. 4
% UTS

UNIVERSITY

OF TECHNOLOGY

SYDNEY

Investigating the miRNA pathways
contribution to intra-tumour
heterogeneity in glioblastoma and
RNA binding of isoforms of the
mMiRNA effector protein Argonaute

by Christopher Michael Smith

Thesis submitted in fulfilment of the requirements for
the degree of

Doctor of Philosophy

under the supervision of Gyorgy Hutvagner, Daniel
Catchpoole, and Jinyan Li

University of Technology Sydney
Faculty of Engineering and IT

December 2022



Certificate of Original Authorship

I, Christopher Smith, declare that this thesis is submitted in fulfiiment of the requirements for the
award of Doctor of Philosophy, in the School of Biomedical Engineering, Faculty of Engineering
and IT, at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, |
certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.
This research is supported by the Australian Government Research Training Program.

Signature:

Production Note:
Signature removed prior to publication.

Date: 2/12/2022




Acknowledgements

First and foremost, | would like to express my sincerest gratitude to my supervisors Gyorgy Hutvagner,
Daniel Catchpoole, and Jinyan Li for their mentoring and continuous support throughout this degree.

This PhD would not have been possible without you all.

A special thanks to Sarah Bajan for all her wet lab work, which generated much of the data used in
this thesis, as well as her mentoring throughout my early years as a student. Thanks to Hanjie Wu,
Chaowang Lan, and all other members of the Hutvagner lab for their suggestions and help in the lab
and with bioinformatics. In addition, thanks to Diego Fajardon for setting me in the right direction

during my first year when | was learning bioinformatics.

Over at the Children’s Hospital at Westmead | would like to thank the members of the Tumour Bank,
including Aysen Yuksel and Li Zhou, who helped me find my way around the lab and make sure | had
everything | needed there. Lawrence Cantrell for his assistance with training so | could work with

equipment in The Westmead Institute for Medical Research.

| would also like to thank Dan Carter and Dominik Beck for their insightful feedback in each of my

candidature assessments.

Last but certainly not least, a special thanks to my family, including my partner Vee who was by my
side through every moment during these years, and my parents for raising and supporting me so |

could reach this point in my life.



Impact of the COVID-19 Pandemic on this Thesis

Our original plan to investigate our first hypothesis included an experiment to generate single cell RNA
and small RNA data in a heterogeneous cancer model such as glioblastoma or neuroblastoma. This
data was to be used to address both aims by enabling a direct comparison between miRNA and RNA
expression profiles in potential cancer subpopulations. However, several months into the COVID-19
pandemic we decided to exclude this experiment, which we deemed high risk due to the scale and
ambition of the project as well as the challenges in collaborating cross-institution during this period.
We had concerns that access to researchers and laboratories would be impaired and make completion
of this project unfeasible. In response, we retained our original aims but had to rely exclusively on
public data. We chose glioblastoma as a heterogenous cancer model as it is one of the most
extensively sequenced cancers with expression data available for RNAs and small RNAs in bulk

tumours and single cells.

We also planned and initiated an experiment in 2021, approximately one year prior to my end of
candidature. This involved collaboration with the Tumour Bank, part of The Children's Cancer Research
Unit (CCRU) at The Children’s Hospital at Westmead. This experiment intended to biologically validate
observations of heterogeneity with miRNAs from the Dlk1-Dio3 locus in glioblastoma, by using a
fluorescent in-situ hybridization assay (miRNAscope) for detection of miRNAs in formalin-fixed
paraffin embedded glioblastoma samples. The project at the Tumour Bank was initially planned to
begin late March in 2021. However, due to supplier errors and delays in shipping we were not able to
receive all the required reagents to proceed with the experiment until June 2021, right before the
second lockdown was instated in Sydney. The proximity of the outbreaks to Westmead hospital and
the challenges in coordinating work with other lab members for assistance, access to facilities, and
equipment installation, meant | was forced to delay this project until September 2021 with only a few
months remaining before my final candidature assessment. While our preliminary results indicated
that we were able to detect RNA using the control probes, the staining was inconsistent across cells,

and we were unable to resolve this issue through optimization in the available timeframe.

We also had planned a second experiment in 2021, at the University of Technology, Sydney, to
sequence Argonaute 2 using Nanopore sequencing for full length isoforms. This was intended to
support the findings in chapter 4 where we used Capture-seq and short read sequencing to detect
multiple isoforms of Argonaute 2 in human tissues and cell lines. To make this project feasible, we
developed a modified library preparation protocol which could generate Argonaute 2 cDNA through

targeted amplification. However, we were met with significant challenges with generating full length



amplicons of this gene, and because of constant delays throughout 2021 our timeline for both

experiments clashed, and we chose to prioritise the miRNAscope project at the Tumour Bank.

Despite the challenges imposed by COVID-19 | was able to publish 3 first author papers — 1 review and

2 research papers.
Publications

Smith, C. M., Catchpoole, D. & Hutvagner, G. Non-Coding RNAs in Pediatric Solid Tumors. Front. Genet.
10, 1-18 (2019).

Smith, C. et al. Cataloguing the small RNA content of honey using next generation sequencing. Food
Chem. Mol. Sci. 2, 100014 (2021).

Smith, C. M. & Hutvagner, G. A comparative analysis of single cell small RNA sequencing data reveals
heterogeneous isomiR expression and regulation. Sci. Rep. 12, 2834 (2022).



Table of Contents

Y o1 1 T PSPPSR 15
1. LIterature FEVIEW....ccii ittt aaa e 16
1.2, MIRNA DIOZENESIS civviieeiiiiie ettt ettt e e e e s st e e e s s bae e e s ssbbeeessnnbaeeessnsens 16
1.1.1. miRNA biogenesis via the canonical pathway .......ccccceieeiciiiiieiiie e, 16
1.1.2. Non-canonical pathways for miRNA DiOgENESiS.......c.coovvveiirreeieeeeeeeeciireeeeeeee e, 17
1.1.3. Alternative splicing regulates the function of miRNA biogenesis proteins........... 18
1.1.4. miRNASs often form ClUSTers........cccviiiiiiiiii e 18
1.2. IsomiRs: a hidden layer of gene regulation .........ccceeeviieiieiciiiiieeeee e, 21
1.2.1. Uridylation regulates the processing of several pre-miRNAS.........cccccevvveveeeeeeennnn, 21
1.2.2. IsomiRs with distinct regulatory functions ..........ccccee e, 21
1.2.3. miRNA stability and turnover is regulated by 3" tailing......cccccevveeeeiicciivveeneeeeeien, 22
1.3. Argonaute is essential for miRNA-mediated translation repression..........ccccccuveeeneee. 24
1.3.1. Functional domains of ArgONAULE ......cccevciiiiiiiiiiei ettt eaee e 24
1.3.2. Mechanisms of translational repression by the RISC ..........ccoceveeiiiiicciiiieeeeeeeee, 27
1.4. miRNA dysregulation is a general feature in Many CanCers.....cccccccovevevvvveeeeeeeeerecnnnne, 29
1.4.1. Impairments of the miRNA processing machinery in cancer ........ccccecvvveeerviiveeenne 29
1.4.2. Genetic aberrations of MIRNA geNes iN CANCEN......cvviiiiieiciiiiieeee e 31
1.4.3. Epigenetic regulation of miRNAs is affected in cancer........ccccccveeeveecciiveeeeeeeeennnn, 32
1.4.4. miRNAs are key mediators of transcription factor-driven oncogenesis................ 32
1.4.5. IsomiR expression has been linked t0 CANCer.......ccovvviiiiiiiiiiiiiiie e, 35
1.4.6. Non-coding RNAs in pediatric Solid tUMOUIS.........ceeeiieiiiiiiiiieeeeeeeeeeeireeeeeeee e 35

1.5. Single cell sequencing reveals genetic and transcriptomic heterogeneity in cancers .36

1.5.1. Single cell sequencing has enabled deeper interrogation of intra-tumour

TN W o =41 o =T A PSPPSR 37
1.5.2. The current state of single cell small RNA sequeNnCiNg.......cccceeeveeeviiecivreeeeeeeeeeennns 38
1.6. Summary and research QUESTIONS ........ueeeeeieeiiiiiiiieieeee et e e e e e eesrrraeee e e e e e e s anraes 41

1.6.1. Hypothesis 1 - microRNA and isomiR expression contributes to heterogeneous
gene regulation and can identify subpopulations in cancer ......cccccceeeeeciiiieeee e, 42

1.6.2. Hypothesis 2 - Splice variants of Argonaute 2 have distinct regulatory functions

through association with different RNAS.........cooovvviiiiiiici e 42

. The role of miRNAs in glioblastoma tumour heterogeneity and cell state regulation........ 43
2.1, Chapter iNtrodUCTION ...ccci e e e e e e e e e e e e s nerer e e e e e e e eeanns 43
2.1.1. Heterogeneity is a hallmark feature of the brain cancer glioblastoma................. 43

Vi



2.1.2. Evolution of models for intra-tumour heterogeneity in glioblastoma.................. 43

2.1.3. miRNAs play a key role in brain development and glioblastoma.............cccc....... 44
2.2. SPeCific MEthOAOIOGY.....uiiiiiiiiii it rbae e e s aare e e e 45
2.2.1. Data COIECLION ...eeueeiieeiee e 45
2.2.2. Single cell small RNA sequencing pre-processing and mapping........cccevvveeeeeeeeennns 45
2.2.3. Identification of cell subpopulations with miRNA expression.........ccccecveeeernnnnenn. 45
2.2.4. MIRNA target prediCtion ..... .. 46
2.2.5. Scoring for TCGA subtypes, cell states and miRNA targets .....cccccccceevevvvveereeeennnns 46
2.2.6. Code for data analysis and fiGUIeS........cccovvuieiiiriiiie i 46
2.3. Identification of heterogeneously expressed miRNAs in glioblastoma....................... 47

2.3.1. Distinct glioblastoma subpopulations can be identified through single cell miRNA
and iSOMIR eXPression ProfileS ......cccvvieieiiii e e e e e rareee e 47

2.3.2. Expression of two miRNA clusters distinguish KS4 glioblastoma subpopulations 49

2.4. Cell autonomous miRNAs are associated with glioblastoma subtypes and cell state

F0=T o 1T OO PP PP PP PPPPPPPPPRPON 54
2.4.1. Different miRNAs are associated with TCGA glioblastoma subtypes.................... 54
2.4.2. Different miRNAs are associated with glioblastoma cell state genes.................... 58

.......................................................................................................................................... 60
2.5. The DLk1-Dio3 locus is associated with cell states in single cells.........ccccceevvvveeeiennnnnn. 62
2.5.1. Long non-coding RNAs MEG3, MEG8 and MEGY predict DIk1-Dio3 miRNA
expression in glioblastoma tUMOUIS.........ciiiiiiiiiiice e 62

2.5.2. MEG3 expression is associated with the neural progenitor-like and
oligodendrocyte progenitor-like cell states in single cells..........ccccovevrvveeiiiiiiiiciinreeennnen. 64

2.6. Target prediction identifies DIk1-Dio3 miRNAs regulate key transcription factors and
regulatory pathways involved iN CANCEN ........uevii i e 67

2.6.2. Expression of miRNA targets is associated positively with NPC and OPC cell states

and negatively WIith IMIES States......ccvveeiiiiiiiiiiiieeeee e 71
B2 A IS of U1 [ o PP 79
2.7.1. Defining glioblastoma cell STates ......ccuiviiiiiiiiiiriiie e 79
2.7.2. Challenges of determining miRNA activity through changes in target expression
.......................................................................................................................................... 80
2.7.3. miRNAs are potential biomarkers of glioblastoma heterogeneity.........cccceeeenn.e. 81

3. A comparative analysis of single cell small RNA sequencing data reveals heterogenous
iSOMIR expression and regUIAtIoN........ccii i 83

vii



% Ol FoT o) =T g T d oo LU ot { o o HES RSO URRRU OO PUPPTRRN 83

I Y o T=Yol ki Toll o g Y=t aToTe [o] [0 =4V 2SRRI 85
3.2.1. Data CollECION ....ei ittt 85
3.2.2. Sequencing Data ProCESSING ...ccceiiiiieeiiiiiiee e eeeeeetcie e e e eeetcre e e e e e e e eeeaae e e e e e eeneens 85
3.2.3. mMiRNA Mapping and ANNOtatioN........ccccivveeeeei i 85
3.2.4. Correlation of miRNA and isomiR Expression with Predicted Targets.................. 86
3.2.5. Code for Data Analysis and FIGUIES .........uuieeieeiieiiciiieeee e cereree e e e ecvaae e 86

3.3. miRNA and IsomiR abundance are highly variable across cell types in the three single

cell SMall RNA-SEQ PrOtOCOIS ...ccooiiiieeeeee ettt e e e e e sr e e e e e e e e eesnbrraeeeeeeeeennns 87

3.4. IsomiR processing is likely regulated by cell autonomous mechanisms....................... 95
3.4.1. Global expression of isomiRs is specific to cell types .....ceevvevccviiieieeeeeeecciieeeee, 95
3.4.2. Processing of isomiRs is unique to each mMiRNA’S gene.......cccccvvveeeeeeeeeecccnvenennnnn. 96
3.4.3. Individual cells exhibit cell type specific isomiR processing .........ccccceeeervvveeernnnen. 96

3.5. IsomiR processing alters regulation of their canonical targets .......ccccceeeeeeeeniineenn.n. 101

3.6. Unigue Molecular Identifiers increase estimated isomiR abundance ....................... 105

3.7, DISCUSSION . ...eeiiiiiiiiiic ittt 110
3.7.1. Analysis of isomiR types overcomes current limitations with single cell small RNA
=10 [V L= a Yol g Y= -1 - PR 110
3.7.2. Biases in small RNA sequencing protocols are likely to influence isomiR
(o [UE] ) A ki Tor=Y o] o FR PP 111
3.7.3. Methods to improve single cell small RNA sequencing data quality for isomiR
ANAIY SIS 1ottt ettt e e et e e st be e e e e bt e e e e st baeeeenbbaeeeenaraaeeennees 112
3.7.4. Implications of cell autonomous isomiR regulation in cancer..........cccceeevveeenen... 112

4. Investigating the RNA binding properties of alternatively spliced Argonaute 2 (Ago2)

17 0] o 4 TSP P PRSP 113
4.1. Chapter iNtrodUCLION .....cuiiieee e e e e e e e e eneraaeeeeeas 113
4.1.1. Argonaute loads multiple classes of small RNAS ........ccceevevieiiiiiciineeeeeee e, 113
4.1.2. Features of the miRNA duplex influence Argonaute strand selection................ 114

4.1.3. Alternative splicing may produce Argonaute proteins with altered functions...115

4.2. Specific MEthOOIOZY.....uuiiiiei i e e e erae e e e 116
B.2. 0. BUTT@IS ettt 116
A LU= T4 =T o | £ YRR 116
4.2.3. ANTIDOMIES . e e 116
4.2.4. Cell PrOVISION..ciiiiiieiccitrieeiee e eeciirree e e e e e eesebrree e e e e e eesesbareereeeeeseesassrraeeeseessesssssrens 117
4.2.5. Ago2 isoform plasmid transfection.........cccccuvveeeieiiiiicciiieeee e 117



4.2.6. Cell lysis for immunoprecipitation.......ccoecevvveeiieiiiiicieeeeec e 117

4.2.7. Immunoprecipitation of FLAG-tagged Ago2 isoforms......cccccceeeccvvveeeeeeeeercnnnnen, 117
4.2.8. RNA @XEraCtioN ....ocoeeiiiiiiiii ittt 118
4.2.9. Sequencing data GENEratioN .......evveveieiiieiiiiieeeeeeerereeeeeeeeeee e eereeeeereeeereeseseeeeesens 118
4.2.10. Calculation of Percent Spliced with Junction (PSJ) values........cccccveeeeeeeeernnnnnee. 118
4.2.11. Small RNA biotype quantification.........ccccevviieeiiiiiiei e 119
4.2.12. miRNA and isomiR quantification.........ccccouvieeieiiiicci e, 119
4.2.13. Differential expression @analySiS .......ccccuicrirreerieeieiiiiireeeeee e e eerirreeeeeeeeeeeeannrens 119
4.2.14. Estimating base preferences in Ag02 iSOfOrms ........ccovvvveviiniiieeinniieeecsiieeeens 120
4.2.15. Code for Data Analysis and FIGUIES ......ccceuuiiiiiee et 120
4.3. Alternative Splicing of Ago2 Suggests Diversity of Isoform Expression in Human Tissues
............................................................................................................................................ 121
4.4, Alternatively spliced Ago2 isoforms do not bind miRNAs as strongly as the canonical
ISOTOIM L. et s bt e s bt e e st e e st e e s b e e eaneesnreas 124
4.5. Ago2 isoforms have altered miRNA binding preferences........ccocccviveeeeeiiiccccivinennen. 127
4.5.1. The relative abundance of certain miRNAs is altered in Ago2 isoforms.............. 127
4.5.2. Alternative splicing of Ago2 changes miRNA strand selection preference......... 127

4.6. The 5" nucleotide preference during strand selection is altered in Ago2 isoforms...132
4.7. Ago2 isoforms have altered isSomiR assOCIiationsS.......ccccvvveeiieeeiiieiiiireeeeee e 136

L T B 1T ol U 1Y o o 144

4.8.2. Ago2 isoforms may interact with isomiRs to fine-tune miRNA strand selection 145

4.8.3. Implications of Argonaute isoforms altering miRNA activity in normal and

CANCEIOUS CEIIS ..ttt s e s e s eaneas 145

5. FINAL dISCUSSION ..iiiiiiiiiiii ettt s 147
5.1. A multitude of mechanisms regulate the miRNA pathway .......ccccovvveeeveiiiiiccnnveennnnen. 147
5.2. Different mechanisms of miRNA regulation may be perturbed in cancers ............... 148
5.3. MiRNAs as biomarkers in CancCer ... 149
5.4, CONCIUAING REMAIKS. ..vveeiiiiiiiiiiiiiiieeie ettt e e e e e e e sesnabbrereeeeeseseastraneeeeens 150
Appendix A - Non-Coding RNAs in Pediatric Solid TUMOIS ......ccuveeiiiivieeieiieee e 151
Appendix B — Statistical Values and Read Counts for IsomiR-Target Pairs.........cccccevrvuvveeennne 170
Appendix C — Read Counts for Spliced Exon Junctions in AZ02.........coovvevvvveeeeeeeeenciinreeeneen. 174
Appendix D — Western Blots for the Immunoprecipitation of Ago2 Isoforms...................... 178



Bibliography



List of Figures and Tables

1. Literature Review

Figures

Figure 1.1. Pathways of miRNA biogenesis

Figure 1.2. miRNAs are commonly expressed as various isoforms called isomiRs
Figure 1.3. Argonaute consists of four primary functional domains

Figure 1.4. Multiple mechanisms facilitate post-transcriptional gene regulation with
the RISC

Figure 1.5. Gene regulation involves complex interactions between miRNAs,
transcription factors, and long non-coding RNAs which all be dysregulated in cancers
Figure 1.6. Molecular heterogeneity is evident in genomic, epigenetic,

transcriptomic, and proteomic profiles

2. The role of miRNAs in glioblastoma tumour heterogeneity and cell state regulation

Figures

Figure 2.1. Identification of heterogenous glioblastoma cell subpopulations from
miRNA and isomiR expression

Figure 2.2. Comparison of miRNAs between KS4 glioblastoma cells in miRNA-based
clusters 1 (red) and 2 (blue)

Figure 2.3. DLK1-DIO3 locus derived miRNAs upregulated in KS4 Glioblastoma
miRNA-based clusters 1 (red) and 2 (blue)

Figure 2.4. Expression of upregulated miRNAs in two KS4 cell subpopulations is
dominated by two miRNA clusters

Figure 2.5. Comparison of isomiRs between KS4 Glioblastoma cells in isomiR-based
clusters 1 (red) and 2 (blue)

Figure 2.6. Comparison of each pair of TCGA subtype scores in glioblastoma tumours
Figure 2.7. Comparison of TCGA subtype and cell state glioblastoma gene modules
and their association with miRNAs

Figure 2.8. Expression of miRNAs correlate with different TCGA subtypes

Figure 2.9. Expression of miRNAs correlate with different cell state modules

Figure 2.10. Expression of DIk1-Dio3 and miR-224/452 cluster miRNAs correlate with

different cell state modules

Page
20
23
26
28

34

40

Page
48

50

51

52

53

55
56

57

59
61

Xi



Figure 2.11. Correlation of MEG3 expression with cell state module scores across all
glioblastoma cells for each dataset

Figure 2.12. MEG3 expression and correlation with cell state module scores in cells
from each glioblastoma tumour

Figure 2.13. Common genes between cell state modules and miRNA targets

Figure 2.14. Gene Set Enrichment Analysis of KEGG pathways for miRNA cluster
targets

Figure 2.15. Expression of gene targets for miRNAs from the Dlk1-Dio3 cluster
Figure 2.16. Expression of gene targets for miRNAs from the miR-224/452 cluster
Figure 2.17. Cluster target scores for the Dlk1-Dio3 cluster

Figure 2.18. Cluster target scores for the miR-224/452 cluster

Figure 2.19. Correlation of scores for cluster targets and cell states in glioblastoma
tumours

Figure 2.20. Correlation of miRNA target scores for 200 miRNAs highly expressed in

glioblastoma tumours

Tables

Table 2.1. Genes with the strongest correlation to the combined expression of DIk1-

Dio3 miRNAs, excluding genes encoding for miRNAs (i.e primary or precursor

miRNAs) and snoRNAs

66

69
70

73
74
75
76
77

78

Page
63

3. A Comparative Analysis of Single Cell Small RNA Sequencing Data Reveals Heterogenous

IsomiR Expression and Regulation

Figures

Figure 3.1. An overview of the small RNA sequencing samples that were analysed
Figure 3.2. Top 20 miRNAs by expression for each cell type included in this study
Figure 3.3. Comparison of total miRNA and isomiR length distribution profiles
between single cell and bulk RNA-seq datasets from independent studies

Figure 3.4. Expression and relative abundance of isomiRs in Hepatocellular
Carcinoma single cell and bulk smRNA-seq data from independent studies

Figure 3.5. Expression and relative abundance of isomiRs in K562 Leukemia single
cell and bulk smRNA-seq data from independent studies

Figure 3.6. Comparison of relative isomiR expression in each cell type

Page

89

91

92

93

94

98

Xii



Figure 3.7. Comparison of 5" and 3" isomiRs in select miRNAs that are highly 99
expressed across multiple cell types

Figure 3.8. Expression and relative abundance of isomiRs in single cells 100
Figure 3.9. Correlation of expression levels between canonical miRNAs or isomiR 103
categories and the canonical miRNAs predicted targets (mRNAs) in K562 Leukemia

cells

Figure 3.10. Correlation of expression levels between canonical miRNAs or isomiR 104
categories and the canonical miRNAs predicted targets (mRNAs) in Hepatocellular

Carcinoma (HCC) cells

Figure 3.11. Impact of UMI deduplication on isomiR types 106
Figure 3.12. Impact of UMI deduplication on miRNA length distributions in 107
glioblastoma cell lines

Figure 3.13. Impact of UMI deduplication on miRNA length distributions in the 108
HEK293 cell line, and naive and primed embryonic stem cells

Figure 3.14. Comparison of 5" and 3" modifications between averaged non- 109

deduplicated (-) and deduplicated (+) glioblastoma cells, for selected miRNAs

Tables Page
Table 3.1. General features of the single cell small RNA datasets. Number of cells 90
and average mapping values are according to the mapping and filtering

methodology used in this study

4. Investigating the RNA binding properties of alternatively spliced Argonaute 2 (Ago2) isoforms

Figures Page
Figure 4.1. Alternative splicing events from RNA Capture-seq read data indicate 123

multiple isoforms of Ago2 are expressed in humans

Figure 4.2. Proportion of small RNA classes immunoprecipitated from Ago2 isoforms 126
in Hela cells

Figure 4.3. Comparison of miRNA expression between isoforms 129
Figure 4.4. Isoforms show strand selection bias in specific miRNAs 131
Figure 4.5. Base preferences from all miRNA duplexes for each pair of bases 134
Figure 4.6. Base preferences of miRNA duplexes from each precursor miRNA 135
Figure 4.7. Comparison of the size of miRNAs associated with the three Ago2 138
isoforms

xiii



Figure 4.8. IsomiR types associated with Ago2 isoforms

Figure 4.9. Proportion of miRNAs associated with Ago2 isoforms, annotated as
isomiRs (non-canonical miRNAs) and substitution variants

Figure 4.10. miRNAs associated with Ago2 isoforms annotated as 5 variants

Figure 4.11. miRNAs associated with Ago2 isoforms annotated as 3" templated
variants

Figure 4.12. miRNAs associated with Ago2 isoforms annotated as 3" non-templated

variants

Tables
Table 4.1. Antibodies used for immunoprecipitation experiments

Table 4.2. Differentially expressed miRNAs when comparing three isoforms of Ago2

Appendix
Figures
Figure Appendix D. Western blots confirm enrichment of FLAG antibodies in FLAG

immunoprecipitate compared to control for all three Ago2 isoforms

Tables

Table Appendix B1. Statistical Values and Read Counts for IsomiR-Target Pairs in
K562 cells

Table Appendix B2. Statistical Values and Read Counts for IsomiR-Target Pairs in
Hepatocellular Carcinoma cells

Table Appendix C. Read Counts and Percent Spliced with Junction (PSJ) values for

Spliced Exon Junctions in Ago2

139
140

141
142

143

Page

116
130

Page
178

Page

170

172

174

Xiv



Abstract

miRNAs are highly abundant small non-coding RNAs that are essential for post-transcriptional gene
regulation. Many of the mechanisms which regulate miRNA expression and function are poorly

understood. Their dysregulation is documented extensively in many diseases including cancer.

Glioblastoma is a highly aggressive and heterogeneous brain cancer that affects patients of all ages.
Intra-tumoural heterogeneity describes the existence of genomically distinct subpopulations of
tumour cells which can lead to differences in growth rate, metastatic potential, or vulnerability to
certain treatments. The first part of my thesis investigates how miRNAs and miRNA variants (isomiRs)
may be involved in intra-tumoural heterogeneity by applying bioinformatics analyses to single cell
small RNA and RNA sequencing data generated from previous studies. This work identified two miRNA
clusters, the DIk1-Dio3 locus and miR-224/452, as potential contributors to intra-tumour
heterogeneity in glioblastoma and may be involved in cell state regulation. Additionally, we found
evidence of cell autonomous regulation and function of isomiRs, highlighting another regulatory
mechanism that may play a role in heterogenous cancers. These miRNAs may have utility as cancer

biomarkers and implicate a novel set of targets for therapeutic research.

The second part of my thesis investigates splice variants (isoforms) of Argonaute, an essential protein
in the miRNA pathway that mediates their regulatory effects. Numerous Argonaute isoforms have
been previously annotated, with alterations in protein domains critical for miRNA binding and
function. However, current studies base their assumptions of miRNA activity through a single variant
of Argonaute and the consequence of these alterations and their biological relevance has not been
investigated yet. We identified two variants of Argonaute with altered miRNA binding characteristics
that are variably expressed in normal and cancerous cells, revealing a novel form of miRNA regulation

that could also have implications in cancer research.
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1. Literature review

1.1. miRNA biogenesis

1.1.1. miRNA biogenesis via the canonical pathway

For most miRNAs, their life cycle begins with transcription from DNA into a primary miRNA (pri-miRNA)
by RNA polymerase Il (Figure 1.1)%. Pri-miRNAs share several similarities to messenger RNAs (mRNAs)
inthat they are 5" capped, 3 polyadenylated, and can be several hundreds or thousands of nucleotides
long. In many cases, the pri-miRNA encodes for one miRNA species, however in humans a substantial
number are polycistronic and encode several different miRNAs. Pri-miRNAs must first be processed in
the nucleus by the Microprocessor, a trimeric complex formed by the RNAse Il enzyme Drosha and
two DiGeorge Syndrome Critical Region 8 (DGCR8) molecules?. Pri-miRNAs contain imperfect stem-
loop secondary structures which are recognized by DGCR8’s double stranded binding domains. DGCRS8
facilitates the anchoring of Drosha to the stem-loop structure, and Drosha then acts as a molecular
ruler which cleaves the pri-miRNA around 11-13 nucleotides above the base of the stem. This releases
a shorter 65-70 nt precursor RNA (pre-miRNA) with a 2 nucleotide overhang on the 3’ end®™. Sequence
motifs at the base (UG and CNNC) and loop (UGU) structures are recognized by Drosha and DGRC8

respectively, aiding in the correct orientation and processing by the Microprocessor complex®®.

Translocation of the pre-miRNA from the nucleus to the cytoplasm is mediated by the transporter
protein Exportin-5 (XPO5). XPO5 recognition and subsequent export of the double-stranded pre-
miRNA is dependent on Ran-GTP’.

In the cytoplasm the pre-miRNA is further processed by Dicer, another enzyme harbouring RNAse Il
domains, which specifically recognises both the pre-miRNA’s loop structure and 2 nucleotide
overhang®. Dicer acts as a second molecular ruler, cleaving approximately 21-25 nucleotides upstream
from the base of the stem, which removes the loop structure to produce a double stranded miRNA
duplex. This duplex contains two RNA strands named the 5 prime (5p) and 3 prime (3p) miRNA strands,
based on which end of the precursor they originate from. Dicer is known to associate with other
cofactors which can influence pre-miRNA processing. This includes proteins such as the double
stranded RNA binding proteins TRBP and PACT, which have been shown to increase the precision of
Dicer cleaving and alter the sequence of some of its products, as well Argonaute 2 (Ago2) which

participates in the processing of certain pre-miRNAs.>™2,

After Dicer processing, the double stranded miRNA duplex is incorporated into an Argonaute protein,
which retains one of the strands to become the biologically active mature miRNA (guide strand) and

ejects the other strand (passenger strand) for subsequent degradation?. This double stranded
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complex is called the pre-RNA induced silencing complex (pre-RISC). Strand selection is determined by
base pairing at the ends of the miRNA duplex, which influence which side of the duplex is less
thermodynamically stable. This destabilization leads to the preferential loading of the strand with their

5’ end exposed at this side.

The process of duplex loading and strand displacement requires coordination between several
proteins and involves multiple functional domains on Argonaute®®. During duplex loading, the ATP-
dependent chaperone proteins Hsc70/Hsp90 are recruited to open up binding pockets in Argonaute
and enable the large miRNA duplex to be anchored into the protein!*. The duplex is then ‘wedged’

open at the 3’ end of the guide strand, leading to ejection of the passenger strand from the complex®.

The final product is a complex with the mature miRNA and Argonaute, commonly referred to as the
functional or mature RNA-induced silencing complex (mature RISC), which is the minimal component

for post-transcriptional miRNA-mediated gene regulation?3,

1.1.2. Non-canonical pathways for miRNA biogenesis

Besides the canonical miRNA pathway, several other pathways of miRNA biogenesis exist which do
not involve Drosha and/or Dicer. There are several Drosha-independent pathways that could produce
miRNAs and miRNA-like RNAs such as mirtrons, snoRNA and tRNA-derived miRNAs'®?’. Mirtrons are
miRNAs originating from the introns of messenger or non-coding RNAs, produced during splicing?®.
Although spliced introns are typically released as lariats, mirtrons can be linearised by the lariat
debranching enzyme, enabling them to adopt a pre-miRNA structure for recognition by XPO5 and
subsequent processing by Dicer in the cytoplasm. Mirtrons can either span the entire length of the
intron or be associated withthe 5" or 3" ends, the latter recruiting additional factors to trim the mirtron
to the appropriate length®. snoRNAs such as the small Cajal body-specific RNA ACA45 and the atypical
box C/D snoRNA U3 have been shown to be processed into small RNAs that associate with Argonaute
following Dicer processing, with some evidence supporting their participation in miRNA-mediated
regulation'®1°, Likewise, the tRNA-derived small RNA CU1276 was also reported to be processed by

Dicer into a functional miRNA that is loaded into Argonaute?’.

The miRNA miR-451 is unique in that it is the only known miRNA to be Dicer-independent, as its
precursor can be directly processed by Ago2 through its catalytically active domain. This property
enables miR-451 to retain a high level of expression during erythropoiesis, as the canonical miRNA

pathway is dampened via Dicer suppression?%2L,
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1.1.3. Alternative splicing regulates the function of miRNA biogenesis proteins

Alternative splicing enables functional diversification of protein-coding genes by altering the coding
sequences or untranslated regions of messenger RNAs?%%3, Studies have shown that miRNA biogenesis
proteins frequently undergo alternative splicing, in some cases impacting small RNA processing and

leading to changes in post-transcriptional gene regulation®-?’,

For example, alternative splicing can affect the subcellular localization of Drosha by changing the
coding sequence of the N-terminal domain, with some isoforms localizing to the cytoplasm?*%, A later
study demonstrated that pri-miR-34a is transported to the cytoplasm of quiescent human foreskin
fibroblasts by Exportin-1 and are subsequently processed by cytoplasmic-localized Drosha isoforms?.
This highlighted the existence of an alternative miRNA biogenesis pathway which remains active

during quiescence while the canonical pathway is suppressed.

In humans, a large number of alternatively spliced isoforms of Dicer have been identified with some
variants expressed in specific tissues?®3%3!, For example, two variants of Dicer were identified in
multiple human breast cancer cell lines, with one variant harbouring a reduced propensity for
translation due to the skipping of two exons*. Later studies, also with breast cancer cell lines, found
differential expression of dicer variants in cells with a mesenchymal phenotype compared to those
with an epithelial phenotype, suggesting the alternative splicing of Dicer may function within the
epithelial-mesenchymal transition (EMT)3. Dicer isoforms may also have functional significance in
cancer. A truncated Dicer lacking a double stranded binding domain was found to be expressed in
neuroblastoma cells but was not identified in any normal tissues®®. Additionally, another truncated
Dicer isoform was highly expressed in oral cancer cells and was downregulated during EMT3?,
Furthermore, in mice, functional diversification of Dicer isoforms was demonstrated in oocytes where
the miRNA pathway is normally suppressed. An isoform of Dicer which lacks its N-terminal DExD
helicase domain, was dominantly expressed®’. This isoform, in contrast to its full-length form, was far

more efficient in processing long double stranded RNAs into small interfering RNAs.

Finally, a longer variant of Agol, named Agolx, was discovered in multiple human breast cancer cell
lines which could bind miRNAs in a similar manner to the canonical Ago1, but could not participate in

miRNA-mediated gene regulation due to a loss of interaction with GW1823435,

1.1.4. miRNAs often form clusters

In humans, approximately one quarter of annotated miRNAs (481 of 1917 in miRBase) exist in clusters
containing multiple miRNA genes®®. The majority of miRNA clusters contain less than 5 miRNAs;
however the human genome contains much larger clusters such as the 14932 and C19MC miRNA

clusters which host approximately 53 and 46 pre-miRNA genes respectively®”*. Clustered miRNAs are
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co-transcribed and are typically under the same regulatory control through shared promoters and
epigenetic regulatory factors. miRNA clusters are highly conserved across species and have
established roles in cell and tissue development, immune response, and regulation of the nervous
system39°_ |t is believed that miRNA clusters formed from genetic events including gene duplications
and base mutations, and evolved to facilitate the coordination of critical biological pathways, as

miRNAs acting in tandem can target an extremely large but selective pool of genes*.

One of the most well studied miRNA clusters is the miR-17/92 cluster (previously named C130rf25),
located on chromosome 13 within the MIR17HG gene. This cluster contains 6 different miRNAs — miR-
17, miR-18a, miR-19a, miR-20a, miR-19b-1 and miR-92a-1, which are initially co-expressed as a single
transcript approximately 800 nt long before being processing into individual pre-miRNAs. The miR-
17/92 cluster is regulated by many transcription factors which bind to the MIR17HG, such as MYC and
the E2F family, which can induce miR-17/92 expression, as well as p53 which blocks transcription.
Many of the transcription factors that are responsible for regulating the miR-17/92 cluster are in turn
regulated by these same miRNAs, forming autoregulatory feedback loops which help prevent

uncontrolled expression levels*2,

Ostensibly, the largest miRNA cluster is found in the chromosomal region of 14g32 within a region
often referred to as the DIk1-Dio3 locus®’. With the exception of one, all miRNAs from this region are
believed to be transcribed as part of a large polycistronic transcript approximately 200kb long®3. Unlike
the miR-17/92 cluster, this polycistronic transcript also contains non-coding RNAs other than miRNAs,
including at least 3 long non-coding RNAs, MEG3, MEGS8 and MEGY, as well as the small nucleolar RNA
SNORD112, 9 paralogous copies of SNORD113 and 31 copies of SNORD114%,
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Figure 1.1. Pathways of miRNA biogenesis. miRNAs can originate from different biogenesis pathways.
Two pathways, the canonical pathway and mirtron pathway are shown above. Canonical Pathway (1) —
miRNAs are first transcribed as pri-miRNAs by RNA Pol I, which contains stem-loop structures
recognizable by Drosha/DGCRS8. Drosha/DGCRS cleaves and liberates the stem-loop structure, which is
then exported out of the nucleus and further processed by Dicer to produce a miRNA duplex. This
duplex is then loaded into an Argonaute, which removes one strand and retains the other for
translational repression. Mirtron Pathway (2) — precursor miRNAs are spliced out from the introns of
MRNAs, which then re-join the canonical pathway after export into the cytoplasm. Pri-miRNAs: Primary
microRNAs. DGCR8: DiGeorge Syndrome Critical Region 8. Figure from Smith et al, Honours,
unpublished.
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1.2. IsomiRs: a hidden layer of gene regulation

In eukaryotes, genes can be alternatively spliced to produce many isoforms with distinct biological
functions or regulatory features®. In a similar manner, most miRNAs are expressed as different
isoforms (referred to as isomiRs)*. IsomiRs can vary from their canonical sequences in at least four
different ways (Figure 1.2). Firstly, 5" or 3" trimming variations can occur from imprecise processing
by Drosha and Dicer. Variations caused by alternative trimming sites produce templated isomiRs, as
the resulting sequence still matches the genomic sequence of the miRNA gene. IsomiRs can also result
from untemplated modifications which are produced either by nucleotide additions at the 3" end
(tailing) of the mature or precursor miRNA or by nucleotide substitutions*’. While most miRNA studies
do not investigate isomiRs, an increasing number of studies have shown that these minor changes in
sequence can lead to important changes in processing, function, or stability, and constitute an

additional layer of gene regulation in the miRNA pathway*.

