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Abstract: Variance, as a measurement of dispersion, is a basic component of decision-making pro-
cesses. Recent advances in intelligent systems have included the concept of variance in information
fusion techniques for decision-making under uncertainty. These dispersion measures broaden the
spectrum of decision makers by extending the toolset for the analysis and modeling of problems. This
paper introduces some variance logarithmic averaging operators, including the variance generalized
ordered weighted averaging (Var-GOWLA) operator and the induced variance generalized ordered
weighted averaging (Var-IGOWLA) operator. Moreover, this paper analyzes some properties, families
and particular cases of the proposed operators. Finally, an illustrative example of the characteristic
design of the operators is proposed using real-world information retrieved from financial markets.
The objective of this paper is to analyze the performance of some equities based on the expected
payoff and the dispersion of its elements. Results show that the equity payoff results present diverse
rankings combined with the proposed operators, and the introduced variance measures aid decision-
making by offering new tools for information analysis. These results are particularly interesting when
selecting logarithmic averaging operators for decision-making processes. The approach presented
in this paper extends the available tools for decision-making under ignorance, uncertainty, and
subjective environments.

Keywords: OWA operator; GOWLA operator; variance measures; variance OWA

1. Introduction

In statistics, variance (Var) is a fundamental descriptor of variability [1], dispersion, or
spread. Variance is a measure of how data points differ from one another with respect to a
specific characteristic, and each score is compared to the centermost value of the set [2].
This distinctive attribute has gained sufficient relevance in the literature such that, after the
mean, variance is the second most frequently used measure to summarize the distribution
of a random variable [3]. However, the calculation of variance implies squared deviations
which, in some cases, are difficult to interpret and apply when considered independently.
In these scenarios, the application of the squared root to the result of the variance, which
is the standard deviation (SD), is suggested [4]. The SD is the most widely used measure
of variability and, given its formulation, it gives more weight to larger deviations than to
smaller deviations [5].

Variability measures and, in particular, variance [6], have been proven to be effective
in decision-making problems. Variance measures in probabilistic feasible scenarios allow
for the construction of models that aid in the assessment of a wide range of problems,
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including economic forecast techniques [7,8], expected utility economic issues [9], organi-
zational management [10], risk-return organizational management [10], and risk-return
organizational management analyses [11]. Variance measures are relevant in financial
decision-making. For example, when an associated probability vector is included, a set of
payoff setups can be constructed to aid in the selection of the most adequate option, such as
in portfolio selection [12], risk premiums [13], and stock forecasting [14]. However, some
real-world scenarios face problems such as a lack of information, or incomplete and sub-
jective information. When information is not adequate for the construction of probability
vectors, we need to assess decision-making problems by considering uncertainty.

In recent decades, interesting advances in the modeling of decision making in un-
certainty have been made, and the seminal work of fuzzy set theory [15] has opened up
new paths for the evaluation of scenarios where historic data are not available and robust
mathematical techniques based on multiple valued logic are required [16]. Moreover, the
decision sciences expanded [17] when the classic operation of the weighted average began
to include preliminary rankings based on the attitudinal criteria of stakeholders. As a
result, the ordered weighted average (OWA) operator was introduced [18]. In the litera-
ture, a wide range of aggregation operators have appeared [19], aiming to assess complex
problems where different strings of information need to be included in the model. These
operators include the induced OWA operator [20], the uncertain OWA operator [21], the
generalized and induced generalized OWA operators [22], the ordered weighted geometric
averaging operators [23], and the generalized ordered weighted logarithmic averaging
operators [24].

Yager [25] proposed the study of variance as an aid for decision-making in uncertain
environments. The inclusion of variability measures in decision-making problems [26]
introduces new approaches for the assessment of portfolio selection problems [27], enables
the possibility of selecting the alternative with the highest expected value from the range
of options with the lowest inherent variance [25,28], and allows the generation of new
approaches to allocate resources [29] based on minimal variance models [30] applied
(for example, to personnel selection assessments) [31]. The addition of variance in the
formulation of OWA operators returns a parametrized family of operators between the
minimum and the maximum variance [1]. This extends decision making processes in
uncertainty and offers a wider spectrum of analyzed data. These results are especially
relevant in financial decision making processes where, in the case of the payoffs being equal
or highly similar, an option for the selection is the one having the minimum variance [28].
The integration of variance can be widely applied in different scenarios where aggregation
operators have proven to be efficient such as in economics, engineering, soft computing, the
earth sciences, etc. [17,32]. Thus, the inclusion of variance in further aggregation operators
is of particular interest.

Zhou and Chen [24] introduced the concept of generalized ordered weighted loga-
rithmic aggregation (GOWLA) operators. Their proposal is based on an optimal deviation
model, and its solid foundation widens the toolset for the analysis of phenomena in a
variety of scenarios (for examples, see an approach to a human-resource based prob-
lem [24], financial decision making assessments [33], and multi-region decision-making
problems [34]). Some developments in logarithmic averaging operators include gener-
alized logarithmic proportional averaging operators [35], generalized ordered weighted
logarithmic harmonic averaging operators [36], ordered weighted logarithmic distance
operators [37], a generalized ordered weighted hybrid logarithm averaging operators [33],
and continuous generalized ordered weighted logarithm aggregation operators [38]. As the
family and applications of GOWLA operators continues to expand, the inclusion variance
in its formulation results is interesting since it widens the study of the available data,
thereby offering more information for robust decision-making approaches.

The objective of this paper is to introduce some variance logarithmic averaging op-
erators and describe their formulation, characterization, and application. Our aim is to
introduce a complementary set of tools for the assessment of decision-making problems
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in complex real-world scenarios when selecting logarithmic averaging operators for the
aggregation of information is required. The study of variance in the logarithmic aggre-
gation operators broadens the representation of analyzed data, giving decision makers
additional information regarding the studied phenomena. This is of special interest as
OWA applications continues to expand to several fields of knowledge such as in health [39],
productivity [40], and social [41] and price forecasting analysis [42].

