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Abstract
Modern Natural Language Processing (NLP) mod-
els are known immensely brittle towards text ad-
versarial examples. Recent attack algorithms usu-
ally adopt word-level substitution strategies fol-
lowing a pre-computed word replacement mecha-
nism. However, their resultant adversarial exam-
ples are still imperfect in achieving grammar cor-
rectness and semantic similarities, which is largely
because of their unsuitable candidate word selec-
tions and static optimization methods. In this re-
search, we propose BESA, a BERT-based Simu-
lated Annealing algorithm, to address these two
problems. Firstly, we leverage the BERT Masked
Language Model (MLM) to generate contextual-
aware candidate words to produce fluent adversar-
ial text and avoid grammar errors. Secondly, we
employ Simulated Annealing (SA) to adaptively
determine the word substitution order. The SA pro-
vides sufficient word replacement options via inter-
nal simulations, with an objective to obtain both a
high attack success rate and a low word substitu-
tion rate. Besides, our algorithm is able to jump
out of local optima with a controlled probability,
making it closer to achieve the best possible attack
(i.e., the global optima). Experiments on five popu-
lar datasets manifest the superiority of BESA com-
pared with existing methods, including TextFooler,
BAE, BERT-Attack, PWWS, and PSO.

1 Introduction
Deep Neural Networks (DNNs) have shown the vulnerabil-
ity to adversarial examples in Natural Language Processing
(NLP) field for text classification [Papernot et al., 2016]. Ad-
versarial text example is the original input with some mali-
cious perturbations. These modifications are usually imper-
ceptible to human readers but can easily subvert DNNs cor-
rect prediction. Therefore, exploring potential textual adver-
sarial attacks is crucial to understand DNNs behaviors and
ensure their robust performance, especially on those security-
critical applications, such as sentiment analysis and toxic
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comment detection [Zhang et al., 2019].
Existing text attack algorithms can be roughly divided

into three groups: character-level attacks, sentence-level at-
tacks, and word-level attacks. The character-level attacks
(e.g., noise → nosie) result in misspelled words, and the
sentence-level attacks (e.g. inserting a sentence into the orig-
inal text) usually lead to dramatic semantic changes. There-
fore, most recent works have focused on the word-level at-
tacks with two main steps: (1) determining the substitution
words, and (2) determining which word(s) to be substituted.
In the first step, the substitution words should be semanti-
cally close to the original word so that the modifications are
imperceptible to humans. Typical strategies search candi-
date words from the Glove embedding space [Alzantot et al.,
2018], the WordNet synonym space [Ren et al., 2019], and
the HowNet sememe space [Zang et al., 2020]. However,
these algorithms create the candidates subset for every single
word and ignore their contextual environments, which eas-
ily produce out-of-context modifications [Li et al., 2020]. In
the second step, most prior works perform word replacement
by descending order of word importance score (WIS). There
are various definitions for WIS, such as probability weighted
word saliency (PWWS) [Ren et al., 2019] and the changes
of DNNs’ confidence after deleting a word [Jin et al., 2020;
Garg and Ramakrishnan, 2020], etc. However, altering words
by a fixed (or static) WIS order usually leads to local opti-
mal and word over-substitution. For example, we empirically
found that changing the top-3 WIS words {top1, top2, top3}
altogether can not mislead a classifier, but sometimes forming
a two-word combination {top1, top3} can make it.

In this paper, we propose BESA, a BERT-based Simulated
Annealing algorithm, to address these problems and gener-
ate fluent adversarial text examples. Specifically, we employ
the BERT Masked Language Model (BERT-MLM) [Devlin et
al., 2018] to generate candidates in the first step. The BERT-
MLM is trained from both left-to-right and right-to-left (i.e.,
bi-directorial text sequences) on extremely large English text
data with general-purpose. Therefore, it is capable of predict-
ing contextual fitting words [Devlin et al., 2018]. In the sec-
ond step, we propose to determine the word replacement pri-
ority via the Simulated Annealing (SA) optimization method
[Kirkpatrick et al., 1983]. The SA breaks the fixed (static) re-
placement order and provides more options of word replace-
ments, which is significantly effective in finding high-quality



adversarial examples. Besides, it allows our algorithm to es-
cape from local optima by a controlled probability, making
it closer to the best possible word substitution in the attack.
Extensive experiments demonstrate that the proposed BESA
achieves the highest attack success rate via a low word sub-
stitution rate. We emphasize our main contributions as below.