1.2.1. Uridylation regulates the processing of several pre-miRNAs

Most pri-miRNAs are processed by Drosha into pre-miRNAs with a 2 nucleotide overhang on the 3’
end which enables efficient processing by Dicer®®°°. However, several pre-miRNAs from the let-7
family of miRNAs and miR-105 are processed with 1 nucleotide 3" overhangs and require extension
via monouridylation in order to be processed efficiently into a miRNA duplex®'®2. As the site of
monouridylation is the 3" end of the duplexes 3p strand, any 3p miRNAs which are not degraded will
possess a 3" non-templated uridine. Conversely polyuridylation can block pre-miRNA processing,
which has been shown in cells expressing the Lin28A oncogene®. Lin28A recognizes a tetranucleotide
sequence motif present in the terminal loop of certain precursors including let-7, miR-107, miR-143
and miR-200c, and recruits the terminal ribonucleotidyl transferase TUT4 (aka ZCCHC11) to add a poly-

U tail to the 3" end of the precursor to prevent Dicer from cleaving it.

1.2.2. IsomiRs with distinct regulatory functions

There are several examples where isomiRs expressed from the same miRNA gene have been described
with distinct regulatory effects. The addition of nucleotides to the 3" ends of mature miRNAs has been
shown to impair target repression®. In 2009, Jones et al identified TUT4 as a key factor in miR-26
uridylation and found that uridylation decreased miR-26 mediated repression of one of its targets,
interleukin-6>*. Trimming variations in the 5" end have also been linked to changes in target gene
regulation®®. Whilst 5" variations are relatively rare compared to 3’ variations, the effect on target
regulation is generally much more pronounced due to a shift in the miRNAs seed sequence, which has

the potential to create an entirely new target pool. This effect was demonstrated in a study by Tan et
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alwho found that a 5" variant of miR-9-1 gained the ability to downregulate two new targets, DNMT3B

and NCAM2, compared to its canonical form, and also lost the ability to downregulate CDH1%.

1.2.3. miRNA stability and turnover is regulated by 3’ tailing

By far the most common 3" nucleotide additions to mature miRNAs involve Uridines and Adenosines,
although limited evidence suggests Cytosines and Guanines may also be added after maturation #7486,
Like pre-miRNAs, nucleotide additions are mediated by terminal ribonucleotidyl transferases such as
TUTA4, but also include other enzymes such as TUT2 (aka Gld2) and TUT7 (aka ZCCHC6)°**?. The TUTs

vary in their preference for adding Adenosines or Uridines, with TUT2 preferring Adenosine as a

substrate, and TUT4 and TUT7 preferring Uridine.

The regulatory consequences of nucleotide additions have been investigated in several studies,
however our understanding remains limited and some of the studies have presented contradicting
results. Most studies investigating uridylation in mature miRNAs support the idea that uridylation
destabilizes miRNAs by serving as a marker for exonucleases such as DIS3L2. In an early study by
Baccarini et al, they utilized an inducible pri-miR-223 vector in a cell line that does not express miR-
223 in order to control miR-223 expression levels®®. By inducing and then blocking expression of miR-
223, they were able to track the miRNA during its decay. Small RNA sequencing revealed a decrease
in overall miR-223 expression over time but a steady increase in the proportion of uridylated miR-223,
which suggested uridylation played a role in miRNA turnover. Uridylation was also linked to a process
called target directed miRNA degradation (TDMD), where high expression of a miRNA target can
facilitate the degradation of the miRNA itself>>®°, TDMD has been shown to have a greater effect on
miRNA-target pairs with a high degree of complementarity®’. It is believed that this high
complementarity may partially release miRNAs from the RISC, exposing them to TUTs and
exoribonucleases that lead to their degradation®. Adenylation has also been linked to TDMD and may
occur under similar circumstances®®®2, However, it has been suggested that most miRNA target sites
do not possess the high degree of complementarity necessary to induce TDMD, and there are likely to
be other mechanisms which contribute to nucleotide additions and effect miRNA function and

stability®.
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Figure 1.2. miRNAs are commonly expressed as various isoforms called isomiRs. Variants can have
altered nucleotide sequences at the start (5” variants), middle (substitution), or end of the sequence
which are often distinguished by variants which match their precursor sequence (3" templated) or not
(3" non-templated).
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1.3. Argonaute is essential for miRNA-mediated translation repression

Mature miRNAs must form RNA-induced silencing complexes (RISCs) with one of the Argonaute
proteins to participate in gene regulation®®. Argonaute mediates the post-transcriptional regulatory
activity of the complex by directly cleaving targets perfectly complementary to the miRNA (slicing),
recruiting additional co-factors to facilitate degradation of transcripts, or interfering with their
translation. The miRNA serves as a guide that directs the RISC to its gene targets via complementary
base pairing to regions typically found in the 3’-untranslated region (3’"UTR) of mRNAs. In humans this
pairing is characteristically imperfect, which prevents direct cleaving of target mRNAs®*. Therefore,
alternative mechanisms such as translational inhibition and deadenylation are considered the primary
means of target regulation®. The most important part of the miRNA which determines target
recognition are the first 2-8 nucleotides from the 5" end, named the seed sequence®. Although other
parts of the miRNA are also known to influence miRNA-target pairing, many studies have shown that
seed pairing is often sufficient®. The disparity between contributions of each part of the miRNA are a
consequence of how they are bound to the Argonaute, as some parts of the miRNA are not exposed

to the cytoplasm in a manner where they can contribute to base pairing with other RNAs®®.

In humans, there are four genes which encode Argonautes capable of binding miRNAs (AGO1, AGO2,
AGO3 and AGO4) and inducing translational repression®’. Argonaute 2 (Ago2), encoded by the gene
AGO2, can directly cleave transcripts when loaded miRNAs are perfectly complementary to their
targets®®. Most of the functions for the four Argonaute proteins are believed to be redundant, which
has been supported by studies utilizing knock-down experiments showing Argonautes typically
compensate for each other®®. One well known exception to this is during embryonic development,
where Ago2’s slicer activity is indispensable and knock-down leads to early developmental arrest™.

More recently, studies have highlighted that Ago3 may also possess slicer activity but only when

shorter (14nt) guide miRNAs are loaded” .

1.3.1. Functional domains of Argonaute

All Argonautes have at least four highly conserved functional domains in common, named the
PIWI/Argonaute/Zwille (PAZ) domain, P-element-induced whimpy tested (PIWI) domain, MID domain,
and N-terminal domain (Figure 1.3)%’. The PAZ, MID and PIWI domains all play a role in binding the
miRNA. The MID and PIWI domains form a binding pocket with a metal-binding site, which anchors
the phosphorylated 5’ end of the guide strand during miRNA loading. Additionally, the PAZ domain
binds the 3’ end and is capable of recognizing the 3’ overhangs of miRNA duplexes’?. The N-terminal
domain also plays a key role during miRNA loadings as it is critical for wedging the duplex to separate

the guide and passenger strands. As mentioned previously, the PIWI domain contains the catalytic
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domain responsible for the slicer activity of Ago2 and Ago3’:. The PIWI domain’s catalytic motif,
harbouring a scissile phosphate, sits between the tenth and eleventh nucleotides of the miRNA and

cleaves the bases of perfectly complementary target RNAs bound at this location’3.
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Figure 1.3. Argonaute consists of four primary functional domains — the N-terminal (N), PAZ, MID and
PIWI domains. After RISC formation, the miRNA’s 5' phosphate is anchored in a pocket between the
MID and PIWI domains while the 3' end is bound to the PAZ domain. Numbers (top) show the positions
of the start and end nucleotides for each domain.
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1.3.2. Mechanisms of translational repression by the RISC

In mammals, RISCs are known to regulate gene expression through several distinct mechanisms such
as the direct cleaving of transcripts, inhibiting translation, or transcript destabilization, which often
operate in parallel (Figure 1.4A-C)’*. Of these mechanisms, cleaving (Figure 1.4A) or translational
inhibition (Figure 1.4B) is more rapid, although transcript destabilization (Figure 1.4C) is considered to
have the largest influence on repression in animals’®. The GW182 protein is a key adapter that binds
to Argonaute and is crucial in both translational inhibition and transcript destabilization’®. GW182
binds to Argonaute through its glycine-tryptophan (GW) repeat domain, and is recognized by

tryptophan-binding pockets in Argonaute’s PIWI domain”’.

Translational inhibition involves inhibition of the Cap-Binding complex elF4F (Figure 1.4B) or
displacement of Poly A Binding Protein (PABP)’#7%. elF4F is a complex comprised of elF4E, elF4G, and
elF4A, and is required for translation initiation. The RISC can interfere with translation initiation by
preventing elF4E from binding to the 7-methyl guanosine cap of mRNAs. During PABP displacement,
GW182 interferes with PABP by binding to elF4G and disrupting the loop structure formed during
translation’*’®, Furthermore, in Drosophila, GW182 was shown to interfere with elF4A’s association

with the 5" m’G-cap on mRNAs, a requirement for translation initiation®.

Like translational inhibition, destabilization of mMRNAs also occurs via several mechanisms (Figure
1.4C). In addition to PABP, GW182 can also recruit two complexes — CCR4-NOT and PAN2-PAN3 —
which are involved in a process called deadenylation®. During deadenylation, the poly(A) tail of the
targeted mRNA is gradually removed, leading to dissociation of PABP, de-capping and finally

degradation of the target RNA.
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Figure 1.4. Multiple mechanisms facilitate post-transcriptional gene regulation with the RISC. A.
Cleavage-competent Argonautes, such as Ago2, can directly cleave mRNA targets that are perfectly
complementary to the miRNA. B. Translational inhibition depends on GW182, which can inhibit
translational initiation. C. Destabilisation of mRNA targets through deadenylation is facilitated by
GW182 and the CCR4-NOT complex.
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1.4. miRNA dysregulation is a general feature in many cancers

Not long after the first human miRNA, let-7, was discovered in 2002 by the Ruvkun lab, miRNAs began
to emerge as key participants in tumourigenesis®l. In 2002, two miRNAs were identified as potential
tumour suppressors due to their frequent down-regulation or deletion in chronic lymphocytic
leukemia®. Calin et al later showed that many miRNA genes were located close to fragile sites or
common breakpoints that frequently occurred in cancers, suggesting their loss of function was a key
event®. Since then, expression studies have demonstrated that miRNAs possess a remarkable capacity
to distinguish between different types of cancers or even sub-types and changes in miRNA expression
often correspond with cancer prognosis®®’. In fact, miRNAs have been shown to play a role in all of
the classical hallmarks of cancer — sustaining proliferative signalling, evading growth suppressors,

invasion and metastasis, replicative immortality, angiogenesis, and apoptotic resistance®°,

A global downregulation of miRNAs is commonly observed in cancers, although individual miRNAs
have been attributed a variety of oncogenic or tumour suppressive roles®°2, Evidence suggests that
many of these miRNAs are important during tissue development and are vital for maintaining
terminally differentiated states, with their misexpression underscoring a disturbance of the
developmental process®. Additionally, cancer stem cells (CSCs), which retain many stem-like traits
and represent a significant hurdle in therapeutic research, are also defined by distinct miRNA profiles

when compared to their non-CSC counterparts®*.

miRNA expression or function can be altered as a direct consequence of impairments to the miRNA
processing machinery, or from dysregulation caused by abnormalities of genetic or epigenetic origin,
misexpression of transcription factors, or other dysregulated mechanisms which are involved in the

same gene regulatory networks.

1.4.1. Impairments of the miRNA processing machinery in cancer

There are several mechanisms by which miRNA processing can contribute to cancer®. This includes
changes in expression of individual biogenesis components, which can have downstream effects of
increasing or decreasing miRNA expression, but also selective increases in particular miRNAs due to
influences of co-factors which favour processing of certain miRNA species. Functional changes of
processing machinery caused by mutations are also very common in some cancers, which typically

leads to a loss of function.

The Microprocessor complex containing Drosha and DGCR8 is a point of vulnerability for
tumourigenesis in many cells. In a recent systematic review, several single nucleotide polymorphisms
(SNPs) in both genes were linked to cancer susceptibility®®. In non-small cell lung cancer,

overexpression of Drosha was identified and attributed to copy number gains and gene amplifications
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which were present in a high proportion of cases®’. DGCR8 has also been found upregulated in many
cancers and has been linked to disease progression in both ovarian and prostate cancer®®%. DEAD box
protein 5 (DDX5), another co-factor of the Microprocessor complex, can associate with SMAD proteins
to drive increased processing of miR-21 primary transcripts into precursors!®. SMADs are signal
transducers of the transforming growth factor beta pathway and play a complex role in cancer
progression'®. Transport of the pre-miRNAs produced by the microprocessor complex can also be
impaired by downregulation of the nuclear export protein exportin-5 (XPO5), either through reduced

expression or phosphorylation by ERK kinase®%,

Clear links between dysfunctional miRNA processing and cancer development have been established
in studies which revealed downregulation or deletion of DICER1 promoted tumour formation in
mice!®, Interestingly, in one study, this effect was exclusive to monoallelic but not biallelic loss of the
gene, suggesting that DICER1 had an important tumour suppressive function but also had a role in

malignant transformation®*

. Many studies have shown that specific DICER1 mutations could lead to
an increased risk in developing cancers such as pleuropulmonary blastomas, rhabdomyosarcoma,
cystic nephroma, and many endocrine tumours, although the functional consequences of many of
these mutations has not been investigated thoroughly®>%, |n lung cancer, DICER1 appears to have

an oncogenic role as it is often amplified”’.

In cancers such as hepatocellular carcinoma, colon cancer, head and neck cancer and glioma, Ago2 is
often overexpressed and has been linked to an increase in tumourigenesis, metastasis and patient
prognosisi®” 1%, However other studies have found Ago2 expression is reduced in cancers, such as in
melanoma, which suggest that like many of the other biogenesis proteins, Ago2’s role in cancer is
dependent on the cell’s miRNA profiles or expression of co-factors!®. Another form of Ago2
dysregulation is through post-translational modifications, which have been shown to influence
tumourigenicity. For example, Shen et al demonstrated that phosphorylation of Ago2 at Tyrosine 393
(Ago2-Y393), induced by hypoxic conditions, correlated with poorer overall survival in breast cancer

10 |n this study they were able to show this particular phosphorylation event was a

patients
consequence of interactions between epidermal growth factor receptor and Ago2, and that Ago2-
Y393 increased cell survival and invasiveness by reducing its interactions with Dicer and subsequent
miRNA loading!°. In another study, acetylation of Ago2 at K720, K493, and K355 increased miR-19b
levels by enhancing Ago2’s capacity to recruit miR-19b precursors!l. Ago2 acetylation at these sites

was correlated with poorer prognosis in lung cancer patients. Interestingly, in contrast to many of the

other miRNA biogenesis genes, mutations of Argonaute seem to be very rare®.
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Evidence suggests that some tissues may be more susceptible to forming cancers through
dysregulation of general miRNA processing, as genome-wide association studies have found certain
cancers have a much higher prevalence of mutations affecting the entire biogenesis pathway. Perhaps
one of the strongest examples of a cancer where the miRNA processing machinery is likely to play a
significant role in tumourigenesis is Wilms tumour. In 2014, a study by Torrezan et al'*? found
mutations of miRNA processing genes in 33% of tumours, most commonly occurring in the Drosha
gene but also with other mutations such as DICER1, XPO5, DGCR8 and TARBP2. These results were
also supported by several other studies by Wu et al''3, Rakheja et al'**, Walz et al'’®, Wegert et al'?é,
and Gadd et al'’. In Rakheja et al’s study they further examined the potential consequences of several
of these mutations and found that Drosha mutations often led to a loss of RNAse IlIB activity which
prevented processing of pri-miRNAs, leading to a global reduction in mature miRNAs. DICER1
mutations also frequently affected the RNAse IlIB domain, however this mutation only affected
processing of 5p miRNAs from precursors, as DICER1 contains a second RNAse domain for 3p
processing. As a result, this mutation led to a shift towards 3p miRNA maturation. These mutations
have functional consequences for global miRNA expression and most likely favour expression of
oncogenic miRNAs or reduce expression of miRNAs with tumour suppressive effects. In line with this,
the let-7 family is predominantly 5p-derived and lower expression of several of its 5p members were

found in both Drosha and DICER1 mutants in two of these studies'*1%°,

1.4.2. Genetic aberrations of miRNA genes in cancer

As mentioned previously, many of the common genetic aberrations observed in cancers such as single
nucleotide polymorphisms (SNPs), copy number variations and gene translocations, can affect the
biogenesis genes involved in miRNA processing. However, genetic aberrations also occur in regions
which harbor the miRNAs themselves or even in miRNA target sites and can cause significant
disruptions to critical regulatory networks®2. Interestingly, SNPs which alter the mature miRNA
sequence are rarely reported and while some studies have found mutations to be common in primary
miRNAs, these were shown to be inconsequential to the processing and expression of the mature
miRNAs!8119  This contrasts with a number of cancer studies which have reported frequent
occurrences of mutations in target sites that impact miRNA binding and subsequent regulation of their

gene targets!?0121,

Copy number variations are pervasive in most cancers, and gains or losses of genomic regions
containing miRNAs naturally lead to overexpression or reduction of miRNAs, respectively. Since Calin
et al’s initial observations highlighting the link between miRNAs and fragile sites, many more examples
in cancer have been identified®2. For example, loss of heterozygosity at region 14932 is common in

leukemia and corresponds with decreased expression of the miRNA cluster located therel??
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Additionally, in a study on gastric cancer, copy number gains of chromosomal region 8924 were
common and corresponded with overexpression of several miRNAs implicated in gastric cancer
development!?®. Copy number gains of several miRNAs including miR-296, miR-324 and miR-3928,
were identified in lung cancer and correlated with a poorer patient prognosis?*. Finally, deletions or
translocations of miR-15a and miR-16-1 were reported in a high number of chronic lymphocytic

leukemia patients®2.

1.4.3. Epigenetic regulation of miRNAs is affected in cancer

Early studies established that in addition to protein coding genes, many miRNAs were also regulated
by epigenetic mechanisms such as DNA methylation and histone modifications. One study found that
nearly half of all miRNA genes had CpG sites located 2000 bp up or downstream!?°. In support of this,
Saito et al had previously shown that treatment of cancer cell lines with demethylation agents or
histone deacetylase inhibitors altered expression of miRNAs, with some miRNAs experiencing more

than a 3-fold increase®?®.

Both hypermethylation and hypomethylation have been linked to misexpression of miRNAs in cancer.
Lujambo et al found extensive hypermethylation of miR-124a in several cancers, including colon,
breast, lung carcinoma, leukemia and lymphoma and linked this hypermethylation to a loss of its
expression in a colon cancer cell line'?. A following study by the same authors showed that miR-148a,
miR-34b/c and miR-9 were controlled by DNA methylation, and that silencing by methylation induced
metastasis in cancer cells'?8, In papillary thyroid cancer, miR-146b expression was increased compared
to normal tissue as a consequence of hypomethylation, and combined miRNA expression and

methylation profiles could clearly distinguish malignant and benign tumours?°,

Enzymes involved in histone regulation, such as the polycomb-group proteins and histone
deacetylases (HDACs), also cooperatively regulate miRNA expression alongside DNA methylation.
Enhancer of zeste homolog 2 (EZH2), which forms part of the polycomb repressive complex 2 (PRC2),
is upregulated in many cancers and is known to repress expression of a whole range of miRNAs,
including miR-181a/b and miR-200a/b/c!3%'31 Overexpression of EZH2 and SUZ12, another PRC2
component, was also found to repress miR-31 and activate the NF-kB signalling pathway in
leukemia®32. Finally, in a study by Sampath et al, HDAC overexpression was linked to the epigenetic
silencing of miR-15a, miR-16 and miR-29b in chronic lymphocytic leukemia, by showing an alleviation

of expression upon HDAC inhibition in 35% of samples!33,

1.4.4. miRNAs are key mediators of transcription factor-driven oncogenesis
Dysregulation of transcription factors are a recognized feature in nearly all cancers'®*. Transcription

factors and miRNAs often form feedback loops within regulatory circuits, and misexpression of either

32



can rapidly lead to disarray of gene signalling pathways and lead to oncogenesis or cancer progression
(Figure 1.5). One of the earliest studies linking miRNA expression to an oncogenic transcription factor
was by O’Donnell et al in 20053, In this study they demonstrated that c-Myc could induce expression
of the miR-17~92 cluster, and that several of these miRNAs could in turn regulate E2F1 transcription
to control cell proliferation. In hepatocellular carcinoma, a negative feedback loop between c-Myc and
miR-122 was identified, where c-Myc could repress miR-122 expression and miR-122 could prevent

transcription of c-Myc through E2F1'3%¢

. p53, another transcription factor and one of the most
important tumour suppressors, promotes expression of miR-34 family, and many other miRNAs
including miR-16-1, miR-143 and miR-145%7138  Many of p53’s tumour suppressive functions such as
cell cycle regulation and suppression of stemness traits and metastasis have been attributed to

miRNA-mediated regulation of downstream gene targets®.
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Figure 1.5. Gene regulation involves complex interactions between miRNAs, transcription factors, and
long non-coding RNAs which all be dysregulated in cancers. Shows various elements of a key regulatory
circuit involving MYC and E2F family transcription factors and their role in cancers. A. Loss of
chromosomal regions where let-7 and miR-34 miRNAs are localized is frequently observed in cancers.
B. let-7 dysregulation may facilitate overexpression of the oncogenic fusion transcript EWS-FLI-1 in
Ewing sarcoma. C. The RB1 tumour suppressor regulates E2F, and loss of function can lead to the
development of retinoblastoma. D. miR-9 can display tumour-suppressive properties by cooperating
with miR-125a and miR-125b to suppress cell proliferation. E. The IncRNA TUG1 is suggested to act as
a sponge, reducing miR-9 activity to supress tumour growth. Figure is from our published review in
Frontiers in Genetics (See appendix A)40.
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1.4.5. IsomiR expression has been linked to cancer

Several studies have found isomiR expression is altered in cancers which suggests they may have a
role to play the disease®'41%2, Telonis et al analysed 10,271 tumour datasets from The Cancer Genome
Atlas and found that the presence or absence of isomiRs could effectively distinguish between 32
different cancers and that it could outperform classifications using miRNAs**2, In another study looking
at breast cancer, six 5" isomiRs were found to be differentially expressed when comparing tumours to
normal tissue'®’. One of these isomiRs, a 5° variant of miR-140-3p, was more highly expressed, had
novel gene targets, and possessed tumour suppressive effects not observed with its canonical
counterpart. The authors proposed that the canonical miRNAs and isomiRs functioned synergistically
as tumour suppressors. These studies have raised the possibility that isomiRs represent a previously

ignored layer of gene regulation in cells and may have their own part to play in regulating oncogenesis.

Recently, isomiRs have been considered for their utility as blood/serum biomarkers for detecting or
profiling cancers'*. Circulating miRNA expression profiles have already been shown to be effective in
distinguishing between diseased patients and healthy controls, however challenges remain in
developing clinically useful biomarker assays!*>'%¢. One of the primary issues is the fact that miRNAs
lack specificity and are broadly expressed in a variety of tissues in the body. Consequently, most
miRNAs are present at some level in the blood regardless of a patient’s condition and developing an
unbiased assay which can distinguish between miRNA profiles from diseased and healthy patients may
not be possible until the cancer has progressed significantly or is easily detected by other means. It is
possible that isomiRs, which are potentially more unique in their expression, may offer a more

effective means to identify cancers in their early stages when they are very difficult to detect.

1.4.6. Non-coding RNAs in pediatric solid tumours

Refer to appendix A for a review on miRNAs and long non-coding RNAs in pediatric solid tumours,
written by myself and published in Frontiers in Genetics during my PhD%,
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1.5. Single cell sequencing reveals genetic and transcriptomic heterogeneity in cancers

Tumour heterogeneity describes the variation in molecular, cellular, or histological properties across
tumours or tumour cells**’. Tumour heterogeneity can either be inter-tumoural when this variation
exists between different tumours of a cancer, or intra-tumoural when there is variability between the
cells within a single tumour (Figure 1.6). Both inter and intra-tumour heterogeneity are common
features in many different cancers including brain, lung, breast, colon and liver cancer, and can
manifest as differences in genomic, epigenomic, transcriptomic, or proteomic profiles'¥152_Critically,
many of these differences detected on a molecular level have been shown to translate into clinically
relevant phenotypical changes, such as altered tumour growth rates, metastatic potential, and drug
resistance®3 15>, Consequently, this poses significant challenges for the development of accurate
diagnostic or prognostic methods and has been cited as one of the primary reasons for drug failure in

many cancers®®1%7,

Research into inter-tumour heterogeneity has improved patient outcomes through targeted therapy
approaches that tailor treatment plans based on cancer subtypes!®>!58159 |t is recognized that even
with cancers of the same type, they may be driven by distinct biological pathways that are influenced
by genomic or micro-environmental factors. Since specific biological pathways are often targeted in
cancer therapy, this can have a significant impact on the efficacy of certain drugs. For example in
breast cancer, the drug trastuzumab (Herceptin) is more effective against HER2-postive patients and
is now routinely used in targeted therapy against this subtype, whereas Cyclin-dependent kinase (CDK)
4/6 inhibitors such as palbociclib, ribociclib, and abemaciclib are used for hormone receptor (HR)—
positive and HER2-negative breast cancers'®®®1, While studies on tumour heterogeneity have led to
improvements in drug efficacy for many cancers, this has mostly been through discoveries from bulk
or population-level studies which target the same pathways across the whole tumour®>>*>°, However,
these pathways may not be suitable targets for all tumourigenic cells, as some are able to survive
multiple rounds of treatments only to repopulate the tumour with more resistant cells™®***7, It is
increasingly recognized that a higher resolution is needed to study individual cells and their
interactions within the tumour microenvironment in order to address all of the challenges that tumour

heterogeneity poses>>162,

At least two models have been described which explain the emergence of intra-tumour
heterogeneity’>®. The clonal evolution model describes the emergence of genetically distinct lineages
due to the inherent instability of the genome in cancer cells'®®. Over many generations, the
proliferation of cancer cells leads to the divergence of cell populations with different genotypes,
where those with selective advantages in tumour growth and survival become the most dominant

populations. Because of the genetic diversity of cells, the likelihood of some cells surviving therapy
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due to an inherent resistance is likely, and therapy may shift the selective pressure in favour of more
resistant cell populations?®. According to the cancer stem cell (CSC) model, some cancer cells adopt
stem-like features, including cell proliferation and self-renewal, which are normally present in
developing stem cells'®3% Cancer stem cells can produce more differentiated progeny with distinct
phenotypes to promote tumour growth and survival, and evidence suggests differentiation of these
cells is often incomplete and reversible under certain circumstances!®>. Both models have supporting
evidence in many cancers and are likely to act together in producing the heterogeneity observed
across genetic, epigenetic, transcriptomic, and proteomic layers!®®. Proper characterization of tumour
subpopulations with clinical relevance has remained extremely challenging in the past few decades®?.
However, recent developments in cell isolation and sequencing methods have offered researchers
new tools to study the tumour microenvironment and there is renewed hope that this will lead to

significant improvements in the outcomes of cancer patients.

1.5.1. Single cell sequencing has enabled deeper interrogation of intra-tumour heterogeneity

The introduction of next-generation sequencing (NGS) ushered a new era in oncology by enabling the
comprehensive profiling of cancer genomes and transcriptomes®”. Their adaptation to single cell
technologies has been facilitated by advances in automation and microfluidics, which can capture or
isolate thousands of individual cells and generate cost-effective sequencing libraries all within a single
experiment!®®, Additionally, the constraints imposed from having to sequence thousands of separate
libraries have become much less of an issue due to the remarkable drop in sequencing costs seen over
the past few decades. In 2007, the cost of sequencing a single human genome was approximately $10
million US dollars whereas in 2022 this can be done for only $600%%17°, Currently single cell sequencing
encompasses a burgeoning field of NGS tools, including multi-omic methods which can simultaneously
measure information across different modalities, and are revealing critical details about tumour cells

and their microenvironment'’%.

There are a number of single cell DNA sequencing methods available for whole genome sequencing,
exome sequencing or targeted gene sequencing, used in oncology research for determining genomic
heterogeneity, evolutionary trajectories of subclones, and detection of rare mutations’2. Some of the
earliest single cell studies into clonal evolution established a punctuated model for copy number
evolution, demonstrating that copy number alterations were distinct events occurring early in
oncogenesis, whereas single nucleotide variations were more gradual events throughout the course
of the disease®®73, Furthermore, the genetic diversity of tumours is beginning to be appreciated as
many subclones, including some with drug resistant genotypes, were found to exist in small cell

numbers prior to treatment!’*76, Recent work has highlighted some of the limitations of traditional
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therapies developed from population level studies and indicates that routine biopsies are unlikely to

capture the full range of clinically relevant genomic mutations®”’.

Of all the single cell sequencing methods, single cell RNA sequencing is the most well developed and
widely adopted technology!®®78, Single cell RNA sequencing allows quantification of gene expression
through the detection of RNA transcripts. Methods of single cell RNA sequencing are often divided
into those which utilize traditional cell sorting with microwell plates and those using droplet
microfluidic devices. The traditional plate-based assays, such as Smart-seq and CEL-seq, were some of
the earliest methods to be developed for full transcriptome analysis'’9*, Droplet-based protocols
such as inDrop and Drop-seq were subsequently developed and were a major milestone in single cell
sequencing as they made it feasible to sequence many thousands of cells at once, although were
restricted to gene level quantification as full-length capture was not possible®'8, The power of single
cell RNA sequencing has been demonstrated across many cancers where it has been used not only to
characterize cell populations, but also to map out their differentiation trajectories, predict copy
number variations and identify gene modules or networks that may predict their clinical

presentation48183

. One of the major insights derived from single cell RNA sequencing is the
observation that cell subpopulations derived from transcriptomic analysis are often decoupled from
any apparent genetic heterogeneity. In oligodendroglioma, heterogenous subpopulations bearing
resemblance to developmental pathways were all present across different genetic subclones!®. In
another brain cancer, glioblastoma, the authors transplanted genetic subclones into patient-derived
xenografts and found that the full range of transcriptomic cell populations, including their relative
abundances, were recapitulated in the new tumours®, Collectively, this work suggests that epigenetic
or post-transcriptional gene regulatory mechanisms may be the predominant driving force of this form

of heterogeneity®®*.

Furthermore, the number of available single cell sequencing methods for detecting alternative
molecular profiles continues to grow, and it is now possible to measure epigenetic profiles such as
DNA methylation (scRRBS), chromatin accessibility (scATAC-seq), and histone markers (scChlP-seq),
and other classes of RNAs not captured in standard RNA-seq such as small RNAs (Small-seq)®>188,
Multi-omics approaches which combine multiple measurements are also available, although the
technical challenges associated with sequencing each type of information is often compounded and

have not yet been adopted as widely*/*187192,

1.5.2. The current state of single cell small RNA sequencing
miRNAs are involved in the regulation of nearly all biological processes and are therefore likely to play

an important role in the post-transcriptional mechanisms that drive differentiation and cell state
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regulation. However, sequencing technologies which can capture this class of small RNAs and provide
sufficient resolution to interrogate them on a single cell level remain underdeveloped. Several
methods have been recently developed specifically for single cell small RNA sequencing, generally
utilizing a two-adapter ligation approach for small RNA capture and library preparation®191,193-195
With two-adapter ligation, a 5’ pre-adenylated adapter is ligated to the 3’ end of RNAs after cell lysis,
followed by ligation of a second adapter to the phosphorylated 5’ ends of small RNAs. cDNA is
generated through reverse transcription using a primer which is reverse complementary to the
adapter ligated at the 3’ end and then subsequent rounds of polymerase chain reaction (PCR) amplify
the cDNA for sequencing. Relative to many other single cell sequencing methods, small RNA
sequencing is still technically challenging, expensive, and has limited cell throughput as they are all
restricted to plate-based assays. The first of these methods was the Small-seq protocol developed in
2016, which was later followed by a CleanTag adapter-based protocol*®%3, Two multi-omic methods
were subsequently developed, Holo-seq and a microRNA-mRNA co-sequencing protocol by Wang et
al, capable of sequencing small RNAs and mRNAs from the same cell®1%, A key distinction in the
Holo-seq method was the use of removable carrier RNAs, introduced after cell lysis, to protect RNAs
from degradation during library preparation. To build separate small RNA and mRNA libraries, poly
adenylated RNAs were isolated from the cell lysate using targeted magnetic beads in the Holo-seq
protocol, whereas in Wang et al’s co-sequencing protocol cell lysates were split in half. Currently,
research into the role of the miRNA pathway at the single cell level and its contribution to tumour
heterogeneity has been very limited. In the Holo-seq study, 32 hepatocellular carcinoma cells were

sequenced for their mRNA and miRNA profiles®

. Interestingly, this work highlighted 3 distinct
populations of cells when analysing their mRNA profiles and only 2 when analysing the miRNA profiles.
The miRNA-based populations corresponded closely with 2 of the mRNA populations, indicating that
miRNAs can reveal cell subpopulations with distinct gene expression profiles. Further research is
necessary to understand whether heterogenous miRNA expression is a common feature in cancers

and if the miRNA pathway contributes to heterogeneous gene regulation in cancer subpopulations.
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Figure 1.6. Molecular heterogeneity is evident in genomic, epigenetic, transcriptomic, and proteomic
profiles. In cancer, heterogeneity often exists between patients (inter-tumour heterogeneity), which

can impact prognosis. Additionally, cancer cells can take many forms within a single tumour and adopt
a variety of phenotypes which support the tumour microenvironment. Both forms of heterogeneity
challenge our ability to develop effective therapies.
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1.6. Summary and research questions

miRNAs play an essential role in gene regulation through suppression of translation and destabilization

1% miRNAs are one of the most abundant regulatory molecules in human cells and

of messenger RNAs
are heavily integrated into gene networks driving essentially all biological processes, including
regulation of cell differentiation, the cell cycle, and intercellular signalling'®”*%8, Their dysregulation is
a common feature in many diseases, including cancer, and studies have demonstrated functional roles
for miRNAs in oncogenesis and drug resistance®®. Regulation of miRNA biogenesis is incredibly

complex, involving a multitude of proteins that work together to process primary miRNA transcripts

into their mature, biologically active forms?.

miRNA processing during biogenesis, and after maturation, produces a variety of miRNA isoforms
called isomiRs'®. Research shows that at least some of these isomiRs are functional and can either act
together to suppress the same targets or completely different ones®. IsomiR expression is strongly
associated with different types of cancer, however our understanding of their contribution to
oncogenesis remains limited*??%, Furthermore, the mechanisms behind isomiR processing are still
poorly understood and it is not known how precise isomiR expression can be regulated cell
autonomously. Investigating this may provide insight into their contribution to the heterogeneity
observed in cancer cells'®. Prior to this thesis and to the best of our knowledge, no studies have been
published by others which investigate cell-wide isomiR expression and processing at the single cell

level.

In the final stage of mMiRNA biogenesis, the RNA-induced silencing complex is formed, which contains
two essential components for miRNA regulation — the mature miRNA and the protein Argonaute®’.
RNA sequencing studies have detected alternatively spliced transcripts of Argonaute with protein-
coding potential®®2°l, However, it is not known how these isoforms affect the function of Argonaute

and its interaction with miRNAs in humans.

This thesis is composed of two hypotheses which aim to address major gaps in our understanding of
the miRNA pathway. The first investigates the miRNA pathway’s role in intra-tumour heterogeneity,
using single cell sequencing data to relate miRNA expression to cell states and to understand isomiR
regulation in individual cells. The second investigates the biological function of isoforms of Argonaute

2.
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1.6.1. Hypothesis 1 - microRNA and isomiR expression contributes to heterogeneous gene

regulation and can identify subpopulations in cancer

e Aim 1: Identify miRNAs that are differentially expressed in glioblastoma cells and investigate their
association with known glioblastoma cell states

e Aim 2: Characterize isomiR expression on a single cell level and assess their potential to regulate
processes involved in intra-tumour heterogeneity

For Hypothesis 1, the first aim is addressed in chapter 2 and the second aim in chapter 3 in this thesis.

Chapter 3 is an extended version of our published paper in Scientific Reports?®2,

1.6.2. Hypothesis 2 - Splice variants of Argonaute 2 have distinct regulatory functions through

association with different RNAs

e Aim 1: Quantify Ago2 isoforms in human tissues and cell lines to identify isoforms with potential
biological significance

e Aim 2: Compare the small RNA and miRNA binding profiles of Ago2 isoforms

For Hypothesis 2, both aims are addressed in chapter 4.
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2. The role of miRNAs in glioblastoma tumour heterogeneity and cell
state regulation

2.1. Chapter introduction

2.1.1. Heterogeneity is a hallmark feature of the brain cancer glioblastoma

Glioblastoma is one of the most common and aggressive gliomas, which originates in the brain, and
has seen few improvements in patient outcomes over the past few decades?®®. One of the main
reasons for this lack of progress is that extensive tumour heterogeneity is one the hallmark features
of this disease?. Inter-tumour heterogeneity between tumours of different patients, as well as intra-
tumour heterogeneity of cells within a tumour, challenge the development of drugs that can

effectively treat glioblastomas with complex molecular profiles and varying phenotypes?°+20,

Recent technological advancements have paved the way for molecular subtyping using next
generation sequencing. In glioblastoma, inter-tumour heterogeneity has been characterized on
genetic and transcriptional levels. In 2010, Verhaark et al integrated gene expression data from The
Cancer Genome Atlas (TCGA) and identified four subtypes of glioblastoma — which they named
proneural (TCGA-PN), neural (TCGA-NE), classical (TCGA-CL), and mesenchymal (TCGA-MS)?%. The
subtypes were later revised to exclude the neural subtype, whose classification was attributed to
contamination with normal tissue?”’. Glioblastoma subtypes are strongly associated with genomic
events of specific genes. For example, classical subtype tumours were found to be more frequently
affected by EGFR amplifications, aberrations in PDGFRA and IDH1 more common in proneural
subtypes, and loss of NF1 common in mesenchymal subtypes?°2%7, As overall survival times are
different in tumours from each of these TCGA subtypes, genes associated with these subtypes are

considered to have clinical value as prognostic biomarkers2°72%,

2.1.2. Evolution of models for intra-tumour heterogeneity in glioblastoma

One of the first discoveries of cancer stem cells was in brain tumours, which formed the basis of early
models for intra-tumour heterogeneity in glioblastoma®. Purportedly, glioma stem cells existed in
small numbers but were self-renewing and could generate the diverse cell populations that tumours
were comprised of?%. Initial studies suggested only cell populations enriched in glioblastoma stem cell
markers (e.g CD113) could generate tumours?®. However, later studies identified multiple cell
populations with stem-like or tumourigenic properties, isolated using different cell markers indicating

a far more complex hierarchy?9.211,

Models for glioblastoma intra-tumour heterogeneity have expanded significantly since the

development of high throughput single cell sequencing®®*?1%213, One of the earliest single cell RNA
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sequencing (scRNA-seq) studies in glioblastoma identified common sets of genes, or meta-signatures,
expressed across 5 different patient tumours related to hypoxia, immune response, oligodendrocytes,
and the cell cycle?’?. In a study by Neftel et al, gene expression data was incorporated from 28
glioblastoma tumours using scRNA-seq and 401 tumours using RNA-seq from TCGA, to construct a
more unified model of glioblastoma®®. In this model they described four main cancer subpopulations,
which they referred to as cell states, resembling various cell types that exist during normal brain
development®. This included astrocyte-like (AC), neural-progenitor-like (NPC), oligodendrocyte-
progenitor-like (OPC), and mesenchymal-like (MES) cell states. Interestingly they found that all
tumours were comprised of multiple cell states, although not necessarily containing all states at once.
The presence and relative frequencies of each cell state were shown to directly influence TCGA
subtype classifications, with TCGA-CL tumours more dominant with cells in an AC cell state, TCGA-PN
tumours more dominant in NPC and OPC cell states, and TCGA-MS tumours with MES states.
Furthermore, plasticity was clearly demonstrated between each cell state, which could all initiate
tumours that eventually recapitulated the relative frequencies of cell states observed in the original
tumours®. An additional cell population resembling outer radial glia was identified in a later study by

Bhaduri et al, which contributes to the invasiveness of glioblastoma?®!4,

2.1.3. miRNAs play a key role in brain development and glioblastoma
miRNAs play an essential role throughout the developing brain, contributing to cell fate specification

215-

and differentiation in many neural or glial stem/progenitor cells?**'7. Extensive documentation of

miRNA dysregulation in glioblastoma and their effects on key cancer pathways suggests they are also

218-224 Fyrthermore, miRNA expression profiles can significantly improve

important in tumourigenesis
classification of tumours with TCGA subtypes, making them potential biomarkers and also suggesting
their activity is intrinsically linked to the gene networks that drive each of these subtypes?®. As
research has now highlighted a direct link between TCGA subtypes and cell state compositions on a
single cell level, this implies that miRNA expression is also associated with these cell states and may
have important functions in cell state regulation!®*. Despite this, there is an absence of studies in the
literature which aim to investigate miRNA expression in glioblastoma single cells and the role miRNAs
play in the regulation of cell states. We hypothesized that cell states should be distinguishable by
analysis of miRNA expression and by examining glioblastoma cells we may find evidence of

autonomously regulated miRNAs of importance to the cell states described in Neftel et al’s

glioblastoma model*®?,
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2.2. Specific methodology

2.2.1. Data collection
Raw single cell small RNA sequencing reads were obtained from the Gene Expression Omnibus (GEO)

database under accession id GSE81287.

