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Abstract
Neural network methods are widely used in business problems for prediction, clustering, and risk management to

improving customer satisfaction and business outcome. The ability of a neural network to learn complex nonlinear

relationship is due to its architecture that uses weight parameters to transform input data within the hidden layers. Such

methods perform well in many situations where the ordering of inputs is simple. However, for a complex reordering of a

decision-maker, the process is not enough to get an optimal prediction result. Moreover, existing machine learning

algorithms cannot reduce computational complexity by reducing data size without losing any information. This paper

proposes an induced ordered weighted averaging (IOWA) operator for the artificial neural network IOWA-ANN. The

operator reorders the data according to the order-inducing variable. The proposed sorting mechanism in the neural network

can handle a complex nonlinear relationship of a dataset, which results in reduced computational complexities. The

proposed approach deals with the complexity of the neuron, collects the data and allows a degree of customisation of the

structure. The application further extended to IGOWA and Quasi-IOWA operators. We present a numerical example in a

financial decision-making process to demonstrate the approach’s effectiveness in handling complex situations. This paper

opens a new research area for various complex nonlinear predictions where the dataset is big enough, such as cloud QoS

and IoT sensors data. The approach can be used with different machine learning, neural networks or hybrid fuzzy neural

methods with other extensions of the OWA operator.

Keywords Complex prediction � Financial forecasting � IOWA operator � Financial decision-making � Optimisation �
Aggregation operator � Neural network � Computational complexity

1 Introduction

The opportunities to utilise neural network have signifi-

cantly increased across different industries and business

sectors over the last few decades. The neural network

architecture comprises layers of neurons—an input layer,

one or multiple hidden layers and an output layer con-

nected across different layers. Input neurons have a set of

features that a neural network use for prediction. The

number of output neurons depends on the number of

forecasts required. A single prediction value such as a

regression or binary classification needs a single output

neuron. In multivariate regression or multi-class classifi-

cation, the number of neurons depends on per predicted

value. The number of hidden layers depends on the com-

plexity of a problem domain. The more complex the

problem is, the higher the number of hidden layers. Each

neuron in hidden layers takes input data and multiplies it

with a certain weight, adding bias and sending it to the next
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layer. Weights represent a strength of connections that

decide the amount of influence the input will have on the

output. The efficiency of a neural network depends on its

learning process. Gradient-based and stochastic methods

are commonly used in training methods (Wang et al. 2015).

However, these methods have their issues. One of the main

disadvantages of the gradient-based method is its slow

performance with complex code. Other disadvantages of

the gradient-based methods are inaccurate gradient, intol-

erance of difficulties, and high dependency on initial

parameters and categorical variables (Zingg et al. 2008).

Many methods (Gao et al. 2020; Abdel-Basset et al. 2018)

tried to optimise the connection weights (Gao et al. 2020).

Metaheuristic algorithms such as genetic algorithm (GA),

particle swarm optimization (PSO), water waves opti-

mization (WWO) and others are commonly used to solve

various sophisticated optimisation problems (Abdel-Basset

et al. 2018). Multiple research (Wu et al. 2020; Zhang et al.

2020; Panahi et al. 2020) have used a hybrid approach to

combine various metaheuristic algorithms with machine

learning and neural network algorithms. Panahi et al.

(Panahi et al. 2020) used SVR, ANFIS, Bee algorithm and

grey wolf optimiser (GWO) to predict landslide suscepti-

bility. In another approach, Zhang, Huang, Wang and Ma

(Zhang et al. 2020) used machine learning and multi-ob-

jective PSO to predict concrete mixture properties.

Although discussed methods attempted to address the

problem, most have ignored handling the complex

reordering of a decision-making process. Moreover, for

complex nonlinear prediction such as cloud SLA Quality of

Service (QoS) prediction, the data have multiple dimen-

sions (Hussain et al. 2017, 2018). The computational

complexity of the system increases with the increase of a

dataset (Cheng et al. 2013). Discussed complexity handling

methods do not devise a mechanism to improve computa-

tional complexity by reducing the data without losing

meaningful information. One way to deal with the problem

is reordering inputs based on the OWA weights.