The remainder of the paper is organized as follows. Section 2 of the manuscript
presents the main theories that support this study. Section 3 introduces variance ordered
weighted averaging (Var-GOWLA) operators, and discusses its properties and families.
Section 4 presents the induced Var-GOWLA operators, which are designed to extend
the representation of the complex attitudinal character of the decision makers. Section 5
presents an illustrative example of the application of the introduced operators. Lastly,
Section 6 details the concluding comments of the study.

2. Preliminaries

This section presents the basic founding tools that allow for the formulation of the
proposals described in the following parts of the paper. The fundamental formulations
include variance measures, the OWA operator, the reordering mechanism on the IOWA
operator, and the logarithmic OWA operators.

2.1. Variance Measures

Variance is a fundamental computation of the spread of a data set. The information
provided by the result of a variance calculation allows a decision maker to know whether
all of the datapoints are equal (i.e., whether the variance equals zero), or whether the
opposite is true when a large dissimilarity of the studied elements is observed. Among the
widely disseminated definitions of variance, we can establish the following classification.

Definition 1. The variance of a defined set of ai data elements of n magnitude is defined by
the equality:

Var(a1, . . . an) = ∑n
i=1 vi(ai − µ)2, (1)

where all ai represent argument variables. The variable µ is defined as the mean (i.e., µ = 1
n ∑n

i=1 ai,
and (ai − µ)2 has an established weighting vector vi), such that the sum of its elements is 1 and
vi ∈ [0, 1].

Variance is a classic measure of deviation, and its formulation allows one to understand
the distribution of the data from the mean of the considered arguments. It can have
applications in a plethora of fields ranging from engineering to business, machine learning,
and both medical and biological sciences. From the wide range of available dispersion
measures, we focus on Equation (1) (formulation of variance) since its composition allows
for the description, inference, and interpretation of data, the results of which are essential
for decision-making based proposals [1,25].

2.2. Ordered Weighted Average Operator

An OWA operator [18] is an information fusion technique that results in a parametric
family of aggregation operators ranging from the minimum to the maximum value of the
included elements. The specific allocation of weights according to its input variables has
given the OWA a special relevance in the academic domain, as the applications of its design
allow modeling complex settings. Please see a possible definition below.

Definition 2. Given a weighting vector W of dimension n, characterized by wj ≥ 0 and ∑ wj = 1,
an OWA operator of dimension n is a mapping OWA : Rn → R following the next equivalence:

OWA(a1, . . . an) = ∑n
i=1 wibj. (2)
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In all cases, bj results from sorting the ai array in a descending direction.

The OWA operator can be studied and applied to various orders, such as ascending
or descending orders, measures by the characterization of its weighting vector and its
corresponding families, and exhibits some essential properties including commutative,
monotonicity, boundedness, and idempotency.

The OWA operator is an information fusion technique [43] designed to assess multi-
criteria decision making and group decision making problems and rule based and fuzzy
logic systems [44]. The reordering step of the OWA operator allows for the treatment of
information under uncertainty [45]. In this sense, the system weights the introduced values
in relation to a given order, thereby measuring the importance of the introduced values
with independence to the origin of the information [46]. This characteristic design has
been widely applied in automation control systems [47], computer science and information
systems [48], and telecommunications [49] among a wide variety of applications. The
increasing appeal of the OWA operators’ design can be observed in wide ranging reviews
such as [17].

2.3. Induced Ordered Weighted Average Operator

The increasing popularity of the OWA operator’s design motivated researchers to
develop new extensions and tools that allow for a wider representation of problems. Yager
and Filev [20] proposed a reordering characterization of the array based on an induced
mechanism. This specific reordering process allows for the distribution of weights in a
particular manner, thereby adjusting to the particularities of the problem. An induced
OWA operator can be described as follows:

Definition 3. Given a weighting vector W of n dimensions delimited by wj ∈ [0, 1] and the
sum of all the included weights equal to 1, an IOWA operator of n dimensions is a mapping
IOWA : Rn → R , where an order-induced vector ui affects the following argument:

IOWA(〈u1, a1〉, . . . 〈un, an〉) = ∑n
i=1 wibj. (3)

The arguments here (b1, . . . bn) follow (a1, . . . , an) sorted by the descending values of the ui
array. Here, ui are in fact the order-induced variables, and ai are the initial arguments.

The particularly characteristic reordering step of the induced OWA operators allows
for the assessment of highly complex scenarios, bound to an intricate attitude of the decision
makers, mainly in the scope of decision-making problems (see e.g., [50]) with induced
OWA operators and competitive behavior variables, average induced OWA operators for
the assessment of expert opinions [51], and induced OWA operators and distance measures
for multi criteria group decision making problems [52].

2.4. Generalized Ordered Weighted Logarithmic Averaging Operator

Zhou and Chen [24] proposed a novel function to aggregate information based on
the fundamental properties of the geometric averaging OWA operator and the result
of an optimal deviation model. The introduced logarithmic operator shares some basic
characteristics of the OWA operator such as monotonicity, commutativity, idempotency,
and boundedness. The generalized ordered weighted logarithmic averaging (GOWLA)
operators are defined as:

Definition 4. With aspecific weighting vector W of n dimensions in ∑ wj = 1 and all the
elements wj included in values between 0 and 1, a GOWLA operator results in a mapping
GOWLA : Ωn → Ω by the next formulation:

GOWLA(a1, . . . an) = exp
{[

∑n
j=1 wj

(
ln bj

)λ
] 1

λ

}
. (4)
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Please observe that here bj is the collection of ai reordered by the largest to smallest and
ai ≥ 1. Additionally, please note that λ is a parameter such that λ ∈ (− ∞, + ∞) − {0} and
Ω = {x ∈ R | x ≥ 1}.

Further differentiations can be found in the literature for ascending and descending
formulations. For example, for the OWA operator the generalized ordered weighted
averaging logarithmic operator has proven to be monotonic, commutative, idempotent,
and bounded (please see [24]).