Raw or normalized gene counts and metadata from glioblastoma single cell RNA sequencing was
obtained the Gene Expression Omnibus (GEO) database under accession ids GSE84465 (Darmanis
dataset), GSE131928 (Neftel and Neftel 10X datasets), GSE102130 (Filbin dataset), and GSE57872

(Patel dataset)!8212:213,226

Read counts from bulk miRNA and RNA sequencing of glioblastomas were obtained from the GDC Data
Portal under project ID CPTAC-3%?’. Files for miRNA isoform expression were used to quantify mature

miRNAs.

2.2.2. Single cell small RNA sequencing pre-processing and mapping

For the single cell small RNA sequencing reads, UMI sequences were removed prior to any adapter
removal and appended to the read headers. Adapters were then removed using cutadapt (v2.7) with
a minimum overlap of 1 nt and maximum error rate of 0.1 between reads and adapter sequences??.
After UMI and adapter removal, reads shorter than 15 nucleotides were excluded. To identify
duplicated reads, reads were aligned to the human genome (hg38) using bowtie (v1.2.3) with the
following parameters: -n 2 -e 120 -1 20 --best??°. Human-aligned reads were subsequently deduplicated

with umitools (v1.0.0) with default settings?*°.

Processed reads were aligned to miRbase (v22.1) annotated precursor miRNAs using miraligner (v3.4),
with the following parameters: -sub 1 -trim 3 -add 334231, Reads which successfully alighed to a miRNA
were also annotated with any variants to the miRbase defined mature sequence and converted to

miRNA and isomiR count matrices.

2.2.3. |dentification of cell subpopulations with miRNA expression
To identify glioblastoma cell subpopulations using miRNA or isomiR expression, miRNA and isomiR

count matrices were analysed with the Seurat R package (v3.1.5)3?

. miRNA or isomiR features present
in 3 or less cells, or cells with less than 1000 mapped reads, were excluded from analysis. For
dimensionality reduction, we used PCA on the top 25% of variable features after centering and scaling
the data. Cells were visualized using Uniform Manifold Approximation and Projection (UMAP) with a
range of principal components and resolutions, determined with JackStraw plots. This was followed

by cell clustering using Seurat’s inbuilt graph-based clustering method. Clustering of cells was stable

across a range of parameters and were deemed acceptable due to the presence of cluster specific
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miRNA ‘markers’ highly expressed in one population and absent in the other. For differential
expression analysis, only features with an adjusted p-value (p.adj) less than 0.05 and loge fold-change

larger than 1 were considered differentially expressed.

2.2.4. miRNA target prediction
miRNAtap (v1.28) package was used to aggregate target predictions across five different algorithms
(DIANA, Miranda, PicTar, TargetScan, and miRDB) using the ‘minimum’ method and only considering

targets predicted by 2 or more algorithms?%3,

2.2.5. Scoring for TCGA subtypes, cell states and miRNA targets

Scores which reflected expression of a set of genes (i.e gene modules) were calculated using a method
similar to that described in the Neftel et al study for single-cell gene signature scores®. First, gene
counts for all samples were converted to log; transcripts-per-million (log,[TPM+1]) and centered by
deducting expression of each gene by its mean expression across all samples from the same dataset.
Then for each sample, scores were calculated from the mean expression of the gene module minus
the mean expression of a control gene set. For the control gene set, aggregate expression of each
gene across all samples from the same dataset were used to sort and separate genes into 30
expression bins. For each gene in the gene module, 100 genes were randomly selected from the same

expression bin and placed in the control gene set.

The gene sets for the 3 TCGA subtypes were obtained from Wang et al’s study?®’. Cell state gene sets
were obtained from Neftel et al’s study!®*. Gene sets for miRNA targets were generated by

miRNAtap?33,

2.2.6. Code for data analysis and figures

Documents containing code used to generate the results in this section can be found in the following
link: https://cloudstor.aarnet.edu.au/plus/s/GaNTw7rMWztjliu
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2.3. Identification of heterogeneously expressed miRNAs in glioblastoma

2.3.1. Distinct glioblastoma subpopulations can be identified through single cell miRNA and
isomiR expression profiles

Previous work by Neftel et al, using unsupervised hierarchical clustering with scRNA-seq expression
data, identified 6 gene expression modules which were associated with 4 different cell states in
glioblastoma®®, These gene expression modules spanned multiple glioblastoma tumours, suggesting
they represented commonly occurring cell states in glioblastoma. Their work also showed that
glioblastoma cell states emerge spontaneously and are predominantly driven by cell autonomous

factors including genomic perturbations®

. We hypothesized that unsupervised clustering of miRNA
expression from glioblastoma cells may also identify subpopulations in different cell states.
Additionally, we investigated isomiR expression to explore their potential role in cell state regulation.
To determine if miRNA or isomiR heterogeneity may contribute to cell state regulation or identity in
glioblastoma, we analysed 173 cells from 3 glioblastoma primary cultures and 1 glioblastoma cell
line?32, We used Seurat’s built-in graph-based clustering approach on UMAP projections for both
miRNA (Figure 2.1A) and isomiR (Figure 2.1B) expression and found most cells co-localized with other
cells from their respective cell type with minimal evidence of common miRNA or isomiR expression
modules across different cell types**?. However, we observed that one of the glioblastoma primary
cultures, named KS4, formed two distinct groups that were identifiable in both the miRNA (Figure
2.1C) and isomiR (Figure 2.1D) data, which we considered may represent two cell subpopulations in
different cell states. The two groups of cells formed using miRNA and isomiR expression were nearly

identical, except for two cells (Figure 2.1E).
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Figure 2.1. Identification of heterogenous glioblastoma cell subpopulations from miRNA and isomiR
expression. UMAP plots (top) containing all four glioblastoma cell types using A. miRNA and B. isomiR
expression. UMAP plots (bottom) containing cells from the KS4 glioblastoma cell type for C. miRNA and
D. isomiR expression, coloured by their assigned clusters using Seurat’s in-built clustering algorithm?32.
E. miRNA and isomiR clustering results for each KS4 cell.
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2.3.2. Expression of two miRNA clusters distinguish KS4 glioblastoma subpopulations

Following this, we compared miRNA expression between the two KS4 cell clusters using differential
expression analysis (Figure 2.2). In total, we identified 20 miRNAs which were significantly upregulated
in KS4 cluster 1, and 5 miRNAs which were significantly upregulated in KS4 cluster 2 (p.adj < 0.05).
Further investigation into the upregulated miRNAs in KS4 miRNA cluster 1 found that 18 of the 20
upregulated miRNAs originated from a miRNA cluster hosted within the DLK1-DIO3 gene locus on
chromosome 14932 (Figure 2.2B and Figure 2.3). We also found that 3 of the 5 upregulated miRNAs
in cluster 2 - miR-224-5p, miR-224-3p, miR-452-5p, were also from a single miRNA cluster on
chromosome X (Figure 2.2C). By comparing the expression of the miRNAs significantly upregulated in
cluster 1 or 2 (Figure 2.4), we found that the miRNAs from each of these miRNA clusters dominated
expression (>75%). Together this data shows that some miRNAs, including two miRNA clusters, can be

expressed cell-autonomously and are potential regulators of cell states on a single cell level.

We also compared the expression of isomiRs in the KS4 clusters (Figure 2.5). We considered two
possible scenarios which would lead to differentially expressed isomiRs — that isomiR processing was
altered in these two cell clusters or that the isomiRs were reflecting differences in miRNA expression.
If isomiR processing was altered, then we would expect to find differentially expressed isomiRs which
are notin proportion to the expression of other isomiRs from the same miRNA. Differential expression
analysis identified 5 isomiRs upregulated in cluster 1 and 13 isomiRs upregulated in cluster 2. However,
we found that many of the isomiRs upregulated in either KS4 cluster matched the miRNAs identified
previously, and that the isomiRs were generally in proportion to expression of the other isomiRs from
the same miRNA gene (Figure 2.5B-C), suggesting miRNA expression, not isomiR processing, was the

key differentiating factor between these two cell populations.
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A KS4 Glioblastoma miRNA Cluster
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Figure 2.2. Comparison of miRNAs between KS4 glioblastoma cells in miRNA-based clusters 1 (red) and
2 (blue). A. Heatmap containing miRNAs with the highest fold change expression between clusters. Not
all miRNAs shown here are statistically significant. B. Top 6 miRNAs by statistical significance that are
differentially upregulated in KS4 cluster 1 (p.adj < 0.05). C. The 5 miRNAs differentially upregulated in
KS4 cluster 2 (p.adj < 0.05). miRNA expression shown is in loge.
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Figure 2.3. DLK1-DIO3 locus derived miRNAs upregulated in KS4 Glioblastoma miRNA-based clusters 1 (red) and 2 (blue). Only miRNAs with adjusted p-values
less than 0.05 were included. Expression shown is in loge.
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miRNA clusters. A. Shows relative expression of the 20 miRNAs upregulated in glioblastoma cells from
KS4 Cluster 1 (compared to KS4 Cluster 2). B. Shows relative expression of the 5 miRNAs upregulated in
glioblastoma cells from KS4 Cluster 2 (compared to KS4 Cluster 1).
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A KS4 Glioblastoma IsomiR Cluster
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Figure 2.5. Comparison of isomiRs between KS4 Glioblastoma cells in isomiR-based clusters 1 (red) and
2 (blue). A. Heatmap containing isomiRs with the highest fold change expression between clusters. Not
all isomiRs shown here are statistically significant. B. Comparison of expression of isomiRs from the
same MiRNA. isomiR expression shown is in loge.
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2.4. Cell autonomous miRNAs are associated with glioblastoma subtypes and cell state

genes
To our knowledge, no paired sequencing data is available that would allow us to directly compare
miRNA and RNA expression from single glioblastoma cells. Therefore, to predict the function of the
upregulated miRNAs in the two KS4 clusters, we analysed glioblastoma RNA and miRNA expression
data from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) to identify any association
between miRNA expression and marker genes for glioblastoma subtypes or known cell states. The
CPTAC data is for bulk sequencing which only measures population level expression and lacks the
resolution to characterize cell states in single cells. However, previous work showed that glioblastoma
subtypes are indicative of the most dominant cell states within a tumour, with the proneural subtype
(TCGA-PN) typically enriched with cells in a neural-progenitor-like (NPC) or oligodendrocyte-
progenitor-like (OPC) state, mesenchymal subtype (TCGA-MS) enriched with cells in mesenchymal-like
(MES) state, and classical subtype (TCGA-CL) enriched with cells in an astrocyte-like (AC) state®.
Therefore, we reasoned that if the miRNA pathway had a role in regulating cell states, then it may be
possible to identify miRNAs with strong associations to the genes typically upregulated in these cell

states using population level data.

2.4.1. Different miRNAs are associated with TCGA glioblastoma subtypes
To detect potential associations between miRNAs and cell states we first scored tumours by their

184 \We found that tumours were

mean expression of marker genes for each glioblastoma subtype
typically associated with at most one TCGA glioblastoma subtype as they did not score highly in
multiple subtypes and there was a negative correlation (Pearson’s method) between scores for each
subtype (Figure 2.6A-C). Out of the top 200 expressed miRNAs measured across all glioblastoma
tumours, 146 miRNAs were significantly correlated with at least one subtype score (p.adj < 0.05; Figure

2.8). The strongest correlations of miRNA expression and subtype scores were with the TCGA-PN and

TCGA-MS subtypes.

We then compared the correlation coefficients of individual miRNAs across TCGA subtypes and found
that miRNAs with the highest positive correlation to a given TCGA subtype were frequently
accompanied by a negative correlation to the other subtypes (Figure 2.7 and 2.8). This was most
evident when comparing the correlation values of the miRNAs with the TCGA-PN subtype against the
TCGA-MS subtype, which revealed a strong anti-correlation pattern (R=-0.69; Figure 2.7B), followed
by TCGA-MS against TCGA-CL (R=-0.45) and finally TCGA-PN against TCGA-CL (R=-0.24). Together, this
data suggests that miRNA expression is strongly associated with TCGA subtypes and is in line with a

potential involvement in regulating cell states.
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2.4.2. Different miRNAs are associated with glioblastoma cell state genes

Following this we scored tumours by 6 gene modules that represented the 4 cell states described by
Neftel et al'®. This included modules for an astrocyte-like cell state (AC), neural-progenitor-like states
(NPC1, NPC2), mesenchymal-like states (MES1, MES2), and an oligodendrocyte-like state (OPC). The
highest Pearson correlation values were observed with the NPC1, NPC2, MES1, and MES2 cell states
(Figure 2.7A and 2.9). Strong anti-correlation patterns with similar magnitudes were observed
between the NPC1/NPC2 states and MES1/MES2 states with most miRNAs. A high number of miRNAs
had similar correlations between NPC1, NPC2, OPC, and AC cell states, although were generally
weaker with the OPC and AC cell states, and anti-correlation patterns were observed for some miRNAs

(Figure 2.7A).

The correlation values were highly similar across the TCGA-Proneural subtype and NPC1/NPC2 states,
as well as the TCGA-MS subtype and MES1/MES2 states, as shown with hierarchical clustering (Figure
2.7A) and Pearson correlation (Figure 2.7B). This was consistent with Neftel et al’s previous work
suggesting these subtypes were predominantly composed of cells exhibiting these respective
states’*. A weaker association was observed between the TCGA-CL subtype and each cell state, with
the highest association to the AC state (R=0.34), possibly reflecting this subtypes mixed population of
states (Figure 2.7). Collectively, results demonstrate that the TCGA subtypes and cell states, defined
by messenger RNA expression, are also evident in miRNA expression and suggest the miRNA pathway

may also be involved in their regulation.
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2.4.3. Two miRNA clusters are associated with different cell states in glioblastoma cells

We then focused on the miRNAs that were identified previously as differentially expressed between
the two KS4 glioblastoma subpopulations. Most of the miRNAs that were co-upregulated in one of
these subpopulations showed a consistency regarding their expression and correlation to the cell state
scores (Figure 2.10). For example, 16/20 (p.adj < 0.05) miRNAs upregulated in KS4 cluster 1 (Figure
2.10A) were positively correlated with the NPC1 or NPC2 cell state score and 11/20 (p.adj < 0.05) with
the OPC score. Conversely there was a negative correlation with 9/20 (p.adj < 0.05) miRNAs and the
MES1 scores. All 18 of the miRNAs from the DIk1-Dio3 locus had a positive correlation coefficient with
the NPC scores however many were weakly correlated or not statistically significant (Figure 2.10A).
Only one miRNA, miR-155-5p, appeared to contradict the miRNAs in this group, having a positive
correlation with MES1 scores and negative correlations with NPC1, NPC2, and OPC scores. Out of the
5 miRNAs upregulated in KS4 cluster 2 (Figure 2.10B), 3 were positively correlated with the MES1
scores and 2 with the MES2 scores, as well as 2 with the NPC1, and 1 with the NPC2 and OPC scores.
All 3 miRNAs from the miR-224/452 cluster negatively correlated with the AC cell state score. The
remaining miRNAs did not appear to contradict these observations but lacked statistical significance.
We also considered that an aggregated expression of miRNAs from each cluster (Figure 2.10), including
all miRNAs belonging to this cluster (All) or only those differentially expressed between the two KS4
glioblastoma subpopulation (DE Only), may provide a stronger association to these cell states than
any individual miRNA. We found for both measurements of the DIk1-Dio3 cluster (Figure 2.10A), their
association was similarly positive with the NPC1, NPC2, and OPC states, although not significant with
the OPC state for the differentially expressed miRNAs. No significant negative correlation was shown
between the aggregated Dlk1-Dio3 miRNA expression and the AC, MES1, and MES2 scores. For the
aggregated miR-224/452 cluster miRNA expression (Figure 2.10B), significant positive correlation was
observed with the MES1 and MES2 states, and negative correlation with the NPC1, OPC, and AC state
scores (both All and DE Only). The evidence indicated that expression of select miRNAs, such as miR-
323a-3p and miR-224-5p, may be on par or better than an aggregate expression of the clusters for

distinguishing between cell states.

Finally, we noted that the cell state scores were generally consistent with the bulk subtype scores
(Figure 2.10), with the miRNAs upregulated in KS4 Cluster 1 generally positively correlating with the
TCGA-PN subtype score and miRNAs from KS4 cluster 2 positively correlating with the TCGA-MS
subtype score. The combined evidence of cell autonomous regulation of these two miRNA clusters as
well as their association with specific cell states highlights a novel form of intra-tumour heterogeneity

in glioblastoma and implicates them as potential regulators of glioblastoma cell states.
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Figure 2.10. Expression of DIk1-Dio3 and miR-224/452 cluster miRNAs correlate with different cell state
modules. A. Correlation of the 20 miRNAs upregulated in the KS4 glioblastoma miRNA-based cluster 1
with each TCGA subtype and cell state score. B. Correlation of the 5 miRNAs upregulated in the KS4
glioblastoma miRNA-based cluster 2 with each TCGA subtype and cell state score. miRNAs belonging to
the DIk1-Dio3 miRNA cluster (A) or miR-224/452 cluster (B) are shown in bold. Correlation of combined
expression of miRNAs from each cluster is also shown (above black lines), including all miRNAs from
cluster (All) or only miRNAs differentially expressed between KS4 cells (DE Only). Pearson’s correlation
was used to determine correlation metrics. P-values are shown as asterisks - *: 0.005 <= p-value < 0.05;
**:0.0005 <= p-value < 0.005; ***:0.00005 <= p-value < 0.0005.
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2.5. The DLk1-Dio3 locus is associated with cell states in single cells

Our previous work identified two miRNA clusters — the DIk1-Dio3 locus and miR-224/452 cluster — with
potential roles in cell state regulation, using population-level data to infer a relationship between
these miRNAs and cell state marker genes. Previous studies suggest the miRNAs from the Dlk1-Dio3
locus are co-transcribed from a common primary transcript with 3 long non-coding RNAs — MEG3,
MEGS, and MEG9*’. To expand our study we leveraged single cell RNA-seq data from four separate
studies to investigate if there was evidence of an association between the Dlk1-Dio3 locus and
glioblastoma cell states on a single cell level?!#213, Although single cell RNA-seq does not capture
miRNAs, we hypothesized that expression of these long non-coding RNAs would be strongly correlated
with miRNA expression from this locus and would be potential marker genes for Dlk1-Dio3 miRNA

expression in single cells.

2.5.1. Long non-coding RNAs MEG3, MEG8 and MEGY predict Dlk1-Dio3 miRNA expression in
glioblastoma tumours

To determine if the long non-coding RNAs MEG3, MEGS8, and MEG9 could predict expression of
miRNAs from the Dlk1-Dio3 locus, we used paired RNA and miRNA expression data for glioblastoma
tumours from TCGA to determine the correlations of the combined expression of Dlk1-Dio3 miRNAs
with each gene in the RNA dataset. There was a high correlation between the combined Dlk1-Dio3
miRNA expression and the non-coding RNAs MEGS8 (Pearson’s r=0.71), MEG3 (Pearson’s r=0.67), and
MEG9 (Pearson’s r=0.65), as well as with RTL1 (Pearson’s r=0.65), all of which are encoded from this
locus (Table 2.1). Excluding genes which code for miRNAs or snoRNAs, these four were the most
positively correlated genes across the glioblastoma tumours, indicating their expression corresponded
well with DIk1-Dio3 miRNA expression. This provided strong support for their use as markers to infer

miRNA expression from this locus when only RNA-seq data is available.
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Gene Pearson’s Correlation | P-value Gene in DIk1-Dio3
Coefficient locus
MEG8 0.71 1.92E-16 Yes
MEG3 0.67 7.01E-14 Yes
MEG9 0.65 4.88E-13 Yes
RTL1 0.65 5.55E-13 Yes
EIF2S1 0.54 1.18E-08 No
ATP5MJ 0.52 4.07E-08 No
PSMC1 0.50 1.27E-07 No
COAS8 0.48 4.20E-07 No
SLC39A9 0.48 6.62E-07 No
UBR7 0.48 5.17E-07 No
BAG5 0.47 1.21E-06 No
CINP 0.47 8.29E-07 No
EIF5 0.47 9.53E-07 No
VTI1B 0.46 1.64E-06 No
AREL1 0.45 3.49E-06 No
FAM131B-AS1 0.45 3.60E-06 No
PPP2R3C 0.45 2.94E-06 No
PPP4R3A 0.45 3.07E-06 No
DRAXIN 0.43 1.29E-05 No
DYNC1H1 0.43 9.72E-06 No

Table 2.1. Genes with the strongest correlation to the combined expression of DIk1-Dio3 miRNAs,
excluding genes encoding for miRNAs (i.e primary or precursor miRNAs) and snoRNAs.
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2.5.2. MEG3 expression is associated with the neural progenitor-like and oligodendrocyte
progenitor-like cell states in single cells

To investigate if the DIk1-Dio3 marker genes were associated with any cell states we utilized single cell
RNA-seq data from 4 different studies, which included 43 glioblastoma tumours and 16269 cells after
filtering8+212213.226 Eqr the Neftel study we analysed the tumours as two distinct datasets depending
on whether they were sequenced by the Smart-seq2 (labelled Neftel dataset) or 10X Genomics
(labelled Neftel 10X dataset) methods, and some of the tumours featured in multiple datasets. Of the

DIk1-Dio3 markers, only MEG3 was detectable in a high number of cells so we focused on this gene.

Each glioblastoma cell was assigned a score for each cell state, using the same methodology described
previously. We then calculated the Pearson correlation between the cell state module scores and
MEG3 expression (logz[TPM+1]) for all cells in each dataset. There was a significant positive correlation
between MEG3 expression and the NPC1 and NPC2 cell state scores found in all datasets (Figure 2.11).
Correlations ranged from positively weak to moderate for the NPC1 (Pearson’s r=0.07 to 0.53) and
NPC2 scores (Pearson r=0.08 to 0.61). Similar observations, albeit to a lesser extent, were seen with
the OPC scores (Pearson’s r=0.00 to 0.48). Additionally, there was a significant weak to moderately
negative correlation between MEG3 expression and the MES1 scores (Pearson’s r=-0.12 to -0.42)

across datasets.

To determine if this observation was consistent across individual tumours, we separated glioblastoma
cells accordingly (Figure 2.12). We found that for most tumours (38/50), MEG3 expression was
positively correlated with at least one of the NPC cell state scores, and many were also positively
correlated with the OPC scores (22/50). Most tumours with a positive correlation of MEG3 expression
and NPC scores also had a corresponding negative correlation with the MES1 and/or MES2 scores,
again observable across multiple datasets. The coefficients were generally stronger in tumours with a
higher expression of MEG3, suggesting that tumours with lower expression of MEG3 either had
insufficient statistical power to detect this association or this association is not present in all
glioblastomas. Although we did not observe any strong correlation (Pearson’s R >= 0.7) with any

modules, the observations were consistent with the DIk1-Dio3 miRNAs from the TCGA data.
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Figure 2.11. Correlation of MEG3 expression with cell state module scores across all glioblastoma cells
for each dataset. Scores were calculated from expression of gene modules highly expressed in their
respective glioblastoma cell state. Scoring method and gene modules were obtained from the Neftel et
al study®®*. Pearson’s method was used for correlation, and p-value significance is shown as asterisks.
*: 0.005 <= p-value < 0.05; **: 0.0005 <= p-value < 0.005; ***: 0.00005 <= p-value < 0.0005; ****;
0.000005 <= p-value < 0.00005.
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0.00005 <= p-value < 0.0005; ****: 0.000005 <= p-value < 0.00005.
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2.6. Target prediction identifies DIk1-Dio3 miRNAs regulate key transcription factors and

regulatory pathways involved in cancer

As miRNAs function by regulating gene targets, we used miRNAtap to predict the targets of miRNAs
from the DIk1-Dio3 and miR-224/452 clusters and compared them to the cell state gene modules to
see if any cell states were highly represented (Figure 2.13). We found that the proportion of cell state
genes that were targets of at least one the 18 upregulated miRNAs from the DIlk1-Dio3 locus were not
substantially different, ranging from 18-28% (Figure 2.13A). The cell state modules with the highest
proportion of targets were the NPC1 and NPC2 modules, where 28.0% (14/50) of genes were identified
as DIk1-Dio3 targets. This was followed by 25.6% (10/39) in the AC module, 24.0% (12/50) in the MES2
module, 22.0% (11/50) in the MES1 module, and finally 18.0% (9/50) in the OPC module. As the
number of targets across all 18 miRNAs (n=3605) represented a significant portion of overall genes,
we also considered genes which were targets of multiple miRNAs from the same cluster, which we
expected would be more strongly regulated (Figure 2.13). When only considering genes targeted by 2
or more miRNAs from Dlk1-Dio3 locus, the number of targets matching cell state genes dropped for
all cell state modules, however the NPC1 module remained the most highly represented (6/50 genes).
When increasing to 3 or more miRNAs, only 1 gene remained from the NPC2 and OPC modules, and
no other cell states had matching targets. Interestingly, the NPC2 marker gene NFIB was a predicted
target of 7 of the 18 identified DIk1-Dio3 miRNAs, suggesting they downregulated this gene. This was
unexpected given that our previous work indicated the miRNAs from this cluster were upregulating
the genes which represented this state. Nonetheless, the results highlighted that regulation of this

gene is likely an important function of this miRNA cluster.

We also investigated targets of the 3 miRNAs from the miR-224/452 cluster (Figure 2.13B). The
proportion of cell state genes that were targets of at least one miRNA from this locus were similar
across most cell states. Representation was highest in the NPC2 module (7/50), followed by the NPC1
module (5/50), then MES1, MES2 and OPC modules (4/50), and finally the AC module (3/39). Only the

NPC2 cell state module had a gene, MAP1B, that was targeted by 2 or more miRNAs from this cluster.

Following this we considered whether the function of either miRNA cluster could be predicted through
KEGG pathway enrichment analysis of their gene targets (Figure 2.14). For the DIlk1-Dio3 miRNA
targets there was a significant enrichment in pathways in cancer (ID: hsa05200) as well as several
pathways associated with cell signalling, including Proteoglycans in cancer (ID: hsa05205), Hippo
signalling pathway (ID: hsa04390), FoxO signalling pathway (ID: hsa04068), and MAPK signalling
pathway (ID: hsa04010), which have roles in cell adhesion, proliferation, differentiation, and apoptosis

(Figure 2.14A)3*27_ miRNA targets from the miR-224/452 cluster were also significantly enriched in
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multiple signalling pathways which included the Wnt signalling pathway (ID: hsa04310) and Hedgehog
signalling pathway (ID: hsa04340), important regulators of stem cell renewal and epithelial-
mesenchymal transition (Figure 2.14B)*3%23% Although many of the signalling pathways mentioned
above may be involved in cell state regulation, we were unable to find strong evidence that miRNA

targets from the DIk1-Dio3 locus or miR-224/452 cluster had a specific role in any known cell states.
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Figure 2.13. Common genes between cell state modules and miRNA targets. Shows
predicted targets for A. DIk1-Dio3 locus miRNAs and B. miR-224/452 cluster miRNAs. We considered all
predicted targets from cluster miRNAs, as well as only those targeted by multiple miRNAs (x-axis). Only
includes miRNAs from each cluster which were differentially expressed in the KS4 cells. AC: Astrocyte-
like. MES: Mesenchymal-like. NPC: Neural-progenitor-like. OPC: Oligodendrocyte-progenitor-like.
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Figure 2.14. Gene Set Enrichment Analysis of KEGG pathways for miRNA cluster targets. A. Targets of
the DIk1-Dio3 miRNAs. B. Targets of the miR-224/452 miRNAs. Only includes miRNAs from each cluster

which were differentially expressed in the KS4 cells.
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2.6.2. Expression of miRNA targets is associated positively with NPC and OPC cell states and

negatively with MES states

One of the primary mechanisms of gene regulation in the miRNA pathway is to facilitate degradation
of transcriptional targets. Therefore, we hypothesized if miRNAs were important in the regulation of
any cell states, their activity would be detectable through a change in expression of their targets. For
example, cells with higher expression of miRNAs should have, on average, lower expression of their
targets and conversely cells with lower expression of miRNAs should have, on average, higher
expression of their targets. To investigate the regulatory effects of miRNAs from the DIk1-Dio3 locus
or miR-224/452 clusters with cells in each of the cell states, we calculated the mean expression of
targets within each cell and then binned cells as high (score > 1), none (-1 > score >= 1), or low (score
<= -1) scoring for each cell state score calculated in the previous section (Figure 2.15 and 2.16). As
several factors, including library preparation and sequencing method are known to influence gene

quantification, we treated cells from different datasets separately.

With the DIk1-Dio3 miRNA targets, there was typically a high amount of variation in target expression
across cells even within the same scoring bin (Figure 2.15). We observed a minor but statistically
significant increase in target expression when comparing low to high scoring MES1 (in 5/5 datasets)
and MES2 (in 4/5 datasets) cells. For the other cell state modules, there was a general lack of
consistency in results when comparing cells from different datasets, indicating no association between
target expression and cell state score. Similar results were observed with the miR-224/452 cluster
targets, which also had a high variation in expression with cells in each scoring bin. For both the MES1
and MES2 cell states, there was a similar trend with increased expression in the low scoring cells in
the Darmanis, Neftel, and Filbin datasets and no significant difference detected in the remaining
datasets. Additionally, no clear trend was evident when examining the other cell states for the miR-

224/452 cluster targets (Figure 2.16).

We considered that the high stochastic variability of gene expression between cells may confound any
measurable changes in target expression between high and low scoring cell states. The scoring method
used previously for the cell states effectively measures mean expression of associated marker genes,
while also adjusting values by expression of a set of control genes of each cell. Therefore, to account
for stochastic variability we used this method to score cells according to their expression of gene
targets from the DIk1-Dio3 or miR-224/452 cluster miRNAs and refer to them as cluster target scores.
The difference between cells with high and low cell state scores was clearer when comparing target
scores instead of expression (Figure 2.17 and 2.18). The Dlk1-Dio3 (Figure 2.17) and miR-224/452
(Figure 2.18) target scores were both increased in the high scoring MES1 and MES2 cells, and

decreased in high scoring NPC1, NPC2. A decrease in miRNA target scores was also observed in high
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scoring OPC and AC cells however this was less pronounced in the miR-224/452 target scores.
Together this data suggested there was a measurable change in the expression of targets by the DIk1-
Dio3 and miR-224/452 miRNA cluster when comparing cells in different cell states, and this may

indicate that the DIk1-Dio3 miRNA cluster is more active in MES cells and less active in NPC cells.

Finally, we calculated the Pearson correlation of target scores and cell state scores, calculating
coefficients for each tumour separately (Figure 2.19). For the Dlk1-Dio3 cluster targets, there was a
weak positive correlation between the AC, NPC1, NPC2, and OPC scores and a weak negative
correlation with MES1 scores for cells in most of the glioblastoma tumours (Figure 2.19A). We also
scored cells using genes targeted by multiple miRNAs for this cluster (up to a maximum of 7) and
observed a high degree of similarity when including all targets (Figure 2.19A). A median weak positive
correlation for the AC, NPC1, NPC2, and OPC scores and median weak negative correlation for the
MES1 scores was also observed with targets from the miR-224/452 cluster (Figure 2.19B). These
results suggested that downregulation of the DIk1-Dio3 cluster targets was not evident in cells scoring
highly for the NPC1, NPC2, OPC and AC modules, despite our previous work indicating an upregulation
of this cluster’s miRNAs. For the miR-224/452 cluster targets, the observed negative correlation with
the MES1 module (genes targeted by at least one miRNA from this cluster) and MES2 (only with genes
targeted by at least 2 miRNAs from this cluster) was consistent with a regulatory effect from this

cluster’s miRNAs on the mesenchymal cell state.

Toinvestigate if this trend was exclusive to these miRNA clusters, we expanded these results to include
targets from each of the top 200 expressed miRNAs across TCGA glioblastoma tumours (Figure 2.20).
We found that there was a general trend for targets of miRNAs to be positively correlated with the
NPC1, NPC2, and OPC scores as well as negatively correlated with the MES1 and MES2 scores,
indicating the results were not specific to these two miRNA clusters. The correlation coefficients for
the AC scores were more mixed. Notably, target scores for miRNAs with a stronger positive correlation
with the NPC1, NPC2, and OPC scores nearly always corresponded with a stronger negative correlation
to the MES1 and MES2 scores, mirroring previous observations of an inverse relationship between

NPC/OPC and MES states when comparing miRNA expression and cell state scores (Figure 2.9).
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Figure 2.15. Expression of gene targets for miRNAs from the DIk1-Dio3 cluster. For each cell state score,
glioblastoma cells were divided into high (score > 1), none (-1 > score >= 1), or low (score <=-1) scoring
bins and mean expression of targets was compared between high and low bins using the Student’s t-
test. Data is shown from 5 different datasets — Darmanis, Filbin, Neftel, Neftel_10X, and Patel.
Significance shown as asterisks - *: 0.005 <= p-value < 0.05; **: 0.0005 <= p-value < 0.005; ***: 0.00005
<= p-value < 0.0005; ****:0.000005 <= p-value < 0.00005. AC: Astrocyte-like. MES: Mesenchymal-like.
NPC: Neural-progenitor-like. OPC: Oligodendrocyte-progenitor-like.
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Figure 2.16. Expression of gene targets for miRNAs from the miR-224/452 cluster. For each cell state
score, glioblastoma cells were divided into high (score > 1), none (-1 > score >= 1), or low (score <=-1)
scoring bins and mean expression of targets was compared between high and low bins using the
Student’s t-test. Data is shown from 5 different datasets — Darmanis, Filbin, Neftel, Neftel 10X, and
Patel. Significance shown as asterisks - *: 0.005 <= p-value < 0.05; **: 0.0005 <= p-value < 0.005; ***:
0.00005 <= p-value < 0.0005; ****: 0.000005 <= p-value < 0.00005. AC: Astrocyte-like. MES:
Mesenchymal-like. NPC: Neural-progenitor-like. OPC: Oligodendrocyte-progenitor-like.
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Figure 2.17. Cluster target scores for the Dlk1-Dio3 cluster. Target scores were calculated using the
same scoring method for cell states. For each cell state score, glioblastoma cells were divided into high
(score > 1), none (-1 > score >= 1), or low (score <=-1) scoring bins and mean expression of targets was
compared between high and low bins using the Student’s t-test. Data is shown from 5 different datasets
— Darmanis, Filbin, Neftel, Neftel 10X, and Patel. Significance shown as asterisks - *: 0.005 <= p-value <
0.05; **: 0.0005 <= p-value < 0.005; ***: 0.00005 <= p-value < 0.0005; ****: 0.000005 <= p-value <
0.00005. AC: Astrocyte-like. MES: Mesenchymal-like. NPC: Neural-progenitor-like. OPC:
Oligodendrocyte-progenitor-like.
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Figure 2.18. Cluster target scores for the miR-224/452 cluster. Target scores were calculated using the
same scoring method for cell states. For each cell state score, glioblastoma cells were divided into high
(score > 1), none (-1 > score >= 1), or low (score <=-1) scoring bins and mean expression of targets was
compared between high and low bins using the Student’s t-test. Data is shown from 5 different datasets
— Darmanis, Filbin, Neftel, Neftel 10X, and Patel. Significance shown as asterisks - *: 0.005 <= p-value <
0.05; **: 0.0005 <= p-value < 0.005; ***: 0.00005 <= p-value < 0.0005; ****. 0.000005 <= p-value <
0.00005. AC: Astrocyte-like. MES: Mesenchymal-like. NPC: Neural-progenitor-like. OPC:
Oligodendrocyte-progenitor-like.

76



Dlk1-Dio3 Cluster miRNA Targets

Pearson Correlation Coefficient

oy

bl

oy

B miR-224/452 Cluster miRNA Targets

Pearson Correlation Coefficient

-0.40- .

.