The ordered weighted average (OWA) introduced by

Yager (Yager 1988) is an aggregation operator that can

aggregate uncertain information with specific weights. The

OWA operator has been used in a wide range of applica-

tions to solve different problem domains such as environ-

mental applications (Bordogna et al. 2011), resource

management (Zarghami et al. 2008) and various business

applications (Merigó and Gil-Lafuente 2010, 2011). The

OWA has been used extensively to solve different fuzzy

application (Kacprzyk et al. 2019; Cho 1995; Merigó et al.

2018). Yager (Yager and Filev 1999) introduced a more

general type of OWA operator-induced OWA (IOWA)

operator in which the ordering of arguments is based on the

arrangement of the induced variable. The weights in the

IOWA operator, rather than associated with a specific

argument, are linked with the position in the ordering. It

enables the approach to deal with the complex character-

istics of the argument. Motivated by these, Merigó and Gil-

Lafuente (2009) proposed induced generalised OWA

(IGOWA) and Quasi-IOWA (QIOWA) operators that

combine the characteristics of IOWA and GOWA operator.

Moreover, the operator has received significant growing

interest among the scientific community (Flores-Sosa et al.

2020; Jin et al. 2020; Yi and Li 2019) and applied to

address number of real-life issues (Maldonado et al. 2019;

Blanco-Mesa et al. 2020).

To address the complex issue of a large dataset for

nonlinear prediction, Yager (1993) introduced the OWA

layer in the neural network. The input data are arranged so

that the largest input goes to the first branch, the second

largest to the next branch and so on. Using the same con-

cept Kaur et al. (2016, 2014) used the OWA layer in

ANFIS to predict future stock price. Similarly, Cheng et al.

(2013) used the OWA layer in ANFIS to predict TAIEX

stock data. These approaches work well for different sim-

ple reordering and decision-making processes. However, to

deal with other complex reordering processes, the

approaches are not enough to deal efficiently. Hence, to

address the problem, this work aims to introduce an

induced OWA (IOWA) operator as an additional layer in

ANN to reorder the inputs based on the ordered inducing

variable. Bo et al. (Li et al. 2021) have demonstrated the

application of the IOWA layer with the fruit fly algorithm

to predict vegetable price prediction. Hussain et al.

(2022a, 2022b, 2022c) have used OWA layer in several

prediction algorithms to predict complex stock market and

cloud QoS data (Hussain et al. 2022d, 2021). This paper

theoretically contributes the use of the IOWA layer to any

neural network prediction methods. The IOWA operator

reorders inputs not only based on the value of the argu-

ment, but it reorders inputs based on the associated order-

inducing variables (Merigó and Gil-Lafuente 2009). The

proposed approach makes the decision-making process

more efficient and enables the system to handle different

complex reordering of the decision-maker. It can be further

generalised to IGOWA and Quasi-IOWA operators (Mer-

igó and Gil-Lafuente 2009). The performance of the pro-

posed approach is presented through a financial case study.

The evaluative results demonstrate the effectiveness of the

approach in dealing with complex behaviour and optimal

prediction results.

The rest of the paper is organised as follows. Section 2

briefly discusses some basic concept such as OWA, IOWA,

IGOWA, Quasi-IOWA and neural network. Section 3

presents a theoretical discussion of the IOWA layer in

ANN. Section 4 presents the extension of IOWA-ANN

towards IGOWA and Quasi-IOWA operators. Section 5
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evaluates the approach, and Section 6 concludes the paper

with future research direction.

2 Conceptual background

This section discusses some preliminary definitions such as

OWA, IOWA, IGOWA, Quasi-IOWA operators, and

OWA in ANN.