• We propose to generate natural substitution tokens via a
pre-trained BERT-MLM. These tokens can well fit the
text contextual and be read smoothly by humans.

• We design an effective Simulated Annealing (SA)
method to determine the word replacement priority. The
SA objective function is designed for accomplishing a
high attack success rate (ASR) and low word substitu-
tion rate (WSR).

• We evaluate the effectiveness of our overall model, the
BESA, on five public datasets. Experimental results
manifest that our BESA not only improves the ASR and
reduces the WSR, but also shows superiorities in keep-
ing grammar correctness and semantic similarities.

2 Related Works
We categorize textual attack methods into character-level at-
tacks, sentence-level attacks, and word-level attacks. The
character-level attacks handle text adversarial samples by in-
serting, deleting, or swapping characters [Liang et al., 2018].
However, these operations produce misspelled words, which
can be easily defended by a spelling checker. Sentence-level
attack concatenates a distracting sentence with the input text
to confuse the reading comprehension system [Jia and Liang,
2017]. Nevertheless, the generated sentences are usually hu-
man unreadable and semantically uninterpretable.

Word-level attack replaces the original words with their
synonyms by solving two main challenges (1) how to se-
lect synonym candidates and (2) how to determine the word
replacement priority. Early works employ Glove embed-
ding vectors to represent words and identify the nearest
neighbors as synonym candidates [Alzantot et al., 2018;
Jin et al., 2020]. However, the Glove embedding usually
fails to distinguish antonym from synonym. For example,
the word pair {east, west} and {expensive, cheaper} are
close in the Glove embedding space, but they are semantically
opposite. Therefore, a counter-fitting post process is essen-
tial to ensure the semantic similarity. Compared with Glove
embedding, searching synonyms from human-annotated lin-
guistic thesauri is a more straightforward approach. [Ren et
al., 2019] selected synonyms from WordNet, which groups
words based on their meanings, and designed the probabil-
ity weighted word saliency (PWWS) for greedy word per-
turbation. [Zang et al., 2020] presented a sememe-based
word substitution, which searched replacement tokens from
HowNet and found adversarial example via particle swarm
optimization (PSO). However, Glove-based and thesaurus-
based strategies collect substitution words for every single
word, ignoring how well they fit into the context.

Several recent works take advantage of language models
to predict contextual friendly tokens, intending to generate
more fluent text adversarial samples [Garg and Ramakrish-
nan, 2020; Li et al., 2020]. However, both of them adopt

a static word replacement order guided by the word impor-
tance score (WIS), leading to redundancy word substitution.
The difference lies in that [Garg and Ramakrishnan, 2020]
defined the WIS as probability decrease of the correct label
after deleting a word, while [Li et al., 2020] replaced each of
the original words by a dummy symbol [MASK].

3 The BESA Method
This section details our BESA algorithm. Before delving into
details, we present the attack settings and expectations.

3.1 Black-box Untargeted Attack
The BESA algorithm is designed for black-box attack, where
no DNNs architecture, internal parameter, and gradient infor-
mation are accessible, a setting close to real-life attack scenar-
ios. The only capacity of a black-box adversary is inputting
an example to the victim model and querying its prediction
results, acting as a regular user.

Suppose we are given a text dataset with N samples
X = {X1,X2, · · · ,XN}, belonging to L labels Y =
{Y1,Y2, · · · ,YL}, a DNNs classifier F needs to learn a
input-output mapping f : X → Y so that any input X ∈ X
can be classified to the true label Ytrue, by optimizing the
posterior probability:

arg max
Yi∈Y

P (Yi|X) = Ytrue (1)

An adversarial text example X∗ is defined as the original
input X that is modified with slight perturbation ∆X, i.e.,
X∗ = X + ∆X. A text adversarial attacker expects the per-
turbation ∆X is imperceptible to human but can mislead the
classifier F into any label other than the true label (untargeted
attack) or a user-specified label (targeted attack). In this work,
we design BESA as an untargeted attack. In linguistic per-
spectives, the adversarial example should be lexical correct,
grammar correct, and semantic similar to the original texts.
These constraints aim to ensure humans cannot spot the dif-
ference before and after an attack. To this end, we generate
contextual friendly synonyms via BERT-MLM (Sec 3.2) and
reduce the substitution rate by SA optimization (Sec 3.3).

