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Abstract 

miRNAs are highly abundant small non-coding RNAs that are essential for post-transcriptional gene 

regulation. Many of the mechanisms which regulate miRNA expression and function are poorly 

understood. Their dysregulation is documented extensively in many diseases including cancer.  

Glioblastoma is a highly aggressive and heterogeneous brain cancer that affects patients of all ages. 

Intra-tumoural heterogeneity describes the existence of genomically distinct subpopulations of 

tumour cells which can lead to differences in growth rate, metastatic potential, or vulnerability to 

certain treatments. The first part of my thesis investigates how miRNAs and miRNA variants (isomiRs) 

may be involved in intra-tumoural heterogeneity by applying bioinformatics analyses to single cell 

small RNA and RNA sequencing data generated from previous studies. This work identified two miRNA 

clusters, the Dlk1-Dio3 locus and miR-224/452, as potential contributors to intra-tumour 

heterogeneity in glioblastoma and may be involved in cell state regulation. Additionally, we found 

evidence of cell autonomous regulation and function of isomiRs, highlighting another regulatory 

mechanism that may play a role in heterogenous cancers. These miRNAs may have utility as cancer 

biomarkers and implicate a novel set of targets for therapeutic research.  

The second part of my thesis investigates splice variants (isoforms) of Argonaute, an essential protein 

in the miRNA pathway that mediates their regulatory effects. Numerous Argonaute isoforms have 

been previously annotated, with alterations in protein domains critical for miRNA binding and 

function. However, current studies base their assumptions of miRNA activity through a single variant 

of Argonaute and the consequence of these alterations and their biological relevance has not been 

investigated yet. We identified two variants of Argonaute with altered miRNA binding characteristics 

that are variably expressed in normal and cancerous cells, revealing a novel form of miRNA regulation 

that could also have implications in cancer research. 
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1. Literature review 

1.1. miRNA biogenesis 

1.1.1. miRNA biogenesis via the canonical pathway 

For most miRNAs, their life cycle begins with transcription from DNA into a primary miRNA (pri-miRNA) 

by RNA polymerase II (Figure 1.1)1. Pri-miRNAs share several similarities to messenger RNAs (mRNAs) 

in that they are 5´ capped, 3´ polyadenylated, and can be several hundreds or thousands of nucleotides 

long. In many cases, the pri-miRNA encodes for one miRNA species, however in humans a substantial 

number are polycistronic and encode several different miRNAs. Pri-miRNAs must first be processed in 

the nucleus by the Microprocessor, a trimeric complex formed by the RNAse III enzyme Drosha and 

two DiGeorge Syndrome Critical Region 8 (DGCR8) molecules2. Pri-miRNAs contain imperfect stem-

loop secondary structures which are recognized by DGCR8’s double stranded binding domains. DGCR8 

facilitates the anchoring of Drosha to the stem-loop structure, and Drosha then acts as a molecular 

ruler which cleaves the pri-miRNA around 11-13 nucleotides above the base of the stem. This releases 

a shorter 65-70 nt precursor RNA (pre-miRNA) with a 2 nucleotide overhang on the 3′ end3–5. Sequence 

motifs at the base (UG and CNNC) and loop (UGU) structures are recognized by Drosha and DGRC8 

respectively, aiding in the correct orientation and processing by the Microprocessor complex2,6. 

Translocation of the pre-miRNA from the nucleus to the cytoplasm is mediated by the transporter 

protein Exportin-5 (XPO5). XPO5 recognition and subsequent export of the double-stranded pre-

miRNA is dependent on Ran-GTP7.  

In the cytoplasm the pre-miRNA is further processed by Dicer, another enzyme harbouring RNAse III 

domains, which specifically recognises both the pre-miRNA’s loop structure and 2 nucleotide 

overhang8. Dicer acts as a second molecular ruler, cleaving approximately 21-25 nucleotides upstream 

from the base of the stem, which removes the loop structure to produce a double stranded miRNA 

duplex. This duplex contains two RNA strands named the 5 prime (5p) and 3 prime (3p) miRNA strands, 

based on which end of the precursor they originate from. Dicer is known to associate with other 

cofactors which can influence pre-miRNA processing. This includes proteins such as the double 

stranded RNA binding proteins TRBP and PACT, which have been shown to increase the precision of 

Dicer cleaving and alter the sequence of some of its products, as well Argonaute 2 (Ago2) which 

participates in the processing of certain pre-miRNAs.9–11.  

After Dicer processing, the double stranded miRNA duplex is incorporated into an Argonaute protein, 

which retains one of the strands to become the biologically active mature miRNA (guide strand) and 

ejects the other strand (passenger strand) for subsequent degradation12. This double stranded 
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complex is called the pre-RNA induced silencing complex (pre-RISC). Strand selection is determined by 

base pairing at the ends of the miRNA duplex, which influence which side of the duplex is less 

thermodynamically stable. This destabilization leads to the preferential loading of the strand with their 

5′ end exposed at this side. 

The process of duplex loading and strand displacement requires coordination between several 

proteins and involves multiple functional domains on Argonaute13. During duplex loading, the ATP-

dependent chaperone proteins Hsc70/Hsp90 are recruited to open up  binding pockets in Argonaute 

and enable the large miRNA duplex to be anchored into the protein14. The duplex is then ‘wedged’ 

open at the 3′ end of the guide strand, leading to ejection of the passenger strand from the complex15. 

The final product is a complex with the mature miRNA and Argonaute, commonly referred to as the 

functional or mature RNA-induced silencing complex (mature RISC), which is the minimal component 

for post-transcriptional miRNA-mediated gene regulation13. 

1.1.2. Non-canonical pathways for miRNA biogenesis 

Besides the canonical miRNA pathway, several other pathways of miRNA biogenesis exist which do 

not involve Drosha and/or Dicer. There are several Drosha-independent pathways that could produce 

miRNAs and miRNA-like RNAs such as mirtrons, snoRNA and tRNA-derived miRNAs16,17. Mirtrons are 

miRNAs originating from the introns of messenger or non-coding RNAs, produced during splicing16. 

Although spliced introns are typically released as lariats, mirtrons can be linearised by the lariat 

debranching enzyme, enabling them to adopt a pre-miRNA structure for recognition by XPO5 and 

subsequent processing by Dicer in the cytoplasm. Mirtrons can either span the entire length of the 

intron or be associated with the 5´ or 3´ ends, the latter recruiting additional factors to trim the mirtron 

to the appropriate length16. snoRNAs such as the small Cajal body-specific RNA ACA45 and the atypical 

box C/D snoRNA U3 have been shown to be processed into small RNAs that associate with Argonaute 

following Dicer processing, with some evidence supporting their participation in miRNA-mediated 

regulation18,19. Likewise, the tRNA-derived small RNA CU1276 was also reported to be processed by 

Dicer into a functional miRNA that is loaded into Argonaute17. 

The miRNA miR-451 is unique in that it is the only known miRNA to be Dicer-independent, as its 

precursor can be directly processed by Ago2 through its catalytically active domain. This property 

enables miR-451 to retain a high level of expression during erythropoiesis, as the canonical miRNA 

pathway is dampened via Dicer suppression20,21. 
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1.1.3. Alternative splicing regulates the function of miRNA biogenesis proteins 

Alternative splicing enables functional diversification of protein-coding genes by altering the coding 

sequences or untranslated regions of messenger RNAs22,23. Studies have shown that miRNA biogenesis 

proteins frequently undergo alternative splicing, in some cases impacting small RNA processing and 

leading to changes in post-transcriptional gene regulation24–27.  

For example, alternative splicing can affect the subcellular localization of Drosha by changing the 

coding sequence of the N-terminal domain, with some isoforms localizing to the cytoplasm24,28. A later 

study demonstrated that pri-miR-34a is transported to the cytoplasm of quiescent human foreskin 

fibroblasts by Exportin-1 and are subsequently processed by cytoplasmic-localized Drosha isoforms29. 

This highlighted the existence of an alternative miRNA biogenesis pathway which remains active 

during quiescence while the canonical pathway is suppressed. 

In humans, a large number of alternatively spliced isoforms of Dicer have been identified with some 

variants expressed in specific tissues26,30,31. For example, two variants of Dicer were identified in 

multiple human breast cancer cell lines, with one variant harbouring a reduced propensity for 

translation due to the skipping of two exons32. Later studies, also with breast cancer cell lines, found 

differential expression of dicer variants in cells with a mesenchymal phenotype compared to those 

with an epithelial phenotype, suggesting the alternative splicing of Dicer may function within the 

epithelial-mesenchymal transition (EMT)33. Dicer isoforms may also have functional significance in 

cancer. A truncated Dicer lacking a double stranded binding domain was found to be expressed in 

neuroblastoma cells but was not identified in any normal tissues26. Additionally, another truncated 

Dicer isoform was highly expressed in oral cancer cells and was downregulated during EMT31. 

Furthermore, in mice, functional diversification of Dicer isoforms was demonstrated in oocytes where 

the miRNA pathway is normally suppressed. An isoform of Dicer which lacks its N-terminal DExD 

helicase domain, was dominantly expressed27. This isoform, in contrast to its full-length form, was far 

more efficient in processing long double stranded RNAs into small interfering RNAs.  

Finally, a longer variant of Ago1, named Ago1x, was discovered in multiple human breast cancer cell 

lines which could bind miRNAs in a similar manner to the canonical Ago1, but could not participate in 

miRNA-mediated gene regulation due to a loss of interaction with GW18234,35. 

1.1.4. miRNAs often form clusters 

In humans, approximately one quarter of annotated miRNAs (481 of 1917 in miRBase) exist in clusters 

containing multiple miRNA genes36. The majority of miRNA clusters contain less than 5 miRNAs; 

however the human genome contains much larger clusters such as the 14q32 and C19MC miRNA 

clusters which host approximately 53 and 46 pre-miRNA genes respectively37,38. Clustered miRNAs are 
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co-transcribed and are typically under the same regulatory control through shared promoters and 

epigenetic regulatory factors. miRNA clusters are highly conserved across species and have 

established roles in cell and tissue development, immune response, and regulation of the nervous 

system39,40. It is believed that miRNA clusters formed from genetic events including gene duplications 

and base mutations, and evolved to facilitate the coordination of critical biological pathways, as 

miRNAs acting in tandem can target an extremely large but selective pool of genes41. 

One of the most well studied miRNA clusters is the miR-17/92 cluster (previously named C13orf25), 

located on chromosome 13 within the MIR17HG gene. This cluster contains 6 different miRNAs – miR-

17, miR-18a, miR-19a, miR-20a, miR-19b-1 and miR-92a-1, which are initially co-expressed as a single 

transcript approximately 800 nt long before being processing into individual pre-miRNAs. The miR-

17/92 cluster is regulated by many transcription factors which bind to the MIR17HG, such as MYC and 

the E2F family, which can induce miR-17/92 expression, as well as p53 which blocks transcription. 

Many of the transcription factors that are responsible for regulating the miR-17/92 cluster are in turn 

regulated by these same miRNAs, forming autoregulatory feedback loops which help prevent 

uncontrolled expression levels42.  

