has an important impact on the

performance of the model. There is currently very little
systematic study of window size in the window-based ViT
works. In this paper, we challenged this problem for the first
time. Based on our insightful observations on the above
issues, we propose a novel dynamic multi-scale window
mechanism for W-MSA to obtain the optimal window con-
figuration, thereby enhancing the model’s dynamic model-
ing capabilities for multi-scale information. With the help
of the dynamic window mechanism, the performance of
DW-ViT is found to be better than all ViTs that use the same
single-scale window, with the proposed approach achieving
good results on multiple CV tasks. At the same time, DWM

has good scalability, and can thus be easily inserted into any
window-based ViT as a module.

6. Discussion
Potential negative societal impact: As a general visual
feature extractor, DW-ViT has shown good performance on
multiple CV tasks. However, due to the domain gap be-
tween different tasks, when the model is transferred to other
tasks, some fine adjustments may still be needed.
Limitation: These are a few issues that we need to improve
in the future: (1) Although DW-ViT has shown good per-
formance on multiple vision tasks. But compared with the
single-scale window self-attention mechanism [34], DWM
still introduces a small number of additional parameters and
calculations. (2) In addition, as far as DWM’s dynamic
window mechanism is concerned, part of the computational
budget is still allocated to suboptimal optional windows.
However, an ideal strategy is to allocate the entire compu-
tational budget to the most potential windows at each layer
of the network.

Acknowledgment
This work was partially supported in part by Na-

tional Key R&D Program of China under Grant
No.2020AAA0109700, NSFC under Grant (No.61972315
and No.61976233), Guangdong Province Basic and Ap-
plied Basic Research (Regional Joint Fund-Key) Grant
No.2019B1515120039, Guangdong Outstanding Youth
Fund (Grant No. 2021B1515020061), Australian Research
Council (ARC) Discovery Early Career Researcher Award
(DECRA) under DE190100626, Shaanxi Province Inter-
national Science and Technology Cooperation Program
Project-Key Projects No.2022KWZ-14, Ministry of Science
and Technology Foundation Project 2020AAA0106900 and
Key Realm R&D Program of Guangzhou 202007030007
and Open Fund from Alibaba.

References
[1] Hangbo Bao, Li Dong, Furu Wei, Wenhui Wang, Nan Yang,

Xiaodong Liu, Yu Wang, Songhao Piao, Jianfeng Gao, Ming
Zhou, and Hsiao-Wuen Hon. Unilmv2: Pseudo-masked lan-
guage models for unified language model pre-training. In
ICML, 2020. 5

[2] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delv-
ing into high quality object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 6154–6162, 2018. 7, 8

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In European Confer-
ence on Computer Vision, pages 213–229. Springer, 2020.
7

[4] Chun-Fu Chen, Quanfu Fan, and Rameswar Panda. Crossvit:
Cross-attention multi-scale vision transformer for image
classification. arXiv preprint arXiv:2103.14899, 2021. 2,
3, 6

[5] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, et al. Mmdetection: Open mmlab detection tool-
box and benchmark. arXiv preprint arXiv:1906.07155, 2019.
7

[6] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
Proceedings of the European conference on computer vision
(ECCV), pages 801–818, 2018. 7

[7] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haib-
ing Ren, Xiaolin Wei, Huaxia Xia, and Chunhua Shen.
Twins: Revisiting the design of spatial attention in vi-
sion transformers. arXiv preprint arXiv:2104.13840, 1(2):3,
2021. 1, 3, 6, 7

[8] Xiangxiang Chu, Zhi Tian, Bo Zhang, Xinlong Wang, Xi-
aolin Wei, Huaxia Xia, and Chunhua Shen. Conditional po-
sitional encodings for vision transformers. arXiv preprint
arXiv:2102.10882, 2021. 6

[9] MMSegmentation Contributors. MMSegmentation:
Openmmlab semantic segmentation toolbox and
benchmark. https : / / github . com / open -
mmlab/mmsegmentation, 2020. 7

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, K. Li, and
Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 1, 2, 5, 6, 7, 8

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 6

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at

scale. In International Conference on Learning Representa-
tions, 2021. 1, 2, 4

[13] David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever.
Learning factored representations in a deep mixture of ex-
perts. CoRR, abs/1312.4314, 2014. 3

[14] Jun Fu, Jing Liu, Yuhang Wang, Yong Li, Yongjun Bao, Jin-
hui Tang, and Hanqing Lu. Adaptive context network for
scene parsing. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 6748–6757,
2019. 7

[15] Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre
Stock, Armand Joulin, Hervé Jégou, and Matthijs Douze.
Levit: a vision transformer in convnet’s clothing for faster
inference. arXiv preprint arXiv:2104.01136, 2021. 3

[16] Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu,
and Yunhe Wang. Transformer in transformer. arXiv preprint
arXiv:2103.00112, 2021. 6