3.2 BERT-based Candidate Selection
Since BERT Masked Language Model (BERT-MLM) is
trained by masking a proportion of words, it is capable of
generating supplementary words to reconstruct the sentence.
Suppose the input sentence X = {w1, w2, · · · , wn} contains
n words, for each word wi, we replace it with the [MASK]
token and then predict the substitution words Si with BERT-
MLM. The substitution words are contextual-aware and well-
fitted with the surrounding text, but can not guarantee seman-
tic similarity. For example, in the sentence “I [MASK] this
move”, predicting the [MSAK] as “like” or “hate” are equally
fluent but delivering different sentiment. Therefore, we em-
ploy the Universal Sentence Encoder (USE) [Cer et al., 2018]
to calculate the semantic similarity score and filter out low-
semantic-consistency words by a threshold. To avoid gram-
mar errors, we further filter out candidates that have different
Part-of-Speech (POS) tags with the original word. These two
filter steps are uniformly denoted in line 5 of Algorithm 1.



Algorithm 1: The proposed BESA algorithm
Input: Original sentence with n words X = (w1, · · · , wn)
Input: DNNs classifier F
Output: Adversarial example Xadv

1 Initialization: USE threshold = 0.5, the highest temperature
Tmax = 1000, the lowest temperature Tmin = 50, internal
simulation steps K = 20, the balance parameter δ = 0.01,
attack radius parameter σ = 3, the initial adversarial
example Xadv = X, and the initial time t = 0;
/* BERT-based Candidate Selection */

2 for i = 1 to n do
3 Replace the wi with [MASK];
4 Generate the candidate set Bi with BERT-MLM;
5 Bi = Filter(Bi);
6 Find the best candidate w∗

i from Bi via Eq. (5);

/* Definition of the Objective Function */
7 Function J(F,X,Xadv, δ):
8 Calculate the true label score: Ptrue = F (Xadv);
9 Count the perturbation cost: cost = len(X 6= Xadv);

10 Objective value: y = Ptrue + δ × cost;
11 return y;

/* The Simulated Annealing Optimization */
12 while Tmax > Tmin do
13 for k = 1 to K do
14 y = J(F,X,Xadv, δ);
15 index = t+ randint(0, σt) ; . Random index
16 if index > n then
17 continue;

18 Replace the index word in Eq. (7) to craft Xk
adv;

19 ynew = J(F,X,Xk
adv, δ);

20 if ynew − y < 0 then
21 Xadv = Xk

adv ; . Good modification
22 else
23 p = e−(ynew−y)/Tmax ; . Metropolis
24 r = random(0, 1);
25 if r < p then
26 Xadv = Xk

adv ; . Bad modification

27 if F (Xadv) 6= Ytrue then
28 return Xadv ; . Successful attack

29 t = t+ 1;
30 Tmax = Tmax/(1 + t) ; . Quick cooling

31 return Adversarial example Xadv

After filtering, every w′i ∈ Si is a potential candidate for
replacing the original word wi. To select the best candidate
from Si, we define the candidate importance score Iw′

i
as the

true score probability reduction:

Iw′
i

= P (Ytrue|X)− P (Ytrue|X′i),∀w′i ∈ Si (2)

where

X = {w1, w2, · · · , wi, · · · , wn} (3)
X′i = {w1, w2, · · · , w′i, · · · , wn} (4)

Then we identify the candidate w′i that attains the highest Iw′
i

as the best substitution word. The best candidate selection
method R(wi,Si) can be denoted as below:

w∗i = R(wi,Si) = arg max
w′

i∈Si
Iw′

i
(5)

Repeating these steps on every word completes the first stage
of our algorithm, which is summarized in Algorithm 1 from
line 2 to line 6. Based on the best substitution words, we
obtain n adversarial examples {X∗1,X∗2, · · · ,X∗n} with each
X∗i = {w1, · · · , w∗i , · · · , wn}. The change of true label
probability between X and X∗i indicates the strongest attack
effect that can be achieved by altering wi.

∆P ∗i = P (Ytrue|X)− P (Ytrue|X∗i ) (6)

A straightforward way to determine the word substitution pri-
ority is by the descending order of the ∆P ∗i , where the re-
sorted sequence order is given in Eq. (7).

H = {∆P ∗1 > ∆P ∗2 > · · · > ∆P ∗n} (7)

However, sequentially modifying words by this static order
easily leads to word over-substitution, as there is no theoret-
ical guarantee that the top-k words combination contributes
most in misleading a classifier. For example, replacing the
two word {top1, top3} in H sometimes even better than re-
placing three words {top1, top2, top3}. Therefore, it is criti-
cal to optimize word substitution priority.