1 2
Number of miRNAs with Targets

3 4
Number of miRNAs with Targets

Module

ES ac

B8 wEs1
BE wes2
BE et
E3 npez
ES opc

5 6

Module

B ac

BEd mes1
B MES2
BS nrCl
B3 npcz
B4 orc

Figure 2.19. Correlation of scores for cluster targets and cell states in glioblastoma tumours. A. Multiple
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2.7. Discussion

In this chapter we investigated miRNA heterogeneity in glioblastoma to determine if miRNAs may play
a role in the regulation of glioblastoma cell states. We identified two miRNA clusters in a primary
glioblastoma culture which discriminated between two subpopulations of cells, suggesting they are
expressed in a cell autonomous manner, and hypothesized that they may represent two different
glioblastoma cell states. There were mixed results regarding both miRNA clusters and their association
with the cell states defined in this study. The results suggest miRNA expression from the Dlk1-Dio3
locus, as well as the putatively co-expressed long non-coding RNA MEG3, is increased in NPC cells and
decreased in MES cells. However, expression of their miRNA targets was also increased in NPC cells
and decreased in MES cells, which suggests miRNA activity is higher in the MES cells and lower in the
NPC cells. Several factors may have contributed to these observations, including an incomplete or
oversimplistic characterization of glioblastoma cell states, poor performance of miRNA target
prediction algorithms, or limitations with sequencing that challenge the inference of miRNA activity
through expression of their targets. Furthermore, cause-and-effect is difficult to establish via
association and it remains to be seen if any of these miRNAs are capable of driving or maintaining
cancer cell states, or if their expression simply changes in response to other, more critical genes. Even
in the absence of a functional role, miRNAs may still hold value as biomarkers for cell states once the

field evolves towards clinical strategies which factor intra-tumoural heterogeneity.

2.7.1. Defining glioblastoma cell states

Although there is some evidence that discrete subpopulations of cells can be identified using RNA or
miRNA expression, many large scale single cell studies have observed that cells are often continuously
distributed between cell states with a high number of cells in ‘intermediate’ states!®194240.241
Additionally, ‘hybrid’ states which have upregulated gene modules for multiple states have been
detected in glioblastoma®®*. These ‘hybrid’ states do not appear completely random as some
combinations were much more common than others. It is plausible that the models of glioblastoma

cell states used in this study imperfectly capture the intra-tumoural relationships between

glioblastoma cells and may have confounded the results.

A key question is whether cell states defined with RNA expression are also mirrored with changes in
miRNA expression, or if examining each expression modality will lead to the detection of different
subpopulations. For example, in a study with hepatocellular carcinoma cells, the authors used
hierarchical clustering to identify 3 subpopulations of cells with RNA expression but found only 2 with
miRNA expression'®*. There was significant overlap between 2 of the RNA expression-based

subpopulations and the miRNA subpopulations, however the third was not identifiable in the miRNA
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expression data. This suggests that it cannot always be assumed that there is concordance between
RNA-based cell states and miRNA expression. Consequently, if the miRNAs examined in this study,
including those from the DIk1-Dio3 and miR-224/452 clusters, regulate cell subpopulations in a
manner that is different to the cell states used in this study, then it is less likely that we would observe

any strong association with them.

2.7.2. Challenges of determining miRNA activity through changes in target expression

In the absence of multi-omic sequencing data which captures miRNA and RNA expression in single
cells, we opted to make use of more accessible scRNA-seq data for glioblastoma cells to infer miRNA
activity through down-regulation of their targets. For target prediction we used miRNAtap, which
aggregates target predictions from popular prediction tools (DIANA, Targetscan, PicTar, Miranda, and
miRDB), and only used targets predicted by at least two tools to improve the detection of true positive
targets?3¥242-2%6 However, target prediction still remains unreliable, and algorithms still fail to capture
the true range of regulatory targets®¥. Early target prediction algorithms relied on the detection of
canonical interactions where miRNA-target pairs were matched between the seed sequence and

248 More recent iterations of target prediction algorithms employ machine learning

3’UTR respectively
to improve performance and can also identify targets with non-canonical interactions?*®2%°, Despite
some improvements in performance over the years, experimental validation of targets are still needed
to confidently identify regulatory interactions with miRNAs?¥’. Unfortunately, the number of predicted
miRNA-target interactions make it impractical to validate all miRNA-target pairs, though high
throughput validation methods using CLIP or bind-n-seq approaches can help to alleviate this

issue?>0:2>1,

Measuring the biological impact of individual miRNAs is extremely challenging, and many studies fail
to identify quantifiable relationships between expression of miRNAs and their expected targets.
Modulating RNA levels is just one of several mechanisms that miRNAs use to regulate their targets,
and other mechanisms such as translational inhibition are not detectable with this approach.
Additionally, miRNAs are each predicted to regulate hundreds to thousands of genes and their
influence on each gene may be minor, acting in concert with other miRNAs to be effective. Previous
studies which examine mRNA expression profiles from microarrays or sequencing have shown that
miRNA activity can be extrapolated from this data, indeed many target prediction algorithms such as
miRDB and MirTarget are trained with mRNA expression data?*®%5%253, However, the suitability of
single cell sequencing data for predicting miRNA activity has not been validated. Individual cells are
inherently stochastic, and current methods for both single cell RNA and miRNA sequencing are

plagued by technical issues which lead to noisy data and feature dropouts®**.
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Finally, our work assumes that miRNA activity can be captured through negative correlations between
miRNAs and the genes they regulate, however this may not always be true. For example, gene
networks which involve co-expression of miRNAs and their targets, could lead to a positive correlation
between the two despite the miRNAs role in suppressing these targets. This may also explain why
NFIB, a marker gene of the NPC1 module, was targeted by 7 of the DIk1-Dio3 miRNAs despite evidence
that these miRNAs were upregulated in this cell state. When we scaled our analysis to include the
targets of 200 miRNAs, this highlighted a broader trend of positive correlations with NPC and OPC
scores and negative correlations with MES scores, indicating the correlations observed for the DIk1-
Dio3 and miR-224/452 miRNA clusters were not isolated to them. While it is possible that the miRNA
pathway has a more generalized role in promoting or suppressing specific cell states, an alternative
explanation is that the results are capturing correlations of cell state scores and gene expression in a
manner unrelated to the miRNAs. For example, as sequencing is inherently relative, an increase in
expression of RNAs which dominate one cell state may decrease measurements for the remaining
RNAs, translating into a negative correlation with most mRNAs as that state is more highly expressed.
Furthermore, as miRNA targets would be biased towards protein coding RNAs, a general change in
their levels relative to other RNA classes within a cell state may also produce a false correlation. Thus,
we were not able to determine if the miRNAs were truly having an impact on the expression of their

targets.

2.7.3. miRNAs are potential biomarkers of glioblastoma heterogeneity

miRNAs such as miR-9-3p, miR-27a, and miR-23a, have previously been identified as markers for
discriminating TCGA-PN and TCGA-MS subtypes. Interestingly, results from our study were consistent
with this work, as these 3 miRNAs had some of the strongest correlation coefficients with the
corresponding subtypes compared to other miRNAs, suggesting at least some the associations here
are genuine. How well these observations translate to single cell level miRNA expression and their

association with cell states remains to be confirmed.

Our study is the first to implicate the DIlk1-Dio3 and miR-224/452 miRNA clusters as potential
regulators of glioblastoma heterogeneity. We identified an inverse relationship between RNA
expression in cells with high expression of NPC/OPC genes compared to cells with high expression of
MES genes. This observation was also evident in bulk miRNA expression data when comparing
NPC/OPC and MES scores which suggests miRNA expression is highly responsive to cell states and
likely incorporated into the gene networks regulating them. Although we have limited evidence that
the two subpopulations of KS4 cells are most strongly associated with the NPC and MES cell states,
further research which pairs miRNA sequencing with a more direct way of identifying biologically

relevant cell states is critical. Furthermore, studies will need to be scaled up to included multiple
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tumours to determine if heterogenous expression of miRNAs from the Dlk1-Dio3 and miR-224/452

clusters are a common feature in glioblastoma or an isolated case.
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3. A comparative analysis of single cell small RNA sequencing data
reveals heterogenous isomiR expression and regulation

3.1. Chapter introduction

miRNAs play a critical role in the regulation of gene expression in normal and cancerous cells. IsomiRs
are variants of miRNAs with alterations in their nucleotide sequence, which can occur at the 5" or 3’
ends of the miRNA where bases are added or subtracted, or anywhere within the sequence, including
the seed region*. Variations at the 3" end can also be distinguished in terms of whether they match
their precursor RNA/originating gene sequence or not, as different sequences can be generated during
miRNA biogenesis from proteins such as Drosha and Dicer, or by additional factors which can
introduce new bases to the 3" end. IsomiRs may possess alternative regulatory functions as evidence
suggests that changes to bases at the 3" end can alter a miRNAs regulatory activity or stability, whereas
shortening or extending the 5° end of a miRNA can affect target recognition due to a shift in the seed

256

sequence~>°. Additionally, isomiR expression is closely associated with disease states, including cancer,

however their role in many diseases is poorly understood.

Although most miRNA sequencing studies do not design experiments with a focus on studying isomiRs,
isomiR research benefits from the fact that sequencing data captures complete nucleotide sequence
information for small RNAs, and therefore isomiR abundance can also be estimated. To this date,
miRNA and isomiR research has largely been based on population-level sequencing studies which are
poorly equipped to investigate their role in intra-tumour heterogeneity?®’. Single cell small RNA
sequencing methods which can capture and quantify miRNAs, and in principle isomiRs, have been
recently developed but so far have not been utilized to their full potential’®>19428_Single cell data is
challenging to work with and analysing single cell data for isomiR studies introduces additional
problems which have not been addressed to this date®*. A fundamental question that remains
unanswered is whether isomiR expression is the result of stochastic processes or if they are under cell

autonomous regulation.

Accurate and reliable isomiR quantification remains challenging as many of the issues with sequencing
data analysis are more pronounced when studying isomiRs. As many studies have shown, isomiRs with
as little as one nucleotide difference have potentially distinct regulatory functions®>?*°. Consequently,
a common approach to isomiR quantification involves annotation and quantification of each unique
sequence as distinct isomiRs?%%2%2, However, it is well recognized that errors in read sequence are
introduced in both the library preparation and sequencing steps, and this can lead to an

overestimation of the number of unique isomiRs in a sample as well as an underestimation of the

83



quantity of certain isomiRs due to the mis-annotation of some reads?%*?%4, This issue is expected to be
more pronounced when working with single cell data, which is generally sequenced at a much lower
read depth than bulk sequencing data, as sequencing costs are usually distributed across a larger
number of samples. Additionally, the amplification step during library preparation introduces bias
towards certain cDNAs and can lead to less accuracy in RNA quantification?®>2%¢, The low starting
material of individual cells necessitates a higher number of PCR cycles, therefore greater bias, before
reaching the required library size for sequencers and leads to a higher proportion of undesirable reads
from RNA contamination. Several biochemical and bioinformatics approaches have been developed
to address some of these issues. For example, error correction methods have been proposed to
improve the accuracy of read sequences, although most have been designed for RNA-seq data and
guantification. One error correction method was recently developed for miRNA analysis, using a k-
mer lattice approach, however its efficacy on sequencing datasets with low read depth such as single
cell data has not been demonstrated?®’. Unique molecular identifiers (UMIs) are short, randomized,
artificial sequences that are introduced to cDNA prior to PCR amplification, which allows
compensation for the bias introduced during this stage as reads derived from the same cDNA are
expected to have identical sequences and UMI sequence?®®. UMIs have been utilized in a number of
bulk and single cell sequencing methods including RNA-seq, small RNA-seq and ATAC-seq to improve
quantification accuracy as well as DNA-seq to distinguish low frequency mutations and sequencing
errors?6126%-272 However, UMIs require a high sequencing depth to reliably distinguish real nucleotide
changes from errors and concerns have been raised regarding the utility of UMIs in less complex
libraries, such as small RNA sequencing libraries, where they may result in an underestimation of
miRNA abundance due to excessive de-duplication?’. Despite these concerns, single cell small RNA
sequencing is currently our only tool to study cell-wide isomiR profiles and so more reliable methods

of isomiR quantification are needed.

To our knowledge no study has used single cell small RNA sequencing to investigate isomiR expression
or regulation on a single cell level?’*. In the following chapter we apply an alternative approach to
isomiR quantification using biologically relevant isomiR types to overcome some of the issues from
working with single cell data. We compare data from three single cell small RNA sequencing protocols
and assess their strengths, pitfalls, or biases with respect to their isomiR quantification to inform
future experimental designs. We also find evidence that some isomiR types exert different regulatory
effects on their canonical targets, suggesting they are functional, and that isomiR regulation is cell
autonomous. Together this work implicates isomiR expression and processing as an unexplored gene

regulatory layer that potentially contributes to intra-tumour heterogeneity.
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3.2. Specific methodology

3.2.1. Data Collection

Raw single cell small RNA sequencing data was obtained from the Gene Expression Omnibus (GEO)
database under accession ids GSE81287 (glioblastoma and embryonic cells), GSE114071 (leukemia
cells) and the Genome Sequence Archive (Beijing Institute of Genomics) under accession ID
CRA001133 (hepatocellular carcinoma cells). Bulk small RNA sequencing data was obtained from
accession id GSE141687 (leukemia), GSE166349 (hepatocellular carcinoma), and GSE76903 (also

hepatocellular carcinoma).

3.2.2. Sequencing Data Processing

For samples derived from the Smallseq protocol, UMI sequences were removed prior to any adapter
removal and appended to the read headers'®®. Adapters were then removed using cutadapt (v2.7)
with @ minimum overlap of 1 nt and maximum error rate of 0.1 between reads and adapter

sequences??®, After UMI and adapter removal, reads shorter than 15 nucleotides were excluded.

To identify duplicated reads, reads were aligned to the human genome (hg38) using bowtie (v1.2.3)
with the following parameters: -n 2 -e 120 -l 20 --best??®, Human-aligned reads were subsequently

deduplicated with umitools (v1.0.0) with default settings?°.

For the other protocols, as well as the non-deduplicated Smallseq analysis, separate pipelines which
excluded the alignment to the human genome and subsequent deduplication with umitools were

used.

3.2.3. miRNA Mapping and Annotation
Processed reads were aligned to miRbase (v22.1) annotated precursor miRNAs using miraligner (v3.4),
with the following parameters: -sub 1 -trim 3 -add 334231, Reads which successfully aligned to a miRNA

were also annotated with any variants to the miRbase defined mature sequence.

The following isomiR categories were defined: Canonical — miRNAs with a perfect match to the
miRbase mature sequence, 5p Variant — miRNAs differing at the 5° end with respect to the miRbase
mature sequence, 3p Template — miRNAs deviating in length to the miRbase mature sequence but still
matching the precursor miRNA sequence, 3p Non-template — miRNAs which did not match the
precursor miRNA sequence at the 3" end, and Substitution — miRNAs containing a maximum of 1
mismatch to the miRbase mature sequence, excluding variations at the 5" or 3" ends. Categories were
then assigned any alignments which contained their respective isomiR modification and were used for

measuring their proportions relative to the total number of annotated reads.
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3.2.4. Correlation of miRNA and isomiR Expression with Predicted Targets

For building miRNA predicted target lists, the miRNAtap (v1.20) package was used to aggregate targets
across the five supported algorithms (DIANA, Miranda, PicTar, TargetScan and miRDB) using the
‘minimum’ method and only considering targets predicted by 2 or more algorithms?33. The Pearson
correlation between miRNA and gene expression across all cells was calculated and used for plotting

each miRNA with its targets.

3.2.5. Code for Data Analysis and Figures

Documents containing code used to generate the results in this section can be found in the following
link: https://cloudstor.aarnet.edu.au/plus/s/GaNTw7rMWztjliu
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3.3. miRNA and IsomiR abundance are highly variable across cell types in the three single

cell small RNA-seq protocols

IsomiRs have been successfully used to classify cancer types and may have a role to play in
oncogenesis!*2. However, so far isomiRs have not been studied on a single cell level and the
mechanisms behind isomiR expression and processing across and within cell types are poorly

understood.

To assess miRNA and isomiR expression in different cells and single cell sequencing protocols we
analysed 9 cell types from 3 different studies (Figure 3.1 and Table 3.1). This included the seven cell

types sequenced in the Small-seq study*®®

, which after quality control and filtering included 139 cells
from three glioblastoma primary cell cultures, 35 cells from the U87 glioblastoma cell line, 48 cells
from the human embryonic kidney cell line HEK293FT, and 107 naive and 95 primed human embryonic
stem cells (Table 3.1). Additionally, we included the 19 K562 leukemia cells from Wang et al’s
miRNA/mRNA Co-sequencing study (Co-seq)*! and 32 hepatocellular carcinoma (HCC) cells isolated
from a resected tumour sample and sequenced in the Holo-seq study!®*. Using miRNA expression, we
calculated the Spearman’s correlation between all pairs of cells and clustered them using hierarchical
clustering (Figure 3.1A). We found that individual cells from the same cell type typically clustered
together, except for several of the glioblastoma cell types which formed mixed clusters likely owing
to their similar miRNA profiles. Using the same methodology for read mapping and miRNA annotation
for all samples, we found that cells from the Small-seq protocol had a higher number of unique miRNAs
(Figure 3.1B). This was despite a larger number of total reads being sequenced from the Co-seq and
Holo-seq protocols (Table 3.1). However, the cells from the Co-seq and Holo-seq protocols had a

higher number of unique isomiRs than most of the other cell types in the Small-seq protocol (Figure

3.10).

Cell types from each protocol had characteristic miRNA lengths (Figure 3.1D) and expression levels
(Figure 3.2). Most of the cell types from the Small-seq study had strong peaks at 22 nt, except for the
primed embryonic stem cells which had a high number of 22nt and 23nt miRNAs. A significant
proportion of miRNAs, averaged across cell types, in both the Small-seq glioblastoma (42.7-53.7%) and
embryonic stem (37.9-52.6%) cell types were annotated as canonical. This was in stark contrast to the
Holo-seq and Co-seq protocols where the majority of miRNAs in the HCC and K562 cells were isomiRs,
with canonical miRNAs only representing 5.9% and 5.6% of all miRNAs respectively. It is worth noting
that miRNA expression for some of the cell types, including the HCC and K562 cells, were dominated
by a small number of miRNAs which would have skewed the overall lengths in favour of those miRNA

profiles (Figure 3.2). As the HCC and K562 cell types were sequenced using different protocols from
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independent labs, it is difficult to know how well the significant differences in isomiR abundance
reflect cell specific differences in miRNA processing, maturation, or turnover, and how much is due to
technical reasons such as experimental artifacts or bias. Notably, when we compared the single cell
data to bulk RNA-seq data from other studies (Figures 3.3, 3.4, and 3.5), we found the bulk data had
length distributions which resembled a more typical 22-23nt peak in both HCC tumour samples and
K562 cells as opposed to the dual peaks observed in the HCC and K562 single cell data (Figure 3.3).
Additionally, there was a higher proportion of canonical miRNAs in the bulk sequencing data (Figure

3.4 and 3.5).
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Figure 3.1. An overview of the small RNA sequencing samples that were analysed. A. Heatmap showing
hierarchical clustering using Spearman correlation of miRNA expression between all samples. B.
Number of unique miRNAs detected in each cell type. C. Number of unique isomiRs detected in each
cell type. D. Analysis of total miRNA and isomiR length distribution profiles. Distribution of miRNA
lengths considering all miRNAs (left) and canonical miRNAs only (right; according to miRbase). For
canonical miRNAs, percentages are relative to total miRNA reads. Includes glioblastoma cell lines JM3,
IM4, KS4, U87 (Small-seq protocol), embryonic kidney cells (HEK293FT), naive embryonic (nES), primed
embryonic stem cells (pES; Small-seq protocol), K562 cells (Co-seq protocol) and hepatocellular
carcinoma cells (HCC; Holo-seq protocol).
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No. of Cells

Average No. Reads

Cell Type Cell Origin '(IEUIt:/r:ource Study/Protocol Included Mapped to miRNAs ':/:’ag N:;ll:t’:nr:iRNAs 'F\{nl\itt\f::ddata
P (this study) (% of Total Reads) PP q
Fari H |188
M3 Glioblastoma Primary Cell Culture | | 27idani eta 37 6576.46 (0.21%) 2607.30 No
(Small-seq)
. . Faridani et al'8®
M4 Glioblastoma Primary Cell Culture 42 27847.19 (0.67%) 7064.76 No
(Small-seq)
. . Faridani et al'®®
KS4 Glioblastoma Primary Cell Culture 60 14208.52 (0.41%) 4218.68 No
(Small-seq)
4 H 188
us7 Glioblastoma Primary Cell Culture | | 27idani etal 35 7819.03 (0.18%) 2321.09 No
(Small-seq)
- - - — 58
Naive Embryonic Embryonic Stem Cell Line Faridani et al 107 43382.87 (1.03%) 6223.42 No
Stem Cells Cells (Small-seq)
- - - — 158
Primed Embryonic Embryonic Stem Cell Line Faridani et al 95 20866.96 (0.56%) 3319.39 No
Stem Cells Cells (Small-seq)
ic Ki idani 188
HEK293FT Embryonic Kidney | o |ine Faridani et al 48 8390.38 (0.24%) 2908.21 No
Cells (Small-seq)
191
K562 Leukemia Cell Line Wang et al 19 25090.95 (0.38%) N/A Yes
(Co-seq)
Hepatocellular Hepatocellular Xiao et al*% .
Carcinoma (HCC) Carcinoma Tumor (Holo-seq) 32 31651.66 (0.38%) N/A ves

Table 3.1. General features of the single cell small RNA datasets. Number of cells and average mapping values are according to the mapping and filtering
methodology used in this study.
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Figure 3.2. Top 20 miRNAs by expression for each cell type included in this study. Percentages shown are in proportion to total reads mapped to miRNAs.
Includes the glioblastoma primary cultures/cell lines JM3, JM4, KS4 and U87, human embryonic kidney cell line HEK293 (HEK), naive and primed embryonic
stem (ES) cells, the K562 leukemia cell line and hepatocellular carcinoma cells (HCC).
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Figure 3.3. Comparison of total miRNA and isomiR length distribution profiles between single cell and
bulk RNA-seq datasets from independent studies. Includes HCC tumour and K562 cells. Distribution of
miRNA lengths considering all miRNAs (left) and canonical miRNAs only (right; according to miRbase).
For canonical miRNAs, percentages are relative to total miRNA reads.
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Figure 3.4. Expression and relative abundance of isomiRs in Hepatocellular Carcinoma single cell and
bulk smRNA-seq data from independent studies. Shows each isomiRs expression (rows) across
individual cells (columns), with respect to their relative abundance of their miRNA gene (dot colour)
and the isomiRs expression normalized to total miRNAs for each cell (dot size). Top 15 isomiRs for the
3 highest expressed miRNAs in the single cell dataset are displayed. Cells which did not have any reads

mapping to the miRNA are indicated by grey circles.

93



K562 Cells
hsa-miR-92a-3p

hsa-miR-92a-3p/t5:t+ miRNA Species
hsa-miR-92a-3p/t5:t;add:AA .
hsa-miR-92a-3p/t5:t;add: AT+
hsa-miR-92a-3p o000 I 40.0%
hsa-miR-92a-3p/t5:t;add:A| : 30:0%,
oo hsa-miR-92a-3p/t5:t;t3:t;add:Co 20.0%
§ hsa-miR-92a-3p/t5:t;t3:tgt 10.0%
by hsa-miR-92a-3p/t5:t;add:AG 0.0%
E hsa-miR-92a-3p/t5:t;t3:t;add:A4 .
H hsa-miR-92a-3p/t5:t;add:ACH Total Expression
hsa-miR-92a-3p/t5:tat;t3: tgt : . 0.0%
hsa-miR-92a-3p/add:A- @ 4.0%
hsa-miR-92a-3p/t5:tat;add:AA . 8.0%
hsa-miR-92a-3p/t5:ta;add:AA . 12.0%
hsa-miR-92a-3p/t5:t;add: T+
Wang/Co-seq (Single Cell) Kania (Bulk)
Study
hsa-let-7i-5p
hsa-let-7i-5p/13:t1 @ @ @ @ @ @ o © © o ©¢ ©¢ © © X XX Total Expression
hsa-let-7i-5p/t3:tt;add:C * 0.00%
hsa-let-7i-5p/t3:tt+ @® 020%
hsa-let-7i-5p- e o o o @ 0.40%
hsa-let-7i-5p/t3:gtt;add: T+
o hsa-let-7i-5p/t3:GG < @ oo0%
§ hsa-let-7i-5p/t3:tt;add: A : @ os0%
§ hsa-let-7i-5p/t5:t;t3:t
% hsa-let-7i-5p/t5:C;t3:t miRNA Species
€ hsa-let-7i-5p/t3:gtt 80%
hsa-let-7i-5p/t3:t;mis:3GA4 I 60%
hsa-let-7i-5p/t5:t;t3:tt;add:C+
hsa-let-7i-5p/t3:t;mis:11CG 40%;
hsa-let-7i-5p/t3:t;mis:12CT 20%
hsa-let-7i-5p/t5:t;t3:t;mis:1TG+ N
Wang/Co-seq (Single Cell) Kania (Bulk) 0%
Study
hsa-miR-146b-5p
hsa-miR-146b-5p/t3:T1 ® ® ®© © © © © © © © ©¢ © ©¢ o ¢ o o o o 0 0 0 O Total Expression
hsa-miR-146b-5p 4 o 00
hsa-miR-146b-5p/add: C * 00%
hsa-miR-146b-5p/t3:tg ® 3.0%
hsa-miR-146b-5p/t3:g @ 60%
% hsa-miR-146b-5p/t3:g;add:A+ @ 90%
S hsa-miR-146b-5p/add: A
= hsa-miR-146b-5p/t3:ctg- : .
é hsa-miR-146b-5p/t3:T;add: T MIRNA Species
£ hsa-miR-146b-5p/t3:T;mis:16CA+ 20.0%
hsa-miR-146b-5p/t3:T;add:A l 30.0%
hsa-miR-146b-5p/t3:tg;add:C-
hsa-miR-146b-5p/t3:g;add: T 20.0%
hsa-miR-146b-5p/add: G 10.0%
hsa-miR-146b-5p/t5:tg;t3: T+ 0.0%
Wang/Co-seq (Single Cell) Kania (Bulk)
Study

Figure 3.5. Expression and relative abundance of isomiRs in K562 Leukemia single cell and bulk smRNA-
seq data from independent studies. Shows each isomiRs expression (rows) across individual cells
(columns), with respect to their relative abundance of their miRNA gene (dot colour) and the isomiRs
expression normalized to total miRNAs for each cell (dot size). Top 15 isomiRs for 3 highly expressed
miRNAs in the single cell dataset are displayed. Cells which did not have any reads mapping to the
miRNA are indicated by grey circles.

94



3.4. IsomiR processing is likely regulated by cell autonomous mechanisms

3.4.1. Global expression of isomiRs is specific to cell types

In the previous section we found substantial differences in miRNA and isomiR abundance between
cell types. Following this we compared isomiR processing between individual cells by focusing on the
5" and 3’ templated positions in each miRNA, calculating the proportion of isomiRs (averaged across
single cells in each cell type) starting or ending at each position +/- 3 nucleotides (nts) around the
canonical ends (Figure 3.6A). Additionally, we included the isomiRs with adenine or uridine bases
added to the 3" end (Figure 3.6A) as many studies have shown isomiRs with these additions are more

common and can lead to changes in miRNA stability and target recognition>®27>27¢,

5" variants which extended the isomiR from the canonical site were almost completely absent in all
cells (Figure 3.6A). 5" variants shorter than the canonical site were also rare, particularly in the Small-
seq derived cells, except for primed embryonic stem cells which had a notable amount of isomiRs
shortened at the 5" end by 3 nucleotides (13.0%). However, for the K562 cells, there was a high
number of 5° variants predominantly 1 nt shorter than the canonical site (61.7%), with smaller

amounts of 2 and 3 nt shortened isomiRs (4.7% and 8.7% respectively).

With 3’ variants, all cells from the Small-seq and Co-seq protocols showed very similar 3" templated
isomiR profiles according to position (Figure 3.6A), with a strong peak at the canonical site and sharp
decline in proportions for the surrounding 1-2 nts. However, HCC cells had nearly equivalent
abundances of miRNAs with 3" canonical sites as well as those shortened or extended by 1 nucleotide,
indicating more extensive processing at the 3" end. Non-templated 3" variants containing adenine
and/or uridine were present at low levels (12.8-24.2%) in all cell types except K562 cells, where more
than half the isomiRs had an untemplated addition (58.2%), most with at least one non-templated

adenine (48.8%).

To investigate potential cell-specific mechanisms involved in isomiR expression and processing we
labelled isomiRs according to several categories that describe sequence alterations likely to be driven

by distinct mechanisms?®

. We then calculated the proportions of every cell’s miRNA possessing each
isomiR alteration (Figure 3.6B). Here, we defined the following isomiR types: canonical (identical
sequence to the miRbase annotated miRNA), 5° variants (altered sequence on the 5  end, still
matching the precursor miRNA sequence), 3" templated (altered 3" sequence, but still matching the
precursor sequence), 3" non-templated (altered 3" sequence with bases not matching its precursor),
or substitutions (single nucleotide differences compared to the canonical sequence, excluding 5" and

3" ends). Note that each isomiR may contain several sequence alterations and therefore contribute to

multiple isomiR types.
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Cells from the Small-seq protocol generally showed similar proportions of isomiR types, with 3’
templated variants (34.8-50.9%) being the dominant isomiR type (Figure 3.6B). Minor differences
were observed between cell types which were statistically significant for nearly all isomiR types in this
protocol. The majority of miRNAs from the Co-seq K562 cells were 5 variants (76.1%), with a high
proportion of 3" non-templated variants (58.2%) and similar levels of 3" templated variants (34.2%) to
the Small-seq cells. On the other hand, HCC cells from the Holo-seq protocol produced predominantly
3" templated (67.3%) and 5" variants (27.3%), and there was a large increase in variability among single
cells across all categories which may reflect the heterogeneity of cells sourced from a tumour sample

compared to cell lines or primary cell cultures.

3.4.2. Processing of isomiRs is unique to each miRNA’s gene

We then re-analysed isomiRs by their 5" and 3" templated locations and adenine/uridine additions,
but this time separating isomiRs by their miRNA gene (Figure 3.7) and found that different miRNAs
exhibited unique patterns of isomiR expression both at the 5" and 3" ends. Expression levels of 3’
templated variants were clearly different between miRNAs from the same cell type (Figure 3.7). We
did not identify high levels of 5" variants in any of the Small-seq cells (glioblastoma or embryonic stem
cells) when looking at highly expressed miRNAs (Figure 3.7). While non-canonical 5 variants were
pervasive in nearly all miRNAs in HCC cells, K562 cells showed a mixture of some miRNAs being highly

variable at the 5" end and others not at all, suggesting miRNA-specific processing at this end.

3" non-templated additions were generally rare in the most highly expressed miRNAs (Figure 3.7). One
exception was miR-92a-3p, where in K562 cells, 60.8% of miR-92-3p had at least one non-templated
adenine and 20.9% with at least one uridine. This coincided with a high overall expression of the
miRNA (76.3%) and suggests adenine additions may contribute to the stabilization of miR-92a-3p in
K562 cells which would be consistent with previous studies®®. Adenine and relatively lower levels of
uridine additions were observed in all cell types for miR-92a-3p, albeit to a lesser extent than K562

cells.

Overall, we observed that the profiles of the relative abundance of different 5" and 3" variants were
unique to each miRNA, and it appears that both 5" and 3" processing may be driven by mechanisms

that distinguish between miRNA species.

3.4.3. Individual cells exhibit cell type specific isomiR processing

As several of the miRNA genes were expressed across multiple cell types, we compared how miRNAs
were processed into isomiRs in different biological contexts (Figure 3.7 and 3.8). In general, single cells
from the same cell type were highly similar with respect to their isomiR processing at both the 5" and

3" ends (Figure 3.7). However, there were substantial differences observed between cells from some
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of the cell types. This was most clear when comparing cell types from the 3 different protocols but
was also evident to a lesser extent when considering cell types from the Small-seq protocol. For
example, when comparing isomiR processing of let-7a-5p (Figure 3.7A), cell types from the Small-seq
protocol expressed isomiRs which predominantly matched the canonical sequence (position 0) at both
the 5" and 3" ends when considering their templated sequence. However, there were exceptions with
the K562 cells which expressed a high proportion of shortened 3" templated isomiRs, as well as the
HCC cells which expressed a high proportion of shortened 5" templated isomiRs. With let-7b-5p, the
HCC cells had high expression of non-canonical processed isomiRs at both the 5" and 3" ends (Figure
3.7B). This contrasted with the cell types from the Small-seq protocol which were predominantly
canonical at both their 5" and 3" templated ends (Figure 3.7B). There was also an increase in variation
between some of the cell types from the Small-seq protocol, including the HEK and Naive Embryonic
Stem cells, that was not evident in the glioblastoma cell types (JM3, JM4, KS4, and U87). For miR-125a-
5p (Figure 3.7C), 3" templated isomiR expression was skewed to favour the canonical location for some

cells such as JM3 and HEK but shorter variants were dominant in JM4 and K562 cells (Figure 3.7C).

Overall, the data supports a cell autonomous isomiR regulatory system as each cell type has an
intrinsically determined isomiR expression level and individual cells can regulate their processing of
isomiRs with a high degree of precision. The major differences between cell types in relative isomiR
abundance of certain miRNA species suggests cell autonomous mechanisms may be involved in miRNA

processing and isomiR expression.
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Figure 3.8. Expression and relative abundance of isomiRs in single cells. Shows each isomiRs expression (rows) across individual cells (columns), with respect to
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3.5. IsomiR processing alters regulation of their canonical targets

The combination of miRNA and mRNA expression data available for the K562 and HCC cells provided
us with an opportunity to estimate how different isomiR types could affect regulation of their
predicted canonical targets. For this, we generated predicted target lists for the most highly expressed
miRNAs using miRNAtap, a tool which aggregates target predictions from multiple sources?*. Using
expression data from each cell, miRNA expression was correlated against expression of each of the
miRNAs predicted targets. As a negative control, correlation between each miRNA’s expression and
expression of each transcript not predicted to be targeted by the respective miRNA was determined.
For each miRNA we also calculated the correlation between expression of isomiRs in each isomiR
category and the miRNAs predicted canonical targets, calculated by taking the normalized count of
reads mapping to a given miRNA that contained that particularisomiR type. IsomiR categories included
— Canonical, 5" Variant, 3" Templated, 3" Non-templated adenine (A), 3" Non-templated uridine (U)
and Substitutions. Results were displayed as a cumulative distribution of all miRNA-gene correlations
(Figure 3.9 and 3.10). A higher proportion of negatively correlated genes in the target gene set
compared to the negative control (non-targets) would cause the line to shift to the left and would

suggest that the miRNA was effectively downregulating its targets.

We observed that the relationship between miRNA expression and expression of its predicted
canonical targets varied between miRNAs in both cell types (Figure 3.9 and 3.10). As was shown in the
original Co-seq study, in K562 cells (Figure 3.9) there was a stronger negative correlation of the
dominantly expressed miR-92a-3p with predicted canonical targets (total) when compared to its
correlation with all other transcripts (non-targets)®. In contrast, miR-182-5p was more positively
correlated with predicted canonical targets (total) compared to non-targets, and other highly
expressed miRNAs such as miR-146b-5p, miR-10a-5p, miR-191-5p, and miR-423-5p were not found to
be significantly different. In the HCC cells (Figure 3.10), several highly expressed miRNAs were more
negatively correlated with their predicted targets compared to non-targets, including miR-34a-5p and
miR-148a-3p. Conversely, miR-122-5p, let-7i-5p, and let-7b-5p were more positively correlated, and
no significant difference was found with miR-206. The results suggest that despite high expression in
these cells, many miRNAs may exert a weak or absent regulatory effect on the expression levels of
their predicted canonical targets. Results from the two-sided Kolmogorov—-Smirnov test and read

counts for isomiR-target pairs can be found in Table Appendix B1 and Appendix B2.

When analysing correlations between expression of canonical miRNAs or each isomiR category with
the expression level of the miRNA’s predicted canonical targets it was clear that there were differences

in certain isomiR categories for several miRNAs. This was most evident in the K562 cell line where
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canonical miR-92a-3p and its isomiRs with 5" Variant or 3" Templated changes had a negative
correlation with its predicted targets. Contrasting this, miR-92a-3p with Non-templated (Adenine) or
Non-templated (Uridine) additions were positively correlated (Figure 3.9). Interestingly, with miR-
146b-5p, 5" variants had the strongest negative correlation with predicted canonical targets compared
to the other isomiR categories, including canonical miRNAs which was not significantly different to
non-targets. We did not observe any consistency in the shift in correlations of isomiR categories when
comparing different miRNAs, indicating that the effect of isomiR types on gene regulation is miRNA

specific.
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Figure 3.9. Correlation of expression levels between canonical miRNAs or isomiR categories and the canonical miRNAs predicted targets (mRNAs) in K562
Leukemia cells. In the same miRNA, isomiR categories vary significantly in correlation strength and direction, suggesting these modifications lead to differences
in regulatory activity. The 6 highest expressed miRNAs are shown excluding those with low isomiR abundance. For each miRNA, an aggregated list of predicted
target mRNAs was collected using miRNAtap and expression of targets was correlated against normalized counts for each isomiR category. Percent of total
reads for each isomiR category are shown (averaged across all K562 cells). Non-targets included all remaining mRNAs which were not predicted as a target for
that miRNA. Significant differences between each category and Non-targets were calculated using the two-sided Kolmogorov-Smirnov test (p-value < 0.05) and
are indicated with a blue (positive correlation) or red (negative correlation) asterisk. TR: Total Reads (mapped to miRNAs).
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Figure 3.10. Correlation of expression levels between canonical miRNAs or isomiR categories and the canonical miRNAs predicted targets (mRNAs) in
Hepatocellular Carcinoma (HCC) cells. In the same miRNA, isomiR categories vary significantly in correlation strength and direction, suggesting these
modifications lead to differences in regulatory activity. The 6 highest expressed miRNAs are shown excluding those with low isomiR abundance. For each miRNA,

an aggregated list of predicted target mRNAs was collected using miRNAtap and expression of targets was correlated against normalized counts for each isomiR
category. Percent of total reads for each isomiR category are shown (averaged across all HCC cells). Non-targets included all remaining mRNAs which were not
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3.6. Unigue Molecular Identifiers increase estimated isomiR abundance

A key difference in the Small-seq protocol compared to the Holo-seq and Co-seq protocols was the
incorporation of unique molecular identifiers (UMls). In bulk studies, UMIs have been found to reduce
cDNA amplification bias during library preparation and enable a more accurate quantification of the
transcriptome?%?”7, However, to our knowledge their effect on isomiR abundance has not been
thoroughly investigated. Therefore, we assessed how UMI deduplication might influence isomiR
expression in the glioblastoma cell lines, HEK293 and embryonic stem cells. We found that in all cell
types, the relative abundance of canonical miRNAs was decreased after UMI deduplication (Figure
3.11). The corresponding effect on all isomiR categories typically trended towards an increase in
relative expression levels, with 3p template extensions (+) in naive primed embryonic stem cells being
the only significant exception (Figure 3.11). While consistent, the overall effect after UMI
deduplication was modest for most cell types and isomiR categories, however there were notable
exceptions such as the naive embryonic stem cells which had more than a 2-fold increase in extended
5’ variants as well as a notable increase in shortened 5 variants and 3’ template variants.