2.1 Ordered weighted averaging (OWA) operator

Yager (1988) introduced the OWA operator as a family of

aggregation operators such as arithmetic mean, median,

minimum and maximum. The operator can obtain optimum

weights based on aggregated arguments. Definition 1 pre-

sents the OWA operator.

Definition 1 An OWA operator of dimension n is a

mapping OWA: Rn ! R that has an associated weighting

vector W = [w1,w2,…… wn] such that wi 2 0; 1½ � and
Pn

i¼1 wi ¼ 1. Equation 1 presents the OWA operator.

OWA x1; x2; x3; . . .; xnð Þ ¼
Xn

i¼1

wiyi ð1Þ

where y1; y2; y3; . . .; ynð Þ is the reordered set of inputs

x1; x2; x3; . . .; xnð Þ from largest to smallest inputs.

One can generalise the direction of reordering between

ascending OWA (AOWA) and descending OWA (DOWA)

operators.

2.2 Induced ordered weighted averaging (IOWA)
operator

The extension of the OWA operator, induced OWA

(IOWA) operator introduced by Yager and Filev (1999).

The distinct feature of IOWA is that instead of depending

on the argument’s value, the reordering is performed using

order induced variable. Definition 2 presents the IOWA

operator.

Definition 2 The IOWA operator of dimension n is a

mapping IOWA: Rn ! R that has an associated set of

weighting vectors of dimension n, such that wi 2 [0,1] and
Pn

i¼1 wi ¼ 1, and the set of order-inducing variables ui,

presented in Eq. 2:

IOWA hu1; a1i; hu2; a2i; . . .; hun; anið Þ ¼
Xn

j¼1

wjcj ð2Þ

where c1; c2; c3; . . .; cnð Þ is the reorder input arguments

a1; a2; a3; . . .; anð Þ in decreasing order of the value of ui.

2.3 Induced generalised ordered weighted
averaging (IGOWA) operator

Using the characteristics of IOWA and generalised OWA

(GOWA), Merigó and Gil-Lafuente (2009) introduced

IGOWA. IGOWA operator uses inducing variables to

reorder the position of arguments and generalised means.

Definition 3 presents the IGOWA operator.

Definition 3 The IGOWA operator of dimension n is a

mapping IGOWA: Rn ! R defined by the association of

weights of dimension n such that wi 2 ½0; 1� and
Pn

i¼1 wi ¼ 1i, and the set of ordered inducing variables ui,

and the parameters c 2 ð�1;1Þ. Equation 3 presents the

IGOWA operator:

IGOWA hu1; x1i; hu2; x2i; . . .; hun; xnið Þ ¼
Xn

j¼1

wjy
c
j

 !1=c

ð3Þ

where y1; y2; y3; . . .; ynð Þ is the reorder of argument vari-

ables x1; x2; x3; . . .; xnð Þ in decreasing order of the order-

inducing variables ui.

2.4 Quasi- IOWA operator

The Quasi-IOWA is an extension of IGOWA introduced by

Merigo and Gil-Lafuente (Merigó and Gil-Lafuente 2009).

The operator is the generalisation of IGOWA with quasi-

arithmetic means. The operator gives complete generali-

sation, by including a large number of cases that are not

included in the IGOWA operators. Definition 4 presents the

Quasi-IOWA operator.

Definition 4 The Quasi-IOWA operator of dimension n is

a mapping QIOWA: Rn ! R defined by the association of

weights of dimension n such that wi 2 [0,1] and
Pn

i¼1 wi ¼ 1, and for strictly monotonic continuous func-

tion q(y). Equation 4 presents the Quasi-IOWA operator:

QIOWA hu1; x1i; hu2; x2i; . . .; hun; xnið Þ

¼ q�1
Xn

j¼1

wjq yj
� �

 !

ð4Þ

where yj are the argument value of the Quasi-IOWA pairs

hui; xii; are arranged in decreasing order of the order-in-

ducing variables ui.