The logarithmic aggregation operators have, as a foundation, an optimal deviation
model, and this provides a solid theoretical basis. Its construction has been applied
in multiple decision-based applications [24,33,34]. Its characteristics are interesting to
furtherly explore topics such as fuzzy numbers, distance measures, and further linguistic
developments.

3. Variance and Logarithmic Averaging Operators

Motivated by recent advances in the field, the present section proposes the advantages
of studying logarithmic aggregation operators on variance computations. The addition
of the logarithmic toolset to the variance analysis provides a wider modeling of complex
phenomena, thus expanding the visualization of diverse scenarios aiding the decision-
making process. These operators give the decision maker extended possibilities of results
interpretation, as they complement the information portrayed by the GWLA and GOWLA
operators. In the present section, the variance generalized ordered weighted logarithmic
(Var-GWLA) and the variance generalized ordered weighted logarithmic averaging (Var-
GOWLA) operators are proposed, including a brief description of some of their families.

3.1. Variance Generalized Weighted Averaging Operators

Following the proposal in [25], which analyzed the variance using aggregation opera-
tors, the Var-GWLA operator provided a parameterized group of ranging operators that lie
between the minimum and maximum dispersion.

Definition 5. Given a weighting vector W with characteristics wj ∈ [0, 1] and ∑n
j=1 wj = 1, the

Var-GWLA
(
σ2

GWLA
)

operator of a population can be defined as follows:

σ2
GWLA(a1, . . . , an) = exp

{[
∑n

j=1 wj
(
ln aj

)λ] 1
λ

}
, (5)

where the aj arguments are the result of (ai − E)2, ai is the argument variable and E is the resulting
GWLA operator of the arguments. Additionally, λ ∈ (−∞,+∞)− {0} and aj ≥ 1.

A direct way of obtaining the standard deviation of the σ2
GWLA operator is:

SDGWLA(a1, . . . , an) =

√
exp

{[
∑n

j=1 wj
(
ln aj

)λ] 1
λ

}
. (6)

Example 1. Assume the following conditions: a1 = 10, a2 = 15, a3 = 30, a4 = 16. If
W = (0.1, 0.1, 0.3, 0.5) and λ = 2. Using (5) we have:

σ2
GWLA = exp [(0.1 · [ln (10− 18.7043)2]

2
+ 0.1 · [ln (15− 18.7043)2]

2
+ 0.3·

[ln (30− 18.7043)2]
2
+ 0.5 · [ln (16− 18.7043)2]

2
)

1/2
] = 30.1037.

Figure 1 shows the characterization of the aggregation process with the indicated
conditions in Example 1. Please note that σ2

GWLA and its further generalizations and
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families share common properties of the logarithms. Bearing that in mind, the operator
cannot carry out the aggregation process when (ai − E)2 = 0. If this is the case, this
aggregation step is omitted from the general calculation and considered empty.
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3.2. Variance Generalized Ordered Weighted Logarithmic Averaging Operators

When introducing an ordering mechanism, the operator changes into the Var-GOWLA(
σ2

GOWLA
)
. Please note that the configuration of the ordering can be ascending or de-

scending in the first phase. The ordering process allows the operator to run under complex
scenarios, e.g., under uncertainty.

Definition 6. A Var-GOWLA operator is defined as follows.

σ2
GOWLA(a1, . . . , an) = exp

{[
∑n

j=1 wj
(
ln Rj

)λ] 1
λ

}
, (7)

where Rj is the result of
(
bj − µ

)2, bj are the argument variables in descending order depending on
their values, µ is the resulting GOWLA operator, λ is a parameter such that λ ∈ (−∞, ∞)− {0},
ensuring aj ≥ 1 so that lnaj ≥ 0 and wj ∈ [0, 1] also ∑n

j=1 wj = 1.

The square root of the σ2
GOWLA will suffice to obtain the standard deviation:

SDGOWLA(a1, . . . , an) =

√
exp

{[
∑n

j=1 wj
(
ln Rj

)λ] 1
λ

}
. (8)

Example 2. Continuing with the arguments presented in example 1 and using (7), we have:

σ2
GOWLA = exp [(0.1 · [ln (30− 13.5066)2]

2
+ 0.1 · [ln (16− 13.5066)2]

2
+

0.3 · [ln (15− 13.5066)2]
2
+ 0.5 · [ln (10− 13.5066)2]

2
)

1/2
] = 13.6140.

Figure 2 presents a plot of the resulting GOWLA and σ2
GOWLA operators following

the conditions established in Example 2.
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The σ2
GOWLA operator and its extensions share the basic property of commutativity

with the OWA and the GOWLA operators, i.e., f is the σ2
GOWLA operator and bn is any

permutation of an, then f (ai, . . . , an) = f (bi, . . . , bn); however, due to the inherent char-
acteristics of the variance, the σ2

GOWLA operator does not accomplish boundedness or
idempotency, and the operator is not monotonic. Figure 3 presents the general σ2

GOWLA op-
erator behavior using the information delivered in Example 1. Please note the characteristic
properties of the operator and the asymptote when reaching the GOWLA value.
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GOWLA operator behavior with λ = 2 for conditions in Example 1.

3.3. Families of the Var-GOWLA

The newly introduced operator includes a λ vector that augments the model of infor-
mation allowing an extended description of problems. This vector also generates several
distinctive families and, in some cases, useful derivatives. For example, when the λλ vector
is equal to 1, we can apply the following definition:

Definition 7. A variance ordered weighted logarithmic averaging operator including a W weighting
vector following ∑n

j=1 wj = 1 and wj ∈ [0, 1] is represented by:

σ2
OWLA(a1, . . . , an) = exp

{
∑n

j=1 wj
(
ln Xj

)}
, (9)

where Xj is
(
bj − µ

)2 and Xj ≥ 1, let the argument variables Xj be ordered in a decreasing way,
and the value of µ is the resulting OWLA operator including the corresponding arguments.