Correspondingly, there was a clear reduction in extended 3" template variants.

In most cases, UMI deduplication had a minor impact on the overall shape of the peak distributions
(Figure 3.12 and 3.13). However, in the primed embryonic stem cells there was a clear shift in the peak
length from 23nt to 22nt after deduplication which led it to resemble the other Small-seq cell types
more closely. When comparing the effect of UMI deduplication on miRNA lengths across each isomiR
category, we found the increase in measured isomiR expression was not equal across all categories.
5p variants and substitutions showed more obvious increases in expression, and the expression of
shorter isomiRs were generally affected to a higher degree after deduplication. We also compared the
averaged proportions of positional modifications between non-deduplicated and deduplicated cell
types but did not observe any differences (Figure 3.14). Overall, these findings suggest protocols which

do not utilize UMIs may underestimate the expression of most isomiRs.
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109



3.7. Discussion

In this study we highlighted major differences in the way isomiRs are expressed or processed in various
cell types, supporting the cell autonomous regulation of isomiRs. When comparing the processing of
different miRNAs, the single cell data in this analysis mirrored observations with bulk sequencing data
from other studies which showed sequence modifications vary substantially when comparing different
miRNAs. Evidently, properties specific to each miRNA dictate how it interacts with the cell’s miRNA or
isomiR processing machinery, and may be influenced by nucleotide sequence, secondary structure,
interactions with Argonaute or the miRNA’s targets®2278279, Collectively, these findings highlight
isomiR processing as a novel gene regulatory layer whose function has not been fully appreciated with
population level isomiR studies. We argue that future studies investigating isomiR expression and
function should consider incorporating single cell methods to better understand their role. However,
the lack of technological development in single cell small RNA sequencing remains a major constraint

and cheaper, high throughput methods are likely necessary to support more comprehensive studies.

3.7.1. Analysis of isomiR types overcomes current limitations with single cell small RNA
sequencing data

There are several challenges that we had to consider when analysing isomiR expression in single cell
sequencing data. This included the low number of reads which mapped to miRNAs for each cell, as a
high proportion of reads tend to map to ribosomal RNA or do not even map to the human genome,
possibly due to low level contamination. Low target read counts are a typical problem in single cell
sequencing studies, however miRNAs in small RNA-seq often represent an even smaller proportion of
total reads than messenger RNAs in RNA-seq'®®'88, This issue can be further compounded with isomiR
studies which separate a miRNA’s reads into each unique sequence, creating a large number of
isomiRs with extremely low counts. Additionally, the presence of errors from prior stages such as
library amplification and sequencing can lead to spurious isomiRs which overestimate the number of

real isomiRs?8%281,

Our approach to address these issues was to focus on the type of isomiR modifications at the 5" or 3’
ends and quantify isomiRs based on biologically relevant isomiR types. There are at least two benefits
to this approach. Firstly, reads are no longer split across a large number of features and each isomiR
type will generally have more reads contributing to them, therefore are less influenced by variability
and drop-outs?®2, Secondly, this meant that expression of each isomiR type would only be confounded
by errors in a smaller region (e.g 5" or 3" end) and not by errors across the remainder of the sequence.
We were able to show a relationship between expression of various isomiR types and their miRNA’s

canonical targets in highly expressed miRNAs, implying this single cell small RNA sequencing data can
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be used to predict isomiR function when applying this methodology. A limitation of this approach is
that it may not capture the full range of biological functions driven by isomiRs, for example if some
isomiRs are only functional when certain combinations of isomiR modifications are present, or if their
function depends on sequence specific interactions with their targets and/or Argonaute. Nonetheless,
this may be a more suitable approach for studying isomiRs in single cell data until a greater depth of

miRNA reads becomes feasible and spurious isomiRs can also be accounted for.

3.7.2. Biases in small RNA sequencing protocols are likely to influence isomiR quantification

Since both the Co-seq and Holo-seq studies only sequenced one human cell type each, and there were
no shared cell types across studies, we were unable to ascertain how much of these differences could
be attributed to biological or experimental factors. However, the high amount of isomiRs in the single
cell data for HCC and K562 cells was not reflected in their respective bulk sequencing data obtained
from several independent studies (Figure 3.3) and were unable to find further evidence that this was
a feature of these cell types. However, it is possible that this isomiR expression profile is characteristic

of a smaller cell population that was not evident with bulk or population level sequencing.

Previous comparisons of small RNA sequencing protocols have demonstrated substantial biases
depending on the library preparation method. For example, the Clontech small RNA sequencing kit
utilizes an adapter-free ligation method and was shown to detect a high number of false isomiRs when
compared to the adapter ligation-based NEXTflex kits?®3. Many small RNA sequencing protocols,
including the three single cell methods included in this study, utilize an adapter ligation-based library
preparation8191,194.283-285 This apnroach begins with a 3" ligation step involving a pre-adenylated DNA
oligonucleotide, followed by 5° ligation of an RNA oligonucleotide for small RNA capture. The
RNA/DNA-joined molecules are then reverse transcribed and amplified with PCR. However, the
terminal nucleotide sequences of adapters are known to influence their ligation efficiency with small
RNAs at both the 5" and 3" ends due to a change in RNA structure?®, Given that the adapter sequences
including the terminal bases were different in each of the protocols, this may be one factor that
influenced the detection and quantification of isomiRs. There were also key differences in the sample
preparation and RNA isolation procedures for each protocol which may have also influenced isomiR
detection and quantification. Although the global expression profiles of cell types from the small-seq
protocol were similar, there were still significant differences in isomiR type expression when analysing
individual miRNAs which indicates that the sequencing protocol cannot fully explain the observed
differences. This suggests that both cell type and protocol can influence isomiR expression
measurements. More comprehensive studies will be needed to understand how widespread isomiR

variation is across cell types in healthy and diseased tissues.
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3.7.3. Methods to improve single cell small RNA sequencing data quality for isomiR analysis

Even if present at low frequencies, sequencing artefacts are a particular concern in isomiR studies, as
single base alterations can completely redefine an isomiR’s type and interpreted function.
Implementing UMI’s into the sequencing library can assist with more accurate measurements of
expression levels and enable more confidence in isomiR classification?®>?%7, Additionally, ligation
biases can be reduced by incorporating random bases at the ends of the adapters which are ligated to
RNAs, or on splints which can be introduced to facilitate ligation between adapters and small

RNA5288'289.

3.7.4. Implications of cell autonomous isomiR regulation in cancer

Previous studies have already investigated the potential for isomiRs to classify cancers with a high
degree of success*??%, As this research has traditionally relied on bulk sequencing data to capture
population level isomiR expression, it is not clear if this inter-tumour heterogeneity extends to intra-
tumorigenic differences between cancer cells. Our findings indicate cells possess autonomous isomiR
regulation and support a broader function in gene regulation. Furthermore, we found that individual
cells from the same cell type were relatively homogenous when considering cell lines and primary
cultures, compared to the more heterogeneous isomiR expression was observed in the resected HCC
tumour cells. Although there is insufficient data to draw conclusions, this could be an indication that
cells existing in their native environment may be influenced by a combination of cell autonomous and
cell-extrinsic factors which tune isomiR expression and contribute to inter-cellular variation.
Collectively, our work highlights that isomiRs are functional in single cells and their regulation is cell
autonomous, which necessitates further research as this may be an unexplored contributor to intra-

tumoural heterogeneity.
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4. Investigating the RNA binding properties of alternatively spliced
Argonaute 2 (Ago2) isoforms

4.1. Chapter introduction

MicroRNA (miRNA) biogenesis involves various proteins to process primary miRNA transcripts into
mature miRNAs that can regulate gene expression®. The Microprocessor complex formed by Drosha
and DGCRS cleaves primary miRNAs into shorter double stranded precursor miRNAs with a stem-loop
structure®. Precursor miRNAs are exported into the cytoplasm and recognized by Dicer, which removes
the loop to release a miRNA duplex®. Argonaute then binds the miRNA duplex and selects one strand
for incorporation (guide strand) into the RNA induced silencing complex (RISC) while the other is

ejected and degraded (passenger strand)®’.

Argonaute is an essential component of the RNA induced silencing complex (RISC) and is required for
miRNA-mediated gene regulation!®”®8, While the sequence of the miRNA is critical for target
recognition, Argonaute provides miRNAs with their function by directly cleaving targets or recruiting
various proteins to suppress gene expression through translational inhibition and deadenylation?’%2%,
Argonaute also affords miRNAs protection from cytoplasmic nucleases and speeds up target searching
by changing the conformation of the miRNA?”°%1, In humans, Argonaute proteins are expressed from
four different genes (AGO1, AGO2, AGO3 and AGO4)*2. Although there are minor differences in
sequence, each Argonaute contains identical protein domains and appear mostly redundant in terms

of RNA binding and function, except for Ago2’s slicer activity?®2.

4.1.1. Argonaute loads multiple classes of small RNAs

Although miRNAs typically form the bulk of small RNAs that are loaded into Argonaute, many other
classes of small RNAs can form a functional RISC through non-canonical biogenesis pathways®®. This
includes ribosomal RNA-derived fragments, transfer RNA-derived fragments, small nuclear RNAs,

small nucleolar RNAs and other classes of small RNAs?®3.

Functionally distinct Argonautes that bind to different classes of small RNAs have been described in
the fruit fly Drosophila melanogaster and nematode Caenorhabditis elegans. Drosophila expresses
two structurally and functionally distinct Argonautes, Argonaute 1 (AGO1) and Argonaute 2 (AGO2).
AGO1 binds and mediates miRNA-directed cleavage whereas AGO2 binds siRNAs and is essential for
siRNA-directed cleavage®*. In C. elegans there are 19 different functional Argonautes which either
participate in miRNA-mediated gene regulation or bind other classes of small RNAs to function as part
of a broader genomic immune system that suppresses foreign RNA or endogenous retroviruses and

transposons®®°. Although studies have found that the four Argonaute genes in humans tend to bind
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similar profiles of small RNA classes and miRNAs, they typically rely on antibodies which are unable to

67.2%  Many Argonaute isoforms have been annotated in the

distinguish between their isoforms
reference sequence databases RefSeq (National Center for Biotechnology Information) and GENCODE
(GENCODE consortium)?*”2%8 This includes isoforms with variations in their protein coding sequence
that still possess the functional domains essential for RISC formation and gene regulation®’. Therefore,
it is possible that multiple Argonaute isoforms function in gene regulation and may have distinct small

RNA binding characteristics which alter their regulatory activity. However, to date the biological

significance of any Argonaute isoforms have not been investigated.

4.1.2. Features of the miRNA duplex influence Argonaute strand selection

Nearly all miRNA genes encode two miRNAs with distinct nucleotide sequences, enabling alternate
sets of regulatory targets depending on which miRNA will be incorporated into the RISC?°3%, miRNA
strand selection by Argonaute is not random and is known to be influenced by sequence and structural
features pertaining to the miRNA duplex®*. Primarily, two properties of the miRNA duplex contribute
to strand selection — the relative thermodynamic stability of each end and the 5’-terminal nucleotides

of each strand.

Early studies with siRNAs and miRNAs found that strand selection was dependent on the relative
thermodynamic stability of each end of the precursor duplex. Argonaute prefers to unwind duplexes
on the side with weaker pairing, resulting in the incorporation of the strand whose 5” end has been
unwound?®. The importance of thermodynamic stability was first described by Schwartz et al who
found that altering the relative thermodynamic stability of each end through sequence mismatches
could change which strand was incorporated into Argonaute®®’. The impact of sequence mismatches
was limited to the first 4 paired nucleotides of each end of the miRNA duplex. However, later studies
found that thermodynamically unfavourable strands were often highly expressed and sometimes

more dominant in tissues, suggesting other factors also contributed to strand selection32.

Subsequent studies found Argonaute has a strong bias towards certain bases at the 5’-terminal end
of each miRNA strand. Hu et al highlighted a strong bias favouring uridine bases in the first nucleotide
of 33 expressed miRNA pairs3%. Conversely, they found cytosines were strongly unfavored in the first
nucleotide3®, Frank et al found a strong bias for uridine or adenine and against cytosine or guanine3%,
This bias was attributed to a rigid loop structure housed in the MID domain of Argonaute, which
interacts with the phosphorylated 5" end of the miRNA guide strand during loading®®*. To date, no
study has investigated if alternative splicing can change strand selection bias of Argonaute to

determine which miRNAs participate in gene regulation.
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4.1.3. Alternative splicing may produce Argonaute proteins with altered functions

In this study we investigate alternatively spliced isoforms of Argonaute 2 in humans and highlight 3
isoforms which are expressed in human tissues and possess distinct RNA binding properties. This
includes a reduced affinity towards most miRNAs in two isoforms, compared to the canonical
Argonaute 2 which is studied most extensively, suggesting that alternative splicing may reduce miRNA-
mediated regulation in some tissues. Additionally, we identified several miRNAs with increased
abundance, relative to other miRNAs, within non-canonical Ago2 isoforms and find evidence that this
may be caused by a reduction in 5" nucleotide bias that alters miRNA strand selection in some cases.
Our work identifies alternative splicing as a novel mechanism which can regulate gene expression by
tuning miRNA selection. This further highlights the complexity of the miRNA pathway and has

implications in gene regulation in normal and cancerous cells.
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4.2. Specific methodology

4.2.1. Buffers

PBS (Phosphate Buffered Saline) (137 mM NaCl, 2.7 mM KCl, 10 mM Na;HPQ,, 1.8 mM KH,PO,)
PBST (Phosphate Buffered Saline Tween) (1X PBS + 0.1% Tween 20)

NP-40 lysis buffer (20mM Tris-HCl pH 7.5, 150 mM NaCl, 0.5% NP-40, 2mM EDTA, 0.5 mM DTT, 1
mM NaF, 1 Protease Inhibitor Tablet)

IP Washing Buffer (50mM Tris-HCI pH 7.5, 300nM NaCl, 5mM MgCl,, 0.05% NP-40)

PK Buffer (200mM Tris-HCl pH 7.5, 25mM, 300 mM NacCl, 2% SDS w/v)

4.2.2. Reagents

DMEM (Dulbecco’s Modified Eagle Medium) (4.5 g/L D-Glucose, L-Glutamine, 25mM HEPES)
(Gibco)

Opti-MEM + GlutaMAX-| (HEPES, 3.024 g/L Sodium Bicarbonate) (Gibco)
Trypsin TrypLE™ Select Enzyme (Gibco)

DPBS (Dulbecco’s Phosphate Buffered Saline (Gibco)

FBS (Fetal Bovine Serum) (Gibco)

Penicillin-Streptomycin (Invitrogen)

Lipofectamine 2000 (Invitrogen)

Trypan Blue Solution (Gibco)

Dynabeads Protein G (Invitrogen)

Phenol-Chloroform-Isoamyl Alcohol 25:24:1 (Sigma)

Proteinase K (Invitrogen)

Protease Inhibitor Tablets (Thermo Scientific)

4.2.3. Antibodies

Target Product Dilution

Ago2 Rat Monoclonal Anti-Ago2 | 1:1000

clone 11A9 (Sigma Aldrich)

FLAG Mouse Monoclonal ANTI- | 1:1000

FLAG® M2 (Sigma-Aldrich)

Mouse IgG Donkey Polyclonal Secondary | 1:5000

Antibody to Mouse IgG
(Abcam)

Table 4.1. Antibodies used for immunoprecipitation experiments
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4.2.4. Cell provision
Hela and HEK293 cells were sourced from the American Type Culture Collection (ATCC). THP-1 cells
were obtained from Bernadette Sanders from the Faculty of Science at UTS. SCC38, SCR4, LNCaP, and

PNT2 cell lines were obtained from Nham Tran from the School of Biomedical Engineering at UTS.

4.2.5. Ago2 isoform plasmid transfection
All wet lab experiments were performed by Sarah Bajan. Hela cells were grown to confluency in 15
cm culture dishes for the transfection. Before transfection, old media was removed, cells were washed

with DPBS, and then fresh antibiotic-free DMEM.

All Ago2 isoform plasmids were synthesized and cloned into N-terminal FLAG-tagged CMV 10 plasmids
through Sigma-Aldrich’s gene synthesis service. A transfection mix was prepared with each of the Ago2
isoform plasmids. Transfection mix was prepared by creating a DNA plasmid solution diluted with Opti-
MEM and a 0.8% Lipofectamine 2000 solution diluted in Opti-MEM, each at volume of 3.5 ml per
confluent 15cm dish. 10 ng of plasmid was used for Ago2 Isoform 1, 15 ng for Isoform 2, and 30 ng for
Isoform 3. Concentrations were adjusted to produce similar concentrations of Ago2 protein as
determined by Western blot. The DNA plasmid and lipofectamine mixtures were incubated separately
for 5 mins, then mixed and incubated for an additional 15 min. 7 ml of the transfection mix was
distributed across each dish and lightly swirled, then incubated for 5 hours. Afterwards, the
transfection media was then removed, cells washed with DPBS, and fresh antibiotic-free media was

added. Cells were incubated for 24 hours after transfection before being harvested.

4.2.6. Cell lysis for immunoprecipitation

For transfected cells prepared for immunoprecipitation, cells were harvested by adding 2 ml of NP-40
lysis buffer and using a cell scraper to dislodge cells from the dish. The cell lysate was then moved to
Eppendorf tubes and incubated at 4°C for 15 min while rotating. Lysis was confirmed with Trypan Blue
solution. After incubation, the lysates were centrifuged at 14000g for 5 min, then the supernatant was
moved to a new tube. For each sample, 40 ul was removed for Western blot to confirm successful
transfection and the remaining sample was snap frozen with liquid nitrogen and stored at -80°C until

immunoprecipitation.

4.2.7. Immunoprecipitation of FLAG-tagged Ago2 isoforms

Prior to immunoprecipitation, 100 pl per sample of Dynabeads Protein G were washed three times
with 1ml PBST for 1 min using a magnetic rack to remove supernatant. The Dynabeads Protein G was
then split in half, with one half mixed with 10 pg of either FLAG or 11A9 antibody and the remaining
50 ul mixed with 10 pg of IgG antibody as a control. The antibody-bead mixtures were incubated at

4°C for 30 min. Beads were then washed three times with 1ml PBST for 2 min using a magnetic rack
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and then resuspending in 50 ul PBST. 50 ul of antibody-bead mixture was added to each lysate for
immunoprecipitation and incubated at 4°C overnight. Afterwards, the supernatant from each sample
was isolated for Western blot and beads were washed three times in 1ml IP Washing Buffer for 2 min
using a magnetic rack. After washing, the immunoprecipitated beads were resuspended in 100 pl IP
Washing Buffer. 90 pl of the immunoprecipitated beads were used for Proteinase K digestion and RNA
extraction while the remaining 10 pl was reserved for Western blot. Proteinase K digestion was
performed by adding 210 ul of PK Buffer, 40 ug Proteinase K, and 1 pl Glycogen to each sample and
incubating at 65°C for 20 min.

4.2.8. RNA extraction

For RNA extraction, 300 pl of phenol-chloroform was added to each sample, vortexed, then
centrifuged at 16000g for 15 min at 4°C. The aqueous layer containing RNA was removed and added
to 900 pl of 100% ethanol. Samples were left overnight at -80°C for precipitation. The next day,
samples were centrifuged at 16000g for 30 min at 4°C. The supernatant was removed, and the
remaining RNA pellet was washed with 1 ml of 75% ethanol. Samples were centrifuged at 16000g for
15 min at 4°C, then the supernatant was removed, and the RNA was air dried for approximately 5 min
or until it became translucent. RNA was then resuspended in 20-50 pl of RNase-free water and the
RNA concentration was measured using the Nanodrop according to manufacturer’s instructions.

Samples were snap-frozen using liquid nitrogen and stored at -80°C.

4.2.9. Sequencing data generation

Sequencing data for Ago2 isoform quantification was generated from a previous Capture-seq
experiment by the Hutvagner lab. RNA from cell lines and tissues were sent to the Ramaciotti Centre
for Genomics for Capture-Seq with a gene panel that included Ago2. RNA for the human tissues was
sourced from Clontech as part of the Human Total RNA Master Panel Il, except for Heart tissue which

was bought separately.

For generating the Ago2 isoform small RNA sequencing data with Hela cells, wet lab experiments were

performed by Sarah Bajan which included 2 biological replicates for each isoform.

4.2.10. Calculation of Percent Spliced with Junction (PSJ) values

To estimate the proportion of Ago2 transcripts containing an exon junction, a STAR index was
prepared with RefSeq’s human genome (GRCh38) and with default parameters except: --
sjdbOverhang 1503%. Raw reads from the Capture-seq dataset were then aligned with STAR to this
index with default parameters. The spliced junction file (S).out.tab) from STAR’s output was used to

quantify the Percent Spliced with Junction (PSJ) values, determined by considering the unique read
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count at each relevant exon junction, divided by the total reads belonging to junctions overlapping

the selected exon junction’s genomic region.

4.2.11. Small RNA biotype quantification

Raw reads were trimmed using cutadapt (v2.7) and reads shorter than 10 nucleotides or containing
any N bases were removed. Reads were then mapped sequentially using bowtie (v1.2.3), with the
following parameters: n 2 -e 120 -1 20 --best??822°, Reads were first mapped to miRNAs, then the
remaining unmapped reads were mapped to ribosomal RNAs (rRNAs), followed by transfer RNAs
(tRNAs), then remaining small RNAs. Bowtie indexes for miRNAs were generated using miRBase's
precursor hairpins (v22.1), for rRNAs using merged sequences from filtered rRNAs in Gencode’s
primary annotations (v35) and Arb-silva’s LSU and SSU rRNA databases (v138.1), for tRNAs using
filtered tRNAs in Gencode’s primary annotations (v35), for remaining small RNAs using filtered small
RNA biotypes in Gencode’s primary annotations (v35) — including miRNA, misc_RNA, rRNA, scRNA,
snRNA, snoRNA, ribozyme, sRNA, scaRNA, and vaultRNA32%8306 The resulting sam files were merged

and reads mapping to each biotype were quantified.

4.2.12. miRNA and isomiR quantification

Raw reads were trimmed using cutadapt (v2.7) and reads shorter than 10 nucleotides were
removed??®, Data was converted from FASTQ to FASTA file format and reads were collapsed so that
each unique sequence only appeared once in each file and counts were appended to the headers.
Collapsed reads were aligned to miRbase (v22.1) annotated precursor miRNAs using miraligner (v3.4),

with the following parameters: -sub 1 -trim 3 -add 336231,

For quantification of isomiR types, the following categories were defined: Canonical — miRNAs with a
perfect match to the miRbase mature sequence, 5" Variant — miRNAs differing at the 5" end with
respect to the miRbase mature sequence, 3’ Template — miRNAs deviating at the 3" end to the miRbase
mature sequence but still matching the precursor miRNA sequence, 3" Non-template — miRNAs which
did not match the precursor miRNA sequence at the 3" end, and Substitution — miRNAs containing a
maximum of 1 mismatch to the miRbase mature sequence, excluding variations at the 5" or 3" ends.
Categories were then assigned any alignments which contained their respective isomiR variation and

were used for measuring their proportions relative to the total number of annotated reads.

4.2.13. Differential expression analysis
Differential miRNA expression between the Ago2 isoforms was determined using the quantified
sequencing data from the Ago2 isoform immunoprecipitations and the DESeq2 R package (v1.26.0),

filtering results by baseMean >= 1000, log; fold-change >= 3, and adjusted p-value < 0.053%,
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4.2.14. Estimating base preferences in Ago2 isoforms

Strand selection probabilities across all miRNAs were estimated by comparing the first base
(nucleotide) of each mapped miRNA, considered a guide strand, to its predicted passenger strand, and
for each pair of bases calculating the proportion of events where one base belonged the guide and
the other to the passenger strand. The miRbase.db R package (v1.2.0) was used to get the nucleotide
sequences for all passenger strands®. 5" isomiRs were excluded as we could not determine if the
isomiR was produced before or after strand selection. For calculations for individual miRNAs, miRNAs
belonging to precursors without two annotated strands were not included in the analysis. Probabilities

of any pairs of bases calculated from less than 20 mapped reads were also excluded.

4.2.15. Code for Data Analysis and Figures

Documents containing code used to generate the results in this section can be found in the following
link: https://cloudstor.aarnet.edu.au/plus/s/GaNTw7rMWztjliu
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4.3. Alternative Splicing of Ago2 Suggests Diversity of Isoform Expression in Human

Tissues

To date, expression of Argonaute 2 (Ago2) isoforms have been poorly characterized in human tissues
and cells, and it is unknown which transcript variants are biologically significant (Figure 4.1A). In a
previous experiment from our lab, a targeted panel of genes including Ago2 were enriched and
sequenced using Capture-Seq>®. As this data spanned 16 different human tissues and cell lines, we
were able to estimate the relative frequency of alternative splicing events that characterised the
Refseq annotated transcripts of Ago2 (Figure 4.1B; Appendix C)**’. We used data from reads
overlapping each exon junction to calculate a Percent Spliced with Junction (PSJ) value, estimating the
proportion of Ago2 transcripts containing each splicing event. As our analysis identified reads
supporting several unannotated splice junctions, we also calculated PSJ values for the top 5

unannotated junctions by read count across all samples.

A wide range of PSJ values were observed between samples for all exon junctions, revealing extensive
splicing across different biological contexts (Figure 4.1B). Our data indicated that the most extensive
splicing was at the 5-end of Ago2. Three of the Refseq annotated transcripts (XM_011516965,
XM_011516966, and XM_011516968) contain alternative starting exons compared to the wild-type
transcript NM_012154 (Figure 4.1A). PSJ values (Figure 4.1B) for the wild-type (NM_012154) exon
junction between exon 1 and 2 (red) indicated that, in all samples, splicing of this junction was the
most dominant across this region, however there was considerable variation across samples where it
was lowest in the LNCaP cells (59.86%) and highest in the skeletal muscle (97.29%). Our analysis
supported the presence of two of the annotated transcripts, XM 011516965 (Chr8:140585312-
140596675; yellow) and XM_011516966 (Chr8:140585312-140605796; cyan), in multiple cell lines and
tissues, as well as at least three unannotated transcripts (grey) due to the presence of novel exon
junctions with exon 2 of the wild-type transcript (Chr8:140585312-140588721, Chr8:140585312-
140590593 and Chr8:140585312-140633774; grey). There was a paucity of reads spanning the regions
near each unannotated junction and any other exon, suggesting these splicing events could also be
alternative starting exons, and not exon inclusion events between exon 1 and 2. Among these exon
junctions, representing putative alternative starting exons (excluding the wild-type junction), each had
the highest PSJ value in at least one sample, suggesting cell or tissue specific functions for these

splicing events.

The Refseq annotations also describe two transcripts which are characterised by exon skipping events
atexon 2 (XM_017013317) and exon 17 (NM_001164623) in relation to the wild-type transcript. Reads

spanning the exon junctions that represent these skipping events were identified in nearly all samples.
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For the exon junction Chr8:140572933-140635484, uniquely associated with XM_017013317 (blue),
PSJ ranged from 0% in whole brain and testes up to 5.77% in kidney. Splicing of the exon junction
Chr8:140532616-140539319, uniquely associated with NM_001164623 (green), was relatively low

with PSJ ranging from 0% in foetal brain, bone marrow, and testes, to 0.85% in LNCaP cells.

Finally, we highlighted two additional unannotated exons junctions which were evidence of an
alternative donor splice junction site and inclusion of a novel exon. There was an alternative donor
(57) splice site identified between exon 6 and 7 (Chr8:140558573-140559419), which was almost

exclusively expressed in bone marrow tissue with a PSJ of 4.23%.

A novel exon junction was identified connecting to exon 3 (Chr8:140572604-140572811), which
ranged in PSJ from 0% in foetal brain, whole brain, and testes tissue to 9.36% in bone marrow. We did
not find evidence of reads connecting this novel exon with downstream exons, suggesting this may

lead to a truncated transcript.

Collectively, these results suggest that transcripts from the Ago2 gene are extensively spliced and that
many of these splicing events are altered in various biological contexts. Following this, our study
focused on three Ago2 transcripts - NM_01254.5 (Isoform 1), NM_001164623.3 (Isoform 2),
XM_017011317.2 (Isoform 3), which are likely to produce proteins with altered functional domains
(Figure 4.1C) and investigated functional differences through their association with small RNAs (Figure

4.1B).
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Figure 4.1. Alternative splicing events from RNA Capture-seq read data indicate multiple isoforms of Ago2 are expressed in humans. A. Refseq annotated
transcripts for Ago2. Boxes show exons and lines show introns. B. Percent Spliced with Junction (PSJ) for each exon junction that varies across annotated
transcripts, as well as the top 5 unannotated exon junctions by read count across all samples. PSJ was calculated as the proportion of reads including versus
excluding an exon junction. Sashimi plots (top) for four representative cell lines show the position that each exon junction spans (curved lines) in relation to the
wild-type transcript (NM_012154) and their respective PSJ values, coloured by the associated Ago2 transcript that each exon junction is unique to. Bar plots
(bottom) show the PSJ values across exon junctions for all 16 cell lines and tissues. C. Shows the protein domains of NM_012154 (Isoform 1) and the location
of amino acid deletions (dark grey) in the two splice variants selected for further study, NM_001164623 (Isoform 2) and XM_017013317 (Isoform 3).
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4.4. Alternatively spliced Ago2 isoforms do not bind miRNAs as strongly as the canonical

isoform

Ago2’s primary function of gene regulation is mediated through its association with miRNAs, however
prior studies have demonstrated that Argonaute can also bind other classes of small RNAs?%,
Compared to the canonical Ago2 isoform (Isoform 1), the two alternatively spliced isoforms we
focused on have deletions in their protein coding sequences of the PIWI (Isoform 2) and N-terminal
domains (Isoform 3). Both the PIWI and N-terminal domains have an important role in loading miRNAs

during biogenesis, so we hypothesized that this would be altered in both isoforms and would change

which small RNAs associate with them.

To study the small RNA binding properties of each isoform, DNA plasmids were transfected expressing
each of the three Ago2 isoforms of interest. Each isoform’s plasmid contained their respective protein
coding sequence as well as a FLAG epitope at one of the terminal ends. The DNA plasmids were then
transfected into Hela cells, expressed for 24 hours, then immunoprecipitated with a FLAG antibody.
RNA from the immunoprecipitate was subsequently isolated and sequenced for its small RNAs. The
FLAG epitope was necessary to detect and isolate Argonaute isoforms as there are no known
antibodies which can specifically target each of these isoforms. Western blots indicated that the FLAG-

tagged Ago2 isoforms were strongly enriched after immunoprecipitation (Figure Appendix D).

Results from the sequencing data indicated that Ago2 Isoform 2 and 3 did not bind miRNAs as strongly
as Isoform 1 (Figure 4.2). We first mapped all reads to known miRNAs from miRBase’s miRNA database
(v22.1), followed by sequential mapping of the remaining unmapped reads to ribosomal RNAs (rRNAs;
Gencode’s v35 and arb-silva’s rRNA sequences), transfer RNAs (tRNAs; Gencode’s v35 tRNA
sequences), and finally other classes of small RNAs (scRNAs, snRNAs, snoRNAs, ribozymes, sRNAs,
scaRNAs, vault RNAs; Gencode’s v35). Due to the incomplete annotation of small RNA fragments
derived from rRNAs (rRFs) and tRNAs (tRFs), we considered any mapping to a rRNA or tRNA as a
positive match for that small RNA class. Most of the small RNAs from Isoform 1 were miRNAs (89.9-
90.3%), which was consistent with miRNA-mediated gene regulation being its primary function (Figure
4.2). Although miRNAs were still the most abundant small RNA class in Isoform 2 (61.6-67.2%) and 3
(57.6-61.1%), miRNAs represented a much smaller proportion of small RNAs compared to Isoform 1.
The order of abundance of small RNA classes was identical in all three Ago2 isoforms. Ribosomal RNAs
were the second most abundant class, followed by snoRNAs, tRNAs, and snRNAs. The remaining small
RNA classes collectively represented a sizeable pool in Isoform 2 (13.7-15.1%) and Isoform 3 (15.3-
16.6%), compared to Isoform 1 (3.24-3.63%). There was a general increase in the relative proportion

of all other small RNA classes in Isoform 2 and 3, implying that this reduction was likely due to a
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reduced association with miRNAs as opposed to an increased association with another class of small
RNAs (Figure 4.2B). These results were consistent with our hypothesis that deletions in the PIWI and
N-terminal domains would lead to changes in miRNA loading efficiency and implied that cells which

predominantly express these isoforms may have a general reduction in miRNA activity.
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Figure 4.2. Proportion of small RNA classes immunoprecipitated from Ago2 isoforms in Hela cells.
Reads were sequentially mapped to miRNAs, rRNAs, tRNAs and all remaining small RNAs. The other
small RNAs (scRNA, ribozyme, sRNA, scaRNA, vault RNA) were combined into the ‘Other’ category. A.
Stacked bar chart showing relative abundance of each small RNA class for each isoform. B. Comparison
of isoforms for each small RNA class. Error bars show standard error of the mean from two biological
replicates. miRNA: MicroRNA, rRNA: Ribosomal RNA, snoRNA: Small Nucleolar RNA, tRNA: Transfer RNA,
snRNA: Small Nuclear RNA, scRNAs: Small Cytoplasmic RNA, sSRNA: Small RNA, scaRNA: Small Cajal body-
specific RNA.
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4.5. Ago2 isoforms have altered miRNA binding preferences

4.5.1. The relative abundance of certain miRNAs is altered in Ago2 isoforms

Our previous results revealed a reduction in miRNAs associated with Ago2 Isoforms 2 and 3. Following
this, we investigated if this reduction in miRNA association applied to all miRNAs or if it was caused by
a reduction in affinity towards specific miRNAs. We mapped and quantified miRNAs using miRbase’s
miRNA annotations (v22.1) and normalized the values to the total number of reads mapping to
miRNAs (Figure 4.3). This way we could compare the relative abundance of each miRNA in different
Ago2 isoforms, informing us of any preferential loading. We found a high correlation in miRNA
abundance when comparing each Ago2 isoform, suggesting that the preferences towards miRNAs was
generally similar across isoforms (Figure 4.3A-C). The strongest correlation was between Isoform 2
and 3 (r=0.95; Figure 4.3C), followed by Isoform 1 and 2 (r=0.92; Figure 4.3A), then Isoform 1 and 3
(r=0.85; Figure 4.3B). However, a small subset of miRNAs were differentially expressed when
comparing isoforms (Table 4.2). This included 5 miRNAs that were differentially expressed between
Isoform 1 and 2 (hsa-let-7b-3p, hsa-miR-25-5p, hsa-miR-27a-5p, hsa-miR-27b-5p and hsa-miR-365a-
5p), and 7 miRNAs differentially expressed between Isoform 1 and 3 (hsa-let-7b-3p, hsa-miR-181a-3p,
hsa-miR-181a-2-3p, hsa-miR-25-5p, hsa-miR-27a-5p, hsa-miR-27b-5p and hsa-miR-424-3p). All
differentially expressed miRNAs had reduced abundance in Isoform 1, and four of these miRNAs (hsa-
let-7b-3p, miR-25-5p, hsa-miR-27a-5p, hsa-miR-27b-5p) were common to both comparisons. Only one
miRNA, hsa-miR-25-5p, was significantly different when comparing Isoform 2 and 3, which was
identified in all comparisons of isoforms. The difference in miR-25-5p abundance was pronounced in
each isoform, as it was only the 168" most abundant miRNA in Isoform 1, increasing to 54" in Isoform
2 and 9™ in Isoform 3. For miR-27b-5p, this was only the 186" most abundant miRNA in Isoform 1 but
increased to 79" in Isoform 2 and 22" in Isoform 3. Together the results suggested that some Ago2
isoforms have preferences towards a small set of miRNAs, which may lead to a change in gene

regulation for the targets of these miRNAs.

4.5.2. Alternative splicing of Ago2 changes miRNA strand selection preference

Published sequencing data on miRbase revealed that all the miRNAs identified from our differential
expression analysis were typically the least expressed strand derived from their precursor, suggesting
they were all passenger strands that are normally not favoured for selection during miRNA duplex
loading. This led us to consider if strand selection for specific miRNAs was altered in these Ago2
isoforms, which could cause an increase in the measured relative abundance for certain miRNAs. To
estimate strand selection preference, we quantified the number of reads mapping to the 5p and 3p
strands for each miRNA precursor (Figure 4.4). We surmised that if the difference in abundance of

miRNAs between isoforms was a consequence of a change in strand preference, the ratio of reads
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mapping to the 5p and 3p strands would change, however if this observation was caused by precursor
expression, we would expect there to be no change in their ratio. We included the top 50 expressed
miRNAs in each Ago2 isoform, and excluded precursors only containing one strand, totalling 64 unique
miRNAs (Figure 4.4). We found that most miRNA precursors strongly favoured a single strand, with a
slightly greater number of miRNAs preferring 5p over 3p strands for selection. For a minority of miRNA
precursors, including miR-92b, miR-423, and let-7d, the data suggested that both strands make a

substantial contribution to the miRNA pool (Figure 4.4).