Ostensibly, the largest miRNA cluster is found in the chromosomal region of 14q32 within a region 

often referred to as the Dlk1-Dio3 locus37. With the exception of one, all miRNAs from this region are 

believed to be transcribed as part of a large polycistronic transcript approximately 200kb long43. Unlike 

the miR-17/92 cluster, this polycistronic transcript also contains non-coding RNAs other than miRNAs, 

including at least 3 long non-coding RNAs, MEG3, MEG8 and MEG9, as well as the small nucleolar RNA 

SNORD112, 9 paralogous copies of SNORD113 and 31 copies of SNORD11444.  
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Figure 1.1. Pathways of miRNA biogenesis. miRNAs can originate from different biogenesis pathways. 
Two pathways, the canonical pathway and mirtron pathway are shown above. Canonical Pathway (1) – 
miRNAs are first transcribed as pri-miRNAs by RNA Pol II, which contains stem-loop structures 
recognizable by Drosha/DGCR8. Drosha/DGCR8 cleaves and liberates the stem-loop structure, which is 
then exported out of the nucleus and further processed by Dicer to produce a miRNA duplex. This 
duplex is then loaded into an Argonaute, which removes one strand and retains the other for 
translational repression. Mirtron Pathway (2) – precursor miRNAs are spliced out from the introns of 
mRNAs, which then re-join the canonical pathway after export into the cytoplasm. Pri-miRNAs: Primary 
microRNAs. DGCR8: DiGeorge Syndrome Critical Region 8. Figure from Smith et al, Honours, 
unpublished.  
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1.2. IsomiRs: a hidden layer of gene regulation 

In eukaryotes, genes can be alternatively spliced to produce many isoforms with distinct biological 

functions or regulatory features45. In a similar manner, most miRNAs are expressed as different 

isoforms (referred to as isomiRs)46. IsomiRs can vary from their canonical sequences in at least four 

different ways (Figure 1.2). Firstly, 5´ or 3´ trimming variations can occur from imprecise processing 

by Drosha and Dicer. Variations caused by alternative trimming sites produce templated isomiRs, as 

the resulting sequence still matches the genomic sequence of the miRNA gene. IsomiRs can also result 

from untemplated modifications which are produced either by nucleotide additions at the 3´ end 

(tailing) of the mature or precursor miRNA or by nucleotide substitutions47. While most miRNA studies 

do not investigate isomiRs, an increasing number of studies have shown that these minor changes in 

sequence can lead to important changes in processing, function, or stability, and constitute an 

additional layer of gene regulation in the miRNA pathway48. 

1.2.1. Uridylation regulates the processing of several pre-miRNAs 

Most pri-miRNAs are processed by Drosha into pre-miRNAs with a 2 nucleotide overhang on the 3´ 

end which enables efficient processing by Dicer49,50. However, several pre-miRNAs from the let-7 

family of miRNAs and miR-105 are processed with 1 nucleotide 3´ overhangs and require extension 

via monouridylation in order to be processed efficiently into a miRNA duplex51,52. As the site of 

monouridylation is the 3´ end of the duplexes 3p strand, any 3p miRNAs which are not degraded will 

possess a 3´ non-templated uridine. Conversely polyuridylation can block pre-miRNA processing, 

which has been shown in cells expressing the Lin28A oncogene53. Lin28A recognizes a tetranucleotide 

sequence motif present in the terminal loop of certain precursors including let-7, miR-107, miR-143 

and miR-200c, and recruits the terminal ribonucleotidyl transferase TUT4 (aka ZCCHC11) to add a poly-

U tail to the 3´ end of the precursor to prevent Dicer from cleaving it.  

1.2.2. IsomiRs with distinct regulatory functions 

There are several examples where isomiRs expressed from the same miRNA gene have been described 

with distinct regulatory effects. The addition of nucleotides to the 3´ ends of mature miRNAs has been 

shown to impair target repression54. In 2009, Jones et al identified TUT4 as a key factor in miR-26 

uridylation and found that uridylation decreased miR-26 mediated repression of one of its targets, 

interleukin-654. Trimming variations in the 5´ end have also been linked to changes in target gene 

regulation55. Whilst 5´ variations are relatively rare compared to 3´ variations, the effect on target 

regulation is generally much more pronounced due to a shift in the miRNAs seed sequence, which has 

the potential to create an entirely new target pool. This effect was demonstrated in a study by Tan et 
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al who found that a 5´ variant of miR-9-1 gained the ability to downregulate two new targets, DNMT3B 

and NCAM2, compared to its canonical form, and also lost the ability to downregulate CDH155.  

1.2.3. miRNA stability and turnover is regulated by 3´ tailing 

By far the most common 3´ nucleotide additions to mature miRNAs involve Uridines and Adenosines, 

although limited evidence suggests Cytosines and Guanines may also be added after maturation 47,48,56. 

Like pre-miRNAs, nucleotide additions are mediated by terminal ribonucleotidyl transferases such as 

TUT4, but also include other enzymes such as TUT2 (aka Gld2) and TUT7 (aka ZCCHC6)56,57. The TUTs 

vary in their preference for adding Adenosines or Uridines, with TUT2 preferring Adenosine as a 

substrate, and TUT4 and TUT7 preferring Uridine.  

The regulatory consequences of nucleotide additions have been investigated in several studies, 

however our understanding remains limited and some of the studies have presented contradicting 

results. Most studies investigating uridylation in mature miRNAs support the idea that uridylation 

destabilizes miRNAs by serving as a marker for exonucleases such as DIS3L2. In an early study by 

Baccarini et al, they utilized an inducible pri-miR-223 vector in a cell line that does not express miR-

223 in order to control miR-223 expression levels58. By inducing and then blocking expression of miR-

223, they were able to track the miRNA during its decay. Small RNA sequencing revealed a decrease 

in overall miR-223 expression over time but a steady increase in the proportion of uridylated miR-223, 

which suggested uridylation played a role in miRNA turnover. Uridylation was also linked to a process 

called target directed miRNA degradation (TDMD), where high expression of a miRNA target can 

facilitate the degradation of the miRNA itself59,60. TDMD has been shown to have a greater effect on 

miRNA-target pairs with a high degree of complementarity61. It is believed that this high 

complementarity may partially release miRNAs from the RISC, exposing them to TUTs and 

exoribonucleases that lead to their degradation61. Adenylation has also been linked to TDMD and may 

occur under similar circumstances60,62. However, it has been suggested that most miRNA target sites 

do not possess the high degree of complementarity necessary to induce TDMD, and there are likely to 

be other mechanisms which contribute to nucleotide additions and effect miRNA function and 

stability60. 
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Figure 1.2. miRNAs are commonly expressed as various isoforms called isomiRs. Variants can have 
altered nucleotide sequences at the start (5´ variants), middle (substitution), or end of the sequence 
which are often distinguished by variants which match their precursor sequence (3´ templated) or not 
(3´ non-templated).
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1.3. Argonaute is essential for miRNA-mediated translation repression 

Mature miRNAs must form RNA-induced silencing complexes (RISCs) with one of the Argonaute 

proteins to participate in gene regulation63. Argonaute mediates the post-transcriptional regulatory 

activity of the complex by directly cleaving targets perfectly complementary to the miRNA (slicing), 

recruiting additional co-factors to facilitate degradation of transcripts, or interfering with their 

translation. The miRNA serves as a guide that directs the RISC to its gene targets via complementary 

base pairing to regions typically found in the 3´-untranslated region (3´UTR) of mRNAs. In humans this 

pairing is characteristically imperfect, which prevents direct cleaving of target mRNAs64. Therefore, 

alternative mechanisms such as translational inhibition and deadenylation are considered the primary 

means of target regulation64. The most important part of the miRNA which determines target 

recognition are the first 2-8 nucleotides from the 5´ end, named the seed sequence65. Although other 

parts of the miRNA are also known to influence miRNA-target pairing, many studies have shown that 

seed pairing is often sufficient65. The disparity between contributions of each part of the miRNA are a 

consequence of how they are bound to the Argonaute, as some parts of the miRNA are not exposed 

to the cytoplasm in a manner where they can contribute to base pairing with other RNAs66. 

In humans, there are four genes which encode Argonautes capable of binding miRNAs (AGO1, AGO2, 

AGO3 and AGO4) and inducing translational repression67. Argonaute 2 (Ago2), encoded by the gene 

AGO2, can directly cleave transcripts when loaded miRNAs are perfectly complementary to their 

targets68. Most of the functions for the four Argonaute proteins are believed to be redundant, which 

has been supported by studies utilizing knock-down experiments showing Argonautes typically 

compensate for each other69. One well known exception to this is during embryonic development, 

where Ago2’s slicer activity is indispensable and knock-down leads to early developmental arrest70. 

More recently, studies have highlighted that Ago3 may also possess slicer activity but only when 

shorter (14nt) guide miRNAs are loaded71. 

1.3.1. Functional domains of Argonaute 

All Argonautes have at least four highly conserved functional domains in common, named the 

PIWI/Argonaute/Zwille (PAZ) domain, P-element-induced whimpy tested (PIWI) domain, MID domain, 

and N-terminal domain (Figure 1.3)67. The PAZ, MID and PIWI domains all play a role in binding the 

miRNA. The MID and PIWI domains form a binding pocket with a metal-binding site, which anchors 

the phosphorylated 5′ end of the guide strand during miRNA loading. Additionally, the PAZ domain 

binds the 3′ end and is capable of recognizing the 3′ overhangs of miRNA duplexes72. The N-terminal 

domain also plays a key role during miRNA loadings as it is critical for wedging the duplex to separate 

the guide and passenger strands. As mentioned previously, the PIWI domain contains the catalytic 
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domain responsible for the slicer activity of Ago2 and Ago371. The PIWI domain’s catalytic motif, 

harbouring a scissile phosphate, sits between the tenth and eleventh nucleotides of the miRNA and 

cleaves the bases of perfectly complementary target RNAs bound at this location73. 
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Figure 1.3. Argonaute consists of four primary functional domains – the N-terminal (N), PAZ, MID and 
PIWI domains. After RISC formation, the miRNA’s 5′ phosphate is anchored in a pocket between the 
MID and PIWI domains while the 3′ end is bound to the PAZ domain. Numbers (top) show the positions 
of the start and end nucleotides for each domain. 
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1.3.2. Mechanisms of translational repression by the RISC 

In mammals, RISCs are known to regulate gene expression through several distinct mechanisms such 

as the direct cleaving of transcripts, inhibiting translation, or transcript destabilization, which often 

operate in parallel (Figure 1.4A-C)74. Of these mechanisms, cleaving (Figure 1.4A) or translational 

inhibition (Figure 1.4B) is more rapid, although transcript destabilization (Figure 1.4C) is considered to 

have the largest influence on repression in animals75. The GW182 protein is a key adapter that binds 

to Argonaute and is crucial in both translational inhibition and transcript destabilization76. GW182 

binds to Argonaute through its glycine-tryptophan (GW) repeat domain, and is recognized by 

tryptophan-binding pockets in Argonaute’s PIWI domain77. 