One can generalise the direction of the reordering and

distinguish between the descending Quasi-IOWA operator

(Quasi-DIOWA) and the ascending operator (Quasi-

AIOWA).

Complex nonlinear neural network prediction with IOWA layer
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2.5 Artificial neural network (ANN)

ANN comprised of a number of interconnected neurons

that process the input x to give desired output y. Each

neuron in one layer is connected to the other neurons in the

next layer through connection weights w, and the bias b is

added to increase or decrease input weights. It is presented

in Eq. 5:

Y ¼ w bð Þ þ
Xn

j¼1

xjwj ð5Þ

Hebb (Hebb 1949) proposed a Hebbian learning algo-

rithm in which the weights get increase proportionally to

the product of input x and output y, as presented in Eq. 6:

w newð Þ ¼ w oldð Þ þ x � y ð6Þ

Stephen (Stephen 1990) proposed perceptron networks

for single and multiple perceptron networks. The input

layer connected with the output layer with weights -1, 0 or

1. The weights are updated between the hidden layer and

the output layer to reduce the loss and get the target output,

as presented in Eq. 7:

w newð Þ ¼ w oldð Þ þ a � t � x ð7Þ

where a is the learning rate, and t is the target output.

Similarly, Widrow and Lehr (Widrow and Lehr 1993)

proposed Widrow Hoff learning algorithm or least mean

square (LMS) rule or delta rule that follows gradient des-

cent rule for linear regression. This algorithm follows

multiple adaptive linear neural networks (MADALINE)

that update the connection weight between the current and

targeted output value, as presented in Eq. 8:

w ¼ a � x t � yð Þ ð8Þ

where a is the learning rate, x is the input value, y is the

output value, and t is the target output.

2.6 OWA operator in ANN

The addition of the OWA layer in ANN was proposed by

Yager (Yager 1993) to reorder arguments based on their

respective weights (Yager 1994). Definition 5 presents the

OWA operator in ANN:

Definition 5 The OWA operator in ANN of a single

dimension is a mapping OWA: Rn ! R defined by the

associated weights of dimension n such that wi 2 [0,1]

and
Pn

i¼1 wi ¼ 1. Assuming that we have m parts of a data

each have n ? 1 tuple of values (ai1, ai2, ai3,……….., ain, yi),

where aij are input values (aggregation) of the ith sample,

and yi is the aggregated value for this ith sample.

3 IOWA layer in artificial neural network

The use of the IOWA operator in ANN is the extension of

OWA in ANN. The primary difference between the

approach and OWA-ANN is the inclusion of an inducing

variable that is used to reorder arguments for better deci-

sion-making in a different complex situation. It is defined

as:

Definition 6 The IOWA operator in ANN of n dimension

input is a mapping IOWA: Rn ! R defined by the asso-

ciated weights w of dimension n such that wi 2 [0,1] and
Pn

i¼1 wi ¼ 1 the set of inducing variables of order ui, as

presented in ?tic=?>Fig. 1 and Eqs. 9–12.

IOWA� NN hu1; a1i; hu2; a2i; . . .; hun; anið Þ ¼ pi ð9Þ

pi is the activation function which is the sum of the

product of wi and bi that is

pi ¼
Xn

i¼1

wibi ð10Þ

where hui; aii is a set of two tuple input, where ui is

inducing variable associated with the input ai, bi is the

reordered input ai in descending order of the ui, wi is the

associated ai weight, and yi is the actual output of the

output neuron.

As in the IOWA operator, if the weights are not nor-

malised, that is
Pn

i¼1 wi 6¼ 1, then the activation function pi
is presented as

pi ¼ 1

W

Xn

j¼1

wjbj ð11Þ

When the calculated value is greater than or equal to the

threshold value, then it is transmitted to the neurons of the

next layer, otherwise not, as presented in Eq. 12:

pi� hi; yi[ 0 _ pi\hi; yi ¼ 0 ð12Þ

The IOWA operator has the properties of—commuta-

tive, monotonic, idempotent and bounded. These properties

can be proved from Theorem 1–4.