Strand preference was nearly identical for most miRNAs when comparing isoforms (Figure 4.4).
However, a large difference was observed between isoforms for miR-25, miR-27b, miR-365a, as well
as smaller changes in miR-221, miR-193b and let-7b. With miR-25, nearly all the reads mapping to this
precursor in Isoform 1 were from the 3p strand (4.19% from 5p strand). However, in Isoform 2 the
proportion of 5p miRNAs increased (34.4%) and in Isoform 3 the 5p strand became the dominant
strand (78.8%). Likewise, for miR-27b, reads from this precursor were almost entirely from the 3p
strand in Isoform 1, with only 1.15% of reads coming from the 5p strand. In Isoform 2 this increased
to 12.2% from the 5p strand and in isoform 3 there was a larger change with a similar amount of reads
from both strands (48.9% from 5p strand). For miR-365a, Isoforms 2 and 3 almost completely favoured
the 5p strand (95.5% and 94.6% respectively) whereas isoform 1 had only 67.3% from the 5p strand.
These observations may explain why some miRNAs were differentially expressed in the Ago2 isoforms
we examined. Changes in strand selection probabilities would be expected to alter the abundance of
each strand, and relatively minor shifts in strand preference for highly expressed miRNA precursors
could significantly alter the abundance of their passenger strands. However, strand selection did not
seem to be affected with all the differentially expressed miRNAs identified previously, such as miR-

181a-3p and miR-424-3p, and another explanation is likely relevant for these miRNAs.
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Figure 4.3. Comparison of miRNA expression between isoforms. A. Correlation of top 200 miRNAs

according to mean expression (normalized to total miRNAs) across all samples, for Isoform 1 (x axis)

and 2 (y axis). B. Isoform 1 (x axis) and 3 (y axis). C. Isoform 2 (x axis) and 3 (y axis). D. Shows miRNA

expression in log, (Counts per 10000 miRNAs) for all biological replicates of Ago2 isoforms. E. Shows

mean Ago2 isoform expression in log, (Counts per 10000 miRNAs), centered for each miRNA. miRNAs

that are differentially expressed in at least one isoform comparison are shown in bold.
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miRNA log2FoldChange | P-value P-value Isoform Comparison
(adj.)

hsa-let-7b-3p -3.11603 4.27€-07 1.43E-05 | Isoform 1 vs Isoform 2
hsa-let-7b-3p -3.3647 4.76E-08 1.79E-06 | Isoform 1 vs Isoform 3
hsa-miR-181a-2-3p -3.15678 1.05E-06 2.84E-05 | Isoform 1 vs Isoform 3
hsa-miR-181a-3p -4.07333 6.79E-08 2.44E-06 | Isoform 1 vs Isoform 3
hsa-miR-25-5p -3.94528 7.55E-11 1.57E-08 Isoform 1 vs Isoform 2
hsa-miR-25-5p -7.29656 2.05E-33 1.77E-30 | Isoform 1 vs Isoform 3
hsa-miR-25-5p -3.35127 3.01E-08 5.25E-05 | Isoform 2 vs Isoform 3
hsa-miR-27a-5p -4,18793 4.58E-10 6.34E-08 | Isoform 1 vs Isoform 2
hsa-miR-27a-5p -5.49585 2.74E-16 5.93E-14 | Isoform 1 vs Isoform 3
hsa-miR-27b-5p -3.62575 4.29E-07 1.43E-05 | Isoform 1 vs Isoform 2
hsa-miR-27b-5p -6.54556 6.68E-20 2.89E-17 | Isoform 1 vs Isoform 3
hsa-miR-365a-5p -3.64105 2.26E-08 1.34E-06 Isoform 1 vs Isoform 2
hsa-miR-424-3p -4.97974 3.24E-14 5.59E-12 | Isoform 1 vs Isoform 3

Table 4.2. Differentially expressed miRNAs when comparing three isoforms of Ago2. Includes miRNAs
with an adjusted P-value less than 0.05.
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Figure 4.4. Isoforms show strand selection bias in specific miRNAs. For miRNA precursors which express
two strands (5p and 3p), the percentage of reads from the 5p strand were calculated to estimate strand

selection preference in each Ago2 isoform.
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4.6. The 5" nucleotide preference during strand selection is altered in Ago2 isoforms

We then investigated features of the miRNA precursor duplexes to identify what may be influencing
the change in strand preference for different Ago2 isoforms. Strand selection is known to be
determined by two primary factors —a 5 nucleotide preference in the miRNA duplex and the relative
thermodynamic stability of the terminal nucleotides on each side of the miRNA duplex. Previous
studies have shown that the first base at the 5" end of each strand influences the likelihood of it being
selected by Argonaute, with bases prioritized in the following order — Uridine > Adenine > Cytosine >
Guanine3®. Additionally, the miRNA strand whose 5” end lies on the least thermodynamically stable
side of duplex, determined by the last 5 nucleotides, is often favoured for selection. We considered if
the 5" nucleotide preference was altered in the isoforms of Ago2, which may explain why some miRNA

strands were more favoured.

Base selection preference was determined by estimating the probability of each base being selected
over other bases using our data. For this we considered that each miRNA-mapped read represents
one base selection event, where it’s first nucleotide (5 end) was selected over the first nucleotide of
the opposite strand. The opposite strand’s sequence was predicted by examining its canonical miRNA
sequence in miRbase, as it is not possible to know the actual sequence of the opposite strand which
is discarded after loading. As 5" isomiRs were present at a low frequency in our isoform data (8.6-
10.4% of total miRNAs), we expected this prediction to be accurate for most events. We also excluded
all reads annotated as 5° isomiRs as we do not know if the alteration at the 5" end was introduced

before or after miRNA duplex loading and strand selection.

We found that each isoform of Ago2 generally adhered to the same base priorities and were similar
to what has been established in previous studies (Figure 4.5). The only exception was in duplexes with
Guanine and Adenine, where Guanine was slightly more favoured. Uridine was the most strongly
favoured base over all other bases, where it was more likely to be selected over Adenine (58.7-68.3%),
Cytosine (96.1-99.0%), and Guanine (98.7-99.2%). Adenine was strongly favoured over Cytosine (80.1-
87.5%) although was slightly less favoured over Guanine (39.8-49.1%). In duplexes with Cytosine and

Guanine on each end, Cytosine was strongly favoured (76.4-84.9%).

Next, we separated each type of base selection event by their miRNA precursor to investigate if this
base priority held true for each precursor’s duplex (Figure 4.6). We found a large variation in base
preference between miRNA duplexes, and although they appeared more likely to follow these rules
there were clear examples which did not, such as miR-31, where Adenine was selected over Uridine
99.2%-99.5% of the time (Figure 4.6B). For each base selection event, we divided miRNA duplexes by

which bases was more probable and found that Uridine was the preferred base in 81.0% (68/84) of
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duplexes for Isoform 1. This number decreased to 72.6% (61/84) in Isoform 2 and 70.2% (59/84) in
Isoform 3, suggesting the preference for Uridine remained but was not as strong in these isoforms
(Figure 4.6). Adenine was preferred base in 55.6% (30/54) of duplexes in Isoform 1, to 61.1% (33/54)
in Isoform 2 and 64.8% (35/54) in Isoform 3. Cytosine was preferred in 39.6% (21/53) for Isoform 1,
47.2% (25/53) for Isoform 2 and 45.3% (24/53) for Isoform 3. Finally, Guanine was similar between
isoforms and was preferred in 68.0% (17/25) of duplexes for each isoform. The increased number of
miRNA duplexes preferring Adenine and Cytosine when comparing Isoform 2 and 3 to Isoform 1 was
primarily due to the decrease in preference for Uridine (Figure 4.6). We noted for most miRNA
duplexes where one base was very strongly favoured (>99%) in one Ago2 isoform, base preferences
did not change. The difference in base preference frequency between isoforms was more apparent in
duplexes where base selection was already ambiguous, including miR-92a-1 (Figure 4.6A; U>A), miR-
132 (Figure 4.6A; U>A), miR-30b (Figure 4.6A; U>C), miR-485 (Figure 4.6B; A>G), and miR-365b (Figure
4.6B; A>U).

Our data is consistent with previous assumptions that base rules influence strand selection, however
each duplex likely harbors unique features (for example relative thermostability) which also contribute
to strand selection and may override the 5" base preference. Although Ago2 Isoforms 2 and 3 seem to
follow the same principles of base preference, the strength of these preferences is reduced, and this
may have a large effect on which strands are loaded into Argonaute for a subset of miRNA duplexes.
Evidently, this can change the pool of active miRNAs within a cell and would have consequences for
the regulation of miRNA targets. Together these results implicate alternative splicing of Argonaute as

a novel mechanism of gene regulation through the modulation of miRNA strand selection.
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and comparing it to the first nucleotide of the predicted passenger strand. Error bars show standard
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4.7. Ago?2 isoforms have altered isomiR associations

Our results revealed a change in 5" nucleotide preference for Ago2 isoforms that affected strand
selection. We hypothesized that the length or nucleotide alterations of isomiRs may also change how
they interact with the Ago2 isoforms and could lead to differences in their relative abundance in RIP-

seq data.

We first considered if Ago2 isoforms were biased towards miRNAs of certain lengths. Although we
observed an increase in the proportion of 23 nucleotide long miRNAs for Ago2 Isoform 1, there was a
high variance between replicates and no significant difference was shown between the isoforms for

any length (Figure 4.7).

Following this, we investigated if the Ago2 isoforms had a bias towards certain isomiR types by
examining the proportion of miRNAs annotated as each isomiR type (Figure 4.8). All three Ago2
isoforms had a higher proportion of isomiRs compared to canonical miRNAs. However, there were
minor differences between Ago2 isoforms, where Isoform 1 had the lowest proportion of isomiRs at
61.3%, Isoform 2 at 64.3%, and the highest proportion of isomiRs in Isoform 3 (65.4%). Isoform 1 had
the highest proportion of 5" variants (10.5%), compared to Isoform 2 (8.7%) and Isoform 3 (8.6%). This
difference was reflected in both longer and shorter 5" variants. Substitutions were highly similar in all
isoforms, at 8.8% for Isoform 1, 8.8% for Isoform 2 and 8.7% for Isoform 3. For 3" templated variants,
the highest proportion was observed in Isoform 3 (50.5%), followed by Isoform 2 (48.8%), and finally
Isoform 1 (47.0%). However, this was only true for the shorter 3" templated variants, whereas the
longer 3" templated variants had a higher proportion in Isoform 1 (17.9%) compared to Isoform 2
(17.2%) and Isoform 3 (15.9%). We also considered 3" non-templated variants for all four bases and
found that Isoform 2 and Isoform 3 had a higher proportion of miRNAs with non-templated Adenine,
Uridine and Cytosine additions compared to Isoform 1. Although much rarer, the opposite was true
for 3" non-templated Guanines which were higher in Ago2 Isoform 1 compared to Isoform 2 and

Isoform 3.

To investigate this further we compared isomiR types for each miRNA between Ago2 isoforms. The
change in proportion of isomiRs and isomiR types for individual miRNAs (Figure 4.9-4.12) frequently
reflected what was observed with the total miRNAs (Figure 4.8). For example, a higher proportion of
total isomiRs, 3" templated, 3" non-templated Adenine, 3" non-templated Uridine, and 3" non-
templated Cytosine variants were observed for Isoform 1 compared to both Isoform 2 and 3 in most
miRNAs. Interestingly a small set of miRNAs had a reverse trend to the other miRNAs. Many of these
miRNAs were identified in the previous section, which may have different interactions with the Ago2

isoforms during strand selection. For example, most miRNAs had a modest decrease in the proportion
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of isomiRs (Figure 4.9A) when comparing Isoform 1 with Isoform 2 and 3. However, several miRNAs
including miR-424-3p, miR-27b-5p, miR-365a-5p, miR-193b-5p, miR-16-2-3p and miR-25-5p had a
higher proportion of isomiRs in Isoform 1 compared to Isoform 2 and Isoform 3. Additionally, the
proportion of 3" templated variants was higher in Isoform 1 for miR-424-3p, miR-27b-5p, let-7a-3p,
miR-365a-5p, miR-193b-5p and miR-25-5p compared to Isoform 2 and 3, but lower in Isoform 1 for all
other miRNAs (Figure 4.11A).

The data suggests that Ago2 isoforms have low bias towards certain types of isomiRs. Although in
most cases the impact on the overall pool of loaded miRNAs is modest, there is further evidence of
distinct interactions between Ago2 isoforms and some miRNAs and the effect on gene regulation for

these miRNA targets may be significant.

137



60

50
= 40] Ago2 Isoform
=
- [ 1soform 1
‘é’.’ B Isoform 2
It ] M 1soform 3
= 30
c
(b}
o
©
o 20

10+

0

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
MiRNA Length

Figure 4.7. Comparison of the size of miRNAs associated with the three Ago2 isoforms. Error bars show
standard error of the mean from two biological replicates.

138



60%

40%

20%

0%

pct

10.0%

7.5%

5.0%

2.5%

0.0%

IsomiR Substitutions 3" Non-Templated (A) 3' Non-Templated (U) 3" Non-Templated (C) 3' Non-Templated (G)
2.00%
7.5%- -
R 07
L 10.0%
1.50%
5.0%-
6.0% 5.09%-
1.00%
5.0%-
2.5%-+ 30% 2.5%4
0.50% -
' 0 o 0.0%- ! | ' 0.0% o 0 0 0.0%1 0 0 0 0.0%- . 0 0 0.00%+ 0 n '
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
5’ Variants 5" Variants (Longer) 5" Variants (Shorter) 3’ Templated 3' Templated (Longer) 3' Templated (Shorter)
4.0% 50.0% A
6.0%
15.09% 30%:)
40.0%
3.0%-
4.0%
30.0% — 20%-
2.0%-
20.0%
2.0% 5 0%- 10%-
1.0%-
10.0%
o 0 o 0.0% 1 ! . . 0.0% Y o y 0.0%1 Y 0 0 0.0%1 0 n ’ 0% ' n Y
i: 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

AGO2 Isoform

Figure 4.8. IsomiR types associated with Ago2 isoforms. Includes Isoform 1 (red), Isoform 2 (green), and Isoform 3 (blue). 5" variants, 3" templated and 3" non-
templated isomiR types were also subdivided into those longer or shorter than the canonical miRNA. Error bars show standard error of the mean from two
biological replicates.

139



IsomiR

A

I,lo"l"‘..

AGO2 Isoform

Isoform 1
Isoform 2
Isoform 3

Fds-pzz-giw

Fde-zzz-giw
Fdg-pog-yiw
Fds-Tz-yiw
Fdg-eoe-Hiw
Fdg-gz6-yiw
Fde-L0eT-diw
Fde-e/z-yiw
Fde-ToT-yiw
Fde-z-qszT-diw
Fdg-gz-yiw
Fde-qz-9]

F de-eoze-yiw
de-z-9T-yiw
tdg-eQT-yiw
Fdg-qoeT-yiw
Fdg-ssT-yiw
Fdg-qoT-yiw
Fds-ge6T-diw
Fds-qT8T-yiw
Fdg-py2-giw
Fds-eg9e-yiw
Fde-eTsT-yiw
Fds-eszT-yiw
Fde-zgg-yiw
+dg-00g-yiw
Fdg-ee6-yiw
Fdg-egT-yiw
Fds-p25-diw
Fds-zgT-yiw
Fde-gqzz-giw
- de-az6-yiw
Fde-see-yiw
- de-60p-diw
Fde-zzT-diw
+de-egze-yiw
Fde-pz-giw
Fde-gzp-giw
Fds-g/z-diw
Fde-gz-yiw
Fde-pzy-giw
Fds-gzp-yiw
Fdg-qz-9]

- de-z-ergT-giw
FTy6-diw
Fevs-diw
Fde-egoT-yiw
Fdg-T6T-dIw
Fde-Tzz-giw
Fds-2T-diw
Fde-gzT-giw
Fds-egeT-diw
Fde-pzaal
Fde-epT-giw
+dg-2/-19]

- de-08TT-diw
Fds-b2-19]
Fdg-pz-a|
+de-ez6-yiw
Fdg-2-yiw
Fdg-0/-19]
Fds-g66-diw
Fde-zz-diw
Fdg-00T-dIw
Fds-ez9]
+dg-g6-Hiw
Fds-zeg-yiw
Fdg-jz-9]

- dg-egz-yiw
Fds-e/z-giw
Fdg-12-19]
Fds-eoz-yiw

100%

80%-+ E

60%

abejuaolad

20%

miRNA

Substitutions

AGO2 Isoform

Isoform 1
Isoform 2
Isoform 3

F de-eoze-yiw
Fde-pzy-diw
b dg-2T-"iw
Fdg-g6-yiw
Fdg-pog-yiw
Fdoze-diw
Fds-qT8T-yiw
Fds-pz-1a]
Fdg-2-diw

- dg-eog-diw
- dg-o0g-yiw
- de-z-qgzT-giw
Fdg-e0z-yiw
F dg-e66-yiw
Fde-ToT-diw
Fds-z8T-diu
Fde-z-9T-yiw
Fde-zgg-diw
FEpg-yIw
Fdg-e0T-diw
Fde-zz-yiw
FdS-T6T-HIW
+de-oy-yiw
Fde-5z-yiw
Fdg-pzz-giw
Fde-gzT-yiw
Fdg-qoT-diw
Fdg-eszT-yiw
Fdg-a2-18]
+de-gee-yiw
Fdg-00T-diw
Fdg-e/z-diw
Fdg-qze-diw
Fdg-egoe-yiw
Fdg-p25-diw
Fdg-TZ-Hiw
Fde-z-etgr-yiw
Fdg-5z-yiw
Fdg-egT-diw
Fdg-e96T-HIw
Fde-qz6-diw
Fds-zeg-diw
Fdg-qoeT-diw
F de-ez6-yiw
- de-eg e-diw
- de-pz-yiw
Fdg-0z-19)
Fdg-g66-diw
Fde-zzT-giw
Fdg-qzz-giw
Fds-qz-9]
Fde-esz-giw
Fde-08TT-Hiw
Fdg-ge6T-diw
- de-ez-9]
Fde-eTsT-diw
Fdg-gzy-giw
Fdg-5ST-diw
Fde-qzz-giw
Fde-eeoT-yiw
Fde-Tzz-giw
Fdg-12-19]
+de-zzz-giw
Fde-gpT-giw

Fdg-egz-yiw
Fde-gzy-giw

Fdg-py2-diw

12.5% E

0.0%-+

-
abejuadlad

5.0%+

<
z
x
£

Figure 4.9. Proportion of miRNAs associated with Ago2 isoforms, annotated as A. isomiRs (non-

canonical miRNAs) and B. substitution variants. Isoform 1 is shown in red, Isoform 2 in green and

Isoform 3 in blue.
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Figure 4.10. miRNAs associated with Ago2 isoforms annotated as 5 variants. A. Shows percentage of

each miRNA that are 5" variants, B. 5" variants longer than the canonical sequence, and C. 5" variants
shorter than the canonical sequence. Isoform 1 is shown in red, Isoform 2 in green and Isoform 3 in

blue.
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Figure 4.11. miRNAs associated with Ago2 isoforms annotated as 3" templated variants. A. Shows

percentage of each miRNA that are 3" templated variants, B. 3" variants longer than the canonical

sequence, and C. 3" variants shorter than the canonical sequence. Isoform 1 is shown in red, Isoform 2

in green and Isoform 3 in blue.
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Figure 4.12. miRNAs associated with Ago2 isoforms annotated as 3" non-templated variants. Shows
percentage of each miRNA that contains a A. 3" non-templated Adenine, B. 3" non-templated Uridine,
C. 3" non-templated Cytosine, D. 3" non-templated Guanine. Isoform 1 is shown in red, Isoform 2 in
green and Isoform 3 in blue.
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4.8. Discussion

Argonaute proteins encoded by different genes can discriminate between some species of
miRNAs?°33%° However, the biological relevance of alternatively spliced variants of Argonaute are
poorly understood. Here, we identified three isoforms of Ago2 which are expressed in human cells
and show that these isoforms interact with miRNAs differently, suggesting distinct roles within the
miRNA pathway. We found a reduction in miRNA abundance in Ago2 Isoforms 2 and 3, described
above, which suggest that for cells with extensive splicing and/or expression of these isoforms the
miRNA pathway may exert a weaker regulatory effect on their gene targets due to a reduction in the
number of RISC-associated miRNAs. Although this assumption is intuitive, the deletions in the PIWI
and N-terminal domains of Isoforms 2 and 3, respectively, may not just affect miRNA selection and
loading but also the regulatory activity of the RISC. Preliminary data from our lab has confirmed a
reduction in let-7a and miR-21 association for Ago2 Isoform 2 and 3 compared to Isoform 1 using RT-
gPCR, as well as a reduced capacity to form a RISC (Bajan, unpublished data). Collectively, this evidence

supports a reduction in miRNA-mediated gene regulation for Ago2 Isoforms 2 and 3.

However, this reduced role may not apply to all miRNAs. Several miRNAs, including miR-25, miR-27a,
miR-27b and miR-365a were more abundant in the RIP-seq data for Ago2 Isoform 2 and 3. We
attributed this to a change in strand preference between the 5p and 3p strands of the miRNA duplex
during loading. Although both the PIWI and N-terminal domains participate in miRNA loading, it was
surprising to see similar changes in miRNA selection for Ago2 Isoform 2 and 3 compared to Isoform 1.
One explanation for this is that both deletions may interfere with the MID domain’s rigid loop
structure that affords Argonaute its strand selection bias3**. Unwinding of the duplex is initiated by
the N-terminal domain, which pries the duplex open and positions the 5" terminal base of the potential
guide strand at the interface of the MID and PIWI domain®. Deletions in the PIWI and N-terminal
domain may alter how the duplex is positioned within the pre-RISC, reducing the bias this loop
structure has on base preference. An alternative explanation is that both deletions may alter Ago2’s
interaction with protein cofactors which assist it during RISC formation and contribute to strand

selection.

4.8.1. Limitations of sequencing data for the investigation of Argonaute strand selection

RIP-seq uses antibodies to capture target proteins and the RNAs associated with them3%, It is an
assumption that when targeting Argonaute, the miRNAs sequenced through this method would be
guide strands that were loaded into an Argonaute protein, as passenger strands are discarded and
degraded soon after RISC formation®”. Because of this, our methodology for determining strand

selection preference required a prediction of the passenger strand for each captured guide miRNA.
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We focused on the first 5 nucleotide of each miRNA strand as this is known to have a significant
influence on strand selection. Previous studies have shown that Argonaute generally prefers bases in
the order of Uridine > Adenine > Cytosine > Guanine?*%3%, However, one study that examined 832
miRNA precursors annotated in miRbase with corresponding sequencing data, found only 429 (51.6%)
followed these base preference rules?®. Approximately 75% of the miRNAs annotated in miRbase

29 Qur data was

could be explained by either the 5" nucleotide order or their relative thermostability
generally consistent with this base order, except that Guanines were more likely to be selected over
Adenines. We found that a high proportion of the reads which indicated Guanine was selected over
Adenine were from a single miRNA, miR-409-3p, and may have skewed this result. Clearly, a multitude

of features in the miRNA duplex are likely to play a role in strand selection.

Finally, strand selection is not the only factor which determines miRNA abundance, and we cannot
rule out any changes in miRNA stability or degradation that would alter the ratio of each strand’s

abundance.

4.8.2. Ago2 isoforms may interact with isomiRs to fine-tune miRNA strand selection

A substantial proportion of miRNAs are expressed as isomiRs, and many are produced in the early
stages of miRNA biogenesis prior to RISC formation. In principle, 5" variants can change the terminal
bases of each strand, and all types of isomiRs may change the thermodynamic properties of a
duplex3, Indeed, studies have shown how isomiRs produced from alternate Dicer processing and 3
uridylation can affect strand selection3'%31%, Our evidence suggests that the isoforms of Ago2 that we
studied differentially interact with isomiRs, so it is possible that the alternative splicing of Argonaute
and the production of isomiRs are two mechanisms that work in concert to fine-tune the frequencies
for each miRNA strand’s selection. Although not included in this study, RNA modifications such as
Adenine to Inosine (A-to-l editing) and chemical modifications (e.g locked nucleic acids), can also lead
to changes in miRNA strand selection and it remains to be seen if Argonaute isoforms are distinguished

in their interaction with these modifications343*>,

4.8.3. Implications of Argonaute isoforms altering miRNA activity in normal and cancerous cells
Most studies assume that cytoplasmic miRNA levels are representative of what is loaded into RISCs,
even though previous studies have shown that this is not always true?®®. Although we found many
similarities in the types of miRNAs each Ago2 isoform associated with, there was notable examples of
miRNAs which were nearly absent in one Ago2 isoform but strongly associated with another. This was
most evident with miR-25-5p, which was the 9" most abundant miRNA in Ago2 Isoform 3 yet only the
168" most abundant in Isoform 1. Therefore, it is expected that the genes targeted by the miRNA

pathway can change depending on the expression of Ago2 isoforms. We included several cancer cell
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lines in our study, including MCF7 (breast cancer), LNCaP (prostate adenocarcinoma), SCC38
(squamous cell carcinoma), and THP-1 (monocytic leukemia), and found evidence of differential Ago2
splicing and isoform expression. Dysregulation of Ago2 splicing may contribute to disease states by
altering the activity or function of oncogenic or tumour suppressive miRNAs. Many of the miRNAs we
found associated with specific Ago2 isoforms, including let-7b-3p, miR-25-5p, miR-27b-5p have
documented roles in regulating cancer pathways3'32!, However further research is needed to identify
if Ago2 splicing is perturbed in any cancers and if it is directly involved in altering the activity of these

miRNAs.

In conclusion, our study identified alternative splicing of Argonaute as a novel mechanism which
regulates how miRNAs are loaded into the RISC and may alter miRNA activity in normal and cancerous

cells.
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5. Final discussion

5.1. A multitude of mechanisms regulate the miRNA pathway

Gene regulation is a fundamental biological process that ensures cells can function properly

322 Multicellular organisms, including humans, have evolved many

throughout their entire life cycle
different mechanisms for gene regulation, such as epigenetics, transcription initiation and alternative
splicing, the miRNA pathway, and post-translational protein modifications, all to control gene
expression spatially and temporally with a high degree of precision!®®322-324  Ag research continues to
show, each of these gene regulatory mechanisms is immensely complicated and can be modulated to
serve the specific requirements of each cell*®®322324 Emerging evidence suggests that nearly every
aspect of the miRNA pathway is tightly regulated'®®3%, At each stage of biogenesis, the immature
miRNAs interact with proteins such Drosha, Dicer, and many auxiliary proteins, to regulate the pool of

mature miRNAs and ultimately influence their function>>%°3,

We identify a novel intersection between two gene regulatory mechanisms, the miRNA pathway and
alternative splicing, which influence the selection of miRNAs by controlling the expression of various
Argonaute isoforms. As mentioned previously, there is already evidence that alternative splicing
regulates miRNA biogenesis through isoforms of Drosha and Dicer, however it is unclear how
widespread their expression is across human tissues?*?®. We identified at least 2 isoforms, which can
both be expressed as the dominant isoform in various human tissues and cells. Our evidence suggests
miRNA duplex loading is affected in some isoforms of Ago2, which can alter the pool of miRNAs that
are functionally active. Interestingly, biases in miRNA selection appear to be restricted to a subset of
miRNAs. A likely explanation for this, is that if Argonaute isoforms bound completely different miRNAs,
then cells may not be able to tolerate the drastic changes in miRNA activity that would be induced by
modulating their expression. We suspect that other factors associated with the miRNA duplex, such
as the relative thermodynamic stability of its ends, allows the activity of some miRNAs to remain stable

when Ago2 isoform expression changes, while others are more greatly impacted.

Another key finding in our study was evidence that isomiR processing is regulated cell autonomously.
It is possible that a combination of changes in protein expression, as well as alternative splicing,
contribute to the unique isomiR profiles that different cell types maintain. Dicer, Drosha, and many
other proteins involved in the miRNA pathway may have splice variants that favour the processing of
certain isomiRs?*?%, As our work investigating isomiR expression using single cell sequencing is the first
of its kind, it is likely that future research will continue to unearth a complex regulatory layer that has

not been appreciated to date.
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5.2. Different mechanisms of miRNA regulation may be perturbed in cancers

miRNA dysregulation is a common feature in nearly all cancers, therefore a better understanding of

all the mechanisms regulating the miRNA pathway have potential implications in cancer research.

To investigate if miRNAs contribute to heterogeneous gene regulation, we analysed miRNA and isomiR
expression from glioblastoma single cells. Our study identified two miRNA clusters, the DIk1-Dio3 and
miR-224/452 clusters, which are differentially expressed in two cell subpopulations from a
glioblastoma primary cell culture3?. As paired single cell small RNA and RNA sequencing data was
unavailable in glioblastoma, we integrated data from other forms of sequencing, including bulk RNA-
seq and small RNA-seq, as well as single cell RNA-seq, to predict the activity of these miRNAs in
different cell states. A key aspect of this approach involved analysing the expression of miRNA targets,
however in this study we highlighted several challenges including poor performance of target
prediction algorithms and the low signal-to-noise ratio in single cell data?*”?**, Despite this, we found
evidence of an association between the identified miRNA clusters and known glioblastoma cell states,
in particular the NPC and MES states, supporting a potential role for the miRNA pathway in cell state
regulation. We did not find evidence of altered isomiR processing between the glioblastoma cells in
this study, however our sample size was small and only included three primary cultures and one cell
line. Additionally, more extensive miRNA and isomiR heterogeneity may be observed in cells that are

sourced directly from fresh tumours, as they exist within a more complex microenvironment®®’.

We then expanded our analysis to include single cell miRNA sequencing data which included cell types
from other cancers such as leukemia and hepatocellular carcinoma. Our work found evidence that
individual cells precisely regulate the expression of their isomiRs and suggests some of these isomiRs
are likely to possess distinct regulatory functions with respect to their miRNA targets. We identified
several miRNAs, expressed as multiple isomiRs, which are likely to have altered regulation of their
targets in both leukemia and hepatocellular carcinoma cells. Some of these miRNAs are highly
expressed in cells derived from their normal tissues and it is possible their dysregulation may be
involved in either disease32’33°, For example, miR-92a-3p is one of the most highly expressed miRNAs
in leukemia and other blood-derived cells, and within our study we found nearly all this miRNA was
expressed as 3" non-templated variants that were less active in regulating their canonical targets32%331,
Therefore, dysregulation of isomiR processing could lead to a major shift in the miRNA pathway’s
activity that promotes oncogenesis. Future studies looking to investigate the role of miRNAs in

leukemia and other cancers may benefit from incorporating isomiR-level comparisons.

Finally, like the miRNA pathway, alternative splicing is another form of gene regulation commonly

perturbed in cancers®?333, However, it remains unknown how splicing of Argonaute may be affected
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in many cancers and if misexpression of its isoforms contributes to miRNA dysregulation. Changes in
Ago2 isoform expression may stabilize different miRNAs, which may in turn modulate the expression
and activity of oncogenic or tumour suppressive miRNAs. Indeed, many of the miRNAs with the largest
difference in abundance between Ago2 isoforms, including let-7b, miR-25, and miR-27b, have been

described as oncomiRs3347336,

Most studies in cancer research study the biological significance of miRNAs with the assumption that
miRNA activity depends on expression of their canonical variants, and that wild-type Argonaute is the
typical protein which forms the RISC*%%>337 However, our work suggests that two mechanisms —
isomiR processing and Ago2 isoform expression — are key components of the miRNA pathway that can
significantly impact miRNA activity in ways that don’t always translate to changes in miRNA
expression. This has serious implications that may explain, at least in part, why it has been so
challenging to understand miRNA contributions to many cancers®®. Furthermore, an incomplete
understanding of the mechanisms that regulate the miRNA pathway may underlie some of the reasons
that miRNA or siRNA-based therapies have mostly failed to translate into the clinic thus far33934_ |t is
clear from our work, and others, that there are significant shortcomings with our understanding of
the miRNA pathway. However future research which builds on these findings may ultimately result in
a greater chance of success with developing effective miRNA or siRNA-based therapies that improve

patient outcomes.

5.3. miRNAs as biomarkers in cancer

Although studies have shown both RNA or miRNA expression profiles can classify cancers with a high
degree of accuracy, several comparisons have shown improved performance with miRNAs and isomiRs
over other classes of RNAs29%341342 This suggests that miRNA and isomiR expression is tethered to
cellular or tumour identity and argues for their utility as biomarkers in cancer. Their use as biomarkers
is further encouraged by research suggesting many miRNAs are exported into the blood and remain
stable for extended periods of time, creating the possibility of developing non-invasive diagnostic or
prognostic tests that enable more personalized forms of therapy!®. A recent study showed that
miRNAs from the Dlk1-Dio3 locus were detectable from exosomes isolated from healthy patient blood
samples, however we are not aware of any studies which have identified their presence in the blood
of patients with glioblastoma3*. Despite this, the fact that there is clearly a mechanism for their export
into blood makes them promising biomarkers if they are indeed associated with clinically relevant

cancer cell states.
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5.4. Concluding Remarks

Despite limitations with the available data for single cell miRNA sequencing, we were able to find
evidence of miRNA heterogeneity in glioblastoma. We identified two miRNA clusters that appear to
be regulated by cell autonomous mechanisms and may be involved in cell state regulation.
Additionally, we provide evidence that isomiRs are tightly controlled and can alter miRNA target
regulation within individual cells, highlighting an additional layer of regulation that may contribute to
intra-tumour heterogeneity. Finally, we showed that alternatively splicing can produce variants of

Ago2 with altered functions through their selection of different miRNAs.
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Pediatric solid tumors are a diverse group of extracranial solid tumors representing
approximately 40% of childhood cancers. Pediatric solid tumors are believed to arise as
a result of disruptions in the developmental process of precursor cells which lead them to
accumulate cancerous phenotypes. In contrast to many adult tumors, pediatric tumors
typically feature a low number of genetic mutations in protein-coding genes which could
explain the emergence of these phenotypes. It is likely that oncogenesis occurs after
a failure at many different levels of regulation. Non-coding BNAs (ncRNAs) comprise a
group of functional RNA molecules that lack protein coding potential but are essential in
the regulation and maintenance of many epigenetic and post-translational mechanisms.
Indeed, research has accumulated a large body of evidence implicating many ncBNAs
in the regulation of well-established oncogenic networks. In this review we cover a range
of extracranial solid tumors which represent some of the rarer and enigmatic chidhood
cancers known. We focus on two major classes of ncRNAs, microRNAs and long non-
coding RNAs, which are likely to play a key role in the development of these cancers
and emphasize their functional contributions and molecular interactions during tumor
formation.

Keywords: pediatric tumors, miRNA, lang nencoding RNA, cancer biclogy, gene expression

Pediatric cancers are often categorized as hematologic, intracranial, or extracranial (Chen et al.,
2015). Hematologic cancers include those derived from the blood or blood forming tissues,
including bone marrow and the lymph nodes. Intracranial cancers are tumors that develop inside
the brain, whereas extracranial solid tumors, often referred to as pediatric solid tumors, arise
outside the brain. Collectively, pediatric solid tumors represent approximately 40% of all pediatric
cancers and commonly form in the developing sympathetic nervous system (neuroblastoma),
retina (retinoblastoma), kidneys (Wilms tumor), liver (hepatoblastoma), bones {osteosarcoma,
Ewing sarcoma), or muscles (thabdomyosarcoma) (Kline and Sevier, 2003; Allen-Rhoades
et al., 2018). Solid tumors can originate from cells of any of the three germ layers, the ectoderm,
mesoderm, or endoderm, and likely arise due to disruptions in the developmental processes of
these precursor cells, leading them to develop cancerous phenotypes (Chen et al.. 2015). This
contrasts with most adult cancers, which tend to be of epithelial origin and are believed to develop
over time due to exposure to toxins and environmental stress. As a result, adult cancers often
display a high occurrence of genetic mutations, whereas pediatric solid tumors tend to feature a
relatively low number of genetic mutations. This has led to investigations into alternative forms
of gene regulation that may contribute to the emergence and development of cancerous cells in
pediatric cancers.
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Non-coding RNAs (ncRNAs) form a group of functional
RNAs lacking protein-coding potential, which play a
crucial role in the regulation of gene expression at every
level, from epigenetic regulation via methylation and
chromatin packaging to post-transcriptional regulation
(Cech and Steitz, 2014; Zhao et al., 2016). The most widely
studied ncRNAs are the microRNAs (miRNAs), small 20-
to 25-nucleotide-long RNAs that play an important role
in regulating translation and messenger RNA stability via
complementary base pairing (Huang et al., 2011). Other
classes of small ncRNAs include small interfering RNAs
(siRNAs), Piwi-interacting RNAs (piRNAs), small transfer
RNAs (tRFs), small nucleolar RNAs (snoRNAs), small nuclear
RNAs (snRNAs), and small cytoplasmic RNAs (scRNAs).
Additionally, long non-coding RNAs (IncRNAs) are a loosely
defined group of RNAs normally larger than 200 nucleotides
long that lack protein-coding potential and do not fall into
any of the other categories but nonetheless play key roles
in the regulation of gene expression (Mercer et al., 2009).
Increasing data suggest that ncRNAs play a role in regulating
all biological processes, and it is no surprise that studies have
observed widespread dysregulation of ncRNAs in nearly all
forms of cancer (Prensner and Chinnaiyan, 2011; Leichter
et al., 2017). Interestingly, dysregulated RNA patterns are
often specific to the type of cancer or even subtype and can
provide insight into the mechanisms underlying phenotypic
differences between tumors or cells within a tumor, such as
their aggressiveness or resistance to certain types of treatments
(Blenkiron et al., 2007; Li et al., 2014). Additionally, genome-
wide association studies have suggested that over 80% of single
nucleotide polymorphisms found associated with cancer are
outside of coding regions (Carninci et al., 2005; Cheetham
et al., 2013). In this review, we will discuss how two major
classes of ncRNAs, miRNAs and IncRNAs, may contribute to
pediatric solid tumors by participating in the regulation of
established oncogenic networks known to drive these cancers.

MICRORNAS AND GENE REGULATION

Not long after the first human miRNA, Jet-7, was discovered
in 2002 by the Ruvkun lab, miRNAs began to emerge as key
participants in tumorigenesis (Pasquinelli et al., 2000). In 2002,
two miRNAs were identified as potential tumor suppressors due to
their frequent downregulation or deletion in chronic lymphoceytic
leukemia (Calin et al., 2002). Calin et al. (2004) later showed that
many miRNA genes are located close to fragile sites or common
breakpoints that frequently occur in cancers, suggesting that
their loss of function was a key event in oncogenesis. Since then,
oncomiRs—cancer-associated miRNAs—have become a major
research focus (Esquela-Kerscher and Slack, 2006). A better
understanding of the mechanisms behind miRNA regulation
in cancer is invaluable to researchers and clinicians alike, not
only to aid in the identification of new drug targets but also for
the development of promising RNA-based therapies and their
potential use as early detection biomarkers.

miRNAs: Biogenesis and Functions
The life cycle of a miRNA typically begins with its transcription
into a primary miRNA (pri-miRNA) by RNA polymerase II
(Ha and Kim, 2014). pri-miRNAs share several similarities
with messenger RNAs (mRNAs) in that they are 5" capped, are
3 polyadenylated, and can be several hundreds or thousands
of nucleotides long. In many cases, the pri-miRNA encodes for
one miRNA species; however, in humans, a substantial number
are polycistronic and encode several different miRNAs together.
pri-miRNAs must be processed in the nucleus by the RNAse IIT
enzyme Drosha, which releases shorter ~65-nucleotide-long
precursor RNAs (pre-miRNAs) with a secondary hairpin structure.
This hairpin is recognized by the Exportin-5/Ran-GTP transporter,
which transports the pre-miRNA from the nucleus to the
cytoplasm. In the cytoplasm, the pre-miRNA is further processed
by Dicer, another RNAse III enzyme, which cleaves the loop and
releases a double-stranded miRNA duplex containing the 5 prime
(5p) and 3 prime (3p) sequences. The duplex is then recognized by
one of the four human Argonaute proteins, which loads one of the
strands and discards the other.

miRNAs carry out their functions by binding to Argonaute
and associating with various other proteins to form the RNA
induced silencing complex (RISC). As part of this complex,
miRNAs serve as guides by binding via complementary
base pairing to target sites that are normally found in the
3 -untranslated region (3"'UTR) of mRNAs. RISCs can regulate
gene expression by direct cleavage of transcripts, transcript
destabilization, or blocking translation. In a broader sense,
miRNAs play a role in globally “fine-tuning” gene expression
and are particularly important in inducing and maintaining
differentiated cell states. In cancer, this finely tuned expression
is often impaired, enabling gene networks that are normally
switched on or off to reverse and begin influencing cellular
behavior in a deleterious manner.

miRNAs: Drivers or Passengers in Cancer?

