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ABSTRACT  
Acoustic radiation force (ARF) is a nonlinear acoustic phenomenon for which the acoustic field 
properties and, to an even greater extent, the explicit dynamics of the object, have received 
limited attention in the published literature to date. Any oscillations due to the flow field or 
external perturbations are thereby negligible while the particle is trapped in a stable position.   
By changing the viewpoint from the acoustic field to the dynamics of a levitated particle, the 
amplitude and frequency of external oscillation is non-negligible, we ask the question of how 
external excitation changes the dynamics of the object. We explicitly derive an analytical 
formulation of a trapped object in the form of a Duffing-like equation with its constants being 
defined by the object itself, the fluid, the acoustic wave, and the external vibration properties.  
In this case, the bifurcation behaviour is studied, and we show this together with a sensitivity 
analysis to represent correct dynamic behaviour in certain regimes of the bifurcation diagram.  

INTRODUCTION 
The study of acoustic wave propagation in fluids has attracted much research in the recent 

years [1-4]. One of the most interesting phenomena in the field of nonlinear acoustics is that of 
the Acoustic Radiation Force (ARF), which is based on the physical interaction of a sonic wave 
with an object placed along the acoustic wave path. The acoustic radiation force exerted on the 
object is defined through the integration of the acoustic radiation stress over a time-varying 
surface. The acoustic radiation stress tensor is extracted by solving the Navier-Stokes equations 
and the continuity equations. Using the perturbation theory, the non-zero radiation force stems 
from the higher order terms of the solution. Changing the energy density of an incident acoustic 
field drives the acoustic radiation force with its magnitude dependent on the amount of energy 
being absorbed by the object [2]. 

Until recently, acoustic levitation was applied mainly to statically suspend particles at a fixed 
position in air [2] which reduce the applicability of acoustic levitation. To overcome this 
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limitation, new levitation techniques have been proposed to manipulate and to transport small 
samples of solids and liquids in which the dynamic of particles is important. Separation and 
manipulation of particles suspended in fluid in micro dimensions has taken a major share of 
recent research and has been developed in many applied fields including biotechnology and 
medical diagnosis [4]. This manipulation of particles is possible in different ways, including 
the use of magnetic or electronic fields, dielectric manipulation [5-7]. In this rather field-centric 
way (the potential field is in the focus), the used samples and particles must have specific 
electrical or magnetic properties so that they can be well controlled and manipulated. The use 
of acoustic forces (including acoustic streaming) is another method of manipulating particles, 
which has attracted special attention due to its different capabilities. The study of acoustic 
forces and the interaction of the sound waves and particles is called “Acoustophoresis” and it 
is a form of non-contact particle manipulation in microfluidic devices [3]. The precision of 
manipulation processes can be enhanced through a better understanding of the acoustic 
radiation forces and their interactions [3]. Unlike the previously mentioned methods, the use of 
acoustic waves has no limitations on electrical or magnetic properties and can separate all types 
of particles from the fluid if they differ from the host fluid in terms of their densities. Also, 
acoustic waves do not have the negative effects that electric and magnetic fields may have on 
particles and biological cells, and do not change their properties [8]. Using specifically shaped 
(acoustic metamaterial) objects would enable to manipulate target specimens, thus pioneering 
object-centric, acoustic particle control approaches [9, 10].  The number of applications which 
make use of acoustic radiation forces especially related to the fields of biotechnology, medical 
diagnosis, or micro-devices are growing and because of the complexity of experimental works 
dealing with micrometre dimensions an urgent need for analytical studies and theoretical insight 
in this subject matter is apparent.  

Commonly, the fluid domain rather than dynamics of the particle are considered even though 
acoustophoretic applications are related to particle manipulation, particle sorting etc. However, 
due to the nonlinear nature of the problem and interaction among the fluid and the particle, the 
nonlinear dynamics of the particle are essential to better understand these acoustophoretic 
applications. Complex dynamics is based on studying time series by linking data to the explicit 
theory of nonlinear dynamics to shed light on the true dynamic behaviour of a particle also 
extractable from experiments. Fushimi et al [11] recently studied the nonlinear dynamics of an 
acoustic levitator and extracted a Duffing-like equation from their experiments. Yet, the exact 
properties of this equation, and their relatedness to acoustics, is yet to be explored. The 
sensitivity of certain parameters important for nonlinear dynamics and the behaviour of the 
levitated mass is also not fully understood yet.  

Coming from Gor’kov’s theory [12] and the acoustic wave equation, herein, a dynamical 
system and surrogate of single degree-of-freedom nonlinear oscillator model of a solid particle 
trapped in a one-dimensional acoustic standing wave field, similar to that found in an acoustic 
levitator, is derived. Using time integration a variance-based analysis method is conducted 
[13,14] to understand parameter sensitivities to conduct a bifurcation analysis. Using the 
bifurcation analysis allows comparing the dynamics of the surrogate system with that of the 
Duffing oscillator in an object-centric approach [11,16] .  