Example 3. Assume the collection of the arguments in Example 1. Using (9), we have:

σ2
OWLA = exp[0.1 · ln(30− 13.2115)2 + 0.1 · ln(16− 13.2115)2 + 0.3·

ln(15− 13.2115)2 + 0.5 · ln(10− 13.2115)2] = 9.8238.
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Figure 4 presents the corresponding results of the OWLA and σ2
OWLA.
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Table 1 presents some of the most common families that can be obtained by the varia-
tion of the λ vector in the Var-GOWLA operator, including the variance ordered weighted
logarithmic geometric averaging operator (Var-OWGLA), variance ordered weighted har-
monic logarithmic averaging operator (Var-OWHLA), variance ordered weighted quadratic
logarithmic averaging operator (Var-OWQLA), and variance ordered weighted cubic log-
arithmic averaging operator (Var-OWCLA), and both the largest and the lowest of the
dispersion.

Table 1. Families of the Var-GOWLA operator.

λ Operator Formula Acronym

λ→ 0
Variance ordered weighted

logarithmic geometric
averaging operator

σ2
OWGLA(a1, . . . , an) =

exp

{
n
∏
j=1

(
ln Rj

)wj

}
.

(10) σ2
OWGLA

λ = −1
Variance ordered weighted

harmonic logarithmic
averaging operator

σ2
OWHLA(a1, . . . , an) =

exp

 1

∑n
j=1

(
wj

ln Rj

)
.

(11) σ2
OWHLA

λ = 2
Variance ordered weighted

quadratic logarithmic
averaging operator

σ2
OWQLA(a1, . . . , an) =

exp

{
2

√
n
∑

j=1
wj

(
ln Rj

)2
}

.
(12) σ2

OWQLA

λ = 3
Variance ordered weighted
cubic logarithmic averaging

operator

σ2
OWCLA(a1, . . . , an) =

exp

{
3

√
n
∑

j=1
wj

(
ln Rj

)3
}

.
(13) σ2

OWCLA

λ→ ∞ Largest of dispersion σ2
GOWLA(a1, . . . , an) =

max Rj.
(14) Max

λ→ −∞ Lowest of dispersion σ2
GOWLA(a1, . . . , an) =

min Rj.
(15) Min

4. Variance Induced Ordered Weighted Logarithmic Aggregation Operators

An induced vector is an interesting tool to study when controlling the order of the
aggregated arguments. In [20], the basic notion of an induced mechanism for the OWA
was first introduced. Motivated by further developments, such as the induced generalized
OWA operator [53] and the induced generalized ordered weighted logarithmic averaging
operators [54], in this paper the variance induced ordered weighted logarithmic averaging
(Var–IOWLA) operator and the variance induced generalized ordered weighted logarithmic
averaging (Var–IGOWLA) operator were studied.
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4.1. Variance Induced Ordered Weighted Logarithmic Averaging Operators

A Var-IOWLA operator is an extension of the Var-OWLA operator, and the main
distinctive difference of this arrangement is the previous ordered induced step that allows
an additional consideration of information. In this case, the previous mechanism affects the
aggregation of the arguments, allowing for a wider representation of diverse phenomena.

Definition 8. This operator is defined by a characteristic weighting vector W, bounded to values
between 0 and 1 such that the sum of all wj is equal to 1. The formula representing this operator is:

σ2
IOWLA(〈u1, a1〉, . . . 〈un, an〉) = exp

{
∑n

j=1 wj
(
ln Aj

)}
, (16)

where Aj is the result of
(
cj − µ

)2 and Aj ≥ 1, cj is the ai arguments arranged following the
decreasing order of the induced set of ui variables. ai is the argument variables and µ is the IOWLA
operator.

Example 4. Introducing the set of conditions in Example 1 and a U = (10, 8, 4, 6) vector, using
(16), we obtain:

σ2
IOWLA = exp [0.1 · ln (10− 20.7685)2 + 0.1 · ln (15− 20.7685)2 + 0.3·

ln (16− 20.7685)2 + 0.5 · ln (30− 20.7685)2] = 53.8203.

Figure 5 presents a graph of the resulting points for the IOWLA and σ2
IOWLA based

on the corresponding conditions.
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4.2. Variance Induced Generalized Ordered Weighted Logarithmic Averaging Operators

A Var-IGOWLA operator is a generalization of the Var-IOWLA operator. The proposed
difference for this case is the λ vector, which, following the proposed generalizations in the
previous section, allows for the construction of wider formulations.

Definition 9. A Var-IGOWLA operator with a weighting vector W, constrained to values between
0 and 1 and being the sum of all wj to 1, can be represented by:

σ2
IGOWLA(〈u1, a1〉, . . . , 〈un, an〉) = exp

{[
∑n

j=1 wj
(
ln Xj

)λ] 1
λ

}
, (17)

where Xj is the result of
(
cj − µ

)2 and Xj ≥ 1, cj is the array of ai in a decreasing way dictated
by the induced variables ui, ai is the argument variable, λ ∈ (−∞, ∞)− {0} and µ is the result of
the corresponding IGOWLA operator.
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Example 5. Taking the arguments proposed in Example 1, an inducing vector U = (10, 8, 4, 6) ,
and λ = 2, then by using (17):

σ2
IGOWLA = exp [(0.1 · [ln (10− 21.2934)2]

2
+ 0.1 · [ln (15− 21.2934)2]

2
+

0.3 · [ln (16− 21.2934)2]
2
+ 0.5 · [ln (30− 21.2934)2]

2
)

1/2
] = 57.4027.

Please observe the behavior of the resulting operators following the established condi-
tions in Figure 6.
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4.3. Variance Ordered Weighted Logarithmic Averaging Operators and Quasi-Artihmetic Means

An interesting generalization of the σ2
OWLA operator is the extension by quasi-

arithmetic means [53,55]. These extensions allow for wider representations of problems by
introducing a function describing diverse possibilities for development. In this section, we
study the construction of the quasi-σ2

OWLA and quasi-σ2
IOWLA operators.