Microarrays and next-generation sequencing technologies
enabled global measurements of miRNA expression changes
and have revealed miRNA dysregulation to be a hallmark in
nearly all cancers. miRNA expression profiles often correlate
with cancer subtypes and have been effective at classifying
cancer samples for risk stratification (De Preter et al., 2011).
However, understanding the contribution of specific miRNAs
can prove difficult. miRNAs are predicted to regulate hundreds
to thousands of genes; however, their influence may be minor,
and often, they must act in concert with other miRNAs.
Current miRNA target prediction algorithms are imperfect and
do not capture the true range of regulatory targets; therefore,
biological validation is still needed (Riffo-Campos et al., 2016).
Additionally, opposing behavior is seen with many miRNAs,
where the same miRNA may be considered an oncogene in
one cancer and a tumor suppressor in another. Because of
their integration within complex gene networks, it is often not
obvious whether a dysregulated miRNA actively participates in
the maintenance of a cancerous state or whether it is simply a
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bystander. ‘Lherefore, it is important to examine how miRNAs
participate in oncogenic networks on a functional level in order
Lo properly understand their role.

Transcription factors that play an important role in regulating
cell proliferation, migration, and apoptosis are commonly
perturbed in pediatric solid lumors. One of the best examples of
this is in neuroblastoma, where MYCN amplification is present in
approximately 25% of neuroblastoma patients and disproportionally
represents high-risk cases (Huang and Weiss, 2013). MYCN
upregulation is also observed at a higher frequency in several other
pediatric solid tumors including Wilms tumor, thabdomyosarcoma
(Williamson et al., 2005), and retinoblastoma, although generally
not to the extent seen in neuroblastoma. Germline inactivation
of the Wilms Tumor 1 (WT1) transcription faclor has been
linked to a genetic predisposition towards Wilms tumor. Several
transcription factors, including Twist, Snails, and Zcbs, involved
in the epithelial-lo-mesenchymal (ransition have also been
implicated in the development of osteosarcoma (Yang et al., 2013).
miRNAs are often closely tied to transcription factors, cither as
regulalors or as ranscriplional largets (Figure 1) (Sin-Chan el al,

Non-Goding RNAs in Pediatric Solid Tumors

2019). One of the earliest studies linking miRNAs to an oncogenic
transcription factor was by O'Donnell et al. in 2005 (O'Donnell
ct al, 2005). In this study, they demonstrated that c-Myc could
induce expression of the miR-17~92 cluster and that several of
these miRNAs could in turn regulate E2F1 transcription to control
cell proliferation.

Disruptions in miRNA Processing

Recent studies have shown that impairments of the miRNA
processing machinery are common in Wilms tumor and likely
contribute Lo this discase. For example, a study by Torrezan
et al. (2014) found mutations in miRNA processing genes in
33% of tumors, most commonly occurring in the Drosha gene,
with other mulations in DICER!, XPO5, DGCR8 and TARBP2.
These results are supported by several other studies by Wu
et al. (2013), Rakheja et al. (2014), Walz ct al. (2015), Wegert
el al. (2015), and Gadd et al. (2017). In Rakheja et al’s study,
they further examined the potential consequences of several
of these mutations and found that Drosha mutations often led
lo a loss of RNAse IIIB aclivily, which prevented processing ol
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FIGURE 1 | Regulatory circuitry invelving non-coding RNAs in various pediatric solid tumors. Shows elements of a key regulatory circuit involving MYC and E2F
family transeription factors and many neRNAs, often dysregulated in pediatric sclid turmaors. In many cases, recurring dysregulation of specific elements, including
miRNAs and IncRNAs, 15 observed and may represent vulnerabilities in the nomal developrent of specific cell lineages. (A) Loss of chromasornal regions where
let-7 and miR-34 miRNAs are localized is frequently observed in neuroblastoma and may represent a key event in the development of many of these cancers.

(B) let-7 dysregulation may facilitate overexpression of the oncogenic fusion transcript EWS-FLI-1 in Ewing sarcoma. {€) The RE1 tumor suppressor regulates E2F
and loss of function via mutations can lead to the development of retinoblastoma. In osteosarcoma, miR-9 may be able to act as an oncogenic driver as it is often
overexpressed and can downregulate RB1. {D) In neurchblastoma, miR-9 can display tumor-suppressive properties by cooperating with miR-125a and miR-125b to
regulate a spedific isoform of kG and suppress cell proliferation (E) The IncRNA TUGH is suggested to act as a ceRNA against miR-9, which has been shown to
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pri-miRNAs, leading to a global reduction in mature miRNAs.
DICER! mutations also frequently affected the RNAse IIIB
domain; however, this mutation only affected processing of 5p
miRNAs from precursors, as DICERI contains a second RNAse
domain for 3p processing. As a result, this mutation led to a shift
towards 3p miRINA maturation. These mutations have interesting
consequences for global miRNA expression and most likely favor
expressionofoncogenic miRNAs or reduce expression of miRNAs
with tumor-suppressive effects. In line with this, the let-7 family
is predominantly 5p-derived, and lower expression of several of
its 5p members was found in both Drosha and DICERI mutants
in two of these studies (Rakheja et al., 2014; Walz et al., 2015).
Additionally, the miR-200 family was found downregulated in
Wilms tumors with mutated miRNA processing genes, which is
known to regulate the mesenchymal-to-epithelial transition and
hasbeen associated with highly aggressive forms of cancer (Ceppi
and Peter, 2014; Walz et al., 2015). The functional role of several
oncomiRs has been investigated in detail within the context of
pediatric solid tumors and is discussed in the following section.

The miR-17~92 Cluster is a Downstream Effector of
Oncogenic Transcription Factors

The miR-17~92 cluster is expressed during normal development of
the brain, heart, lungs, and immune system (Koralov et al., 2008;
Ventura et al., 2008; Bian etal., 2013; Chen et al., 201 3) and is known
to regulate critical genes involved in cell growth, proliferation,
and apoptosis. This cluster is comprised of six different miRNAs
that are co-expressed, including miR-17, miR-18a, miR-19a,
miR-19b-1, miR-20a, and miR-92-1. Dysregulation of the miR-17~92
cluster has been shown in several pediatric solid tumors
including neuroblastoma, Wilms tumor, retinoblastoma, and
osteosarcoma, where a higher expression generally correlates
with a poorer prognosis (Chen and Stallings, 2007; Baumhoer
et al,, 2012; Li et al,, 2014). The miR-17~92 cluster is particularly
interesting due to its regulation by the transcription factor MYC
and its homologue MYCN, where it seems to act as a mediator
for some of MYC/MYCN’s oncogenic effects (Schulte et al.,
2008). Other transcription factors known to target the miR-
17~92 cluster include members of the E2F family and STAT3
(Mogilyansky and Rigoutsos, 2013).

Several studies have demonstrated that the miR-17~92 cluster
regulates many downstream components of the transforming
growth factor beta (TGF-B) pathway, which is known to
participate in a variety of cellular process such as differentiation,
proliferation, and immune cell activation. A study by Fontana
et al. (2008) demonstrated that in neuroblastoma, miR-17 and
miR-20a downregulate the cyclin-dependent kinase inhibitor
p21, which is activated by TGF-f. p21 plays a key role in the
inhibition of cell cyde progression by blocking the transition
from G1 to § phase, and its deregulation leads to uncontrolled
cell growth. Additionally, Fontana et al. (2008) showed that miR-
17-5p regulated another downstream component of TGF-§,
the pro-apoptotic factor Bcl-2 interacting mediator (BIM).
Mestdagh et al. (2010) later investigated miR-17~92 regulation
of the TGF-f pathway in more depth and identified miR-17 and
miR-20a as regulators of TGFBR2 and miR-18a as a regulator
of SMAD2 and SMAD4, both signal transducers for TGF-p

receptors. miR-18a and miR-19a have also been shown to repress
estrogen receptor (ESR1) expression, and prolonged knockdown
of miR-18a induced morphological differentiation of SK-N-BE
neuroblastoma cells. Interestingly, the TGF-p pathway interacts
with ESRI signaling via several of the SMADs (Band and Laiho,
2011), suggesting a complex interplay between miR-17~92 and
its targeted pathways necessary for fine-tuning differentiation
during neuronal development—a balance that is disrupted
when miR-17~92 is overexpressed. While no studies have
investigated in detail the interaction between the miR-17-92
cluster and TGF-p pathway in Wilms tumor, the TGF-§ pathway
has been implicated in Wilms tumor development. In contrast
with neuroblastoma, the TGF-p pathway appears to function as
a promoter of Wilms tumor progression, and TGEF-f is highly
expressed in primary tumors, even more so in metastatic tumors.
This multifaceted behavior of the TGF-B pathway has been
shown in other cancers and implies that the pathway’s influence
is specific to the tumor it is activated in.

The E2F family of transcription factors serve an important
role in cell cycle control as their expression can cause cells to
enter the G1 phase to initiate cell division (Chen et al.. 2009).
Several members, including E2F1, E2F2, and E2F3, all regulate
miR-17~92 expression. [n a study by Kort et al. (2008) a member
of the E2F family of transcription factors, E2F3, was shown to
be exclusively expressed in Wilms tumor and not in other types
of kidney tumors. In line with this, they compared expression
of the miR-17~92 miRNAs in Wilms tumor samples to other
renal tumor subtypes and found them all to be upregulated. They
were also able to show a correlation between E2F3 expression
and the stage of Wilms tumor, where it was highest in late-stage
metastatic tissues. In retinoblastoma, an early study investigating
the miR-17~92 cluster identified that one of its members, miR-
20a, participates in an autoregulatory feedback loop with E2F2
and E2F3 (Sylvestre et al., 2007), as they found both transcription
factors are themselves downregulated by miR-20a. The authors
suggested that this autoregulation was critical in preventing
expression of excessive amounts of E2F transcription factors.
Given that MYC/MYCN and E2F have previously been shown
to induce each other’s expression, miR-20a appears to play an
important role in keeping this positive feedback loop in check
(Leone et al., 1997; Strieder and Lutz, 2003). Therefore, it is easy
to see how disruption in one or more of these regulatory elements
could lead to uncontrolled expression of these proliferative and
anti-apoptotic signals.

Alater study by Conkrite et al. (2011) investigated miR-17~92
in retinoblastoma and revealed that this cluster was capable of
driving retinoblastoma formation in RBI/p107-deficient mice.
RBI plays a key role in inhibiting cell cycle progression, and
germline mutations ofthisgene canlead to familial retinoblastoma
formation (Friend et al., 1986; Classon and Harlow, 2002).
RBI’s protein product, pRB, inhibits E2F transcription factors
by binding and inactivating them, and its absence enables
miR-17~92-driven tumor formation.

The miR-17~92 cluster also plays a role in driving tumor
progression and metastasis in osteosarcoma (Li et al,, 2014). A
recent study by Yang et al. (2018) identified QKI2 as a regulatory
target of the miR-17~92 cluster. QKI proteins have previously
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been shown to inhibit B-catenin and induce differentiation
in colon cancer. Yang at el. demonstrated that miR-17~92
downregulated QKI2, causing upregulation of p-catenin,
leading to increased proliferation, invasion, and migration in
osteosarcoma (Yang et al, 2018). Additionally, miR-20a has
previously been shown to downtegulate Fas expression, which
is a cell surface marker that interacts with FasL to induce
apoptosis in the lungs, where osteosarcoma almost exclusively
metastasizes to (Huang et al., 2012).

The miR-17~92 cluster plays a tumorigenic role in a number
of pediatric solid tumors including neuroblastoma, Wilms
tumor, retinoblastoma, and osteosarcoma. The use of the
miRNA pathway by transcription factors such as the MYC and
E2F families enables them to target a wide range of genes and
immediately effect gene expression at the post-transcriptional
level. Continued research into how miRNAs may operate as
oncogenic drivers will likely expand the repertoire of potential
drug targets available to us.

Let-7 Dysregulation is a Feature in Many Pediatric
Solid Tumors
Thelet-7 family of miRNAsare amongthe most well-characterized
tumor suppressors due to their frequent downregulation in
cancers. In total, there are 12 members of the let-7 family located
across eight different chromosomes; however, in most cells, only
a selection of these miRNAs will be expressed (Balzeau et al.,
2017). let-7 miRNAs are important in regulating the cell cycle
and maintaining cells” differentiated state by targeting a wide
range of genes with known roles in cancer biogenesis such as
MYC/MYCN, RAS, CDK6, and HMGA?Z2 (Buechner et al., 2011;
Wu et al., 2015).

let-7 is regulated by the LIN28 proteins, LIN28A and LIN28B,
which mediate uridylation, prevent processing of the let-7
precursor, and are important for maintaining pluripotency in
cells (Lehrbach et al., 2009; Balzeau et al., 2017). Both Lin28 genes
contain let-7 target sites and participate in a double-negative
feedback loop with let-7 (Yin et al., 2017). Overexpression of
Lin28 tends to drive cells towards oncogenesis and is a common
feature in cancers. In a study by Urbach et al. (2014), Lin28b
overexpression was found in approximately 30% of Wilms
tumors. Additionally, they found overexpression of Lin28
could induce tumor formation in specific renal intermediates
and that restoration of let-7 activity could reverse this effect
in mice. Similar examples have been shown in mouse models,
where Lin28b overexpression can drive hepatoblastoma and
hepatocellular carcinoma in the liver and neurcblastoma in
the neural crest (Molenaar et al., 2012; Nguyen et al,, 2014).
Molenaar et al. (2012) investigated Lin28b in neuroblastoma and
demonstrated that Lin28b could enhance MYCN protein levels
vialet-7 regulation. However, a later study by Powers et al. (2016)
showed that Lin28b expression was redundant in certain MYCN-
amplified neuroblastoma cells, as overexpression of the MYCN
transcript could function as a miRNA sponge for let-7, thereby
negating their effect regardless of expression level. Powers et al.
showed that most neuroblastomas were characterized by a loss
of let-7 with either MYCN overexpression or chromosomal
loss of arm 3p or 11q, where several let-7 miRNAs are located

(Figure 1A). The authors noted that these events were generally
mutually exclusive and suggested that the presence of one event
alleviated selective pressure for the other.

A study by Di Fiore et al. (2016) revealed that let-7d could
promote and suppress tumor formation within the same
system. In this study, they found that let-7d overexpression in
osteosarcoma cells reduced several stemness genes, including
Lin28b, HMGA2, Oct3/4, and SOX2, and could elicit the
mesenchymal-to-epithelial transition with upregulation of
the epithelial marker E-cadherin and downregulation of
mesenchymal markers N-cadherin and vimentin. However, they
also found that let-7d enhanced cell migration and invasion,
presumably by acting via the TGF-p pathway, which is known
to promote this behavior. let-7d strongly increased versican VI
expression, which has previously been shown to activate the
TGF-f pathway in osteosarcoma (Li S. et al., 2014).

In Ewing sarcoma, Hameiri-Grossman et al. (2015) found
that let-7 downregulated the Ras oncogene, as well as the
transcription factor HIF-1a, to reduce EWS-FLI-1 expression
(Figure 1B). EWS-FLI-1 is a hybrid transcript that results from
a translocation event involving EWS and FLI1, and translocation
events such as this are present in nearly all Ewing sarcoma cases
and are believed to drive the disease (Delattre et al., 1994).

Loss of Let-7 plays a key role in many pediatric solid tumors
as its loss enables expression of transcription factors and other
genes that participate in oncogenesis. This has been emphasized
in neuroblastoma, where it has been suggested that loss of let-7
function is an essential event in tumor development and positions
the miRNA pathway as a central player in pediatric solid tumors.

miR-9 Has Been Shown to Play Oncogenic

and Tumor-Suppressive Roles in Different

Pediatric Tumors

miR-9 is a highly conserved miRNA involved in several different
cellular processes including cell proliferation, differentiation, and
migration. Barly studies revealed miR-9 to be highly expressed
in the brain and play a role both during development and in
the adult brain; however, miR-9 has also been associated with
many cancers outside the brain, acting as an oncogene or tumor
suppressor (Coolen et al., 2013). Mir-9 is upregulated by MYC/
MYCNandplaysarole inpromoting tumor growthand metastasis
in several cancers including breast cancer, osteosarcoma, and
rhabdomyosarcoma, where it is often overexpressed (Iorio
et al., 2005; Luo et al., 2017) However, in other cancers such as
neuroblastoma, miR-9's role is less clear, and studies have argued
for oncogenic and tumor suppressor functions (Laneve et al,
2007; Zhi et al., 2014).

The role of miR-9 in osteosarcoma appearsto be in promoting
cell growth and metastasis (Zhu et al., 2015; Qi et al., 2016). In
a study by Zhu et al. (2015), miR-9 knockdown suppressed cell
growth and migration of osteosarcoma cells. They were also
able to show that miR-9 downregulated RB1 via the Grap2
and cyclin D interacting protein (GCIP), thereby promoting
E2F-mediated cell division (Figure 1C). Similar behavior has
been observed in the alveolar subtype of rhabdomyosarcoma,
where miR-9 contributes to increased cell proliferation and
migration (Missiaglia et al., 2017). In this study by Missiaglia
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et al. (2017), miR-9 was shown to be induced by the PAX3/
FOXO1 fusion gene via MYCN, which is specific to this subtype
of thabdomyosarcoma.

In neuroblastoma, miR-9 expression has been shown to be
both up- and downregulated in different studies. An early study
by Laneve et al. (2007) showed that miR-9 was downregulated
in 50% of primary neuroblastoma samples, and follow-up
experiments demonstrated that miR-9 could act together
with miR-125a and miR-125b to suppress cell proliferation by
targeting a truncated isoform of the neurotrophin receptor
tropomyosin-related kinase C (trkC) (Figure 1D). However,
a later study by Ma et al. (2010) found miR-9 to be a target of
MYCN and that miR-9 expression correlated with MYCN and
metastatic status in neuroblastoma tumors. In this same study
(albeit in breast cancer cells), Ma et al. also demonstrated that
miR-9 suppressed E-cadherin to activate f§-catenin and promote
the epithelial-to-mesenchymal transition. Mir-9 is frequently
involved in promoting cell migration; however, its absence has
also been shown to produce different responses such as cell cycle
arrest or apoptosis in neurons depending on their origin (Bonev
et al., 2011). The contradictory behavior seen with studies of
miR-9 highlight the diverse roles that individual miRNAs can
play, and more comprehensive studies are needed to identify the
relevant contextual influences on miRNA behavior.

miR-34 Is a Key Regulator of the Cell Cycle and

Drug Resistance in Pediatric Solid Tumors

The miR-34 family has garnered significant interest since
its members were discovered to be direct transcriptional
targets of the tumor suppressor and transcription factor p53
(Hermeking, 2010). The miR-34 family consists of three
miRNAs encoded by two genes, mir-34a and mir-34b/c. All
three miRNAs play a key role in regulating apoptosis and
the cell cycle by inducing G1 phase arrest. One of the more
interesting facts about miR-34a and miR-34b/c is their genomic
locations, which arelocated on chromosomes 1p36 and 11923,
respectively, regions that are frequently lost in pediatric solid
tumors (Ruteshouser et al., 2005; Wittmann et al., 2007). In
particular, loss of 1p36 occurs in 20-30% of neuroblastoma
cases and correlates with MYCN amplification (Caron et al.,
1993; Maris et al., 1995), whereas loss of 11923 in occurs in
approximately 40% of cases but almost never occurs with
MYCN amplification (Figure 1A) (Guo et al., 1999; Attiyeh
et al,, 2005). miR-34 members are also regulators of the MYC
family, as miR-34a is known to regulate MYCN and miR-34b
and mir-34c to regulate ¢ MYC (Wei et al., 2008).

Studies on mir-34a expression have identified frequent
downregulation in neuroblastoma, osteosarcoma, and
hepatoblastoma (Jiao et al,, 2016). miR-34a is itself considered
a tumor suppressor due to its involvement in cell cycle arrest
and apoptosis (De Antonellis et al., 2014). In neuroblastoma,
Cole et al. (2008) investigated the growth-inhibitory effects
of several miRNAs mapping to common chromosomal
aberrations by overexpressing them in cell lines. In most
cases, overexpression did not lead to a noticeable change
in phenotype; however, miR-34a and miR-34c induced

significant growth inhibition in cell lines with 1p36 deletion.
Growth inhibition and suppression of metastasis by miR-34a
have also been shown in osteosarcoma by several studies,
where members of key proliferative signal transduction
pathways such as ¢c-Met, DUSP1, and Eagl were identified as
regulatory targets (Yan et al., 2012; Wu X. et al., 2013; Gang
et al,, 2017). The miR-34 family also targets several members
of the Notch signaling pathway, which has been linked to
both oncogenic and tumor-suppressive roles depending
on the cellular context. In osteosarcoma, activation of the
Notch pathway is known to contribute to tumor growth, and
miR-34a-mediated downregulation of this pathway likely
contributes to its tumor-suppressive role. However, in Ewing
sarcoma, a recent study investigating miR-34b suggested
that it could act as an oncogene, promoting proliferation,
migration, and invasion through Notchl repression (Lu Q. et
al., 2018). Prior studies have shown correlations between high
mir-34a expression and patient survival, which would indicate
a tumor-suppressive role for mir-34a (Nakatani et al., 2012;
Marino et al,, 2014). It is unclear why miR-34a and miR-34b
would display contrasting effects given their shared targets,
and further investigation is needed.

Several studies by Pu et al. (2016) and Pu et al. (2017) have
suggested that miR-34a may also play a role in promoting
multidrug resistance in osteosarcoma. In these studies, they
found that miR-34a-5p enhanced multidrug resistance through
downregulation ofthe CDI117and AGTRI genes in vitro. CD117 is
often highly expressed in drug-resistant tumors and is commonly
used as a marker for stemness (Adhikari et al., 2010). In contrast,
Nakatani et al. found that miR-34a increased chemosensitivity in
Ewing sarcoma (Nakatani et al., 2012).

Other miRNAs Involved in Multiple Pediatric

Solid Tumors

A substantial number of other miRNAs have been discovered
with functional implications in multiple pediatric solid tumors.
One such miRNA is miR-125b, which typically exhibits tumor-
suppressive properties in cancers such as neuroblastoma,
osteosarcoma, and Ewing sarcoma, where it is commonly
dysregulated (Laneve et al., 2007; Li ]. et al., 2014; Xiao et al.,
2019). Previously, it was mentioned that miR-125b participates
in a network with miR-125a and miR-9, regulating expression
of a truncated trkC isoform to control neuroblastoma growth
and differentiation (Laneve et al., 2007; Le et al., 2009).
In osteosarcoma, miR-125b was found to regulate STAT3
by downregulating MAP kinase kinase 7 (MKK?7), which
inactivates STAT3 via dephosphorylation (Xiao et al., 2019).
Loss of miR-125b and consequent overexpression of MKK7
led to increased tumor formation and poorer prognosis. In
Ewing sarcoma, miR-125b is involved in regulating the PI3K
signaling pathway; could inhibit cell proliferation, migration,
and invasion; and induce apoptosis through suppression of
PIK3CD (Li] et al., 2014). Conversely, in retinoblastoma, miR-
125b is overexpressed and has shown oncogenic properties
by promoting cell proliferation and migration and inhibiting
apoptosis (Baietal., 2016). Conflicting behavior with miR-125b
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has been observed in many other cancers, which suggests that
its role is highly dependent on cell identity (Sun et al., 2013).
miR-124 hasbeen widely reported toact asatumor suppressor
by inhibiting cell growth and metastasisand acts as akey mediator
of differentiation in several pediatric solid tumors (Peng et al.,
2014; Feng et al., 2015; Zhao et al., 2017). In neuroblastoma, miR-
124a increased the proportion of differentiated cells possessing
neurite outgrowths (Le et al., 2009). In retinoblastoma, miR-124
participates in a regulatory network with IncRNAs Malatl and
XIST, which both function as oncogenes by enhancing growth
and metastasis through downregulation of miR-124 (Liu S.
et al, 2017; Hu et al, 2018). miR-124 itself was shown to target
STAT3 to inhibit cell proliferation, migration, and invasion
(Liu S. et al., 2016). In Ewing sarcoma, miR-124 expression is

suppressed, and expression was found to reduce growth and
metastasis via downregulation of mesenchymal genes such
as SLUG and cyclin D2 (CCND2) (Li et al., 2017). Finally, in
osteosarcoma, retinoblastoma, and Ewing sarcoma, miR-143
has been found to be dysregulated (De Vito et al,, 20123 Li 8.
et al,, 2014; Wang et al., 2016; Sun et al., 2018). For example,
Li et al. investigated miR-143 function in osteosarcoma and
showed that miR-143 participated in the TGF-f pathway by
targeting versican, and TGF-p could reduce miR-143 expression
to promote cell migration and invasion (Li §. et al., 2014). FOS-
like antigen 2 (FOSL2) was also identified as a miR-143 target,
which enhanced cell proliferation, migration, and invasion in
the absence of miR-143 (Sun et al., 2018). Additional miRNA
studies have been listed in Table 1.

TABLE 1 | miRNAs that have been shown to exhibit onsogenic or tumor-suppressive effests through functional studies in various pediatric solid tumors,

Cancer

Oncogenic miRNAs/clusters

Comments

Neuroblastoma

Osteosarcoma

Retinoblastoma
Wilms tumor

Hepatoblastomna
Ewing sarcoma

Cancer

Neuroblastoma

Ostsosarcoma

Retinoblastoma
Rhabdomyosarcoma

Wilrns turn or

Hepatoblastoma

Ewing sarcoma

mir-16 (Xin et al., 2013), mir-17~92 (Fontana et al., 2008; Loven et al., 2010; Mestdagh st al.,
2010), miR-93 (Chakrabart et al., 2012), miB-380 (Swarbrick et al., 2010), miR-558 (Shehet et al.,
2011; Quetal, 2015)

let-7d (Di Fiore et al., 2016), miR-8 (Zhu st al., 2015; Qi et al., 2016), miR-17~92 (Huang st al.,
2012, Li X etal, 2014; Lu et al,, 2018a; Yang et al., 2018b), miR-34a (Pu et al., 2016; Pu et al.,
2017), miR-214 (Rehei et al., 2018)

miR-17~92 (Conkrite et al,, 2011; Nittner et al., 2012; Jo et al,, 2014), miR-12&b (Bai et al., 2016)

miR-190b (Liu G.-L. et al., 2017), miR-483 (\Vercnese et al, 2010; Liu M. et al., 2013), miR-1180
(Jiang and Li, 2018)

miR-492 (von Frowein et al., 2018)

mir-17~92 (Schwentner et al., 2017), miR-20b (Kawana et al,, 2017), miR-34b, b (Lu et al,, 2018h)
miR-130b (Satterfield et al., 2017)

Tumor-suppressive miBNAs/clusters

let-7 (Buschner et al., 2011; Mdenaar et al.,, 2012; Hennchen et al., 201&; Powsrs et al., 2016),
mir-7-1 (Chakrabarti et al,, 2012), mir-9 (Laneve &t al.,, 2007), mir-10 (Foley et al., 2011), miR-34a
(Welch et al., 2007, Cole et al., 2008; Tivnan et al., 2011), miR-34¢ (Cole et al., 2008), miR-101
(Buechner et al., 2011), miR-124a (Le st al., 2009), miR-125 (Lanevs et al,, 2007, Le et al., 2009),
miB-145 (Zhang et al, 2014), miR-184 (Chen and Stallings, 2007; Foley et al,, 2010; Tivnan et al.,
2010), miR-193b (Roth et &, 2018), miR-202 (Buechner et al., 2011), miR-203 (Zhao et al., 2015),
miR-449 (Buschner et al,, 2011), miR-542 (Bray et al., 2011), miR-684 (Kang st al., 2015), miB-591
(Shohet et al., 2011)

let-7d (Di Fiore et al., 2016), miR-1 (Novello et al., 2013), miR-34 (Yan st al., 2012; Wu et al., 2013b;
Gang et al,, 2017, Wen et al,, 2017), miR-128&b (Le et al,, 2009; Xao et al,, 2019), miR-133b
(Novello et al., 2013), miR-134 (Thayanithy et al., 2012), miR-138 (Zhu et al., 2016), miR-143 (Li

et al., 20146, Sun et al,, 2018), miR-195 (Han et al., 2018), miR-223 (Dong et &, 2018), miB-363
(Wang K. et al.,, 2018), miR-369 (Thayanithy et al., 2012), miR-382 (Thayanithy et al., 2012), miR-
451 (Yuan et al.,, 2015), miR-454 (Niu et al., 2016), miR-485 (Du et al., 2018), miR-544 (Thayanithy
et al., 2012), miR-520 (Wang WT. et al., 2018), miR-708 (Chen and Zhou, 2018), miR-2682 (Zhang
st al., 2018b)

miR-101 (Lei et al., 2014), miR-124 (Liu 5. et al., 2016), miR-143 (Wang st al., 2016)

miRB-1 (Rac et al, 2010; U et al, 2012}, mir-22 (Bersani et al., 2016), miB-29 (U et al., 2012), miR-
133a (Rao et al., 2010), miR-206 (Li et al., 2012; Missiaglia et al., 2010)

let-7 (Urbach et al., 2014), miR-16 (Chen W. et al., 2018), miR-34a (Chen W. et al.,, 2018), mir-92a
(Zhu et al., 2018b), miR-613 (Wang et al.,, 2017a)

miR-26 (Zhang et al., 2018d)

let-7 (Hameiri-Grossman et al., 2015; Kawano et al,, 2015), miR-16 (Kawano et al.,, 2015), miR-22
(Parrish et al., 2015), miR-29b (Kawano et al., 2015), miR-30a (Franzetti st al., 2013), miR-30d (ve
etal., 2018), miR-31 (Kamuth et al., 2014), miR-34a (Nakatani et al., 2012; Ventura et al., 2018),
miR-124 (Li et al.,, 2017), miR-126b (L et al., 2014b), miR-143 (De Vito et al., 2012), miR-1456 (Riggi
etal., 2010; De Vito et al., 2012), miR-18& (Zhang et al., 2018s), miB-193b (Moore et al., 2017),
miR-708 (Robin et al., 2012)

mir-17~92 dysregulation is
cemmen in MY CN-amplified
neuroblastomas

Lass of RB1 function may enable
mir-17~92-mediated oncogenicity.

EWS-FLI-1 may upregulate mir-
17~92 and miR-34b

Comments

let-7 and mir-34 ars rsgulators of
the MYCN encogene.

miR-24 suppresses tumar growth
in osteosarcoma but may also
contribute to drug resistance.

STAT3 is a target of miR-124.
miR-1 appears to play a key role in
differentiation of several sarcomas
miR-82awas shown 1o act as a
tumar suppressor unlike what is
observed in other pediatric salid
tumers.

miR-26 was shown to repress
LIN28B in hepatablastoma,
Several miRNAs such as let-7 and
miR-1456 are downregulated by
EWS-FLIH1.
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miRNAs Regulate All Aspects of Tumorigenesis
Widespread dysregulation of miRNAs is observed in
many pediatric solid tumors, and functional studies have
demonstrated that many of these miRNAs can drive or repress
oncogenic pathways responsible for cell proliferation, apoptosis,
angiogenesis, metastasis, and drug resistance. Importantly,
miRNAs such as let-7 and miR-34 play a vital role in pediatric
solid tumors by regulating established oncogenic transcription
factors such as the MYC and E2F families (Wei et al., 2008;
Buechner et al.,, 2011). Other miRNAs, such as the miR-17~92
cluster and miR-9, serve as downstream effectors for these
transcription factors, although their exact role in tumorigenesis
seems to depend on the overall transcriptional landscape
(Schulte et al., 2008; Ma et al,, 2010). In some cases, viewing
miRNAs as oncogenes or tumor suppressors likely represents
an oversimplification of their role in cancer, and a better
understanding of their participation in oncogenic networks will
be needed to clarify their exact contributions.

LONG NON-CODING RNAS REGULATE
ONCOGENIC PATHWAYS IN PEDIATRIC
SOLID TUMORS

For a long time, it was believed that the human genome was
mostly comprised of “junk” DNA, despite pervasive transcription
of much of the genome outside of protein-coding genes and
other known RNAs at the time (Prensner and Chinnaiyan, 2011).
Originally thought of as transcriptional noise, IncRNAs have now
emerged as functional regulators of nearly all essential cellular
processes including growth, differentiation, cell state maintenance,
apoptosis, splicing, and epigenetic regulation. The first IncRNA,
H19, was discovered in 1990 where an RNA molecule was found
spliced and polyadenylated in a manner typical of mRNAs;
however, it lacked an open reading frame and was believed to
function as an untranslated RNA molecule (Brannan et al., 1990).

Often, IncRNAs participate within protein complexes and
can operate as scaffolds, guides, decoys, or allosteric regulators.
Many IncRNAs function as epigenetic regulators by interacting
with proteins involved in chromatin remodeling and DNA
methylation. Frequently, these IncRNAs will be cis-acting and
regulate the regions near their transcribed location; however,
some are trans-acting. Other lncRNAs function as competing
RNAs (ceRNAs), which contain miRNA binding sites in a similar
manner to mRNAs in order to compete and reduce the activity
of miRNAs.

Several studies have investigated IncRNA expression in pediatric
tumors and have successfully identified unique expression profiles
in different cancers and tumor subtypes (Mitra et al,, 2012; Brunner
et al,, 2012 Dong et al., 2014; Sahu et al,, 2018). For example,
Dong et al. (2014) compared hepatoblastoma samples to normal
liver tissue in patients and found 2,736 differentially expressed
IncRNAs. A study by Pandey et al. (2014) found 24 IncRNAs that
could distinguish low- and high risk neuroblastoma tumors. In
a more recent study, Sahu et al. (2018) identified 16 differentially
expressed IncRNAs that could be used to predict event-free

survival with greater accuracy than other commonly used clinical
risk factors. Mechanistic studies into many of these IncRNAs have
revealed that they frequently act as an additional layer of regulation
within established oncogenic networks involving protein-coding
genes and miRNAs. While the field of IncRNAs is still relatively
young, many studies have emerged that suggest that IncRNAs are
far more integrated into existing gene networks than what has
previously been appreciated (Figure 1). In the following section,
the roles of some of the better-characterized IncRNAs in pediatric
solid tumors will be discussed.

Malat1 Is Induced by MYCN in
Neuroblastoma and Competes With

Many miRNAs

One of the earliest IncRNAs to be associated with disease was
Malat] (metastasis-associated lung adenocarcinoma transcript
1), which was shown to associate with metastatic tumors in
non-small cell lung cancer patients (Ji et al., 2003). Malatl is
abundantly expressed and highly conserved across species,
unlike many other IncRNAs, and displays remarkably diverse
functions in cellular processes including alternative splicing,
nuclear organization, and epigenetic modulation. Studies have
suggested an important role for Malatl in brain development,
as it is highly expressed in neurons and its depletion has been
shown to affect synapse and dendrite development (Bernard
et al., 2010; Chen et al., 2016). However, its importance has been
questioned as other studies have found that Malat1 -KO mice are
viable with no discernable change in phenotype (Nakagawa et al.,
2012; Zhang et al., 2012).

In addition to lung cancer, Malatl is known to contribute
to metastasis in other common types of cancer including
hepatocellular carcinoma and bladder cancer, with evidence
that it acts through induction of the epithelial-to-mesenchymal
transition (Ying et al.,, 2012; Li G. et al., 2014; Yang et al., 2017). The
role of Malatl in several pediatric cancers has also been explored
in recent studies. In neuroblastoma, Tee et al. (2014) recently
identified a regulatory network involving N-Myc, Malatl, and the
histone demethylase JMJD1A. They found that N-Myc upregulated
JMJD1A via direct binding of its promoter region and that JMJD1A
could demethylate histone H3K9 near the promoter region of
Malatl, leading to its upregulation. MYCN-mediated upregulation
of Malat] provides one mechanism in which its amplification can
lead to increased metastasis in neuroblastoma patients. Another
study by Bi et al. (2017) also demonstrated that Malat1 regulated
Axl expression, a transmembrane receptor tyrosine kinase, which is
known to activate pathways involved in cell proliferation, survival,
and migration. In osteosarcoma, Dong et al. (2015) demonstrated
that Malatl was highly expressed and could activate the PI3K/Akt
pathway to promote proliferation and invasion.

Malat1 is known to interact with many miRNAs implicated in
cancer. In osteosarcoma, several studies have shown Malat]l can
function as a ceRNA for different miRNAs (Wang et al., 2017b;
Liu K. et al., 2017b; Sun and Qin, 2018). miR-140-5p is a tumor
suppressor that downregulates HDAC4, a histone deacetylase that
contributes to tumorigenesis, and competitive binding by Malat1
with miR-140-5p was shown to increase HDAC4 activity (Sun
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and Qin, 2018). Malatl was also shown to compete with miR-
144-3p binding to ROCK1/ROCK2, promoting proliferation and
metastasis (Wang et al., 2017b). In a similar manner, Liu K. et al.
(2017) found that Malatl could regulate cell growth through
high-mobility group protein Bl (HMGB1) via ceRNA activity
with miR-142-3p and miR-129-5p. Finally, in retinoblastoma,
Malatl downregulated miR-124 activity, leading to activation of
the transcription factor SLUG, which is also targeted by miR-124
(Liu S. et al,, 2017). SLUG has a known role in the epithelial-
to-mesenchymal transition by suppressing E-cadherin via the
‘Wnt/B-catenin pathway (Prasad et al., 2009).

In addition to interactions with miRNAs, Malatl has also
been shown to be processed directly by the Drosha-DGCRS8
microprocessor complex through binding sites in the 5" end of the
transcript (Maclas et al,, 2012). IncRNAs such as Malat] cooperate
with the miRNA pathway and a number of transcription factors
and epigenetic factors to form a complex network responsible
for regulating tumorigenesis. The capacity for Malatl to drive
proliferation and metastasis in pediatric solid tumors suggests
that dysregulation of any of these regulatory components can be
sufficient for the development of cancer and highlights the value
of further research into the relatively new field of IncRINAs.