Translational inhibition involves inhibition of the Cap-Binding complex eIF4F (Figure 1.4B) or 

displacement of Poly A Binding Protein (PABP)74,78. eIF4F is a complex comprised of eIF4E, eIF4G, and 

eIF4A, and is required for translation initiation. The RISC can interfere with translation initiation by 

preventing eIF4E from binding to the 7-methyl guanosine cap of mRNAs. During PABP displacement, 

GW182 interferes with PABP by binding to eIF4G and disrupting the loop structure formed during 

translation74,78. Furthermore, in Drosophila, GW182 was shown to interfere with eIF4A’s association 

with the 5´ m7G-cap on mRNAs, a requirement for translation initiation79. 

Like translational inhibition, destabilization of mRNAs also occurs via several mechanisms (Figure 

1.4C). In addition to PABP, GW182 can also recruit two complexes – CCR4-NOT and PAN2-PAN3 – 

which are involved in a process called deadenylation80. During deadenylation, the poly(A) tail of the 

targeted mRNA is gradually removed, leading to dissociation of PABP, de-capping and finally 

degradation of the target RNA. 
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Figure 1.4. Multiple mechanisms facilitate post-transcriptional gene regulation with the RISC. A. 
Cleavage-competent Argonautes, such as Ago2, can directly cleave mRNA targets that are perfectly 
complementary to the miRNA. B. Translational inhibition depends on GW182, which can inhibit 
translational initiation. C. Destabilisation of mRNA targets through deadenylation is facilitated by 
GW182 and the CCR4-NOT complex. 
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1.4. miRNA dysregulation is a general feature in many cancers 

Not long after the first human miRNA, let-7, was discovered in 2002 by the Ruvkun lab, miRNAs began 

to emerge as key participants in tumourigenesis81. In 2002, two miRNAs were identified as potential 

tumour suppressors due to their frequent down-regulation or deletion in chronic lymphocytic 

leukemia82. Calin et al later showed that many miRNA genes were located close to fragile sites or 

common breakpoints that frequently occurred in cancers, suggesting their loss of function was a key 

event83. Since then, expression studies have demonstrated that miRNAs possess a remarkable capacity 

to distinguish between different types of cancers or even sub-types and changes in miRNA expression 

often correspond with cancer prognosis84–87. In fact, miRNAs have been shown to play a role in all of 

the classical hallmarks of cancer – sustaining proliferative signalling, evading growth suppressors, 

invasion and metastasis, replicative immortality, angiogenesis, and apoptotic resistance88–90.  

A global downregulation of miRNAs is commonly observed in cancers, although individual miRNAs 

have been attributed a variety of oncogenic or tumour suppressive roles91,92. Evidence suggests that 

many of these miRNAs are important during tissue development and are vital for maintaining 

terminally differentiated states, with their misexpression underscoring a disturbance of the 

developmental process93. Additionally, cancer stem cells (CSCs), which retain many stem-like traits 

and represent a significant hurdle in therapeutic research, are also defined by distinct miRNA profiles 

when compared to their non-CSC counterparts94.  

miRNA expression or function can be altered as a direct consequence of impairments to the miRNA 

processing machinery, or from dysregulation caused by abnormalities of genetic or epigenetic origin, 

misexpression of transcription factors, or other dysregulated mechanisms which are involved in the 

same gene regulatory networks.  

1.4.1. Impairments of the miRNA processing machinery in cancer 

There are several mechanisms by which miRNA processing can contribute to cancer95. This includes 

changes in expression of individual biogenesis components, which can have downstream effects of 

increasing or decreasing miRNA expression, but also selective increases in particular miRNAs due to 

influences of co-factors which favour processing of certain miRNA species. Functional changes of 

processing machinery caused by mutations are also very common in some cancers, which typically 

leads to a loss of function. 

The Microprocessor complex containing Drosha and DGCR8 is a point of vulnerability for 

tumourigenesis in many cells. In a recent systematic review, several single nucleotide polymorphisms 

(SNPs) in both genes were linked to cancer susceptibility96. In non-small cell lung cancer, 

overexpression of Drosha was identified and attributed to copy number gains and gene amplifications 
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which were present in a high proportion of cases97. DGCR8 has also been found upregulated in many 

cancers and has been linked to disease progression in both ovarian and prostate cancer98,99. DEAD box 

protein 5 (DDX5), another co-factor of the Microprocessor complex, can associate with SMAD proteins 

to drive increased processing of miR-21 primary transcripts into precursors100. SMADs are signal 

transducers of the transforming growth factor beta pathway and play a complex role in cancer 

progression100. Transport of the pre-miRNAs produced by the microprocessor complex can also be 

impaired by downregulation of the nuclear export protein exportin-5 (XPO5), either through reduced 

expression or phosphorylation by ERK kinase101,102. 

Clear links between dysfunctional miRNA processing and cancer development have been established 

in studies which revealed downregulation or deletion of DICER1 promoted tumour formation in 

mice103. Interestingly, in one study, this effect was exclusive to monoallelic but not biallelic loss of the 

gene, suggesting that DICER1 had an important tumour suppressive function but also had a role in 

malignant transformation104. Many studies have shown that specific DICER1 mutations could lead to 

an increased risk in developing cancers such as pleuropulmonary blastomas, rhabdomyosarcoma, 

cystic nephroma, and many endocrine tumours, although the functional consequences of many of 

these mutations has not been investigated thoroughly105,106. In lung cancer, DICER1 appears to have 

an oncogenic role as it is often amplified97. 

In cancers such as hepatocellular carcinoma, colon cancer, head and neck cancer and glioma, Ago2 is 

often overexpressed and has been linked to an increase in tumourigenesis, metastasis and patient 

prognosis107,108. However other studies have found Ago2 expression is reduced in cancers, such as in 

melanoma, which suggest that like many of the other biogenesis proteins, Ago2’s role in cancer is 

dependent on the cell’s miRNA profiles or expression of co-factors109. Another form of Ago2 

dysregulation is through post-translational modifications, which have been shown to influence 

tumourigenicity. For example, Shen et al demonstrated that phosphorylation of Ago2 at Tyrosine 393 

(Ago2-Y393), induced by hypoxic conditions, correlated with poorer overall survival in breast cancer 

patients110. In this study they were able to show this particular phosphorylation event was a 

consequence of interactions between epidermal growth factor receptor and Ago2, and that Ago2-

Y393 increased cell survival and invasiveness by reducing its interactions with Dicer and subsequent 

miRNA loading110. In another study, acetylation of Ago2 at K720, K493, and K355 increased miR-19b 

levels by enhancing Ago2’s capacity to recruit miR-19b precursors111. Ago2 acetylation at these sites 

was correlated with poorer prognosis in lung cancer patients. Interestingly, in contrast to many of the 

other miRNA biogenesis genes, mutations of Argonaute seem to be very rare95. 
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Evidence suggests that some tissues may be more susceptible to forming cancers through 

dysregulation of general miRNA processing, as genome-wide association studies have found certain 

cancers have a much higher prevalence of mutations affecting the entire biogenesis pathway. Perhaps 

one of the strongest examples of a cancer where the miRNA processing machinery is likely to play a 

significant role in tumourigenesis is Wilms tumour. In 2014, a study by Torrezan et al112 found 

mutations of miRNA processing genes in 33% of tumours, most commonly occurring in the Drosha 

gene but also with other mutations such as DICER1, XPO5, DGCR8 and TARBP2. These results were 

also supported by several other studies by Wu et al113, Rakheja et al114, Walz et al115, Wegert et al116, 

and Gadd et al117. In Rakheja et al’s study they further examined the potential consequences of several 

of these mutations and found that Drosha mutations often led to a loss of RNAse IIIB activity which 

prevented processing of pri-miRNAs, leading to a global reduction in mature miRNAs. DICER1 

mutations also frequently affected the RNAse IIIB domain, however this mutation only affected 

processing of 5p miRNAs from precursors, as DICER1 contains a second RNAse domain for 3p 

processing. As a result, this mutation led to a shift towards 3p miRNA maturation. These mutations 

have functional consequences for global miRNA expression and most likely favour expression of 

oncogenic miRNAs or reduce expression of miRNAs with tumour suppressive effects. In line with this, 

the let-7 family is predominantly 5p-derived and lower expression of several of its 5p members were 

found in both Drosha and DICER1 mutants in two of these studies114,115. 

1.4.2. Genetic aberrations of miRNA genes in cancer 

As mentioned previously, many of the common genetic aberrations observed in cancers such as single 

nucleotide polymorphisms (SNPs), copy number variations and gene translocations, can affect the 

biogenesis genes involved in miRNA processing. However, genetic aberrations also occur in regions 

which harbor the miRNAs themselves or even in miRNA target sites and can cause significant 

disruptions to critical regulatory networks92. Interestingly, SNPs which alter the mature miRNA 

sequence are rarely reported and while some studies have found mutations to be common in primary 

miRNAs, these were shown to be inconsequential to the processing and expression of the mature 

miRNAs118,119. This contrasts with a number of cancer studies which have reported frequent 

occurrences of mutations in target sites that impact miRNA binding and subsequent regulation of their 

gene targets120,121. 

Copy number variations are pervasive in most cancers, and gains or losses of genomic regions 

containing miRNAs naturally lead to overexpression or reduction of miRNAs, respectively. Since Calin 

et al’s initial observations highlighting the link between miRNAs and fragile sites, many more examples 

in cancer have been identified82. For example, loss of heterozygosity at region 14q32 is common in 

leukemia and corresponds with decreased expression of the miRNA cluster located there122. 
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Additionally, in a study on gastric cancer, copy number gains of chromosomal region 8q24 were 

common and corresponded with overexpression of several miRNAs implicated in gastric cancer 

development123. Copy number gains of several miRNAs including miR-296, miR-324 and miR-3928, 

were identified in lung cancer and correlated with a poorer patient prognosis124. Finally, deletions or 

translocations of miR-15a and miR-16-1 were reported in a high number of chronic lymphocytic 

leukemia patients82. 

1.4.3. Epigenetic regulation of miRNAs is affected in cancer 

Early studies established that in addition to protein coding genes, many miRNAs were also regulated 

by epigenetic mechanisms such as DNA methylation and histone modifications. One study found that 

nearly half of all miRNA genes had CpG sites located 2000 bp up or downstream125. In support of this, 

Saito et al had previously shown that treatment of cancer cell lines with demethylation agents or 

histone deacetylase inhibitors altered expression of miRNAs, with some miRNAs experiencing more 

than a 3-fold increase126.  

Both hypermethylation and hypomethylation have been linked to misexpression of miRNAs in cancer. 

Lujambo et al found extensive hypermethylation of miR-124a in several cancers, including colon, 

breast, lung carcinoma, leukemia and lymphoma and linked this hypermethylation to a loss of its 

expression in a colon cancer cell line127. A following study by the same authors showed that miR-148a, 

miR-34b/c and miR-9 were controlled by DNA methylation, and that silencing by methylation induced 

metastasis in cancer cells128. In papillary thyroid cancer, miR-146b expression was increased compared 

to normal tissue as a consequence of hypomethylation, and combined miRNA expression and 

methylation profiles could clearly distinguish malignant and benign tumours129.  