Theorem 1 (Monotonicity): The monotonicity of the

IOWA-ANN is presented in Eqs. 13–15:

Let f be the IOWA operator in ANN that calculates the

value of i. If ai C xi for all ai, then

f hu1; a1i; hu2; a2i; . . .; hun; anið Þ� f hu1; x1i; hu2; x2i; . . .; hun; xnið Þ
ð13Þ

Proof. Let

W. Hussain et al.
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f hu1; a1i; hu2; a2i; . . .; hun; anið Þ ¼
Xn

i¼1

wibi ð14Þ

and

f hu1; x1i; hu2; x2i; . . .; hun; xnið Þ ¼
Xn

i¼1

widi ð15Þ

since ai C xi for all ai it follows that ai C xi, so

f hu1; a1i; hu2; a2i; . . .; hun; anið Þ� f hu1; x1i; hu2; x2i; . . .; hun; xnið Þ

Theorem 2 (Idempotency): The idempotency of the IOWA-

ANN is presented in Eqs. 16–18:

Let f be the IOWA operator in ANN that calculates the

value of pi. Then

f hu1; a1i; hu2; a2i; . . .; hun; anið Þ
¼ f hu1; x1; u2i; x2; . . .; hun; xnið Þ ð16Þ

where (hu1; a1i; hu2; a2i; . . .; hun; ani) is any variation of the

arguments hu1; x1i; hu2; x2i; . . .; hun; xni.

Proof. Let

f hu1; a1i; hu2; a2i; . . .; hum; amið Þ ¼
Xm

k¼1

wkbk ð17Þ

and

f hu1; x1i; hu2; x2i; . . .; hum; xmið Þ ¼
Xm

k¼1

wkdk ð18Þ

since (hu1; a1i; hu2; a2i; . . .; hum; ami) is a variation of the

arguments hu1; x1i; hu2; x2i; . . .; hum; xmi, we obtain ak = xk
for all k, so

f hu1; a1i; hu2; a2i; . . .; hum; amið Þ
¼ f hu1; x1i; hu2; x2i; . . .; hum; xmið Þ

Theorem 3 (Commutativity): The commutativity of the

IOWA-ANN is presented in Eqs. 19–20:

Let f be the IOWA operator in ANN that calculates the

value of pi. If ai ¼ a; then

f hu1; a1i; hu2; a2i; . . .; hum; amið Þ ¼ a ð19Þ

Proof If ai ¼ a; for all ai, we obtain

f hu1; a1i; hu2; a2i; . . .; hun; amið Þ ¼
Xm

k¼1

wkbk ¼
Xm

k¼1

wka

¼ a
Xm

k¼1

wk

ð20Þ

Since
Pn

k¼1 wk ¼ 1, we get

f hu1; a1i; hu2; a2i; . . .; hum; amið Þ ¼ a

Theorem 4 (Bounded): The bounded property of the

IOWA-ANN is presented in Eqs. 21–25:

Let f be the IOWA operator in ANN that calculates the

value of pi.

Then

min ai½ � � f hu1; a1i; hu2; a2i; . . .; hum; amið Þ� max ai½ �
ð21Þ

Proof Let min ai½ � ¼ y and max ai½ � ¼ z. Then

Fig. 1 IOWA in ANN
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f hu1; a1i; hu2; a2i; . . .; hun; amið Þ ¼
Xm