Definition 10. A quasi-σ2
OWLA operator with a weighting vector W of dimension n is a mapping

Qσ2
OWLA : Ωn → Ω , such that ∑

j
n=1 wi = 1, wi ∈ [0, 1], and a strictly monotonic continuous

function f (lnb), following:

Qσ2
OWLA(a1, . . . , an) = exp f−1

{
∑n

j=1 wj f
(
ln Zj

)}
. (18)

Please observe that Zj corresponds to
(
sj − µ

)2, and sj is the corresponding argument ai
ordered in a decreasing way and µ is the OWLA operator calculation.

If there is a need for a customized position of the arguments to be included in the
formulation, an order induced vector should be included. In this case, such representation
would have as the result Qσ2

IOWLA : Ωn → Ω .

Definition 11. Aquasi-σ2
IOWLA operator of n with dimension n is in fact a charting

Qσ2
OWLA : Ωn → Ω that includes a W vector of possible weights that strictly conserves the

characteristic ∑
j
n=1 wi = 1, and wi ∈ [0, 1], and a U vector of order inducing variables, such that:

Qσ2
IOWLA(〈u1, a1〉, . . . 〈un, an〉) = exp f−1

{
∑n

j=1 wj f
(
ln Zj

)}
, (19)

where f is a strictly monotonic continuous function f (lnb).
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As defined before, Zj is the result of
(
sj − µ

)2 with Zj ≥ 1, and sj is the corresponding
argument ai to be aggregated in a decreasing way by the decreasing influence of the ui
variables; finally, µ is the IOWLA operator of the arguments.

These formulations share some interesting particular cases, such as when all the
weights of the Qσ2

IOWLA are the same (i.e., ∀ i
(

wi =
1
n

)
), then the Qσ2

IOWLA operator

becomes the Qσ2
IOLA quasi-variance induced ordered logarithmic averaging σ2

OILA op-
erator. If the strictly monotonic function f

(
ln Zj

)
=
(
ln Zj

)λ, the Qσ2
IOWLA transforms

into the σ2
IGOWLA operator. In the case that f

(
ln Zj

)
=
(
ln Zj

)−1, we obtain the vari-
ance induced ordered weighted harmonic logarithmic averaging (σ2

IOWHLA) operator.
When f

(
ln Zj

)
= ln Zj, the Qσ2

IGOWLA operator is simply the variance induced ordered

weighted logarithmic averaging σ2
IOWLA operator. Similarly, when f

(
ln Zj

)
=
(
ln Zj

)2,
the operator is the variance induced ordered weighted quadratic logarithmic averaging
operator σ2

IOWQLA. If the function f
(
ln Zj

)
=
(
ln Zj

)3 presents a cubic distribution, then
we obtain the variance induced ordered weighted cubic logarithmic averaging (σ2

IOWCLA)
operator. In such cases that f

(
ln Zj

)
=
(
ln Zj

)λ and λ→ 0 , a variance induced ordered
weighted logarithmic geometric averaging σ2

IOWGLA operator is produced. Finally, for
f
(
ln Zj

)
=
(
ln Zj

)λ, λ→ ∞ the largest and λ→ −∞ , the lowest values of the dispersion
are correspondingly obtained. Please note that all the particular cases mentioned above for
the Qσ2

IGOWLA operators are also applicable for the Qσ2
GOWLA operators.

5. Variance Generalized Ordered Weighted Logarithmic Averaging Operators and
Heavy Operators

In the case that a traditional bounded average (i.e., between minimum and maximum
values) does not accurately represent the assessed problem, we might opt to use heavy
ordered weighted averages [56]. These types of operators are often used when strong over
or under estimations of the aggregation process are required.

Definition 12. A Var-GHOWLA operator of dimension n is a mapping Var − GHOWLA:
Ωn → Ω defined by an associate weighting vector W of dimension n such that 1 ≤ ∑n

j=1 wj ≤ n
and wj ∈ [0, 1], according to the following formula:

σ2
GHOWLA(a1, . . . , an) = exp

{(
∑n

j=1 wj
(
ln Pj

)λ) 1
λ

}
, (20)

where Pj is the result of
(
bj − µ

)2, bj are the argument variables ai in descending order. Here µ is
the resulting GOWLA operator, λ is a parameter such that λ ∈ (−∞, ∞)− {0}, and ai ≥ 1.

The distinctive difference of the Var-GHOWLA is the unbounded W weighting vector,
that according to the literature [57] can further represent extreme and complex scenarios or
the over estimation of the weights, due to the influence of a decision-maker.

Example 6. Taking the arguments proposed in Example 1, λ = 2, and W = (0.12, 0.14, 0.36, 0.6)
then by (20):

σ2
GHOWLA = exp [(0.12 · [ln (30− 17.7871)2]

2
+ 0.14 · [ln (16− 17.7871)2]

2
+

0.36 · [ln (15− 17.7871)2]
2
+ 0.6 · [ln (10− 17.7871)2]

2
)1/2] = 46.9651.

Please observe that the W weighting vector sum is 1.22. This over representation of the
weights tries to include heavily complex scenarios. Following [57], a wider representation
of this overly weighted scenarios can be constructed when the heavy operator follows
−∞ ≤ ∑n

j=1 wj ≤ ∞ and wj ∈ [0, 1].
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A particularity of the above-mentioned operator results when the ordering process is
not carried out. In this scenario, a Var-GHWLA operator is obtained. Here, there is not a
defined ordering process in the arguments. This operator follows the next formulation:

Definition 13. A Var-GHWLA operator is an application HOWLA : Ωn → Ω of n dimension
constituted by an associate weighting vector W such that 1 ≤ ∑n

j=1 wj ≤ n and wj ∈ [0, 1],
according to:

σ2
GHWLA(a1, . . . , an) = exp

{(
∑n

j=1 wj
(
ln Sj

)λ) 1
λ

}
, (21)

where Sj is the result of (ai − µ)2. Here µ is the resulting GWLA operator and λ ∈ (−∞, ∞)−
{0}, also ai ≥ 1.

Example 7. Taking the arguments proposed in Example 1, λ = 2, and W = (0.12, 0.14, 0.36, 0.6)
then by (21):

σ2
GHWLA = exp [(0.12 · [ln (10− 25.3067)2]

2
+ 0.14 · [ln (15− 25.3067)2]

2
+

0.36 · [ln (30− 25.3067)2]
2
+ 0.6 · [ln (16− 25.3067)2]

2
)

1/2
] = 108.9632.