Enzymes involved in histone regulation, such as the polycomb-group proteins and histone 

deacetylases (HDACs), also cooperatively regulate miRNA expression alongside DNA methylation. 

Enhancer of zeste homolog 2 (EZH2), which forms part of the polycomb repressive complex 2 (PRC2), 

is upregulated in many cancers and is known to repress expression of a whole range of miRNAs, 

including miR-181a/b and miR-200a/b/c130,131. Overexpression of EZH2 and SUZ12, another PRC2 

component, was also found to repress miR-31 and activate the NF-κB signalling pathway in 

leukemia132. Finally, in a study by Sampath et al, HDAC overexpression was linked to the epigenetic 

silencing of miR-15a, miR-16 and miR-29b in chronic lymphocytic leukemia, by showing an alleviation 

of expression upon HDAC inhibition in 35% of samples133. 

1.4.4. miRNAs are key mediators of transcription factor-driven oncogenesis 

Dysregulation of transcription factors are a recognized feature in nearly all cancers134. Transcription 

factors and miRNAs often form feedback loops within regulatory circuits, and misexpression of either 
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can rapidly lead to disarray of gene signalling pathways and lead to oncogenesis or cancer progression 

(Figure 1.5). One of the earliest studies linking miRNA expression to an oncogenic transcription factor 

was by O’Donnell et al in 2005135. In this study they demonstrated that c-Myc could induce expression 

of the miR-17~92 cluster, and that several of these miRNAs could in turn regulate E2F1 transcription 

to control cell proliferation. In hepatocellular carcinoma, a negative feedback loop between c-Myc and 

miR-122 was identified, where c-Myc could repress miR-122 expression and miR-122 could prevent 

transcription of c-Myc through E2F1136. p53, another transcription factor and one of the most 

important tumour suppressors, promotes expression of miR-34 family, and many other miRNAs 

including miR-16-1, miR-143 and miR-145137,138 . Many of p53’s tumour suppressive functions such as 

cell cycle regulation and suppression of stemness traits and metastasis have been attributed to 

miRNA-mediated regulation of downstream gene targets139. 
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Figure 1.5. Gene regulation involves complex interactions between miRNAs, transcription factors, and 
long non-coding RNAs which all be dysregulated in cancers. Shows various elements of a key regulatory 
circuit involving MYC and E2F family transcription factors and their role in cancers. A. Loss of 
chromosomal regions where let-7 and miR-34 miRNAs are localized is frequently observed in cancers. 
B. let-7 dysregulation may facilitate overexpression of the oncogenic fusion transcript EWS-FLI-1 in 
Ewing sarcoma. C. The RB1 tumour suppressor regulates E2F, and loss of function can lead to the 
development of retinoblastoma. D. miR-9 can display tumour-suppressive properties by cooperating 
with miR-125a and miR-125b to suppress cell proliferation. E. The lncRNA TUG1 is suggested to act as 
a sponge, reducing miR-9 activity to supress tumour growth. Figure is from our published review in 
Frontiers in Genetics (See appendix A)140. 
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1.4.5. IsomiR expression has been linked to cancer 

Several studies have found isomiR expression is altered in cancers which suggests they may have a 

role to play the disease3,141,142. Telonis et al analysed 10,271 tumour datasets from The Cancer Genome 

Atlas and found that the presence or absence of isomiRs could effectively distinguish between 32 

different cancers and that it could outperform classifications using miRNAs142. In another study looking 

at breast cancer, six 5´ isomiRs were found to be differentially expressed when comparing tumours to 

normal tissue143. One of these isomiRs, a 5´ variant of miR-140-3p, was more highly expressed, had 

novel gene targets, and possessed tumour suppressive effects not observed with its canonical 

counterpart. The authors proposed that the canonical miRNAs and isomiRs functioned synergistically 

as tumour suppressors. These studies have raised the possibility that isomiRs represent a previously 

ignored layer of gene regulation in cells and may have their own part to play in regulating oncogenesis. 

Recently, isomiRs have been considered for their utility as blood/serum biomarkers for detecting or 

profiling cancers144. Circulating miRNA expression profiles have already been shown to be effective in 

distinguishing between diseased patients and healthy controls, however challenges remain in 

developing clinically useful biomarker assays145,146. One of the primary issues is the fact that miRNAs 

lack specificity and are broadly expressed in a variety of tissues in the body. Consequently, most 

miRNAs are present at some level in the blood regardless of a patient’s condition and developing an 

unbiased assay which can distinguish between miRNA profiles from diseased and healthy patients may 

not be possible until the cancer has progressed significantly or is easily detected by other means. It is 

possible that isomiRs, which are potentially more unique in their expression, may offer a more 

effective means to identify cancers in their early stages when they are very difficult to detect.  

1.4.6. Non-coding RNAs in pediatric solid tumours 

Refer to appendix A for a review on miRNAs and long non-coding RNAs in pediatric solid tumours, 
written by myself and published in Frontiers in Genetics during my PhD140. 
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1.5. Single cell sequencing reveals genetic and transcriptomic heterogeneity in cancers 

Tumour heterogeneity describes the variation in molecular, cellular, or histological properties across 

tumours or tumour cells147. Tumour heterogeneity can either be inter-tumoural when this variation 

exists between different tumours of a cancer, or intra-tumoural when there is variability between the 

cells within a single tumour (Figure 1.6). Both inter and intra-tumour heterogeneity are common 

features in many different cancers including brain, lung, breast, colon and liver cancer, and can 

manifest as differences in genomic, epigenomic, transcriptomic, or proteomic profiles148–152. Critically, 

many of these differences detected on a molecular level have been shown to translate into clinically 

relevant phenotypical changes, such as altered tumour growth rates, metastatic potential, and drug 

resistance153–155. Consequently, this poses significant challenges for the development of accurate 

diagnostic or prognostic methods and has been cited as one of the primary reasons for drug failure in 

many cancers156,157. 

Research into inter-tumour heterogeneity has improved patient outcomes through targeted therapy 

approaches that tailor treatment plans based on cancer subtypes152,158,159. It is recognized that even 

with cancers of the same type, they may be driven by distinct biological pathways that are influenced 

by genomic or micro-environmental factors. Since specific biological pathways are often targeted in 

cancer therapy, this can have a significant impact on the efficacy of certain drugs. For example in 

breast cancer, the drug trastuzumab (Herceptin) is more effective against HER2-postive patients and 

is now routinely used in targeted therapy against this subtype, whereas Cyclin-dependent kinase (CDK) 

4/6 inhibitors such as palbociclib, ribociclib, and abemaciclib are used for hormone receptor (HR)–

positive and HER2-negative breast cancers160,161. While studies on tumour heterogeneity have led to 

improvements in drug efficacy for many cancers, this has mostly been through discoveries from bulk 

or population-level studies which target the same pathways across the whole tumour155,159. However, 

these pathways may not be suitable targets for all tumourigenic cells, as some are able to survive 

multiple rounds of treatments only to repopulate the tumour with more resistant cells154,157. It is 

increasingly recognized that a higher resolution is needed to study individual cells and their 

interactions within the tumour microenvironment in order to address all of the challenges that tumour 

heterogeneity poses155,162. 

At least two models have been described which explain the emergence of intra-tumour 

heterogeneity155. The clonal evolution model describes the emergence of genetically distinct lineages 

due to the inherent instability of the genome in cancer cells158. Over many generations, the 

proliferation of cancer cells leads to the divergence of cell populations with different genotypes, 

where those with selective advantages in tumour growth and survival become the most dominant 

populations. Because of the genetic diversity of cells, the likelihood of some cells surviving therapy 
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due to an inherent resistance is likely, and therapy may shift the selective pressure in favour of more 

resistant cell populations158. According to the cancer stem cell (CSC) model, some cancer cells adopt 

stem-like features, including cell proliferation and self-renewal, which are normally present in 

developing stem cells163,164. Cancer stem cells can produce more differentiated progeny with distinct 

phenotypes to promote tumour growth and survival, and evidence suggests differentiation of these 

cells is often incomplete and reversible under certain circumstances165. Both models have supporting 

evidence in many cancers and are likely to act together in producing the heterogeneity observed 

across genetic, epigenetic, transcriptomic, and proteomic layers166. Proper characterization of tumour 

subpopulations with clinical relevance has remained extremely challenging in the past few decades162. 

However, recent developments in cell isolation and sequencing methods have offered researchers 

new tools to study the tumour microenvironment and there is renewed hope that this will lead to 

significant improvements in the outcomes of cancer patients. 

1.5.1. Single cell sequencing has enabled deeper interrogation of intra-tumour heterogeneity 

The introduction of next-generation sequencing (NGS) ushered a new era in oncology by enabling the 

comprehensive profiling of cancer genomes and transcriptomes167. Their adaptation to single cell 

technologies has been facilitated by advances in automation and microfluidics, which can capture or 

isolate thousands of individual cells and generate cost-effective sequencing libraries all within a single 

experiment168. Additionally, the constraints imposed from having to sequence thousands of separate 

libraries have become much less of an issue due to the remarkable drop in sequencing costs seen over 

the past few decades. In 2007, the cost of sequencing a single human genome was approximately $10 

million US dollars whereas in 2022 this can be done for only $600169,170. Currently single cell sequencing 

encompasses a burgeoning field of NGS tools, including multi-omic methods which can simultaneously 

measure information across different modalities, and are revealing critical details about tumour cells 

and their microenvironment171. 

There are a number of single cell DNA sequencing methods available for whole genome sequencing, 

exome sequencing or targeted gene sequencing, used in oncology research for determining genomic 

heterogeneity, evolutionary trajectories of subclones, and detection of rare mutations172. Some of the 

earliest single cell studies into clonal evolution established a punctuated model for copy number 

evolution, demonstrating that copy number alterations were distinct events occurring early in 

oncogenesis, whereas single nucleotide variations were more gradual events throughout the course 

of the disease150,173. Furthermore, the genetic diversity of tumours is beginning to be appreciated as 

many subclones, including some with drug resistant genotypes, were found to exist in small cell 

numbers prior to treatment174–176. Recent work has highlighted some of the limitations of traditional 
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therapies developed from population level studies and indicates that routine biopsies are unlikely to 

capture the full range of clinically relevant genomic mutations177.  

Of all the single cell sequencing methods, single cell RNA sequencing is the most well developed and 

widely adopted technology168,178. Single cell RNA sequencing allows quantification of gene expression 

through the detection of RNA transcripts. Methods of single cell RNA sequencing are often divided 

into those which utilize traditional cell sorting with microwell plates and those using droplet 

microfluidic devices. The traditional plate-based assays, such as Smart-seq and CEL-seq, were some of 

the earliest methods to be developed for full transcriptome analysis179,180. Droplet-based protocols 

such as inDrop and Drop-seq were subsequently developed and were a major milestone in single cell 

sequencing as they made it feasible to sequence many thousands of cells at once, although were 

restricted to gene level quantification as full-length capture was not possible181,182. The power of single 

cell RNA sequencing has been demonstrated across many cancers where it has been used not only to 

characterize cell populations, but also to map out their differentiation trajectories, predict copy 

number variations and identify gene modules or networks that may predict their clinical 

presentation148,183. One of the major insights derived from single cell RNA sequencing is the 

observation that cell subpopulations derived from transcriptomic analysis are often decoupled from 

any apparent genetic heterogeneity. In oligodendroglioma, heterogenous subpopulations bearing 

resemblance to developmental pathways were all present across different genetic subclones183. In 

another brain cancer, glioblastoma, the authors transplanted genetic subclones into patient-derived 

xenografts and found that the full range of transcriptomic cell populations, including their relative 

abundances, were recapitulated in the new tumours184. Collectively, this work suggests that epigenetic 

or post-transcriptional gene regulatory mechanisms may be the predominant driving force of this form 

of heterogeneity151. 