k¼1

wkbk �
Xm

k¼1

wkz

¼ z
Xm

k¼1

wk

ð22Þ

and

f hu1; a1i; hu2; a2i; . . .; hun; amið Þ ¼
Xm

k¼1

wkbk �
Xm

k¼1

wky

¼ y
Xm

k¼1

wk

ð23Þ

Since
Pn

k¼1

wk ¼ 1, we get

f hu1; a1i; hu2; a2i; . . .; hun; amið Þ� z ð24Þ

and

f hu1; a1i; hu2; a2i; . . .; hun; amið Þ� y ð25Þ

Therefore,

min ai½ � � f hu1; a1i; hu2; a2i; . . .; hum; amið Þ� max ai½ �

4 The generalisation of the application
in IGOWA and Quasi-IOWA

In this section, we generalise the application to IGOWA

and Quasi-IOWA operators. As discussed in the above

sections, the IGOWA is the OWA operator’s extension that

has features of the IOWA and GOWA operator. Quasi-

IOWA operator is a generalised OWA operator that uses a

quasi-arithmetic mean instead of a normal mean that pro-

vides a more comprehensive generalisation. Below sections

discuss the conception of IOWA-ANN in IGOWA and

Quasi-IOWA.

4.1 IGOWA in ANN

The IGOWA operator in ANN is defined as follows:

Definition 7 The IGOWA operator in ANN of n dimen-

sion input is a mapping IGOWA: Rn ! R defined by the

associated weights w of dimension n such that wi 2 [0,1]

and
Pn

i¼1 wi ¼ 1, the set of inducing variables of order ui
and the parameter k 2 �1;1ð Þ as presented in Eqs. 26–

28 and ?tic=?>Fig. 2.

IGOWA� ANN hu1; a1i; hu2; a2i; . . .; hun; anið Þ ¼ pi ð26Þ

pi is the activation function which is described as

follows:

pi ¼
Xn

k¼1

wkb
k
k

 !1=k

ð27Þ

where hui; aii is a set of two tuple input, where ui is

inducing variable associated with the input ai,

bj is the reordered input ai in descending order of the ui,

wj is the associated ai weight, yi is the actual output of the

output neuron, k is the parameter that adds a variation of

the complexity.

In the IGOWA operator, if the weights are not

normalised, that is
Pn

i¼1 wi 6¼ 1, then the activation

function pi is presented as in Eq. 28:

pi ¼ 1

W

Xn

k¼1

wkb
k
k

 !1=k

ð28Þ

Like the IOWA operator, the IGOWA has commutative,

monotonic, idempotent, and bounded properties.

4.2 Quasi-IOWA in ANN

The Quasi-IOWA operator in ANN is defined as follows:

Definition 8 The Quasi-IOWA operator in ANN of n

dimension input is a mapping QIOWA: Rn ! R defined by

the associated weights w of dimension n such that wi 2
[0,1] and

Pn
i¼1 wi ¼ 1, the set of inducing variables of

order ui and a strictly monotonic continuous function g(b).

The Quasi-IOWA-ANN is presented in Eqs. 29–30 and

?tic=?>Fig. 3.

QIOWA� ANN hu1; a1i; hu2; a2i; . . .; hun; anið Þ ¼ pi

¼ g�1
Xn

j¼1

wjg bj
� �

 !

ð29Þ

where hui; aii is a set of two tuple input, where ui is

inducing variable associated with the input ai, bj is the

reordered input ai in descending order of the ui, wj is the

associated ai weight, yj is the actual output of the output

neuron, k is the parameter that adds a variation of the

complexity, g(bi) strictly monotonic continuous function, pi
is the activation function.

In the Quasi-IOWA operator, if the weights are not

normalised, that is
Pn

i¼1 wi 6¼ 1, then the activation func-

tion pi is presented as in Eq. 30:

pi ¼ 1

W
g�1

Xn

i¼1

wig bið Þ
 !( )

ð30Þ

The Quasi-IOWA has the same properties of—com-

mutative, monotonic, idempotent and bounded.
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5 Evaluation

This section evaluates the effectiveness of the proposed

approach by considering a financial case study and

demonstrating how the approach takes an optimum deci-

sion in a complex situation. For this case study, we con-

sidered a business that seeks total funding ($10,000) from 5

financial sources, let say—A, B, C, D and E, for a certain

time interval n (4 intervals). A business can use a combi-

nation of financial sources. We assume a business request

an equal amount ($2,500) for each interval to simplify the

calculation. The interest rate xi for each financial sources is

as follows:

An interest rate of financial source A, xa = 0.058.