[17] Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui
Wang, and Yulin Wang. Dynamic neural networks: A sur-
vey. arXiv preprint arXiv:2102.04906, 2021. 2, 3

[18] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969, 2017. 7,
8

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 6, 7, 8

[20] Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities
and stochastic regularizers with gaussian error linear units.
ArXiv, abs/1606.08415, 2016. 4

[21] Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten
Hoefler, and Daniel Soudry. Augment your batch: Improving
generalization through instance repetition. 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 8126–8135, 2020. 6

[22] Han Hu, Zheng Zhang, Zhenda Xie, and Stephen Ching-
Feng Lin. Local relation networks for image recognition.
2019 IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 3463–3472, 2019. 3

[23] Noureldien Hussein, Efstratios Gavves, and Arnold W. M.
Smeulders. Timeception for complex action recognition.
2019 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 254–263, 2019. 3

[24] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and
Geoffrey E Hinton. Adaptive mixtures of local experts. Neu-
ral computation, 3(1):79–87, 1991. 3

[25] Zihang Jiang, Qibin Hou, Li Yuan, Daquan Zhou, Xiaojie
Jin, Anran Wang, and Jiashi Feng. Token labeling: Training
a 85.4% top-1 accuracy vision transformer with 56m param-
eters on imagenet. ArXiv, abs/2104.10858, 2021. 6

[26] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr
Dollár. Panoptic feature pyramid networks. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 6399–6408, 2019. 7

[27] Changlin Li, Tao Tang, Guangrun Wang, Jiefeng Peng,
Bing Wang, Xiaodan Liang, and Xiaojun Chang. Bossnas:

https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation

Exploring hybrid cnn-transformers with block-wisely self-
supervised neural architecture search. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 12281–12291, 2021. 3

[28] Changlin Li, Guangrun Wang, Bing Wang, Xiaodan Liang,
Zhihui Li, and Xiaojun Chang. Ds-net++: Dynamic weight
slicing for efficient inference in cnns and transformers. arXiv
preprint arXiv:2109.10060, 2021. 3

[29] Changlin Li, Guangrun Wang, Bing Wang, Xiaodan Liang,
Zhihui Li, and Xiaojun Chang. Dynamic slimmable network.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8607–8617, 2021. 3

[30] Xiang Li, Wenhai Wang, Xiaolin Hu, and Jian Yang. Selec-
tive kernel networks. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
510–519, 2019. 2, 3

[31] Hezheng Lin, Xing Cheng, Xiangyu Wu, Fan Yang, Dong
Shen, Zhongyuan Wang, Qing Song, and Wei Yuan. Cat:
Cross attention in vision transformer. arXiv preprint
arXiv:2106.05786, 2021. 1, 6, 7

[32] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft coco: Common objects in
context. In ECCV, 2014. 6, 7

[33] Huajun Liu, Fuqiang Liu, Xinyi Fan, and Dong Huang. Po-
larized self-attention: Towards high-quality pixel-wise re-
gression. arXiv preprint arXiv:2107.00782, 2021. 1

[34] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. Swin trans-
former: Hierarchical vision transformer using shifted win-
dows. arXiv preprint arXiv:2103.14030, 2021. 1, 2, 3, 4, 5,
6, 7, 8

[35] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In ICLR, 2019. 6, 7

[36] Hyeonseob Nam, Jung-Woo Ha, and Jeonghee Kim. Dual
attention networks for multimodal reasoning and matching.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 299–307, 2017. 7

[37] Boris T. Polyak and Anatoli B. Juditsky. Acceleration of
stochastic approximation by averaging. Siam Journal on
Control and Optimization, 30:838–855, 1992. 6

[38] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick,
Kaiming He, and Piotr Dollár. Designing network design
spaces. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10428–
10436, 2020. 6

[39] Colin Raffel, Noam M. Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. Exploring the limits of trans-
fer learning with a unified text-to-text transformer. ArXiv,
abs/1910.10683, 2020. 5

[40] Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon
Shlens, Pieter Abbeel, and Ashish Vaswani. Bottleneck
transformers for visual recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 16519–16529, 2021. 1

[41] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep
high-resolution representation learning for human pose es-
timation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5693–
5703, 2019. 7

[42] Peize Sun, Rufeng Zhang, Yi Jiang, Tao Kong, Chen-
feng Xu, Wei Zhan, Masayoshi Tomizuka, Lei Li, Zehuan
Yuan, Changhu Wang, et al. Sparse r-cnn: End-to-end ob-
ject detection with learnable proposals. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14454–14463, 2021. 7

[43] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and
Alexander A Alemi. Inception-v4, inception-resnet and the
impact of residual connections on learning. In Thirty-first
AAAI conference on artificial intelligence, 2017. 2