Furthermore, the number of available single cell sequencing methods for detecting alternative 

molecular profiles continues to grow, and it is now possible to measure epigenetic profiles such as 

DNA methylation (scRRBS), chromatin accessibility (scATAC-seq), and histone markers (scChIP-seq), 

and other classes of RNAs not captured in standard RNA-seq such as small RNAs (Small-seq)185–188. 

Multi-omics approaches which combine multiple measurements are also available, although the 

technical challenges associated with sequencing each type of information is often compounded and 

have not yet been adopted as widely171,189–192.  

1.5.2. The current state of single cell small RNA sequencing 

miRNAs are involved in the regulation of nearly all biological processes and are therefore likely to play 

an important role in the post-transcriptional mechanisms that drive differentiation and cell state 
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regulation. However, sequencing technologies which can capture this class of small RNAs and provide 

sufficient resolution to interrogate them on a single cell level remain underdeveloped. Several 

methods have been recently developed specifically for single cell small RNA sequencing, generally 

utilizing a two-adapter ligation approach for small RNA capture and library preparation188,191,193–195. 

With two-adapter ligation, a 5′ pre-adenylated adapter is ligated to the 3′ end of RNAs after cell lysis, 

followed by ligation of a second adapter to the phosphorylated 5′ ends of small RNAs. cDNA is 

generated through reverse transcription using a primer which is reverse complementary to the 

adapter ligated at the 3′ end and then subsequent rounds of polymerase chain reaction (PCR) amplify 

the cDNA for sequencing. Relative to many other single cell sequencing methods, small RNA 

sequencing is still technically challenging, expensive, and has limited cell throughput as they are all 

restricted to plate-based assays. The first of these methods was the Small-seq protocol developed in 

2016, which was later followed by a CleanTag adapter-based protocol188,193. Two multi-omic methods 

were subsequently developed, Holo-seq and a microRNA-mRNA co-sequencing protocol by Wang et 

al, capable of sequencing small RNAs and mRNAs from the same cell191,194. A key distinction in the 

Holo-seq method was the use of removable carrier RNAs, introduced after cell lysis, to protect RNAs 

from degradation during library preparation. To build separate small RNA and mRNA libraries, poly 

adenylated RNAs were isolated from the cell lysate using targeted magnetic beads in the Holo-seq 

protocol, whereas in Wang et al’s co-sequencing protocol cell lysates were split in half. Currently, 

research into the role of the miRNA pathway at the single cell level and its contribution to tumour 

heterogeneity has been very limited. In the Holo-seq study, 32 hepatocellular carcinoma cells were 

sequenced for their mRNA and miRNA profiles194. Interestingly, this work highlighted 3 distinct 

populations of cells when analysing their mRNA profiles and only 2 when analysing the miRNA profiles. 

The miRNA-based populations corresponded closely with 2 of the mRNA populations, indicating that 

miRNAs can reveal cell subpopulations with distinct gene expression profiles. Further research is 

necessary to understand whether heterogenous miRNA expression is a common feature in cancers 

and if the miRNA pathway contributes to heterogeneous gene regulation in cancer subpopulations. 
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Figure 1.6. Molecular heterogeneity is evident in genomic, epigenetic, transcriptomic, and proteomic 
profiles. In cancer, heterogeneity often exists between patients (inter-tumour heterogeneity), which 
can impact prognosis. Additionally, cancer cells can take many forms within a single tumour and adopt 
a variety of phenotypes which support the tumour microenvironment. Both forms of heterogeneity 
challenge our ability to develop effective therapies.  
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1.6. Summary and research questions 

miRNAs play an essential role in gene regulation through suppression of translation and destabilization 

of messenger RNAs196. miRNAs are one of the most abundant regulatory molecules in human cells and 

are heavily integrated into gene networks driving essentially all biological processes, including 

regulation of cell differentiation, the cell cycle, and intercellular signalling197,198. Their dysregulation is 

a common feature in many diseases, including cancer, and studies have demonstrated functional roles 

for miRNAs in oncogenesis and drug resistance92. Regulation of miRNA biogenesis is incredibly 

complex, involving a multitude of proteins that work together to process primary miRNA transcripts 

into their mature, biologically active forms1.  

miRNA processing during biogenesis, and after maturation, produces a variety of miRNA isoforms 

called isomiRs199. Research shows that at least some of these isomiRs are functional and can either act 

together to suppress the same targets or completely different ones55. IsomiR expression is strongly 

associated with different types of cancer, however our understanding of their contribution to 

oncogenesis remains limited142,200. Furthermore, the mechanisms behind isomiR processing are still 

poorly understood and it is not known how precise isomiR expression can be regulated cell 

autonomously. Investigating this may provide insight into their contribution to the heterogeneity 

observed in cancer cells154. Prior to this thesis and to the best of our knowledge, no studies have been 

published by others which investigate cell-wide isomiR expression and processing at the single cell 

level. 

In the final stage of miRNA biogenesis, the RNA-induced silencing complex is formed, which contains 

two essential components for miRNA regulation – the mature miRNA and the protein Argonaute67. 

RNA sequencing studies have detected alternatively spliced transcripts of Argonaute with protein-

coding potential68,201. However, it is not known how these isoforms affect the function of Argonaute 

and its interaction with miRNAs in humans. 

This thesis is composed of two hypotheses which aim to address major gaps in our understanding of 

the miRNA pathway. The first investigates the miRNA pathway’s role in intra-tumour heterogeneity, 

using single cell sequencing data to relate miRNA expression to cell states and to understand isomiR 

regulation in individual cells. The second investigates the biological function of isoforms of Argonaute 

2.  
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1.6.1. Hypothesis 1 - microRNA and isomiR expression contributes to heterogeneous gene 

regulation and can identify subpopulations in cancer 

• Aim 1: Identify miRNAs that are differentially expressed in glioblastoma cells and investigate their 

association with known glioblastoma cell states 

• Aim 2: Characterize isomiR expression on a single cell level and assess their potential to regulate 

processes involved in intra-tumour heterogeneity 

For Hypothesis 1, the first aim is addressed in chapter 2 and the second aim in chapter 3 in this thesis. 

Chapter 3 is an extended version of our published paper in Scientific Reports202. 

1.6.2. Hypothesis 2 - Splice variants of Argonaute 2 have distinct regulatory functions through 

association with different RNAs 

• Aim 1: Quantify Ago2 isoforms in human tissues and cell lines to identify isoforms with potential 

biological significance 

• Aim 2: Compare the small RNA and miRNA binding profiles of Ago2 isoforms  

For Hypothesis 2, both aims are addressed in chapter 4. 
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2. The role of miRNAs in glioblastoma tumour heterogeneity and cell 

state regulation 

2.1. Chapter introduction 

2.1.1. Heterogeneity is a hallmark feature of the brain cancer glioblastoma  

Glioblastoma is one of the most common and aggressive gliomas, which originates in the brain, and 

has seen few improvements in patient outcomes over the past few decades203.  One of the main 

reasons for this lack of progress is that extensive tumour heterogeneity is one the hallmark features 

of this disease204. Inter-tumour heterogeneity between tumours of different patients, as well as intra-

tumour heterogeneity of cells within a tumour, challenge the development of drugs that can 

effectively treat glioblastomas with complex molecular profiles and varying phenotypes204,205.  

Recent technological advancements have paved the way for molecular subtyping using next 

generation sequencing. In glioblastoma, inter-tumour heterogeneity has been characterized on 

genetic and transcriptional levels. In 2010, Verhaark et al integrated gene expression data from The 

Cancer Genome Atlas (TCGA) and identified four subtypes of glioblastoma – which they named 

proneural (TCGA-PN), neural (TCGA-NE), classical (TCGA-CL), and mesenchymal (TCGA-MS)206. The 

subtypes were later revised to exclude the neural subtype, whose classification was attributed to 

contamination with normal tissue207. Glioblastoma subtypes are strongly associated with genomic 

events of specific genes. For example, classical subtype tumours were found to be more frequently 

affected by EGFR amplifications, aberrations in PDGFRA and IDH1 more common in proneural 

subtypes, and loss of NF1 common in mesenchymal subtypes206,207. As overall survival times are 

different in tumours from each of these TCGA subtypes, genes associated with these subtypes are 

considered to have clinical value as prognostic biomarkers207,208. 

2.1.2. Evolution of models for intra-tumour heterogeneity in glioblastoma 

One of the first discoveries of cancer stem cells was in brain tumours, which formed the basis of early 

models for intra-tumour heterogeneity in glioblastoma209. Purportedly, glioma stem cells existed in 

small numbers but were self-renewing and could generate the diverse cell populations that tumours 

were comprised of203. Initial studies suggested only cell populations enriched in glioblastoma stem cell 

markers (e.g CD113) could generate tumours209. However, later studies identified multiple cell 

populations with stem-like or tumourigenic properties, isolated using different cell markers indicating 

a far more complex hierarchy210,211.  

Models for glioblastoma intra-tumour heterogeneity have expanded significantly since the 

development of high throughput single cell sequencing184,212,213. One of the earliest single cell RNA 
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sequencing (scRNA-seq) studies in glioblastoma identified common sets of genes, or meta-signatures, 

expressed across 5 different patient tumours related to hypoxia, immune response, oligodendrocytes, 

and the cell cycle212. In a study by Neftel et al, gene expression data was incorporated from 28 

glioblastoma tumours using scRNA-seq and 401 tumours using RNA-seq from TCGA, to construct a 

more unified model of glioblastoma184. In this model they described four main cancer subpopulations, 

which they referred to as cell states, resembling various cell types that exist during normal brain 

development184. This included astrocyte-like (AC), neural-progenitor-like (NPC), oligodendrocyte-

progenitor-like (OPC), and mesenchymal-like (MES) cell states. Interestingly they found that all 

tumours were comprised of multiple cell states, although not necessarily containing all states at once. 

The presence and relative frequencies of each cell state were shown to directly influence TCGA 

subtype classifications, with TCGA-CL tumours more dominant with cells in an AC cell state, TCGA-PN 

tumours more dominant in NPC and OPC cell states, and TCGA-MS tumours with MES states. 

Furthermore, plasticity was clearly demonstrated between each cell state, which could all initiate 

tumours that eventually recapitulated the relative frequencies of cell states observed in the original 

tumours184. An additional cell population resembling outer radial glia was identified in a later study by 

Bhaduri et al, which contributes to the invasiveness of glioblastoma214. 