NONLINEAR DYNAMICAL MODEL OF THE ACOUSTIC RADIATION FORCES   

According to Fushimi et al. [11], the acoustic radiation force, radF , for a solid particle 
trapped in a standing wave, caused by two counter-propagating waves, e.g., from two sets of 
transducers, operating at a given frequency, is  

� �� �rad osin ( )F z Z tD E � ,   (1) 
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where z and � �oo sinA tZ Z  are the position of the spherical object with respect to the 
pressure node and the equilibrium position, respectively. Here, D and E  are treated as constants 
and, using King’s formulation [15], are given as 
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where aP  is the magnitude of the incident pressure field, Z  is the frequency of standing 

acoustic wave, k  denotes the acoustic wave number, r  is the levitated object’s radius, 0U  and 

1U  are the object’s and the surrounding fluid’s density, respectively. Considering the drag force 
and by applying Newton’s second law, the equation of motion becomes [11]  
 

o rad dragM z F F �    (3) 

where oM is the mass of the object. From the Stokes flow theory, the drag force on a sphere can 
be written as [11] 

� �2
drag d 0
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2

F C r z zS U � , 
  (4) 

where dC  denotes the drag coefficient that depends on the shape of the object and the Reynolds 
number [11]. Substituting Eqs. (1) and (4) into Eq. (3) provides  
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Eq. (5) is a nonlinear equation for a single degree-of-freedom system describing the 
behaviour of an acoustically trapped particle in a standing plane wave subjected to a secondary 
excitation. By introducing zT E , and for small input excitation of kA<<1, Eq. (5) can be re-
written as 

� � � � � �1 2 3 osin cos 0sinc c c tT T T T T Z� � �  ,   (6) 

 
where the constant coefficients are 
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Using the Taylor series expansion for 3sin / 6T T T| � , Eq. (6) can be rewritten as 
 

� � � �3
1 2 3 ocos sin

6
bc c c tT T T T T T Z� � �  ,   (7) 

Eq. (7) shows a Duffing-like oscillator in too small amplitude excitation, which was 
previously predicted experimentally for an acoustically levitated spherical object [16] which 
obtained using Gor’kov’s theory. Another way to extract the nonlinear equation of motion is 
the sparse identification of nonlinear dynamics (SINDy) algorithm which is one approach to 
discover dynamical systems models from experimental data, directly [17]. 
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STATISTICAL MODEL AND SOBOL SENSITIVITY ANALYSIS 
Model inputs always have uncertainties that come from different sources. The input 

uncertainty is propagated through the model into the output, and therefore, the output will also 
include uncertainty. The purpose of the sensitivity analysis is to find the important parameters 
and their significance in the output of the model. To consider the uncertainties in the inputs, the 
input parameters of the model are introduced using statistical distributions. One of the most 
famous charts that shows many indicators of descriptive statistics related to data is “Box and 
Whisker plot" which usually simply called a box plot [13,14]. This chart can give information 
about the existence of outlier data, symmetry in the data, and the skewness of the data.  

In this paper and by using the 4th order Runge-Kutta method, Eq. (6), with a different time 
step t'  varying from > @410  sRt

�'   to a reference time step at > @810  sRt
�'  , is solved 

numerically. To investigate the dynamic response of the system, the following values of 
parameters are extracted from Ref. [11] and in each step the relative error can be calculated as: 

 

R RE T T � .  (8) 

Then, the relative errors for these time steps are normalized by dividing to � �/ Rt t' ' , and 
are plotted in the Fig. 1 which shows 95% Confidence Interval (CI) for the median (notched 
boxplot diagram) [14]. By using this chart, > @610  st �'  can be chosen as an appropriate time 

step wit -4[9.60 , 9.81] 10 .CI  u   
 

 
Figure 1. Time step convergence study using a box plot.  The whiskers show the minimal 

and maximal values, the edges of the box indicate the 25 – and 75 – percentile the red line 
represents the median and the notches show the 95% confidence interval of the median. Non-
overlapping notches show non-significant difference in median estimates of the relative error. 