[44] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and
Alexander Amir Alemi. Inception-v4, inception-resnet and
the impact of residual connections on learning. In AAAI,
2017. 3

[45] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1–9, 2015.
3

[46] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception archi-
tecture for computer vision. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2818–2826, 2016. 2

[47] Mingxing Tan and Quoc V Le. Mixconv: Mixed depthwise
convolutional kernels. arXiv preprint arXiv:1907.09595,
2019. 2

[48] Mingxing Tan and Quoc V. Le. Mixconv: Mixed depthwise
convolutional kernels. ArXiv, abs/1907.09595, 2019. 3

[49] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In International Conference on Machine Learning,
pages 10347–10357. PMLR, 2021. 2, 6, 7, 8

[50] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Herv’e J’egou. Train-
ing data-efficient image transformers & distillation through
attention. In ICML, 2021. 6

[51] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles,
Gabriel Synnaeve, and Herv’e J’egou. Going deeper with
image transformers. ArXiv, abs/2103.17239, 2021. 6

[52] Guangrun Wang, Guangcong Wang, Keze Wang, Xiaodan
Liang, and Liang Lin. Grammatically recognizing images
with tree convolution. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 903–912, 2020. 3

[53] Guangrun Wang, Keze Wang, and Liang Lin. Adaptively
connected neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 1781–1790, 2019. 3

[54] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao.

Pyramid vision transformer: A versatile backbone for
dense prediction without convolutions. arXiv preprint
arXiv:2102.12122, 2021. 1, 2, 3, 4, 6, 7, 8

[55] Wenxiao Wang, Lu Yao, Long Chen, Deng Cai, Xiaofei
He, and Wei Liu. Crossformer: A versatile vision trans-
former based on cross-scale attention. arXiv preprint
arXiv:2108.00154, 2021. 1, 2, 3, 6, 7

[56] Yu-Huan Wu, Yun Liu, Xin Zhan, and Ming-Ming Cheng.
P2t: Pyramid pooling transformer for scene understanding.
arXiv preprint arXiv:2106.12011, 2021. 1, 3

[57] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified perceptual parsing for scene understand-
ing. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 418–434, 2018. 7

[58] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1492–1500,
2017. 2, 6, 8

[59] Weijian Xu, Yifan Xu, Tyler Chang, and Zhuowen Tu. Co-
scale conv-attentional image transformers. arXiv preprint
arXiv:2104.06399, 2021. 6

[60] Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang Dai,
Bin Xiao, Lu Yuan, and Jianfeng Gao. Focal self-attention
for local-global interactions in vision transformers. arXiv
preprint arXiv:2107.00641, 2021. 1, 2, 3

[61] Minghao Yin, Zhuliang Yao, Yue Cao, Xiu Li, Zheng Zhang,
Stephen Lin, and Han Hu. Disentangled non-local neural net-
works. In European Conference on Computer Vision, pages
191–207. Springer, 2020. 7

[62] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi,
Zihang Jiang, Francis EH Tay, Jiashi Feng, and Shuicheng
Yan. Tokens-to-token vit: Training vision transformers
from scratch on imagenet. arXiv preprint arXiv:2101.11986,
2021. 1, 3, 6

[63] Yuhui Yuan, Xilin Chen, and Jingdong Wang. Object-
contextual representations for semantic segmentation. In
Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part VI 16,
pages 173–190. Springer, 2020. 7

[64] Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi-
Li Zhang, Haibin Lin, Yue Sun, Tong He, Jonas Mueller, R.
Manmatha, Mu Li, and Alex Smola. Resnest: Split-attention
networks. ArXiv, abs/2004.08955, 2020. 3, 7

[65] Pengchuan Zhang, Xiyang Dai, Jianwei Yang, Bin Xiao, Lu
Yuan, Lei Zhang, and Jianfeng Gao. Multi-scale vision long-
former: A new vision transformer for high-resolution image
encoding. ArXiv, abs/2103.15358, 2021. 4, 8

[66] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Semantic understanding of
scenes through the ade20k dataset. International Journal of
Computer Vision, 127:302–321, 2018. 6, 7

[67] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8697–8710,
2018. 2

	Clipboard Data(1)
	2203.12856_OPUS
	1 . Introduction
	2 . Related Works
	3 . Method
	3.1 . Overall Architecture
	3.2 . Dynamic Window Module
	3.2.1 Multi-Scale Window Multi-head Self-Attention
	3.2.2 Dynamic Multi-Scale Window

	3.3 . Dynamic Window Block
	3.4 . Model Configuration
	3.5 . Complexity Analysis

	4 . Experiments
	4.1 . Image Classification on ImageNet-1K
	4.2 . Semantic Segmentation on ADE20K
	4.3 . Object Detection on COCO
	4.4 . Ablation Study

	5 . Conclusion
	6 . Discussion