2.1.3. miRNAs play a key role in brain development and glioblastoma 

miRNAs play an essential role throughout the developing brain, contributing to cell fate specification 

and differentiation in many neural or glial stem/progenitor cells215–217. Extensive documentation of 

miRNA dysregulation in glioblastoma and their effects on key cancer pathways suggests they are also 

important in tumourigenesis218–224. Furthermore, miRNA expression profiles can significantly improve 

classification of tumours with TCGA subtypes, making them potential biomarkers and also suggesting 

their activity is intrinsically linked to the gene networks that drive each of these subtypes225. As 

research has now highlighted a direct link between TCGA subtypes and cell state compositions on a 

single cell level, this implies that miRNA expression is also associated with these cell states and may 

have important functions in cell state regulation184. Despite this, there is an absence of studies in the 

literature which aim to investigate miRNA expression in glioblastoma single cells and the role miRNAs 

play in the regulation of cell states. We hypothesized that cell states should be distinguishable by 

analysis of miRNA expression and by examining glioblastoma cells we may find evidence of 

autonomously regulated miRNAs of importance to the cell states described in Neftel et al’s 

glioblastoma model184.   
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2.2. Specific methodology 

2.2.1. Data collection 

Raw single cell small RNA sequencing reads were obtained from the Gene Expression Omnibus (GEO) 

database under accession id GSE81287. 

Raw or normalized gene counts and metadata from glioblastoma single cell RNA sequencing was 

obtained the Gene Expression Omnibus (GEO) database under accession ids GSE84465 (Darmanis 

dataset), GSE131928 (Neftel and Neftel_10X datasets), GSE102130 (Filbin dataset), and GSE57872 

(Patel dataset)184,212,213,226. 

Read counts from bulk miRNA and RNA sequencing of glioblastomas were obtained from the GDC Data 

Portal under project ID CPTAC-3227. Files for miRNA isoform expression were used to quantify mature 

miRNAs. 

2.2.2. Single cell small RNA sequencing pre-processing and mapping 

For the single cell small RNA sequencing reads, UMI sequences were removed prior to any adapter 

removal and appended to the read headers. Adapters were then removed using cutadapt (v2.7) with 

a minimum overlap of 1 nt and maximum error rate of 0.1 between reads and adapter sequences228. 

After UMI and adapter removal, reads shorter than 15 nucleotides were excluded. To identify 

duplicated reads, reads were aligned to the human genome (hg38) using bowtie (v1.2.3) with the 

following parameters: -n 2 -e 120 -l 20 --best229. Human-aligned reads were subsequently deduplicated 

with umitools (v1.0.0) with default settings230. 

Processed reads were aligned to miRbase (v22.1) annotated precursor miRNAs using miraligner (v3.4), 

with the following parameters: -sub 1 -trim 3 -add 336,231. Reads which successfully aligned to a miRNA 

were also annotated with any variants to the miRbase defined mature sequence and converted to 

miRNA and isomiR count matrices. 

2.2.3. Identification of cell subpopulations with miRNA expression 

To identify glioblastoma cell subpopulations using miRNA or isomiR expression, miRNA and isomiR 

count matrices were analysed with the Seurat R package (v3.1.5)232. miRNA or isomiR features present 

in 3 or less cells, or cells with less than 1000 mapped reads, were excluded from analysis. For 

dimensionality reduction, we used PCA on the top 25% of variable features after centering and scaling 

the data. Cells were visualized using Uniform Manifold Approximation and Projection (UMAP) with a 

range of principal components and resolutions, determined with JackStraw plots. This was followed 

by cell clustering using Seurat’s inbuilt graph-based clustering method. Clustering of cells was stable 

across a range of parameters and were deemed acceptable due to the presence of cluster specific 
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miRNA ‘markers’ highly expressed in one population and absent in the other. For differential 

expression analysis, only features with an adjusted p-value (p.adj) less than 0.05 and loge fold-change 

larger than 1 were considered differentially expressed. 

2.2.4. miRNA target prediction 

miRNAtap (v1.28) package was used to aggregate target predictions across five different algorithms 

(DIANA, Miranda, PicTar, TargetScan, and miRDB) using the ‘minimum’ method and only considering 

targets predicted by 2 or more algorithms233. 

2.2.5. Scoring for TCGA subtypes, cell states and miRNA targets 

Scores which reflected expression of a set of genes (i.e gene modules) were calculated using a method 

similar to that described in the Neftel et al study for single-cell gene signature scores184. First, gene 

counts for all samples were converted to log2 transcripts-per-million (log2[TPM+1]) and centered by 

deducting expression of each gene by its mean expression across all samples from the same dataset. 

Then for each sample, scores were calculated from the mean expression of the gene module minus 

the mean expression of a control gene set. For the control gene set, aggregate expression of each 

gene across all samples from the same dataset were used to sort and separate genes into 30 

expression bins. For each gene in the gene module, 100 genes were randomly selected from the same 

expression bin and placed in the control gene set.  

The gene sets for the 3 TCGA subtypes were obtained from Wang et al’s study207. Cell state gene sets 

were obtained from Neftel et al’s study184. Gene sets for miRNA targets were generated by 

miRNAtap233. 

2.2.6. Code for data analysis and figures 

Documents containing code used to generate the results in this section can be found in the following 
link: https://cloudstor.aarnet.edu.au/plus/s/GaNTw7rMWztjliu 
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2.3. Identification of heterogeneously expressed miRNAs in glioblastoma 

2.3.1. Distinct glioblastoma subpopulations can be identified through single cell miRNA and 

isomiR expression profiles 

Previous work by Neftel et al, using unsupervised hierarchical clustering with scRNA-seq expression 

data, identified 6 gene expression modules which were associated with 4 different cell states in 

glioblastoma184. These gene expression modules spanned multiple glioblastoma tumours, suggesting 

they represented commonly occurring cell states in glioblastoma. Their work also showed that 

glioblastoma cell states emerge spontaneously and are predominantly driven by cell autonomous 

factors including genomic perturbations184. We hypothesized that unsupervised clustering of miRNA 

expression from glioblastoma cells may also identify subpopulations in different cell states. 

Additionally, we investigated isomiR expression to explore their potential role in cell state regulation. 

To determine if miRNA or isomiR heterogeneity may contribute to cell state regulation or identity in 

glioblastoma, we analysed 173 cells from 3 glioblastoma primary cultures and 1 glioblastoma cell 

line232. We used Seurat’s built-in graph-based clustering approach on UMAP projections for both 

miRNA (Figure 2.1A) and isomiR (Figure 2.1B) expression and found most cells co-localized with other 

cells from their respective cell type with minimal evidence of common miRNA or isomiR expression 

modules across different cell types232. However, we observed that one of the glioblastoma primary 

cultures, named KS4, formed two distinct groups that were identifiable in both the miRNA (Figure 

2.1C) and isomiR (Figure 2.1D) data, which we considered may represent two cell subpopulations in 

different cell states. The two groups of cells formed using miRNA and isomiR expression were nearly 

identical, except for two cells (Figure 2.1E). 
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Figure 2.1. Identification of heterogenous glioblastoma cell subpopulations from miRNA and isomiR 
expression. UMAP plots (top) containing all four glioblastoma cell types using A. miRNA and B. isomiR 
expression. UMAP plots (bottom) containing cells from the KS4 glioblastoma cell type for C. miRNA and 
D. isomiR expression, coloured by their assigned clusters using Seurat’s in-built clustering algorithm232. 
E. miRNA and isomiR clustering results for each KS4 cell. 
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2.3.2. Expression of two miRNA clusters distinguish KS4 glioblastoma subpopulations 

Following this, we compared miRNA expression between the two KS4 cell clusters using differential 

expression analysis (Figure 2.2). In total, we identified 20 miRNAs which were significantly upregulated 

in KS4 cluster 1, and 5 miRNAs which were significantly upregulated in KS4 cluster 2 (p.adj < 0.05). 

Further investigation into the upregulated miRNAs in KS4 miRNA cluster 1 found that 18 of the 20 

upregulated miRNAs originated from a miRNA cluster hosted within the DLK1-DIO3 gene locus on 

chromosome 14q32 (Figure 2.2B and Figure 2.3). We also found that 3 of the 5 upregulated miRNAs 

in cluster 2 - miR-224-5p, miR-224-3p, miR-452-5p, were also from a single miRNA cluster on 

chromosome X (Figure 2.2C). By comparing the expression of the miRNAs significantly upregulated in 

cluster 1 or 2 (Figure 2.4), we found that the miRNAs from each of these miRNA clusters dominated 

expression (>75%). Together this data shows that some miRNAs, including two miRNA clusters, can be 

expressed cell-autonomously and are potential regulators of cell states on a single cell level.  

We also compared the expression of isomiRs in the KS4 clusters (Figure 2.5). We considered two 

possible scenarios which would lead to differentially expressed isomiRs – that isomiR processing was 

altered in these two cell clusters or that the isomiRs were reflecting differences in miRNA expression. 

If isomiR processing was altered, then we would expect to find differentially expressed isomiRs which 

are not in proportion to the expression of other isomiRs from the same miRNA. Differential expression 

analysis identified 5 isomiRs upregulated in cluster 1 and 13 isomiRs upregulated in cluster 2. However, 

we found that many of the isomiRs upregulated in either KS4 cluster matched the miRNAs identified 

previously, and that the isomiRs were generally in proportion to expression of the other isomiRs from 

the same miRNA gene (Figure 2.5B-C), suggesting miRNA expression, not isomiR processing, was the 

key differentiating factor between these two cell populations. 
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Figure 2.2. Comparison of miRNAs between KS4 glioblastoma cells in miRNA-based clusters 1 (red) and 
2 (blue). A. Heatmap containing miRNAs with the highest fold change expression between clusters. Not 
all miRNAs shown here are statistically significant. B. Top 6 miRNAs by statistical significance that are 
differentially upregulated in KS4 cluster 1 (p.adj < 0.05). C. The 5 miRNAs differentially upregulated in 
KS4 cluster 2 (p.adj < 0.05). miRNA expression shown is in loge. 
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Figure 2.3. DLK1-DIO3 locus derived miRNAs upregulated in KS4 Glioblastoma miRNA-based clusters 1 (red) and 2 (blue).  Only miRNAs with adjusted p-values 
less than 0.05 were included. Expression shown is in loge. 
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Figure 2.4. Expression of upregulated miRNAs in two KS4 cell subpopulations is dominated by two 
miRNA clusters. A. Shows relative expression of the 20 miRNAs upregulated in glioblastoma cells from 
KS4 Cluster 1 (compared to KS4 Cluster 2). B. Shows relative expression of the 5 miRNAs upregulated in 
glioblastoma cells from KS4 Cluster 2 (compared to KS4 Cluster 1). 
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Figure 2.5. Comparison of isomiRs between KS4 Glioblastoma cells in isomiR-based clusters 1 (red) and 
2 (blue). A. Heatmap containing isomiRs with the highest fold change expression between clusters. Not 
all isomiRs shown here are statistically significant. B. Comparison of expression of isomiRs from the 
same miRNA. isomiR expression shown is in loge. 
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2.4. Cell autonomous miRNAs are associated with glioblastoma subtypes and cell state 

genes  

To our knowledge, no paired sequencing data is available that would allow us to directly compare 

miRNA and RNA expression from single glioblastoma cells. Therefore, to predict the function of the 

upregulated miRNAs in the two KS4 clusters, we analysed glioblastoma RNA and miRNA expression 

data from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) to identify any association 

between miRNA expression and marker genes for glioblastoma subtypes or known cell states. The 

CPTAC data is for bulk sequencing which only measures population level expression and lacks the 

resolution to characterize cell states in single cells. However, previous work showed that glioblastoma 

subtypes are indicative of the most dominant cell states within a tumour, with the proneural subtype 

(TCGA-PN) typically enriched with cells in a neural-progenitor-like (NPC) or oligodendrocyte-

progenitor-like (OPC) state, mesenchymal subtype (TCGA-MS) enriched with cells in mesenchymal-like 

(MES) state, and classical subtype (TCGA-CL) enriched with cells in an astrocyte-like (AC) state184. 