3.3 Simulated Annealing (SA) Optimization
Before elaborating on our algorithm, we first explain the con-
cepts of the original Simulated Annealing (SA). The SA is a
combinatorial optimization algorithm inspired by the phys-
ical annealing procedure of metals. It targets to find the
minimal value of an objective function from many indepen-
dent molecules (i.e., variables). Specifically, the algorithm
starts from a “melting” state with high temperature and grad-
ually reduces the temperature until the system “freezes” to
a steady-state. At each temperature, the interval simulation
must proceed long enough for the system to reach equilib-
rium. During simulating, any better molecular movement that
decreases the objective function is directly accepted. Never-
theless, modifications that increase the objective function are
also accepted with a transition probability. Therefore, the SA
is possible to transition from the local optimum, while a static
greedy search and particle swarm optimization (PSO) are in-
capable of avoiding such a risk.

In this paper, we treat the best word substitution order
determination as a multivariates combinatorial optimization
problem. Specifically, a word in the sentence corresponds
to a molecule in search space, and each molecule position
movement corresponds to a word substitution. To optimize
the word substitution priority by SA, we first initialize essen-
tial variables in line 1 of Algorithm 1, including the highest
temperature Tmax, the lowest temperature Tmin, the internal
simulation steps at each temperature K, etc. When designing
the objective function (Algorithm 1 from line 7 to line 11),
we expect that a good adversarial example Xadv can deliver
a low true label probability

Ptrue = F (Xadv) (8)

and simultaneously preserve a low perturbation cost

cost = len(X 6= Xadv) (9)

where len(X 6= Xadv) count the number of different words
between X and Xadv . The final objective value balances Eq.



(8) and Eq. (9) with an parameter δ

y = Ptrue + δ × cost (10)

The SA optimization starts from line 12 of Algorithm 1
with the highest temperature Tmax. At each temperature,
enough simulations (K) are attempted to reach the equilib-
rium. Each simulation first queries the objective function J
to obtain the original objective value of y in line 14. Then the
SA algorithm randomly selects a molecular from the whole
molecular space to move. In this work, we restrict the word
selection interval with an attack radius parameter σ, and the
target word index is determined by Eq. (11)

index = t+ randint(0, σt) (11)

where randint(0, σt) randomly selects a integer from [0, σt].
This enables us to locate the most important word in the ini-
tial time (t = 0) and enlarges the attack radius as time goes
by. Then we replace the index-th word of H to craft a new
adversarial example in line 18 and query the new objective
value ynew in line 19. To decide whether the modification is
accepted or not, we employ the typical Metropolis principle

p =

{
1 , ynew − y < 0

e−(ynew−y)/Tmax , ynew − y > 0
(12)

If the word replacement decreases the objective function, we
accept it as a good modification in line 21. Otherwise, we
accept a bad modification by a probability as listed from line
23 to line 26. After modification, if the classifier F is mis-
led, we return the successful adversarial example in line 28;
otherwise, the internal simulation continues to iterate. If no
successful adversarial example can be found through all in-
ternal iterations, the time t will pass and the temperature will
decrease. For efficiency, we adopt the quick cooling function

Tmax =
Tmax

1 + t
(13)

This procedure continues until we achieve a successful attack
or the temperature reduced to Tmin. Intuitively, the SA opti-
mization provides sufficient combination options with inter-
nal simulations and can jump out of local optima by Metropo-
lis criteria. These properties are significant in achieving a
high success attack rate with a low perturbation cost.

4 Experiments and Analysis
We provide the source code in the supplementary material to
ensure the results in this section are reproducible.

4.1 Datasets and Victim Models
We conduct experiments on five widely used text datasets,
including IMDB [Maas et al., 2011] , Question Natural Lan-
guage Inference (QNLI) [Rajpurkar et al., 2016], Movie Re-
view (MR) [Pang and Lee, 2005], Stanford Natural Language
Inference (SNLI) [Bowman et al., 2015], and SST-2 [Socher
et al., 2013]. The IMDB, MR, and SST-2 are used for bi-
nary sentiment classification tasks, where QNLI and SNLI
are used for natural language inference. Statistical details of
these datasets are summarized in Table 1.