  
Global sensitivity analysis are generally variance-based methods that greatly rely on 

sampling data and input parameter distribution, which is a suitable tool for statistical analysis 
and determining the amount of input effects on the output responses of systems in most of the 
problems [13].   
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In the Sobol sensitivity analysis method [13], for a model defined by ( )Y f X  where Y  is 

the output of the system and > @1 2, ,... nX x x x  is the vector of input parameters, ( )V Y , the 
variance of the system can be defined by [21]: 
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in which, iV  is the variance because of the first order effects for each parameter and ijV to      

1...nV  are second and higher order effects for each parameter which shows the variance because 

of the interaction between parameters. The first-order sensitivity coefficient for the 
thi  

parameter can be defined by [13]: 
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and the total sensitivity coefficient for the 
thi  parameter can be defined by 
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where, ,...ijS are the second and higher order sensitivity coefficient for each parameter.  

For the sensitivity analysis, the model inputs > @1 2 3, , , oc c cX Z  are set to be uniformly 
distributed. Assuming the following ranges for the test variables: 

 
4 2 -2 4 -2

o1 2 3[6 , 8] 10  [-],  [1.2 ,1.8] 10  [s ],  [8 , 10] 10  [s ],  [10 ,  25] [Hz],  c c c Z� u  u  u    
 
the first order effects and the total effects of the parameters are shown in Fig. 2. It was found 
that the coefficient 2c  in Eq. (6) is the least sensitive parameter and 3c  is found to be the most 
sensitive parameter. In terms of total effects, the similar behavior was seen in Fig. 2. It is also 
seen that the total effects of 2c  are smaller than other parameters, i.e., there is not much 

interaction between 2c  and other parameters. 
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Figure 2: Results of the variance-based sensitivity analysis. Importance ranking of the 

coefficients in Eq. (6) by sensitivity analysis using uniformly distribution. The force has the 
strongest influence on the results followed by the parameters 1c  and oZ ; 2c  is having a 

rather small influence on the dynamics.  
 
Using result obtained by the sensitivity analysis the amplitude of disturbance (or second 

excitation) A, which influences 3c  in the Eq. (6), is selected as bifurcation parameters in the 
next section. 

BIFURCATION DIAGRAM 
Bifurcation diagram and its analysis is an efficient means to investigate the steady-state 
dynamics of nonlinear system over a wide range of so-called bifurcation parameters [18,19]. 
The bifurcation diagram in Fig. 3 obtained by using Eq. (6) by changing the external excitation 
amplitude from A=0 to A=1 or kA=0 to kA=0.2 in which four distinct regions can be observed.       
In the low amplitude, > @0.05 mm  or 0.01A kAd  , the system shows chaotic (C) or quasi-
periodic (QP) behaviour, then and by increasing the value of the bifurcation parameter jump (J) 
phenomenon can be observed. The discontinuity in the bifurcation diagram shows jumps and 
period-doubling bifurcation (PDB) and period adding bifurcations (PAB) are next different area 
in the bifurcation diagram.  
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Figure 3: The bifurcation diagram for a particle trapped in an oscillating radiation force field 
using Eq. (6). The (QP-C) area indicates the physically relevant regime ranging from A~0 to 

A~0.05. The low amplitude regime shows intricate high-order periodic behaviour, the 
following bifurcation behaviour is indicated by jumps, and subsequent increase in periodic 

solutions at A~ 0.7 and A~0.8.  
 

Fig. (3) shows that by increasing the value of the bifurcation parameter the period doubling 
bifurcation diagram is not valid anymore as predicted in [11], and period-2 changes to period-
5. Previous studies in [11,16] proposed the Duffing equation of motion to describe the nonlinear 
dynamical behaviour of a particle trapped in an acoustic radiation force field. By making a 
comparison between the bifurcation diagram for Duffing equation with cubic nonlinearity term 
presented in [18] and present study, it can be observed that Duffing equation with cubic 
nonlinearity term in Eq. (7) cannot describe the nonlinear dynamical behaviour of the system 
and higher order terms should be considered.  

CONCLUSIONS 
Using Gor’kov’s theory, a mathematical equation for modelling nonlinear vibration of a solid 
particle trapped in an acoustic radiation force field was developed. The governing equation of 
motion was solved using the Runge–Kutta order fourth and the appropriate time step was 
selected using a statistical observation and based on the variance of results shown by a box plot 
diagram. The sensitivity of the dynamic behaviour of the system was investigated by calculating 
the Sobol indices in relation to various system parameters, including coefficients related to 
particle and fluid properties, external vibration frequency and amplitude. The results show that 
the external vibration amplitude and frequency have a significant effect on the system response. 
The period-doubling bifurcation and high-order periodic behaviour were shown in the 
bifurcation diagram. The discontinuity in the bifurcation diagram showed the jump 
phenomenon. The result shows that the classical Duffing equation of motion does not describe 
the nonlinear dynamical system behaviour. However, the result indicate that more complex 
dynamics are possible and further investigation and experiments are needed. While these results 
are potentially important for practical object manipulation, only experiments, in highly 
nonlinear regimes, can verify our findings and their physical relevance.  
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