Therefore, we reasoned that if the miRNA pathway had a role in regulating cell states, then it may be 

possible to identify miRNAs with strong associations to the genes typically upregulated in these cell 

states using population level data. 

2.4.1. Different miRNAs are associated with TCGA glioblastoma subtypes 

To detect potential associations between miRNAs and cell states we first scored tumours by their 

mean expression of marker genes for each glioblastoma subtype184. We found that tumours were 

typically associated with at most one TCGA glioblastoma subtype as they did not score highly in 

multiple subtypes and there was a negative correlation (Pearson’s method) between scores for each 

subtype (Figure 2.6A-C). Out of the top 200 expressed miRNAs measured across all glioblastoma 

tumours, 146 miRNAs were significantly correlated with at least one subtype score (p.adj < 0.05; Figure 

2.8). The strongest correlations of miRNA expression and subtype scores were with the TCGA-PN and 

TCGA-MS subtypes.  

We then compared the correlation coefficients of individual miRNAs across TCGA subtypes and found 

that miRNAs with the highest positive correlation to a given TCGA subtype were frequently 

accompanied by a negative correlation to the other subtypes (Figure 2.7 and 2.8). This was most 

evident when comparing the correlation values of the miRNAs with the TCGA-PN subtype against the 

TCGA-MS subtype, which revealed a strong anti-correlation pattern (R=-0.69; Figure 2.7B), followed 

by TCGA-MS against TCGA-CL (R=-0.45) and finally TCGA-PN against TCGA-CL (R=-0.24). Together, this 

data suggests that miRNA expression is strongly associated with TCGA subtypes and is in line with a 

potential involvement in regulating cell states.  
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Figure 2.6. Comparison of each pair of TCGA subtype scores in glioblastoma tumours. Scores and Pearson correlation are shown for A. Mesenchymal vs Classical. 
B. Classical vs Proneural. C. Mesenchymal vs Proneural. Scores were calculated from RNA expression data in CPTAC-3 bulk tumour data, using sets of genes 
representing each subtype. 
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Figure 2.7. Comparison of TCGA subtype and cell state glioblastoma gene modules and their association with miRNAs. A. Hierarchical clustering of Pearson 
correlation values between each miRNA’s expression and gene module scores. B. Compares miRNA/module correlation values across each pair of gene modules. 
Gene module scores were calculated from expression of gene sets from Wang et al (for TCGA) and Neftel et al’s (for cell states) studies respectively. Two 
different gene modules were included for MES and NPC states. Pearson’s correlation was used to determine correlation metrics. TCGA subtypes – TCGA-CL:
Classical. TCGA-MS: Mesenchymal. TCGA-PN: Proneural. Cell states - AC: Astrocyte-like. MES: Mesenchymal-like. NPC: Neural-progenitor-like. OPC:
Oligodendrocyte-progenitor-like.
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Figure 2.8. Expression of miRNAs correlate with different TCGA subtypes. miRNAs (x-axis) are ordered by ascending Pearson correlation coefficients for the A. 
Classical (TCGA-CL) B. Mesenchymal (TCGA-MS) and C. Proneural (TCGA-PN) subtypes. Non-significant coefficients are shown as transparent dots. TCGA subtype 
scores were calculated using gene sets from Wang et al’s study207. 
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2.4.2. Different miRNAs are associated with glioblastoma cell state genes 

Following this we scored tumours by 6 gene modules that represented the 4 cell states described by 

Neftel et al184. This included modules for an astrocyte-like cell state (AC), neural-progenitor-like states 

(NPC1, NPC2), mesenchymal-like states (MES1, MES2), and an oligodendrocyte-like state (OPC). The 

highest Pearson correlation values were observed with the NPC1, NPC2, MES1, and MES2 cell states 

(Figure 2.7A and 2.9). Strong anti-correlation patterns with similar magnitudes were observed 

between the NPC1/NPC2 states and MES1/MES2 states with most miRNAs. A high number of miRNAs 

had similar correlations between NPC1, NPC2, OPC, and AC cell states, although were generally 

weaker with the OPC and AC cell states, and anti-correlation patterns were observed for some miRNAs 

(Figure 2.7A).  

The correlation values were highly similar across the TCGA-Proneural subtype and NPC1/NPC2 states, 

as well as the TCGA-MS subtype and MES1/MES2 states, as shown with hierarchical clustering (Figure 

2.7A) and Pearson correlation (Figure 2.7B). This was consistent with Neftel et al’s previous work 

suggesting these subtypes were predominantly composed of cells exhibiting these respective 

states184. A weaker association was observed between the TCGA-CL subtype and each cell state, with 

the highest association to the AC state (R=0.34), possibly reflecting this subtypes mixed population of 

states (Figure 2.7). Collectively, results demonstrate that the TCGA subtypes and cell states, defined 

by messenger RNA expression, are also evident in miRNA expression and suggest the miRNA pathway 

may also be involved in their regulation.  
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Figure 2.9. Expression of miRNAs correlate with different cell state modules. miRNAs (x-axis) are ordered by ascending Pearson correlation coefficients for the 
NPC1 cell state. Pearson correlation coefficients are shown for A. individual miRNAs or B. as rolling averages of the neighbouring 20 miRNAs. Cell state expression 
scores were calculated using gene sets from Neftel et al’s study. Two different gene modules were included for MES and NPC states. Non-significant coefficients 
are shown as transparent dots. AC: Astrocyte-like. MES:  Mesenchymal-like. NPC: Neural-progenitor-like. OPC: Oligodendrocyte-progenitor-like.
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2.4.3. Two miRNA clusters are associated with different cell states in glioblastoma cells  

We then focused on the miRNAs that were identified previously as differentially expressed between 

the two KS4 glioblastoma subpopulations. Most of the miRNAs that were co-upregulated in one of 

these subpopulations showed a consistency regarding their expression and correlation to the cell state 

scores (Figure 2.10). For example, 16/20 (p.adj < 0.05) miRNAs upregulated in KS4 cluster 1 (Figure 

2.10A) were positively correlated with the NPC1 or NPC2 cell state score and 11/20 (p.adj < 0.05) with 

the OPC score. Conversely there was a negative correlation with 9/20 (p.adj < 0.05) miRNAs and the 

MES1 scores. All 18 of the miRNAs from the Dlk1-Dio3 locus had a positive correlation coefficient with 

the NPC scores however many were weakly correlated or not statistically significant (Figure 2.10A). 

Only one miRNA, miR-155-5p, appeared to contradict the miRNAs in this group, having a positive 

correlation with MES1 scores and negative correlations with NPC1, NPC2, and OPC scores. Out of the 

5 miRNAs upregulated in KS4 cluster 2 (Figure 2.10B), 3 were positively correlated with the MES1 

scores and 2 with the MES2 scores, as well as 2 with the NPC1, and 1 with the NPC2 and OPC scores. 

All 3 miRNAs from the miR-224/452 cluster negatively correlated with the AC cell state score. The 

remaining miRNAs did not appear to contradict these observations but lacked statistical significance. 

We also considered that an aggregated expression of miRNAs from each cluster (Figure 2.10), including 

all miRNAs belonging to this cluster (All) or only those differentially expressed between the two KS4 

glioblastoma subpopulation (DE Only), may provide a stronger association to these cell states than 

any individual miRNA. We found for both measurements of the Dlk1-Dio3 cluster (Figure 2.10A), their 

association was similarly positive with the NPC1, NPC2, and OPC states, although not significant with 

the OPC state for the differentially expressed miRNAs. No significant negative correlation was shown 

between the aggregated Dlk1-Dio3 miRNA expression and the AC, MES1, and MES2 scores. For the 

aggregated miR-224/452 cluster miRNA expression (Figure 2.10B), significant positive correlation was 

observed with the MES1 and MES2 states, and negative correlation with the NPC1, OPC, and AC state 

scores (both All and DE Only). The evidence indicated that expression of select miRNAs, such as miR-

323a-3p and miR-224-5p, may be on par or better than an aggregate expression of the clusters for 

distinguishing between cell states. 

Finally, we noted that the cell state scores were generally consistent with the bulk subtype scores 

(Figure 2.10), with the miRNAs upregulated in KS4 Cluster 1 generally positively correlating with the 

TCGA-PN subtype score and miRNAs from KS4 cluster 2 positively correlating with the TCGA-MS 

subtype score. The combined evidence of cell autonomous regulation of these two miRNA clusters as 

well as their association with specific cell states highlights a novel form of intra-tumour heterogeneity 

in glioblastoma and implicates them as potential regulators of glioblastoma cell states. 
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Figure 2.10. Expression of Dlk1-Dio3 and miR-224/452 cluster miRNAs correlate with different cell state 
modules. A. Correlation of the 20 miRNAs upregulated in the KS4 glioblastoma miRNA-based cluster 1 
with each TCGA subtype and cell state score. B. Correlation of the 5 miRNAs upregulated in the KS4 
glioblastoma miRNA-based cluster 2 with each TCGA subtype and cell state score. miRNAs belonging to 
the Dlk1-Dio3 miRNA cluster (A) or miR-224/452 cluster (B) are shown in bold. Correlation of combined 
expression of miRNAs from each cluster is also shown (above black lines), including all miRNAs from 
cluster (All) or only miRNAs differentially expressed between KS4 cells (DE Only). Pearson’s correlation 
was used to determine correlation metrics. P-values are shown as asterisks - *: 0.005 <= p-value < 0.05; 
**: 0.0005 <= p-value < 0.005; ***: 0.00005 <= p-value < 0.0005. 
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2.5. The DLk1-Dio3 locus is associated with cell states in single cells 

Our previous work identified two miRNA clusters – the Dlk1-Dio3 locus and miR-224/452 cluster – with 

potential roles in cell state regulation, using population-level data to infer a relationship between 

these miRNAs and cell state marker genes. Previous studies suggest the miRNAs from the Dlk1-Dio3 

locus are co-transcribed from a common primary transcript with 3 long non-coding RNAs – MEG3, 

MEG8, and MEG937. To expand our study we leveraged single cell RNA-seq data from four separate 

studies to investigate if there was evidence of an association between the Dlk1-Dio3 locus and 

glioblastoma cell states on a single cell level212,213. Although single cell RNA-seq does not capture 

miRNAs, we hypothesized that expression of these long non-coding RNAs would be strongly correlated 

with miRNA expression from this locus and would be potential marker genes for Dlk1-Dio3 miRNA 

expression in single cells.  