Dataset # Train # Test # Valid. # Classes # Words

IMDB 25,000 25,000 — 2 235.73
QNLI 104,743 5,463 5,463 2 36.68
MR 8,530 1,066 1,066 2 18.49

SNLI 550,152 10,000 10,000 3 20.27
SST-2 67,349 1,821 872 2 8.67

Table 1: Statistic information of the five datasets. “# Words” denotes
the average number of words (i.e., average text length).

We apply our BESA to six victim models, such as CNN,
LSTM, BERT [Devlin et al., 2018], DistilBERT [Sanh et
al., 2019], RoBERTa [Liu et al., 2019], and XLNet [Yang
et al., 2019]. The CNN consists of a 200-dimensional em-
bedding layer and a 1-D convolutional layer containing 150
filters with filter sizes of 3×4×5. The LSTM consists of a
200-dimensional embedding layer and a bidirectional LSTM
layer with 150 hidden states. Both CNN and LSTM have a
dropout rate of 0.3. We download BERT (bert-base-uncased),
RoBERTa (roberta-base), XLNet (xlnet-base-cased), and Dis-
tilBERT (distilbert-base-uncased, distilbert-base-cased) from
the Transformers model hub HuggingFace1. Different ver-
sions of DistilBERT are implemented on different datasets,
i.e., (uncased: IMDB, QNLI) and (cased: SNLI, SST-2). The
original test results are listed in Table 2’s “ACC” column.

4.2 Baselines
To evaluate the effectiveness of our BESA, we compare it
with typical black-box word-level attack algorithms, such as
TextFooler (TEFO) [Jin et al., 2020], BERT-based Adversar-
ial Examples (BAE) [Garg and Ramakrishnan, 2020], BERT-
Attack (BEAT) [Li et al., 2020], PWWS [Ren et al., 2019],
and PSO [Zang et al., 2020]. As mentioned in Section 2, most
existing works (TEFO, BAE, BEAT, and PWWS) rephrase
words by a static WIS descending order, which is inflexible
in finding the optimal solution. [Zang et al., 2020] treated
every sentence as a particle and optimize its location in the
search space via PSO. However, the PSO needs abundant of
query to find the final modification, leading to high computa-
tional cost and low efficiency (Table 3).

4.3 Evaluation Metrics and Experiment Settings
Evaluation Metrics. We evaluate the attack performance
mainly by the Attack Success Rate (ASR) and Word Sub-
stitution Rate (WSR). The ASR is defined as the proportion
of successful adversarial examples to the total number of cor-
rectly classified samples. The WSR refers to the percentage
of replaced words occupied by the total number of words in
the sentence. Intuitively, a rational attacker expects a high
ASR with a low WSR. Besides, we assess the quality of the
adversarial text examples by calculating the grammar errors
and semantic consistency.

Experiment Settings. The parameter settings for our
BESA are given in line 1 of Algorithm 1. Parameter tuning
details are listed in supplementary. For all baselines, we use
their author recommended parameter value. To achieve effi-
ciency, we randomly select 1000 samples from the test set to

1https://huggingface.co/models



Data Victim ACC Attack Success Rate (ASR) Word Substitution Rate (WSR)

Model TEFO BAE BEAT PWWS PSO BESA TEFO BAE BEAT PWWS PSO BESA

IMDB

CNN 81% 100% 100% 99.88% 100% 100% 100% 2.83% 1.86% 3.32% 1.83% 1.43% 1.37%
LSTM 82% 100% 100% 99.88% 100% 100% 100% 3.14% 1.93% 3.47% 2.09% 1.46% 1.31%
DisBERT 91.2% 99.12% 96.93% 95.29% 99.67% — 99.67% 6.54% 3.28% 5.82% 3.73% — 1.79%
BERT 91.3% 93.87% 89.92% 84.67% 97.15% — 99.78% 10.12% 4.76% 7.84% 5.21% — 2.70%
XLNet 94.8% 98.21% 99.16% 96.62% 99.26% — 100% 8.64% 3.51% 6.32% 4.85% — 2.11%
RoBERTa 93.7% 97.55% 97.76% 94.88% 98.29% — 99.36% 10.13% 3.82% 6.67% 5.74% — 2.06%