Further representations of the heavy logarithmic variance operators can include the
induced vectors. The induced values can furtherly introduce complex configurations of the
aggregation operation that model the attitude of the decision makers. The induced vector
forces the mechanism of the aggregation to follow a strict order. In this case, a specific
representation of the induced vector can be included in the formulation.

Definition 14. A Var-IGHOWLA operator that includes a weighting vector W, such that 1 ≤
∑n

j=1 wj ≤ n and wj ∈ [0, 1], is obtained by:

σ2
IGHOWLA(〈u1, a1〉, . . . 〈un, an〉) = exp

{[
∑n

j=1 wj
(
ln Yj

)λ] 1
λ

}
, (22)

where Ej is the result of
(
cj − µ

)2 and Ej ≥ 1, cj is the set of ai following a decreasing way by
the induced variables ui, aj are argument variables, λ ∈ (−∞, ∞)− {0} and µ is the result of the
corresponding IGOWLA operator including the specific arguments of the aggregation.

Example 8. Following the data proposed in Example 1, a W = (0.12, 0.14, 0.36, 0.6) and the vector
U = (10, 8, 4, 6) in Example 5, and λ = 2, then, according to (22):

σ2
IGHOWLA = exp [(0.12 · [ln (10− 29.1403)2]

2
+ 0.14 · [ln (15− 29.1403)2]

2
+

0.36 · [ln (16− 29.1403)2]
2
+ 0.6 · [ln (30− 29.1403)2]

2
)

1/2
] = 67.3246.

The heavy ordered weighted averaging operators have been designed to represent
widely complex real-life scenarios. These might include natural disasters, highly volatile
markets, or world health issues such as pandemics. Some examples and applications are
available in the literature. In incentive decision making problems [58], the heavy weighting
vector aggregates the decision maker’s incentives to enlarge or shrink the expected result
and heavy aggregations in enterprise risk management [59], where diverse strategies are
generated, analyzed and compared, according to the decision-makers attitude.

6. Var-GOWLA Operators and the Selection of Stocks

The variance logarithmic operators have been designed to extend decision-making
when using the logarithmic families of OWA operators, and the proposed mechanisms are
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particularly interesting when applied to finance in the selection of investment analyses in
uncertain conditions. Yager [25] introduced the concept of variance to the OWA operators
as a tool for analyzing not only the expected payoff of a series of options but also the
variability of the alternatives. In our case, the Var-GOWLA operators serve the same
purpose and widen the information that a decision maker may need to select the best
option from a range of possibilities. In general, an application of the logarithmic operators,
including the variance for the extension of the visualization, adheres to the following steps:

Step 1. Consider a collection of A = {A1, A2, . . . , An} investment stock exchange
options and obtain their closing price returns for a set of P = {P1, P2, . . . , Pn} periods.
These sets comprise an (xhi)m×n matrix.

Step 2. The closing price returns P require a further calculation to be fully comparable.

In this case, we propose a simple calculation of the change such that Ci = 100× (Pf − Pi)
Pi

.
From here, a limited set of C ∈ [1, Cn] and Ci > 0 periods should be established, such that
the analyses of the returns focus on those options that yield the largest benefit.

Step 3. The simple mean and variance are common methods for the traditional eval-
uation of stock performance. However, decision-making under ignorance (i.e., when the
uncertainty of the assessed problem is not of a probabilistic nature or when the attitudinal
characteristics of the decision makers must be included in the problem), additional tools for
the appropriate assessment of financial decisions are required. For this reason, the collection
of specific information from the decision maker is expected. First, a w = {w1, w2, . . . , wn}
weighting vector representing the attitudinal character with respect to the vector P is
required. If the decision maker requires a specific configuration of the weighting of cer-
tain periods of time, collect an u = {u1, u2, . . . , un} order induced vector that correctly
represents the attitudinal complexity of the phenomena.

Step 4. Solve for a selected range of operators, including the generalized ordered
weighted averaging (GOWLA) operators as described in (4) and some traditional operators
as the mean, and solve for the σ2

GOWLA operators as described in (7).
Step 5. Generate a ranking of the selected options and their results and assess a decision-

making approach such that a clear selection of the chosen stock option is visualized.

Illustrative Example

The raw data included in this numerical example are retrieved from information
published in the stock market for diverse assets. In the present section, we propose an
illustrative example using monthly real stock data of certain equities published for Mexican
companies.

Step 1. Assume that an investor would like to select the most adequate stock in which
to invest. The possible set of A options include A1 BIMBO A (BIMBO), A2 America Movil
SAB de CV (AMXL), A3 ALFA A (ALFAA), A4 CEMEX CPO (CEMEXCPO), A5 Financiero
Banorte (GFNORTEO), A6 Alsea (ALSEA), A7 Aeromexico (AEROMEX), and A8 Herdez
(HERDEZ). The selection of the stock is based on the maximum benefit with the lowest
dispersion for monthly returns P during the period from January 2018 to January 2020.
Table 2 presents the monthly close returns (xhi)m×n matrix of the selected companies for
the corresponding period.
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Table 2. Selected stocks with monthly close return values.