An interest rate of financial source B, xb = 0.062.

An interest rate of financial source C, xc = 0.070.

An interest rate of financial source D, xd = 0.043.

An interest rate of financial source E, xe = 0.049.

The reliability value (10 most reliable, 01 least reliable)

or inducing variable ui of each financial sources is pre-

sented as follows:

Reliability value of financial source A, ua = 4.

Reliability value of financial source B, ub = 6.

Reliability value of financial source C, uc = 5.

Fig. 2 IGOWA in ANN

Fig. 3 Quasi-IOWA in ANN

Table 1 Weights for each financial sources for different intervals

Weights Time intervals

1st interval 2nd interval 3rd interval 4th interval

w1 0.63

w2 0.18 0.42

w3 0.11 0.19 0.52

w4 0.02 0.20 0.12 0.38

w5 0.06 0.19 0.36 0.62

Complex nonlinear neural network prediction with IOWA layer
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Reliability value of financial source D, ud = 10.

Reliability value of financial source E, ue = 9.

Weights w for each financial sources and for each

interval are given in such a way that wi 2 [0,1] and
Pn

i¼1 wi ¼ 1, as presented in Table 1.

The maximum acceptable threshold h limit for a given

amount in each time interval is presented in Table 2.

We use synthetic data for the approach, with 80% data

used for training and 20% data for testing. The approach is

implemented in MATLAB R2020a using a nonlinear

autoregressive with exogenous (NARX) neural network.

The process uses two layers of ten neurons with the

Levenberg–Marquardt backpropagation function to train

input data. We use the tangent sigmoid (TANSIG) transfer

function to calculate the layer output from its net input. All

input arguments are reordered in descending order based

on the inducing variable, as presented in Table 3.

Based on updated ordering using inducing variables,

neurons are rearranged as follows (Fig. 4).

Now we calculate the costing for different financial

sources based on their respective weights to find the best

possible source or a combination of sources. The choice of

sources depends on the value, which is less than the cus-

tomised threshold defined by a business for different

intervals. Therefore, we select the minimum value of

sources generated for each interval.

Using the proposed approach, we calculate the most

suitable source for the first interval, as presented below.

p1n ¼ Min w11 � xdð Þ; w21 � xeð Þ; w31 � xbð Þ; w41 � xcð Þ;f
w51 � xað Þg� h1

p1n ¼ Min 0:63 � 0:043ð Þ; 0:18 � 0:049ð Þ; 0:11 � 0:062ð Þ;f
0:02 � 0:070ð Þ; 0:06 � 0:058ð Þg� 0:0030

p1n ¼ Min 0:0271ð Þ; 0:0089ð Þ; 0:0068ð Þ; 0:0014ð Þ;f
0:0035ð Þg� 0:0030

p1n ¼ 0:0014ð Þf g� 0:0030

From the calculation, we see that financial source C has

the minimum value, which is 0.0014. Moreover, the only

financial source C satisfies the customised threshold below

the threshold value of 0.0030. Therefore, for the first

interval for $2,500/ = , the optimal financial source is

provider C.

p1c ¼ 0:0014

For the second time interval, the business request

another $2,500. Now, the business will need a total of

$5,000. We use the proposed approach to determine the

most suitable financer for the second term.