QNLI
DisBERT 79.8% 92.70% 94.87% 90.99% 89.17% 93.27% 100% 12.28% 6.80% 9.40% 9.22% 7.34% 5.77%
BERT 91.4% 92.56% 92.67% 89.17% 90.15% 94.42% 98.80% 11.98% 6.64% 9.11% 8.43% 6.82% 5.73%
RoBERTa 91.8% 84.64% 92.48% 86.82% 85.40% 92.70% 99.89% 12.04% 7.10% 9.31% 9.52% 7.28% 6.84%

MR

CNN 76.7% 93.35% 95.44% 83.31% 94.26% 96.22% 99.87% 17.04% 12.98% 15.06% 13.22% 11.53% 12.05%
LSTM 77.8% 91.77% 95.37% 84.06% 93.70% 95.37% 99.49% 15.61% 11.71% 13.59% 13.07% 10.91% 10.88%
BERT 84.3% 73.90% 83.16% 63.23% 81.02% 92.41% 97.86% 20.91% 14.44% 15.32% 14.67% 11.93% 11.02%
XLNet 84.3% 77.35% 89.02% 70.94% 83.64% 92.68% 98.97% 20.87% 13.52% 15.38% 14.88% 11.79% 11.93%
RoBERTa 88.8% 77.14% 90.32% 71.85% 82.66% 91.78% 95.95% 21.47% 13.27% 15.71% 15.95% 12.30% 11.12%

SNLI DisBERT 85.5% 91.58% 98.36% 98.48% 98.25% 94.27% 100% 8.40% 6.17% 7.80% 7.60% 6.36% 5.87%
BERT 89.8% 89.87% 98.89% 98.66% 98.44% 92.54% 99.33% 7.97% 6.31% 8.19% 7.72% 6.30% 5.81%

SST-2

CNN 82.7% 92.37% 95.48% 86.41% 93.90% 96.67% 99.45% 17.09% 12.53% 15.40% 13.10% 11.47% 11.49%
LSTM 84.5% 93.22% 96.20% 86.43% 93.89% 96.47% 99.73% 17.55% 12.83% 15.31% 13.53% 11.45% 11.53%
BERT 92.4% 80.52% 90.57% 72.08% 86.60% 91.32% 98.76% 20.61% 13.30% 15.65% 16.01% 12.80% 12.21%
DisBERT 90% 85.22% 93.50% 77.71% 87.52% 92.48% 98.85% 19.36% 12.72% 15.38% 14.65% 12.28% 11.46%
RoBERTa 94% 75.49% 91.95% 72.93% 84.63% 91.71% 99.39% 21.95% 13.17% 16.29% 16.62% 13.34% 11.77%

Table 2: The attack success rate (ASR) and average word substitution rate (WSR) of various attack algorithms on five text datasets. The best
results are highlighted in bold. The “ACC” column shows the original test accuracy without attacks, and DisBERT is short for DistilBERT.

Figure 1: The number of grammar errors increased after attacks.

craft adversarial samples. All experiments are implemented
on the TextAttack framework [Morris et al., 2020].

4.4 Experimental Results
The experimental results of both ASR and WSR are listed in
Table 2. For the ASR, our BESA achieves nearly perfect re-
sults on all scenarios and outperforms the baselines, often by
a large margin. The WSR results show that our BESA obtains
such attack effects by making the lowest word modifications
in most cases. We attribute this superiority to the SA opti-
mization, as this is the major improvement of our BESA com-
pared with baselines (BAE and BEAT). Additionally, Table 2
results show that the advanced models (BERT, DistilBERT,
RoBERTa, and XLNet) are generally more robust than tradi-
tional classifiers (CNN and LSTM), as attacking them need
more word substitutions but obtaining less success rate.

Figure 2: The semantic similarity before and after attacks.

Grammar Errors. Grammatical errors in a sentence
largely affect its fluency, so fewer grammar errors are natu-
rally preferred. We employ the LanguageTool2 to detect the
spell and grammar errors for the original samples and the cor-
responding adversarial samples on all datasets. Figure 1 plots
the number of grammar errors induced by various attack al-
gorithms. Clearly, our BESA brings the minimum number of
syntax errors and sometimes even fixes the original errors.

Semantic Consistency. The semantic similarity between
the original sample and the adversarial sample plays an im-
portant role in ensuring that readers do not change their initial
decisions. We adopt the Universal Sentence Encoder (USE)
score to indicate the semantic consistency before and after at-
tacks. Figure 2 shows the USE score on the five datasets and

2https://languagetool.org/



Dataset TEFO BAE BEAT PWWS PSO BESA

IMDB 17562 7580 19154 26760 — 56251
QNLI 2610 2458 3055 6073 169089 23448
MR 1845 1945 3381 2598 53699 6373

SNLI 835 1022 1446 2461 6458 3864
SST-2 952 1116 1604 1237 23341 2820

Table 3: Time (in seconds) needed in attacking the BERT model.