Period BIMBO AMXL ALFAA CEMEXCPO GFNORTEO ALSEA AEROMEX HERDEZ

January 2020 33.81 15.69 14.14 7.60 116.09 45.76 14.26 37.49
December 2019 34.43 15.10 15.68 7.08 105.65 49.83 15.64 37.57
November 2019 33.80 15.00 15.36 7.15 102.94 52.98 15.41 38.20

October 2019 35.74 15.24 16.68 7.23 105.00 51.32 14.90 39.21
September 2019 35.99 14.64 17.33 7.69 106.07 45.88 14.37 41.82

August 2019 35.07 14.66 17.12 7.47 107.82 42.74 15.26 41.78
July 2019 36.50 13.48 16.60 6.81 96.48 39.07 15.08 40.11
June 2019 40.03 13.97 18.86 8.09 111.36 37.78 18.16 41.13
May 2019 39.55 13.79 17.89 7.99 106.59 38.29 17.89 40.15
April 2019 42.22 14.12 19.16 8.77 119.83 42.38 19.43 40.63
March 2019 40.58 13.88 20.63 9.07 105.54 40.67 20.48 43.30

February 2019 38.23 13.88 21.95 9.46 104.85 48.81 20.82 42.71
January 2019 37.81 15.31 24.07 10.33 106.16 52.92 24.32 41.75

December 2018 39.15 13.97 23.38 9.49 95.78 51.15 22.20 41.00
November 2018 39.00 13.68 20.46 10.47 93.15 51.01 21.69 41.79

October 2018 38.05 14.71 21.41 10.14 111.76 51.94 22.41 37.74
September 2018 39.91 15.04 24.13 13.14 135.30 63.67 25.69 42.33

August 2018 39.75 16.05 25.13 13.53 130.86 68.06 26.86 41.15
July 2018 39.66 15.97 25.36 13.89 129.96 64.29 28.55 40.49
June 2018 38.69 16.57 23.10 13.06 117.07 68.40 26.99 41.86
May 2018 38.06 15.50 20.48 11.86 106.20 65.41 24.35 39.43
April 2018 43.53 17.31 24.01 11.70 117.02 69.56 26.15 44.77
March 2018 39.78 17.25 23.29 12.03 111.13 63.53 29.00 45.99

February 2018 44.11 17.34 22.39 12.45 113.16 64.26 29.20 46.19
January 2018 45.40 17.44 23.36 15.48 119.58 60.88 29.53 43.68

December 2017 43.51 16.95 21.62 14.70 107.83 64.37 28.59 45.68

Source: Mexican market equities historic data retrieved from the website https://mx.investing.com/equities/ (accessed on 22 July 2021).
All of the values are in MXN.

Step 2. The decision maker will make the final selection based on the maximum
benefit with the lowest dispersion for C = 10 periods of positive yields of the selected stocks.
Table 3 includes the corresponding C periods to be analyzed.

Table 3. Selected positive return periods to be considered.

C BIMBO AMXL ALFAA CEMEXCPO GFNORTEO ALSEA AEROMEX HERDEZ

C1 1.86 3.91 2.08 7.34 9.88 3.23 1.49 0.10
C2 2.62 0.67 1.23 2.95 2.63 11.86 3.42 4.16
C3 1.21 4.10 3.13 9.69 11.75 7.35 3.69 2.44
C4 4.04 8.75 5.42 1.25 4.48 9.39 1.19 1.38
C5 6.15 1.31 2.95 8.85 13.54 3.41 1.51 2.30
C6 1.11 1.73 14.27 3.25 0.66 4.20 9.55 1.83
C7 0.38 9.59 9.78 6.36 10.84 3.46 2.35 10.73
C8 2.50 2.12 12.79 10.12 2.82 0.27 5.78 2.87
C9 0.40 0.50 3.09 1.37 3.39 5.86 10.84 1.63
C10 0.23 6.90 4.02 5.31 0.69 4.57 3.29 6.16

Step 3. A W weighting vector of W (0.25, 0.23, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03)
for the representation of the attitudinal characteristic of the decision maker is included.
Please note that this is a rather optimistic orientation. Furthermore, the decision maker
would like to include an additional perspective to the problem, in this case the optimistic
characterization for some specific months of the year. For this, we include an induced
weighting vector of U (10, 9, 8, 1, 2, 3, 4, 5, 6, 7).

Step 4. With these set values, we can now solve for GOWLA and σ2
GOWLA operators

and contrast the results with those of certain traditional and other uncertainty-oriented
proposed methods. Table 4 shows the resulting payoff of the selected stocks based on the

https://mx.investing.com/equities/
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GOWLA operator and certain other methods. Table 5 presents the resulting aggregation of
the dispersion based on the proposed σ2

GOWLA operators.

Table 4. Payoff aggregated results.

Operator BIMBO AMXL ALFAA CEMEXCPO GFNORTEO ALSEA AEROMEX HERDEZ

AVG 2.05 3.96 5.88 5.65 6.07 5.36 4.31 3.36
OWA 3.30 6.14 8.97 7.62 9.01 7.56 6.63 5.38

GOWLA 2.45 4.74 7.24 6.73 7.04 6.41 5.38 3.98
IGOWLA 1.95 3.85 6.44 5.63 5.52 5.24 4.79 3.15
GOWQLA 3.57 5.89 8.23 7.34 8.42 7.32 6.21 5.31
IGOWQLA 3.74 5.61 7.79 6.62 7.65 7.08 5.90 5.68
GOWCLA 3.62 6.43 9.00 7.72 9.12 7.61 6.82 5.43
IGOWCLA 3.40 6.24 8.76 7.23 8.58 7.26 6.67 4.87

Table 5. Dispersion aggregated results.

Operator BIMBO AMXL ALFAA CEMEXCPO GFNORTEO ALSEA AEROMEX HERDEZ

σ2 3.52 11.29 21.90 11.20 23.96 11.38 11.54 9.44
σ2OWA 4.06 11.00 23.51 8.23 20.31 11.36 13.20 12.31

σ2GOWLA 1.14 7.86 20.05 4.87 20.41 6.54 8.09 4.34
σ2IGOWLA 2.51 8.94 23.69 9.61 24.26 9.44 10.83 5.98
σ2GOWQLA 4.96 9.84 21.45 62.50 17.51 26.62 12.95 9.80
σ2IGOWQLA 7.37 12.39 25.26 11.61 24.06 13.86 19.40 12.90
σ2GOWCLA 4.13 10.57 22.50 7.61 18.38 9.85 12.97 12.08
σ2IGOWCLA 5.51 13.32 25.92 9.93 23.88 6.38 15.05 13.26

Step 5. The decision of selecting an asset could be given by the highest payoff, the
lowest dispersion of the data, or a combination of both. Table 6 presents the ranking of the
selected stocks depending on the highest payoff. Table 7 shows the ranking of the stocks
by the minimum dispersion of their information.