H19: IncRNA Dysregulation via Loss

of Imprinting may Contribute to
Tumorigenesis

H19 is a paternally imprinted gene that is typically expressed
exclusively from the maternal allele. Early reports suggested
that H19 functioned as a tumor suppressor capable of inhibiting
cell growth (Hao et al., 1993; Zhang et al., 1993; Casola et al.,
1997; Fukuzawa et al, 1999). Studies in childhood solid
tumors such as hepatoblastoma, Wilms tumor, and embryonic
rhabdomyosarcoma supported this idea, as all three cancers often
exhibited reduced H19 expression and had frequently lost the
maternal 1 1p15 chromosomal region housing this gene (Fukuzawa
et al., 1999). Other studies, in osteosarcoma and retinoblastoma,
suggested an oncogenic role for H19, as its upregulation and
loss of imprinting were commonly seen (Chan et al., 2014; Li
L. et al,, 2018). This observation was also seen in many other
cancers including breast cancer (Lottin et al., 2002). Recently, the
Hedgehog signaling pathway, a regulator of differentiation known
to participate in cancer development and metastasis, was shown
to induce H19 expression {(Chan et al., 2014).

Understanding the exact function of H19 has proved difficult;
however, it was known to sit downstream of the insulin growth
factor 2 (IGF2) gene, a growth factor known to play a role in
tumorigenesis. Early reports suggested interactions between
IGF2and H19, as loss of imprinting of either gene caused biallelic
expression of the other gene (Ulaner et al., 2003). Ulaner et al.
(2003) proposed a model for H19 and IGF2 involving a CCTF-
binding site seated between the two genes, which could facilitate
the blocking of IGF2 or transcription of H19 depending on its
methylation status. However, this model suggested that H19 may
simply serve as a marker for epigenetic disruptions and left open
the question of what H19’s actual function is.

More recent studies have demonstrated a role for H19 in
epigenetic regulation. H19 binds to several epigenetic regulators
including S-adenosylhomocysteine hydrolase (SAHH), methyl-
CpG-binding domain protein 1 (MBD1), and enhancer of zeste
homolog 2 (EZH2) (Raveh et al., 2015; Zhou et al., 2015). H19
was found to inhibit SAHH, which led to downregulation of
DNMT3B-mediated methylation. MBD1 binds methylated DNA
and recruits other proteins to mediate transcriptional repression
or histone methylation, and H19 was shown to recruit this
protein to several genes including [GF2 (Monnier et al., 2013).
Finally, EZH2 is a histone methyltransferase that forms part of
the Polycomb repressive complex 2 (PRC2) (Sauliere et al., 2006;
Zhou et al., 2015).

H19also playsa role in maintaining cellsin an undifferentiated
state by associating with the KH-type splicing regulatory protein
(KSRP). When multipotent mesenchymal cells were induced,
H19 was found to dissociate with KSRP to promote several of its
functions including the decay of unstable mRNAs and increasing
the expression of specific miRNAs involved in proliferation and
differentiation though association with Drosha and Dicer.

H19%s role in cancer has been emphasized by studies
highlighting its relationship to the tumor suppressor p53. The
H19 locus reciprocally regulates p53, as p53 suppresses H19
transcription and H19 can inactivate p53 by directly interacting
with it (Yang et al., 2012). Notably, H19 also encodes for a
miRNA in its first exon, miR-675, which suppresses p53 and
several other targets including Rb, Igflr, and several SMAD and
cadherin genes. In the absence of functional p53, H19 was shown
to promote tumor proliferation and survival under hypoxic
conditions. Later studies in colorectal cancer showed that H19
could induce EMT by acting as a ceRNA (Liang et al., 2015).
ceRNA function has recently been shown in a retinoblastoma
study, targeting the mir-17~92 cluster (Zhang A. et al., 2018a).
In this study, they found that H19 contained seven functional
binding sites for mir-17~92 and was able to sponge mir-17~92
activity. This led to a de-repression of genes such as p21 and
STAT3 targets BCL2, BCL2L1, and BIRC5.

In a review by Raveh et al. (2015) it was proposed that H19
may behave differently in a manner that was dependent on
the developmental stage of the cell, which could explain the
evidence suggesting both oncogenic and tumor-suppressive
roles. Here, the authors found that H19 functioned as a
promoter of differentiation during the embryonic period and
that absence of H19 at this stage could leave cells vulnerable to
forming cancer, thereby seemingly acting as a tumor suppressor.
However, in adult cells, where it is not normally expressed, H19
could function as an oncogene by promoting tumor survival
and metastasis (Matouk et al., 2015).

TUG1 Regulates Transcription

Factors Through Competition

With miRNAs in Osteosarcoma

Recent studies have investigated the role of IncRNA TUG1 as a
prognostic factor and ceRNA in osteosarcoma. Ma et al. (2016)
identified a correlation between upregulation of TUGI and poor
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prognosis and metastasis, which was also evident in plasma,
and suggested a potential use as a biomarker for patients with
osteosarcoma. TUGI is known to act through ceRNA activity
against a number of miRNAs including miR-9, miR-132, miR-
144, miR-153, miR-212, and miR-335 (Xie et al., 2016; Cao
et al., 2017; Wang et al., 2017a; Li G. et al,, 2018; Li H. et al.,
2018). These miRNAs are known to regulate pathways involved
in proliferation, cell cycle control, migration, and apoptosis.
For example, TUG1 was shown to mediate de-repression of
the transcription factor POU class 2 homeoboxl (POU2F1) via
downregulation of mir-9 (Figure 1E) (Xie et al., 2016). POU2F1
itself participates in various cellular processes including growth,
metabolism, stem cell identity, and metastasis (Vizquez-Arreguin
and Tantin, 2016). In another example by Cao et al. (2017) they
found that TUG]1 also regulates migration and the epithelial-to-
mesenchymal transition via ceRNA action on miRNA-144-3p.
miR-144-3p is a regulator of EZH2, and upregulation of EZH2
induced cell migration through the Wnt/B-catenin pathway (Cao
et al., 2017). Studies have also demonstrated direct interactions
between TUG] and the Polycomb repressor complex; however,
to our knowledge, this has not been investigated in pediatric
solid tumors (Yang et al., 2011).

Other Long Non-Coding RNAs in Pediatric
Solid Tumors
In addition to those mentioned above, there are a number of
other IncRNAs that have been identified as potential oncogenes
or tumor suppressors involved in the pathogenesis of pediatric
solid tumors (see Table 2) (Chen et al,, 2017; Pandey et al., 2015).
For example, in osteosarcoma, IlncRNAs HOTAIR, SNHGI1s6,
SNHG12, THOR, PACER, MFI2, and HOTTIP have all been
shown to promote tumor or cell growth (Li et al., 2016; Qian
et al,, 2016; Ruan et al,, 2016; Yin et al., 2016; Chen W. et al., 2018
Su et al., 2019; Wang et al., 2019). HOTAIR is known to play a
role in chromatin regulation by acting as a scaffold for PRC2
and lysine-specific histone demethylase 1 (LSD1), and can also
act as a ceRNA for miR-217 (Gupta et al., 2010; Tsai et al., 2010;
‘Wang et al., 2019). SNHG16 has been shown to act as a ceRNA
for several miRNAs including miR-205 and miR-340 (Zhu C.
et al, 2018; Su et al, 2019). Additionally, several IncRNAs
are downregulated in osteosarcoma with potential tumor-
suppressive activity such asloc285194, MEG3, and TUSC7 (Pasic
etal., 2010; Cong et al., 2016; Shi et al., 2018).10¢285194 has been
identified as a transcriptional target of p53 and can downregulate
miR-211 (Liu Q. et al,, 2013). In another study, increased p53

TABLE 2 | IncRNAs that play a rols in pediatric solid tumors. CS, osteosarcoma; RB, retinoblastoma; NB, neurcblastoma; WT, Wims tumor; HB, hepatoblastoma;

RMS, rhabdomyosarcema; ES, Ewing sarcoma.

Long Non-coding RNA Cancer Cellular Functions References
Malat1 OS, RB, NB Upregulates— praliferation, survival, migration, (Tee et al, 2014; Dong et al,, 2015; Bietal, 2017,
invasion. Liu K etal, 2017, Liu S. et al., 2017, Wang K. et al.,
2017; Sunand Qin, 2018)
H18 OS, RB, WT, HB, RMS Upregulates— proiferation, sunvival. Regulates (Zhang et al.,, 1993; Casola et al.,, 1997, Fukuzawa
cell fate/differsntiation st al., 1999, Chan st al,, 2014; Matouk st &, 2015;
Raveh etal, 2015, L L. et al, 2018)
TUGH O3 Upregulates— proliferation, survival, migration (Ma et al., 2018; Xie et al,, 2016; Cao et al., 2017,
Wang S, etal, 2017, U G. etal, 2018; LiH. st al,,
2018)
HOTAIR 08, RB Uprsgulates— prdiferation, sunvival, migration, (Yang G, et al., 2018; Wang st al.,, 2019)
invasicn,
HOTTIP oS Upragulates— prliferation, resistance. (Lietal, 2016)
SNHG12 oS Uprsgulatss— praliferation, migration (Ruan et al., 2016)
SNHG18 os Upregulates —praliferation, survival, migration, (Su etal, 2019; Zhu et al., 2018a)
invasicn.
THOR 03, RB Uprsgulates— proliferation, migration. (Chen K.S. et al., 2018; Shang, 2018)
FACER os Upragulates— proliferation, invasion. (Qian et al,, 2016)
MFI2 oS Upregulates— prdliferation, sundval, migration, (vinetal., 2016)
invasicn.
loc2856164 oS Downregulates —proliferation. (Pasic et al., 2010)
TUSCY oS Downregulates —prolifsration (Cong et al., 2016)
MEG3 0OS, RB Downregulates —praliferation, survival, (Gao etal., 2017; Shi et al., 2018)
invasion.
EWSAT1 OS, ES Uprsgulatss— proliferation, metastasis. (Howarth et al,, 2014, Sun et al,, 2016)
XsT RB Upregulates—proliferation, sunvival (Hu et al., 2018)
DANCR RB Uprsgulates— prdiferation, migration, invasion (Wang J. X et al., 2018)
HOXAT1-AS RB Uprsgulates— proliferation, survival, (Han et al., 2019)
FANDAR RB Upragulates— survival (Sheng et al.,, 2018)
IncUSMYoN NB Uprsgulatss— praoliferation (Liu et al.,, 2014; LiuS. etal, 2016)
NBAT-1 NB Downregulates —proliferation, invasion. (Pandey et al,, 2014)
Regulates cell fate/differentiation
CASC15-3 NB Downregulates —praliferation, migration. (Russell et al., 2015)
LINCO0473 WT Upragulates— proliferation, sunvval (Zhu et al., 2018b)
CRNDE HB Upregulatss— praliferation, angiogenesis. (Dong et al,, 2017)
LINCO1314 HB Downregulates —praliferation, migration. (Lvetal, 2018)
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expression and a decrease in cell proliferation and invasion
were observed when MEG3 was overexpressed (Shi et al., 2018).
Furthermore, MEG3 was found to be downregulated by another
IncRNA, EWSAT1, which had previously been shown to enhance
cell proliferation and metastasis in both osteosarcoma and Ewing
sarcoma (Howarth et al., 2014; Sun et al., 2016).

In retinoblastoma, HOTAIR, THOR, and MEG3 appear to
have a similar influence as seen in osteosarcoma, where they also
acted as oncogenes (HOTAIR and THOR) or tumor suppressors
(MEG3) (Gao et al,, 2017; Shang, 2018; Yang G. et al,, 2018). In
the study examining HOTAIR in retinoblastoma, HOTAIR was
shown to be engaged in a reciprocal regulatory loop with miR-
613 and promoted cell proliferation and activation of the EMT,
potentially through upregulation of N-cadherin, vimentin, and
a-SMA (Yang G. et al,, 2018). Several IncRNAs have also been
found acting as oncogenic ceRNAs including XIST, DANCR,
and HOXA11-AS (Hu et al, 2018; Wang J. X. et al., 2018; Han
et al., 2019). Finally, PANDAR is upregulated in retinoblastoma
and may regulate cell proliferation and apoptosis via the Bel-2/
caspase-3 pathway (Sheng et al., 2018).

A number of studies have also suggested an important role
for IncRNAs in neurcblastoma. For example, IncUSMYcN is
an IncRNA that is frequently co-amplified alongside MYCN
(Liu P. Y. et al., 2016). Liu et al. found that in neuroblastoma,
IncUSMycN could upregulate MYCN through transcriptional
activation of NCYM (a.k.a. MYCNOS), which codes for a protein
that stabilizes MYCN (Suenaga et al., 2014). NCYM RNA has also
been suggested to bind to the RNA -binding protein NonO, which
is also known to upregulate MYCN expression (Liu et al., 2014;
Liu P. Y. et al,, 2016). Neuroblastoma associated transcript-1
(NBAT-1) is an epigenetic regulator that interacts with EZH2,
and functions as a tumor suppressor due to its important role in
neuronal differentiation (Pandey et al., 2014). Loss of NBAT-1
expression was found to increase cell proliferation and invasion
(Pandey et al., 2014). Finally, an isoform of IncRNA CASC15,
CASC15-5, was also implicated as a key element in neuronal
differentiation, and low expression was associated with a poor
outcome in patients (Russell et al.,, 2015).

[n Wilms tumor, a study by Zhu et al. identified LINC00473
as an oncogenic IncRNA that is upregulated in unfavorable
tumors (Zhu et al., 2018b). LINC00473 was shown to promote
tumor growth and metastasis by acting as a ceRNA for the tumor
suppressor miR-195 (Zhu et al., 2018b).

A study by Dong et al. identified 1757 upregulated and
979 downregulated IncRNAs comparing hepatoblastoma and
normal tissues, suggesting that IncRNAs play a key role in this
disease as well (Dong et al., 2014). The IncRNAs Colorectal
Neoplasia Differentially Expressed (CRNDE) and LINC01314
have been investigated in more detail in hepatoblastoma
(Dong et al., 2017; Lv et al., 2018). CRNDE is known to be
frequently upregulated in hepatoblastoma, and knockdown
of CRNDE activated the mTOR pathway and inhibited tumor
growth and angiogenesis with a corresponding decrease in
VEGFA and Ang-2 levels (Dong et al., 2017). LINC01314 was
identified as a tumor suppressor, reducing proliferation and
migration via downregulation of cell cycle proteins MCM7
and cyclin D1 (Lv et al., 2018).

CONCLUDING REMARKS

It is now clear that both miRNAs and IncRNAs form integral
parts of the biological networks known to be impaired in
pediatric solid tumors. miRNAs such as let-7 and mir-34 are key
regulators of many pediatric oncogenes including MYC, MYCN,
RAS, and MET (Johnson et al., 2005; Wei et al., 2008; Buechner
et al, 2011; Yan et al,, 2012). Additionally, ncRNAs such as the
miR-17~92 cluster, mir-9, and Malat! also serve as downstream
effectors of MYC and MYCN (Schulte et al., 2008; Ma et al., 2010;
Tee et al., 2014). Many more ncRNAs participate in these and
other pathways to form a highly complex regulatory network
essential for maintaining an optimal cell state (See Tables 1
and 2). ncRNA dysregulation offers an alternative mechanism
to genetic mutations and DNA methylation whereby cell
development and differentiation can be disturbed. Despite the
relatively rare occurrence of mutations in pediatric solid tumors,
copy number variations are common and often occur at regions
of the genome that harbor ncRNAs with tumor-suppressive
roles (Wei et al., 2008; Powers et al., 2016). Gene expression is
often imprecise; however, miRNAs provide a layer of robustness,
which helps ensure that biological networks respond appropriately
to signals and remain functional despite an ever-increasing cellular
disorder (Ebert and Sharp, 2012). IncRNAs, too, play a vital
role in maintaining order by forming RNA-protein complexes
and serving as ceRNA antagonists against miRNA-mediated
repression, although much more work is needed in this field
to fully comprehend their range of biological roles. Functional
studies have revealed that dysregulation of ncRNAs is capable of
driving progenitor cells towards oncogenesis. For example, this has
been shown in retinoblastoma, where overexpression of the mir-
17~92 cluster could drive tumor formation in RB/p107-deficient
mice (Conkrite et al., 2011).

While genome-wide association studies have revealed that
miRNA processing is frequently disrupted in Wilms tumor,
this has not been shown to the same extent in other pediatric
solid tumors. However, genetic mutations of protein-coding
genes are only one way in which disruptions of miRNA
processing can be revealed. Most miRNA studies ignore the
fact that a high proportion of expressed miRNAs are isoforms
(isomiRs). isomiRs originating from the same miRNA gene can
possess a great deal of functional variability, with differences in
target acquisition or turnover rate that can have a significant
impact on overall gene regulation. Studies focusing on isomiR
expression will provide an additional layer of resolution to our
understanding of miRNA dysregulation.

Recent developments in single-cell technology have revealed
heterogeneity in gene expression profiles among individual
cells in many cancers such as glioblastoma and neuroblastoma
(Patel et al, 2014; Boeva et al, 2017). Such studies suggest
that many tumors comprise different cellular subtypes with
unique phenotypes such as growth rate, drug resistance, and
metastatic potential, which demand a new way of approaching
cancer treatments. miRNA expression in pediatric solid tumors
may also be heterogenous; however, limitations in single-cell
technologies have left this avenue relatively unexplored, and
further developments are needed.
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So far, ncRNA research has played a key role in advancing
our understanding of the mechanisms behind pediatric
solid tumor development. Evidence supports an active role
for ncRNAs in cancer that extends beyond mere passengers.
However, continued research is needed to fully comprehend
the molecular events leading to the development of cancer
and unlock new possibilities for drug targets and biomarkers,
which will ultimately lead to a better outcome for patients
afflicted by these diseases.
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Appendix B — Statistical Values and Read Counts for IsomiR-Target Pairs

KS Mean Prop. Delta Mean
miRNA Category Statistic P.Value Signif. | of Total Mean Read
Reads Count
miR-92a-3p | Total 0.0981 0.0219 * 0.7633 -0.057 19364.37
Canonical 0.1334 0.000473 | *** 0.0173 -0.0841 | 453.3158
5" Variant 0.121 0.00209 *x 0.6986 -0.0436 | 17701.95
3" Templated 0.1455 9.77E-05 | *** 0.183 -0.0709 | 4596.263
3" Non-templated (A) | 0.2106 1.86E-09 | *** 0.4637 0.1122 | 11748.74
3" Non-templated (U) | 0.1644 6.24E-06 | *** 0.1592 0.057 4107.526
Substitutions 0.0864 0.0601 0.0509 -0.0333 | 1292.053
miR-146b-5p | Total 0.0367 0.984 0.04 0.0016 | 1046.474
Canonical 0.1071 0.0555 0.0059 -0.0293 | 158.1579
5" Variant 0.1846 4.70E-05 | *** 0.0023 -0.0747 | 61
3" Templated 0.0398 0.965 0.0285 0.0102 | 744.1579
3" Non-templated (A) | 0.0561 0.708 0.0026 -0.0073 | 68.7895
3" Non-templated (U) | 0.0892 0.167 0.0009 -0.0501 | 24.8947
Substitutions 0.1203 0.0217 * 0.0044 -0.0431 | 112.6316
miR-10a-5p | Total 0.0839 0.335 0.0303 0.0108 | 765.1579
Canonical 0.0839 0.336 0.0023 -0.0419 | 61.2105
5" Variant 0.0766 0.447 0.0116 -0.0101 | 294.6842
3’ Templated 0.0734 0.503 0.0233 0.027 576.8421
3" Non-templated (A) | 0.0548 0.842 0.0019 -0.0077 | 50.0526
3" Non-templated (U) | 0.1789 0.000606 | ** 0.0001 -0.085 | 2.8421
Substitutions 0.1294 0.0289 * 0.0043 -0.0544 | 109.6316
miR-191-5p | Total 0.1074 0.367 0.0232 0.0116 | 576.1579
Canonical 0.1275 0.185 0.0036 0.017 87.7368
5" Variant 0.1687 0.031 * 0.0018 -0.0493 | 43.3158
3" Templated 0.0684 0.883 0.0174 0.0051 | 436.5789
3" Non-templated (A) | 0.0785 0.758 0.0026 -0.0246 | 67.8947
3" Non-templated (U) | 0.1034 0.414 0.0003 -0.0445 | 9.3158
Substitutions 0.1707 0.028 * 0.0033 -0.0634 | 82.0526
miR-423-5p | Total 0.0445 0.61 0.0174 0.0088 | 440.8421
Canonical 0.0791 0.0519 0.0097 0.0295 | 249.2105
5" Variant 0.0778 0.0588 0.0005 0.0353 | 12.3684
3" Templated 0.0834 0.0345 * 0.006 -0.0302 | 146.5263
3" Non-templated (A) | 0.1231 0.000289 | *** 0.0005 -0.0607 | 11.7895
3" Non-templated (U) | 0.1689 1.19E-07 | *** 0.0002 -0.0982 | 4.2632
Substitutions 0.077 0.063 0.0021 0.0219 | 53.5789
miR-182-5p | Total 0.0806 0.0135 * 0.0132 0.0396 | 317.8947
Canonical 0.0698 0.0472 * 0.002 0.0311 | 49.2632
5" Variant 0.1182 4.23E-05 | *** 0.0018 0.0505 | 45.1053
3" Templated 0.0693 0.0496 * 0.0106 0.0231 | 252.3158
3" Non-templated (A) | 0.0626 0.0975 0.0003 -0.026 | 5.5789
3" Non-templated (U) | 0.0269 0.944 0.0001 -0.0056 | 2.9474
Substitutions 0.0746 0.0277 * 0.0015 0.0323 | 35.2632
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Table Appendix B1. Statistical Values and Read Counts for IsomiR-Target Pairs in K562 cells. Two sets
of correlation values were determined, comparing expression of each isomiR category against either
the miRNAs canonical targets, or non-targets (control). Distributions of correlation values were
compared with the two-sided Kolmogorov-Smirnov test to identify pairs with a significant difference.
Signif: Significance represented as asterisks - *: 0.005 < p.value < 0.05, **: 0.0005 < p.value < 0.005,
**%. p.value < 0.0005. Mean Prop. of Total Reads: Mean proportion of total reads each category
represents across all cells. Delta Mean: Difference between the mean of correlation values for isomiR-
target gene pairs and mean of correlation values for isomiR-control gene pairs.
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KS Mean Prop. Delta Mean
miRNA Category Statistic P.Value Signif. | of Total Mean Read
Reads Count
miR-122-5p | Total 0.2187 | 6.96E-10 | *** 0.4303 | 0.0255 | 14103.45
Canonical 0.3743 0| *** 0.0023 | 0.0791 75.5161
5" Variant 0.2633 | 3.95E-14 | *** 0.0002 | -0.0783 5.7097
3" Templated 0.2122 | 2.51E-09 | *** 0.2927 | 0.0252 | 9597.645
3" Non-templated (A) 0.2593 | 1.03E-13 | *** 0.1348 | 0.0349 | 4418.581
3" Non-templated (U) 0.3885 0| *** 0.0058 | 0.0881 | 191.2258
Substitutions 0.1578 | 2.38E-05 | *** 0.0439 | 0.0102 1438
let-7i-5p Total 0.3522 Q| *** 0.0751 | 0.1179 | 3078.655
Canonical 0.4573 0 | *** 0.0001 | 0.1747 2.1034
5" Variant 0.354 0 | *** 0.0576 | 0.1186 | 2361.724
3" Templated 0.3528 Q| *** 0.0575 0.118 | 2358.552
3" Non-templated (A) 0.3468 0 | *** 0.001 0.112 39.0345
3" Non-templated (U) 0.3441 0| *** 0.0042 | 0.1109 | 171.3793
Substitutions 0.392 0 | *** 0.0142 | 0.1419 | 576.5172
let-7b-5p Total 0.1726 Q| *** 0.0578 | 0.0336 | 2227.419
Canonical 0.1372 | 5.19E-11 | *** 0.0014 | 0.0217 52.3871
5" Variant 0.1738 0 | *** 0.0433 | 0.0341 | 1678.032
3" Templated 0.1472 | 1.31E-12 | *** 0.0472 | 0.0254 | 1833.258
3" Non-templated (A) 0.2097 0| *** 0.0024 0.047 89.6774
3" Non-templated (U) 0.0629 0.0118 | * 0.0198 0.005 | 798.2903
Substitutions 0.1332 | 2.06E-10 | *** 0.0179 | 0.0275 | 712.6129
miR-34a-5p | Total 0.2874 0| *** 0.0531 | -0.1234 | 1035.083
Canonical 0.2827 0| *** 0.0012 | -0.119 23.0417
5" Variant 0.2921 0 | *** 0.0094 | -0.1262 | 182.7917
3" Templated 0.2846 0 | *** 0.0383 | -0.1223 | 747.4583
3" Non-templated (A) 0.2797 0| *** 0.0043 | -0.1197 84.625
3" Non-templated (U) 0.2873 0| *** 0.0068 | -0.1244 | 133.9583
Substitutions 0.2891 0 | *** 0.0211 | -0.1246 | 411.7083
miR-148a-3p | Total 0.1211 | 2.24E-07 | *** 0.0285 | -0.0169 | 1064.065
Canonical 0.1511 | 3.04E-11 | *** 0.01 | -0.0256 | 373.8065
5" Variant 0.0948 | 0.00011 | *** 0.0034 | -0.0276 | 122.6452
3" Templated 0.1431 | 3.94E-10 | *** 0.0075 | -0.0239 | 279.7419
3" Non-templated (A) 0.1803 | 7.77E-16 | *** 0.0009 | -0.0417 34.6774
3" Non-templated (U) 0.1379 | 1.97E-09 | *** 0.0049 | -0.0201 | 182.4839
Substitutions 0.0956 | 9.30E-05 | *** 0.0111 | -0.0114 | 411.7419
miR-206 Total 0.0361 0.476 0.0317 | -0.0055 | 620.4815
Canonical 0.034 0.555 0.0065 | -0.0027 | 126.5185
5" Variant 0.0337 0.565 0.0069 | -0.0059 | 136.4444
3" Templated 0.0349 0.52 0.0202 | -0.0067 | 397.1852
3" Non-templated (A) 0.0387 0.388 0.0007 | -0.0056 14.2222
3" Non-templated (U) 0.063 0.0264 | * 0.0007 | 0.0061 13.5185
Substitutions 0.0348 0.526 0.0077 | -0.0104 | 151.4074
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Table Appendix B2. Statistical Values and Read Counts for IsomiR-Target Pairs in Hepatocellular
Carcinoma cells. Two sets of correlation values were determined, comparing expression of each
isomiR category against either the miRNAs canonical targets, or non-targets (control). Distributions
of correlation values were compared with the two-sided Kolmogorov—Smirnov test to identify pairs
with a significant difference. Signif: Significance represented as asterisks - *: 0.005 < p.value < 0.05,
*%:0.0005 < p.value < 0.005, ***: p.value < 0.0005. Mean Prop. of Total Reads: Mean proportion of
total reads each category represents across all cells. Delta Mean: Difference between the mean of
correlation values for isomiR-target gene pairs and mean of correlation values for isomiR-control
gene pairs.
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Appendix C — Read Counts for Spliced Exon Junctions in Ago2

Sample Exon Junction Associated Reads Reads PSJ (%)
Transcript Including | Excluding
Junction | Junction

Hela Chr8:140532616-140539319 NM_001164623 12 2359 0.51
Chr8:140558573-140559419 Unannotated 0 2317 0
Chr8:140572604-140572811 Unannotated 17 632 2.62
Chr8:140572933-140635484 XM_017013317 16 784 2
Chr8:140585312-140588721 Unannotated 301 0.66
Chr8:140585312-140590593 Unannotated 303 0
Chr8:140585312-140596675 XM_011516965 294 2.97
Chr8:140585312-140605796 XM_011516966 32 271 10.56
Chr8:140585312-140633774 Unannotated 14 291 4.59
Chr8:140585312-140635484 NM_012154 226 79 74.1

HEK293 Chr8:140532616-140539319 NM_001164623 14 1827 0.76
Chr8:140558573-140559419 Unannotated 2066 0.14
Chr8:140572604-140572811 Unannotated 4 527 0.75
Chr8:140572933-140635484 XM_017013317 10 701 141
Chr8:140585312-140588721 Unannotated 250 1.57
Chr8:140585312-140590593 Unannotated 254 0
Chr8:140585312-140596675 XM_011516965 253 0.39
Chr8:140585312-140605796 XM_011516966 23 231 9.06
Chr8:140585312-140633774 Unannotated 3 251 1.18
Chr8:140585312-140635484 NM_012154 209 45 82.28

MCF7 Chr8:140532616-140539319 NM_001164623 16 2007 0.79
Chr8:140558573-140559419 Unannotated 1960 0.25
Chr8:140572604-140572811 Unannotated 6 607 0.98
Chr8:140572933-140635484 XM_017013317 13 785 1.63
Chr8:140585312-140588721 Unannotated 277 0
Chr8:140585312-140590593 Unannotated 277 0
Chr8:140585312-140596675 XM_011516965 272 1.81
Chr8:140585312-140605796 XM_011516966 41 236 14.8
Chr8:140585312-140633774 Unannotated 9 272 3.2
Chr8:140585312-140635484 NM_012154 206 76 73.05

LNCaP Chr8:140532616-140539319 NM_001164623 | 40 4647 0.85
Chr8:140558573-140559419 Unannotated 12 4467 0.27
Chr8:140572604-140572811 Unannotated 56 1376 3.91
Chr8:140572933-140635484 XM_017013317 12 1872 0.64
Chr8:140585312-140588721 Unannotated 68 764 8.17
Chr8:140585312-140590593 Unannotated 51 781 6.13
Chr8:140585312-140596675 XM_011516965 28 804 3.37
Chr8:140585312-140605796 XM_011516966 71 762 8.52
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Chr8:140585312-140633774 Unannotated 10 842 1.17
Chr8:140585312-140635484 NM_012154 510 342 59.86
PNT2 Chr8:140532616-140539319 NM_001164623 1 3862 0.03
Chr8:140558573-140559419 Unannotated 0 4572 0
Chr8:140572604-140572811 Unannotated 43 1222 34
Chr8:140572933-140635484 XM_017013317 14 2140 0.65
Chr8:140585312-140588721 Unannotated 17 861 1.94
Chr8:140585312-140590593 Unannotated 878 0
Chr8:140585312-140596675 XM_011516965 869 1.03
Chr8:140585312-140605796 XM_011516966 31 848 3.53
Chr8:140585312-140633774 Unannotated 10 878 1.13
Chr8:140585312-140635484 NM_012154 782 106 88.06
SCR4 Chr8:140532616-140539319 NM_001164623 | 46 9419 0.49
Chr8:140558573-140559419 Unannotated 22 8379 0.26
Chr8:140572604-140572811 Unannotated 41 2593 1.56
Chr8:140572933-140635484 XM_017013317 63 3500 1.77
Chr8:140585312-140588721 Unannotated 24 1342 1.76
Chr8:140585312-140590593 Unannotated 0 1366 0
Chr8:140585312-140596675 XM_011516965 22 1344 1.61
Chr8:140585312-140605796 XM_011516966 115 1252 8.41
Chr8:140585312-140633774 Unannotated 42 1355 3.01
Chr8:140585312-140635484 NM_012154 1074 326 76.71
SCC38 Chr8:140532616-140539319 NM_001164623 10 3599 0.28
Chr8:140558573-140559419 Unannotated 11 3843 0.29
Chr8:140572604-140572811 Unannotated 65 1161 5.3
Chr8:140572933-140635484 XM_017013317 19 1843 1.02
Chr8:140585312-140588721 Unannotated 4 835 0.48
Chr8:140585312-140590593 Unannotated 836 0.36
Chr8:140585312-140596675 XM_011516965 14 825 1.67
Chr8:140585312-140605796 XM_011516966 58 781 6.91
Chr8:140585312-140633774 Unannotated 27 825 3.17
Chr8:140585312-140635484 NM_012154 712 143 83.27
SKN Chr8:140532616-140539319 NM_001164623 12 5922 0.2
Chr8:140558573-140559419 Unannotated 3 6014 0.05
Chr8:140572604-140572811 Unannotated 24 1545 1.53
Chr8:140572933-140635484 XM_017013317 53 2338 2.22
Chr8:140585312-140588721 Unannotated 984 0.2
Chr8:140585312-140590593 Unannotated 986 0
Chr8:140585312-140596675 XM_011516965 980 0.61
Chr8:140585312-140605796 XM_011516966 127 859 12.88
Chr8:140585312-140633774 Unannotated 7 1017 0.68
Chr8:140585312-140635484 NM_012154 782 242 76.37
THP Chr8:140532616-140539319 NM_001164623 | 8 1552 0.51
Chr8:140558573-140559419 Unannotated 1 1665 0.06
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Chr8:140572604-140572811 Unannotated 7 392 1.75
Chr8:140572933-140635484 XM_017013317 | 11 656 1.65
Chr8:140585312-140588721 Unannotated 214 0
Chr8:140585312-140590593 Unannotated 214 0
Chr8:140585312-140596675 XM_011516965 207 3.27
Chr8:140585312-140605796 XM_011516966 | 21 193 9.81
Chr8:140585312-140633774 Unannotated 2 217 0.91
Chr8:140585312-140635484 NM_012154 171 48 78.08
Foetal Chr8:140532616-140539319 NM_001164623 |0 403 0
Brain Chr8:140558573-140559419 Unannotated 0 310 0
Chr8:140572604-140572811 Unannotated 0 76 0
Chr8:140572933-140635484 XM_017013317 |2 105 1.87
Chr8:140585312-140588721 Unannotated 0 35 0
Chr8:140585312-140590593 Unannotated 0 35 0
Chr8:140585312-140596675 XM_011516965 | 2 33 5.71
Chr8:140585312-140605796 XM_011516966 | O 35 0
Chr8:140585312-140633774 Unannotated 1 34 2.86
Chr8:140585312-140635484 NM_012154 28 7 80
Whole Chr8:140532616-140539319 NM_001164623 | 1 268 0.37
Brain Chr8:140558573-140559419 Unannotated 0 172 0
Chr8:140572604-140572811 Unannotated 0 51 0
Chr8:140572933-140635484 XM_017013317 |0 69 0
Chr8:140585312-140588721 Unannotated 0 16 0
Chr8:140585312-140590593 Unannotated 0 16 0
Chr8:140585312-140596675 XM_011516965 | 1 15 6.25
Chr8:140585312-140605796 XM_011516966 | O 16 0
Chr8:140585312-140633774 Unannotated 2 14 12.5
Chr8:140585312-140635484 NM_012154 11 5 68.75
Bone Chr8:140532616-140539319 NM_001164623 | 0 1587 0
Marrow Chr8:140558573-140559419 Unannotated 53 1199 4.23
Chr8:140572604-140572811 Unannotated 25 242 9.36
Chr8:140572933-140635484 XM_017013317 | 14 457 2.97
Chr8:140585312-140588721 Unannotated 267 0
Chr8:140585312-140590593 Unannotated 267 0
Chr8:140585312-140596675 XM_011516965 | 19 248 7.12
Chr8:140585312-140605796 XM_011516966 | 53 214 19.85
Chr8:140585312-140633774 Unannotated 0 290 0
Chr8:140585312-140635484 NM_012154 181 109 62.41
Heart Chr8:140532616-140539319 NM_001164623 | 22 2590 0.84
Chr8:140558573-140559419 Unannotated 0 2178 0
Chr8:140572604-140572811 Unannotated 16 485 3.19
Chr8:140572933-140635484 XM_017013317 |1 840 0.12
Chr8:140585312-140588721 Unannotated 249 0.8
Chr8:140585312-140590593 Unannotated 0 251 0
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Chr8:140585312-140596675 XM_011516965 248 1.2
Chr8:140585312-140605796 XM_011516966 245 2.39
Chr8:140585312-140633774 Unannotated 244 2.79
Chr8:140585312-140635484 NM_012154 232 19 92.43
Kidney Chr8:140532616-140539319 NM_001164623 4 734 0.54
Chr8:140558573-140559419 Unannotated 695 0.14
Chr8:140572604-140572811 Unannotated 2 196 1.01
Chr8:140572933-140635484 XM_017013317 15 245 5.77
Chr8:140585312-140588721 Unannotated 2 92 2.13
Chr8:140585312-140590593 Unannotated 0 94 0
Chr8:140585312-140596675 XM_011516965 0 94 0
Chr8:140585312-140605796 XM_011516966 5 89 5.32
Chr8:140585312-140633774 Unannotated 0 94 0
Chr8:140585312-140635484 NM_012154 72 22 76.6
Skeletal Chr8:140532616-140539319 NM_001164623 8 2222 0.36
Muscle Chr8:140558573-140559419 Unannotated 7 2099 0.33
Chr8:140572604-140572811 Unannotated 48 544 8.11
Chr8:140572933-140635484 XM_017013317 5 873 0.57
Chr8:140585312-140588721 Unannotated 0 258 0
Chr8:140585312-140590593 Unannotated 0 258 0
Chr8:140585312-140596675 XM_011516965 0 258 0
Chr8:140585312-140605796 XM_011516966 0 258 0
Chr8:140585312-140633774 Unannotated 2 256 0.78
Chr8:140585312-140635484 NM_012154 251 7 97.29
Testes Chr8:140532616-140539319 NM_001164623 0 369 0
Chr8:140558573-140559419 Unannotated 0 239 0
Chr8:140572604-140572811 Unannotated 0 10 0
Chr8:140572933-140635484 XM_017013317 0 48 0
Chr8:140585312-140588721 Unannotated 0 12 0
Chr8:140585312-140590593 Unannotated 0 12 0
Chr8:140585312-140596675 XM_011516965 0 12 0
Chr8:140585312-140605796 XM_011516966 1 11 8.33
Chr8:140585312-140633774 Unannotated 1 11 8.33
Chr8:140585312-140635484 NM_012154 10 2 83.33

Table Appendix C. Read Counts and Percent Spliced with Junction (PSJ) values for Spliced Exon

Junctions in Ago2. Includes 16 tissues and cell lines, with all junctions unique to annotated
transcripts and the top 5 unannotated junctions by mean read count across samples.
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Appendix D — Western Blots for the Immunoprecipitation of Ago2

Isoforms
FLAG Control FLAG Control FLAG Control
In sup IP sup P In sup IP sup IP In sup IP suUp IP
FLAG — . -
FLAG-AgoZ iso 1 FLAG-Ago? iso 2 FLAG-AgoZ iso 3

Figure Appendix D. Western blots confirm enrichment of FLAG antibodies in FLAG
immunoprecipitate compared to control for all three Ago2 isoforms. Equal concentrations of protein
were used across FLAG and control supernatant and IP samples. Mouse IgG antibody was used as a
control. RNA isolated from immunoprecipitates were subsequently used for small RNA sequencing.
In: Input (cell lysate). sup: supernatant of immunoprecipitated lysate. IP: Immunoprecipitated
sample targeted for enrichment of antibody epitope. Iso: isoform.
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