Figure 3: Adversarial retraining results on MR dataset. The higher
the accuracy, the more robust of the model after retraining.

all victim models. Results illustrate that our BESA achieves
comparable (second highest) semantic consistency.

Efficiency Analysis. We carry out all experiments on En-
terprise Linux Workstation 7.7 with Intel(R) Xeon(R) Gold
6150 2.7GHz CPU, NVIDIA Quadro P5000 16G GPU, and
176GB RAM. Table 3 lists the time consuming of various
methods by attacking BERT. Results show that our BESA
costs more time than static counterparts (TEFO, BAE, BEAT,
PWWS) but more efficient than the PSO. Besides, the PSO is
not suitable for attacking very deep models (DisBERT, BERT,
XLNet, RoBERTa) with long text input. For example, it only
completed 73 IMDB samples in one week to cheat BERT. For
this reason, results of PSO are shown as infeasible to obtain
(i.e., dash “—”) in Tables 2 and 3.

4.5 Adversarial Training
Adversarial training is a prevalent technique to improve the
DNNs robustness by incorporating adversarial examples into
the training set. To validate this, we train the LSTM model
on the MR dataset and obtains 75.14% test accuracy. Then
we randomly generate and join {500, 1000, 2000}MR adver-
sarial samples to its training data and retrain the LSTM. The
3-run main accuracy and standard deviation for our BESA
are shown in Figure 3. We only show the average accuracy
for baselines to make the results clear. Figure 3 demonstrates
that the model robustness gradually improved by appending
more adversarial examples, and our BESA brings greater ro-
bustness improvement than the five baselines.

4.6 Transferability
The transferability of adversarial attack implies whether its
adversarial samples designed for misleading the classifier F
can also fool an unknown classifier F ′. We evaluate the trans-
ferability on SST-2 dataset. Specifically, we choose the ad-

No Attack TEFO BEAT PWWS PSO BAE BESA

Figure 4: Transfer attack on SST-2 dataset. Lower accuracy indi-
cates higher transferability (the lower the better).

SST-2 (Label change): Negative (51%)→ Positive (98%)

Very special effects, brilliantly bold colors visuals and height-
ened reality can’t hide the giant achilles’ heel in “stuart little 2”:
there ’s just no story, folks.

MR (Label change): Negative (56%)→ Positive (81%)

The first mistake, I suspect, is casting shatner as a legendary
professor and kunis as a brilliant college arts student–where’s
pauly shore as the rocket scientist?

Table 4: Adversarial examples crafted by BESA. The blue and red
color denotes the original and substitution words, respectively.

versarial examples crafted for attacking BERT to perform the
transfer attack on four unknown models (LSTM, CNN, Distil-
BERT, and RoBERTa). Their classification accuracy on both
clean data (no attack) and adversarial data are shown in Fig-
ure 4. Figure 4 illustrates that our BESA generates adversarial
samples with overall higher transferability than baselines.

4.7 Qualitative Examples
We list two adversarial examples crafted by our BESA in Ta-
ble 4. Both examples successfully mislead the LSTM model
from Negative to Positive with high confidence (i.e., > 80%).
Owing to the BERT-MLM, the substitution words (visuals
and arts) are well-fit the surrounding text and do not change
the sentiment label from human perception. More examples
can be found in the supplementary material.

5 Conclusion and Future Work
In this paper, we proposed an innovative word-level text at-
tack algorithm named BESA (BERT-based Simulated An-
nealing). The BESA employs the BERT Mask Language
Model to generate substitution candidates and optimizes the
word substitution order via Simulated Annealing (SA). We
evaluate the effectiveness of BESA by comparing it with rep-
resentative baselines on widely used text datasets. Experi-
mental results illustrate that our BESA achieves the highest
attack success rate by modifying the least words. Due to
the contextual-awareness and the low modification rate of our
method, BESA makes fewer grammar errors and keeps a high
semantic similarity. Additionally, the adversarial examples
generated by our algorithm show good properties in transfer
attack and adversarial retrain. In the future, improving the
language model to further enhance the semantic similarity is
a promising work direction.
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