Table 6. Ranking based on highest payoff.

Operator Preference

AVG GFNORTEO � ALFAA � CEMEXCPO � ALSEA � AEROMEX � AMXL � HERDEZ � BIMBO
OWA GFNORTEO � ALFAA � CEMEXCPO � ALSEA � AEROMEX � AMXL � HERDEZ � BIMBO

GOWLA ALFAA � GFNORTEO � CEMEXCPO � ALSEA � AEROMEX � AMXL � HERDEZ � BIMBO
GOWQLA GFNORTEO � ALFAA � CEMEXCPO � ALSEA � AEROMEX � AMXL � HERDEZ � BIMBO
GOWCLA GFNORTEO � ALFAA � CEMEXCPO � ALSEA � AEROMEX � AMXL � HERDEZ � BIMBO
IGOWLA ALFAA � CEMEXCPO � GFNORTEO � ALSEA � AEROMEX � AMXL � HERDEZ � BIMBO

IGOWQLA ALFAA � GFNORTEO � ALSEA � CEMEXCPO � AEROMEX � HERDEZ � AMXL � BIMBO
IGOWCLA ALFAA � GFNORTEO � ALSEA � CEMEXCPO � AEROMEX � AMXL � HERDEZ � BIMBO

The results vary depending on the operator utilized for the analysis. However, some
operators match in the ranking of the selected equities. When analyzing the payoffs of the
selected stocks in combination with their variance, the results vary significantly. In general,
the stock with the highest payoff is given by either GFNORTEO or ALFAA. However, the
dispersion of these stocks is the highest, resulting in these stocks being the last position
of the ranking for the majority of the operators. When selecting a stock, low dispersion is
preferred. Therefore, the decision should include the results of the lowest variance, and
depending on the operator selected, this can vary over diverse options. If both criteria
are considered and the GOWLA operator is considered, then CEMEXCPO is the selected
option for the conditions established. Please observe the generated plot for CEMEXCPO
analyzed with the GOWQLA and σ2

GOWQLA operators in Figure 7.
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Table 7. Ranking based on lowest dispersion.

Operator Preference

σ2 BIMBO � HERDEZ � CEMEXCPO � AMXL � ALSEA � AEROMEX � ALFAA� GFNORTEO
σ2OWA BIMBO � CEMEXCPO � AMXL � ALSEA � HERDEZ � AEROMEX � GFNORTEO � ALFAA

σ2GOWLA BIMBO � HERDEZ � CEMEXCPO � ALSEA � AMXL � AEROMEX � ALFAA � GFNORTEO
σ2GOWQLA BIMBO � HERDEZ � AMXL � AEROMEX � GFNORTEO � ALFAA � ALSEA � CEMEXCPO
σ2GOWCLA BIMBO � CEMEXCPO � ALSEA � AMXL � HERDEZ � AEROMEX � GFNORTEO � ALFAA
σ2IGOWLA BIMBO � HERDEZ � AMXL � ALSEA � CEMEXCPO � AEROMEX � ALFAA � GFNORTEO

σ2IGOWQLA BIMBO � CEMEXCPO � AMXL � HERDEZ � ALSEA � AEROMEX � GFNORTEO � ALFAA
σ2IGOWCLA BIMBO � ALSEA � CEMEXCPO � HERDEZ � AMXL � AEROMEX � GFNORTEO � ALFAA
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7. Conclusions

In this paper we have analyzed some variance logarithmic averaging operators. Vari-
ance is one of the most common dispersion measures and has been included as part of
the ordered weighted average operators’ toolset since 1996. Some of the advantages of
including variance as a dispersion measure in OWA operators include the additional infor-
mation given to decision makers to generate informed choices between diverse alternatives.
The benefits of using the logarithmic averaging operators and the introduced variance
dispersion measures are wider representation of complex problems, the ability to consider
the attitudinal characters of the decision makers, the logarithmic properties of the operators,
and the wide-ranging set of configurations that the proposed generalizations allow.

In general, two families of variance aggregation operators are proposed, the variance
generalized ordered weighted averaging (σ2

GOWLA) operators and the induced variance
ordered weighted averaging (σ2

IGOWLA) operators. The Var-GOWLA is a proposition
based on the optimal deviation model introduced by [24] and the inclusion of dispersion
measures developed by [25]. Here, its properties, particular cases, and some families
are studied. Moreover, the Var-IGOWLA operator is also introduced. In this case, the
ordering of the elements depends on the included inducing vector, which allows wider
representations of diverse problems and, specifically, the customization of the analyses
depending on the decision maker’s points of view.

The introduced variance tools in the logarithmic averaging operators are designed to
extend the decision-making process by allowing the possibility of having an additional
measure to model a specific problem. The characteristic design of the σ2GOWLA and the
σ2IGOWLA operators can be applied to a variety of problems in engineering, statistics,
and economics. However, it is particularly interesting in financial decision-making. In
this paper, an illustrative example including real-world financial information is proposed.
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This case analyses eight equities from the Mexican financial markets. The monthly closing
price for ten positive return months is retrieved and analyzed with traditional, ordered
weighted averaging operators and logarithmic averaging operators, and this analysis
includes its dispersion measures. The objective, here, is to rank the performance of the
equities based on the expected payoff of the identified data points and its dispersion. The
results conclude that the payoff ranking is equal to some studies’ equities. However, the
dispersion measures show varying results, depending on the operator utilized.

This paper studies extended tools for decision-making under ignorance and uncer-
tainty and when subjective information or the attitudinal characters of stakeholders must
be modeled. The implications of this research can directly improve decision-making when
using a combined view of the logarithmic averaging operators and introducing disper-
sion measures. Further research is required, especially to strengthen the benefits of the
logarithmic properties of the introduced operators, the specifications that result in the
most appropriate selection of these operators [60], and the inclusion of the variance and
other modeling tools including fuzzy and interval numbers, distances, and Bonferroni
approaches (among other models).
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