p2n ¼ Min w22 � xe þ p1cð Þ; w32 � xb þ p1cð Þ;f
w42 � xc þ p1cð Þ; w52 � xa þ p1cð Þg� h2

p2n ¼ Min 0:38 � 0:049þ 0:0014ð Þ;f
0:19 � 0:062þ 0:0014ð Þ; 0:20 � 0:070þ 0:0014ð Þ;
0:19 � 0:058þ 0:0014ð Þg� 0:0160

p2n ¼ Min 0:0220ð Þ; 0:0132ð Þ; 0:0154ð Þ; 0:0124ð Þf g� 0:0160

p2n ¼ 0:0124ð Þf g� 0:0160

We see that financer B, C and A satisfy a requestor

criterion for a second interval because all of them have the

value below than the threshold value 0.0160. However,

option A is the most optimal financer because it has a value

Table 2 Customised threshold

value for each time interval
Amount h Limit

$ 2,500 0.0030

$ 5,000 0.0160

$ 7,500 0.0331

$ 10,000 0.0532

Table 3 Reordering inputs

based on ordered inducing

variables

Financial sources Interest rate Inducing variable (reliability) Weights

D 0.043 10 w1

E 0.049 9 w2

B 0.062 6 w3

C 0.070 5 w4

A 0.058 4 w5

Fig. 4 Rearrange of input neurons based on inducing variable
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of 0.0124, which is minimum than all other financers.

Therefore, for the second interval, financer A is the best

option.

p2a ¼ 0:0124

For the third interval, we apply the formula to determine

the most suitable financer.

p3n ¼ Min w33 � xb þ p2að Þ; w43 � xc þ p2að Þ;f
w53 � xa þ p2að Þg� h3

p3n ¼ Min 0:52 � 0:062þ 0:0124ð Þ;f
0:12 � 0:070þ 0:0124ð Þ; 0:36 � 0:058þ 0:0124ð Þg
� 0:0331

p3n ¼ Min 0:0446ð Þ; 0:0208ð Þ; 0:0333ð Þf g� 0:0331

p3n ¼ 0:0208ð Þf g� 0:0331

Based on the above calculation, we see that financial

source C is the most suitable financer for a third interval

because it has a value of 0.02430, which is a minimum than

all other financers and satisfies requestor requirements

below the threshold value 0.0331.

p3c ¼ 0:0208

To determine the optimal financer for the last interval,

we use the formula as presented below.

p4n ¼ Min w44 � xc þ p3cð Þ; w54 � xa þ p3cð Þf g� h4

p4n ¼ Min 0:38 � 0:070þ 0:0208ð Þ;f
0:62 � 0:058þ 0:0208ð Þg� 0:0532

p4n ¼ Min 0:0474ð Þ; 0:0568ð Þf g� 0:0532

p4n ¼ 0:0474ð Þf g� 0:0532

The financer C is the most suitable for the last interval

with the value of 0.0474, which is less than financer A and

below the threshold value of 0.0532.

From Table 4, we can see that only for the second

interval financer A is the best, while for the rest of the three

intervals, financer C is the optimal option. Hence, we can

recommend that a combination of financers C and A is the

best solution to finance.

6 Conclusion

From the last few decades, many industries, businesses and

different financial firms adopt NN that offers a step-change

in the power of AI. The use of ANN assists firms to

improve their efficiency, accuracy, timeliness, customer

satisfaction and optimal decision-making that enable the

firm to gain and sustain their competitive advantage. The

efficiency of a neural network depends on its learning

process. The existing literature discussed reordering inputs

based on the weight to improve efficiency and accuracy.

However, we observed that the current literature could not

address complex reordering of the decision-making pro-

cesses. In this paper, we propose the IOWA layer in ANN,

in which the ordering of arguments is based on an ordered

inducing variable. The new reordering method assists in

handling a complex decision-making process. The

approach decreases the computational complexity by

reducing the data size without losing any information. We

further generalised the approach with the IGOWA and

Quasi-IOWA operator. To demonstrate the effectiveness of

our approach, we presented a financial case study where

our approach performed well in a complex and sequential

decision-making process. We will analyse applying the

method for deep learning in our future work and examine

the optimisation in the autonomous learning process.
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Maldonado S, Merigó J, Miranda J (2020) IOWA-SVM: a density-

based weighting strategy for SVM classification via OWA

operators. IEEE Trans Fuzzy Syst 28(9):2143–2150. https://doi.

org/10.1109/TFUZZ.2019.2930942
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