2.5.1. Long non-coding RNAs MEG3, MEG8 and MEG9 predict Dlk1-Dio3 miRNA expression in 

glioblastoma tumours 

To determine if the long non-coding RNAs MEG3, MEG8, and MEG9 could predict expression of 

miRNAs from the Dlk1-Dio3 locus, we used paired RNA and miRNA expression data for glioblastoma 

tumours from TCGA to determine the correlations of the combined expression of Dlk1-Dio3 miRNAs 

with each gene in the RNA dataset. There was a high correlation between the combined Dlk1-Dio3 

miRNA expression and the non-coding RNAs MEG8 (Pearson’s r=0.71), MEG3 (Pearson’s r=0.67), and 

MEG9 (Pearson’s r=0.65), as well as with RTL1 (Pearson’s r=0.65), all of which are encoded from this 

locus (Table 2.1). Excluding genes which code for miRNAs or snoRNAs, these four were the most 

positively correlated genes across the glioblastoma tumours, indicating their expression corresponded 

well with Dlk1-Dio3 miRNA expression. This provided strong support for their use as markers to infer 

miRNA expression from this locus when only RNA-seq data is available.  
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Gene Pearson’s Correlation 
Coefficient 

P-value Gene in Dlk1-Dio3 
locus 

MEG8 0.71 1.92E-16 Yes 
MEG3 0.67 7.01E-14 Yes 
MEG9 0.65 4.88E-13 Yes 
RTL1 0.65 5.55E-13 Yes 
EIF2S1 0.54 1.18E-08 No 
ATP5MJ 0.52 4.07E-08 No 
PSMC1 0.50 1.27E-07 No 
COA8 0.48 4.20E-07 No 
SLC39A9 0.48 6.62E-07 No 
UBR7 0.48 5.17E-07 No 
BAG5 0.47 1.21E-06 No 
CINP 0.47 8.29E-07 No 
EIF5 0.47 9.53E-07 No 
VTI1B 0.46 1.64E-06 No 
AREL1 0.45 3.49E-06 No 
FAM131B-AS1 0.45 3.60E-06 No 
PPP2R3C 0.45 2.94E-06 No 
PPP4R3A 0.45 3.07E-06 No 
DRAXIN 0.43 1.29E-05 No 
DYNC1H1 0.43 9.72E-06 No 

 

Table 2.1. Genes with the strongest correlation to the combined expression of Dlk1-Dio3 miRNAs, 
excluding genes encoding for miRNAs (i.e primary or precursor miRNAs) and snoRNAs. 
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2.5.2. MEG3 expression is associated with the neural progenitor-like and oligodendrocyte 

progenitor-like cell states in single cells 

To investigate if the Dlk1-Dio3 marker genes were associated with any cell states we utilized single cell 

RNA-seq data from 4 different studies, which included 43 glioblastoma tumours and 16269 cells after 

filtering184,212,213,226. For the Neftel study we analysed the tumours as two distinct datasets depending 

on whether they were sequenced by the Smart-seq2 (labelled Neftel dataset) or 10X Genomics 

(labelled Neftel 10X dataset) methods, and some of the tumours featured in multiple datasets. Of the 

Dlk1-Dio3 markers, only MEG3 was detectable in a high number of cells so we focused on this gene.  

Each glioblastoma cell was assigned a score for each cell state, using the same methodology described 

previously. We then calculated the Pearson correlation between the cell state module scores and 

MEG3 expression (log2[TPM+1]) for all cells in each dataset. There was a significant positive correlation 

between MEG3 expression and the NPC1 and NPC2 cell state scores found in all datasets (Figure 2.11). 

Correlations ranged from positively weak to moderate for the NPC1 (Pearson’s r=0.07 to 0.53) and 

NPC2 scores (Pearson r=0.08 to 0.61). Similar observations, albeit to a lesser extent, were seen with 

the OPC scores (Pearson’s r=0.00 to 0.48). Additionally, there was a significant weak to moderately 

negative correlation between MEG3 expression and the MES1 scores (Pearson’s r=-0.12 to -0.42) 

across datasets.  

To determine if this observation was consistent across individual tumours, we separated glioblastoma 

cells accordingly (Figure 2.12). We found that for most tumours (38/50), MEG3 expression was 

positively correlated with at least one of the NPC cell state scores, and many were also positively 

correlated with the OPC scores (22/50). Most tumours with a positive correlation of MEG3 expression 

and NPC scores also had a corresponding negative correlation with the MES1 and/or MES2 scores, 

again observable across multiple datasets. The coefficients were generally stronger in tumours with a 

higher expression of MEG3, suggesting that tumours with lower expression of MEG3 either had 

insufficient statistical power to detect this association or this association is not present in all 

glioblastomas. Although we did not observe any strong correlation (Pearson’s R >= 0.7) with any 

modules, the observations were consistent with the Dlk1-Dio3 miRNAs from the TCGA data. 
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Figure 2.11. Correlation of MEG3 expression with cell state module scores across all glioblastoma cells 
for each dataset. Scores were calculated from expression of gene modules highly expressed in their 
respective glioblastoma cell state. Scoring method and gene modules were obtained from the Neftel et 
al study184. Pearson’s method was used for correlation, and p-value significance is shown as asterisks. 
*: 0.005 <= p-value < 0.05; **: 0.0005 <= p-value < 0.005; ***: 0.00005 <= p-value < 0.0005; ****: 
0.000005 <= p-value < 0.00005.
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Figure 2.12. MEG3 expression and correlation with cell state module scores in cells from each glioblastoma tumour. Scores were calculated from expression of 
gene modules highly expressed in their respective glioblastoma cell state. Scoring method and gene modules were obtained from the Neftel et al study184. 
Pearson’s method was used for correlation, and p-value significance is shown as asterisks. *: 0.005 <= p-value < 0.05; **: 0.0005 <= p-value < 0.005; ***: 
0.00005 <= p-value < 0.0005; ****: 0.000005 <= p-value < 0.00005.
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2.6. Target prediction identifies Dlk1-Dio3 miRNAs regulate key transcription factors and 

regulatory pathways involved in cancer 

As miRNAs function by regulating gene targets, we used miRNAtap to predict the targets of miRNAs 

from the Dlk1-Dio3 and miR-224/452 clusters and compared them to the cell state gene modules to 

see if any cell states were highly represented (Figure 2.13). We found that the proportion of cell state 

genes that were targets of at least one the 18 upregulated miRNAs from the Dlk1-Dio3 locus were not 

substantially different, ranging from 18-28% (Figure 2.13A). The cell state modules with the highest 

proportion of targets were the NPC1 and NPC2 modules, where 28.0% (14/50) of genes were identified 

as Dlk1-Dio3 targets. This was followed by 25.6% (10/39) in the AC module, 24.0% (12/50) in the MES2 

module, 22.0% (11/50) in the MES1 module, and finally 18.0% (9/50) in the OPC module. As the 

number of targets across all 18 miRNAs (n=3605) represented a significant portion of overall genes, 

we also considered genes which were targets of multiple miRNAs from the same cluster, which we 

expected would be more strongly regulated (Figure 2.13). When only considering genes targeted by 2 

or more miRNAs from Dlk1-Dio3 locus, the number of targets matching cell state genes dropped for 

all cell state modules, however the NPC1 module remained the most highly represented (6/50 genes). 

When increasing to 3 or more miRNAs, only 1 gene remained from the NPC2 and OPC modules, and 

no other cell states had matching targets. Interestingly, the NPC2 marker gene NFIB was a predicted 

target of 7 of the 18 identified Dlk1-Dio3 miRNAs, suggesting they downregulated this gene. This was 

unexpected given that our previous work indicated the miRNAs from this cluster were upregulating 

the genes which represented this state. Nonetheless, the results highlighted that regulation of this 

gene is likely an important function of this miRNA cluster. 

We also investigated targets of the 3 miRNAs from the miR-224/452 cluster (Figure 2.13B). The 

proportion of cell state genes that were targets of at least one miRNA from this locus were similar 

across most cell states. Representation was highest in the NPC2 module (7/50), followed by the NPC1 

module (5/50), then MES1, MES2 and OPC modules (4/50), and finally the AC module (3/39). Only the 

NPC2 cell state module had a gene, MAP1B, that was targeted by 2 or more miRNAs from this cluster.  

Following this we considered whether the function of either miRNA cluster could be predicted through 

KEGG pathway enrichment analysis of their gene targets (Figure 2.14). For the Dlk1-Dio3 miRNA 

targets there was a significant enrichment in pathways in cancer (ID: hsa05200) as well as several 

pathways associated with cell signalling, including Proteoglycans in cancer (ID: hsa05205), Hippo 

signalling pathway (ID: hsa04390), FoxO signalling pathway (ID: hsa04068), and MAPK signalling 

pathway (ID: hsa04010), which have roles in cell adhesion, proliferation, differentiation, and apoptosis 

(Figure 2.14A)234–237. miRNA targets from the miR-224/452 cluster were also significantly enriched in 
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multiple signalling pathways which included the Wnt signalling pathway (ID: hsa04310) and Hedgehog 

signalling pathway (ID: hsa04340), important regulators of stem cell renewal and epithelial-

mesenchymal transition (Figure 2.14B)238,239. Although many of the signalling pathways mentioned 

above may be involved in cell state regulation, we were unable to find strong evidence that miRNA 

targets from the Dlk1-Dio3 locus or miR-224/452 cluster had a specific role in any known cell states. 
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Figure 2.13. Common genes between cell state modules and miRNA targets. Shows                                                                                                                               
predicted targets for A. Dlk1-Dio3 locus miRNAs and B. miR-224/452 cluster miRNAs. We considered all 
predicted targets from cluster miRNAs, as well as only those targeted by multiple miRNAs (x-axis). Only 
includes miRNAs from each cluster which were differentially expressed in the KS4 cells. AC: Astrocyte-
like. MES:  Mesenchymal-like. NPC: Neural-progenitor-like. OPC: Oligodendrocyte-progenitor-like. 
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Figure 2.14. Gene Set Enrichment Analysis of KEGG pathways for miRNA cluster targets. A. Targets of 
the Dlk1-Dio3 miRNAs. B. Targets of the miR-224/452 miRNAs. Only includes miRNAs from each cluster 
which were differentially expressed in the KS4 cells. 
  



71 
 

2.6.2. Expression of miRNA targets is associated positively with NPC and OPC cell states and 

negatively with MES states 

One of the primary mechanisms of gene regulation in the miRNA pathway is to facilitate degradation 

of transcriptional targets. Therefore, we hypothesized if miRNAs were important in the regulation of 

any cell states, their activity would be detectable through a change in expression of their targets. For 

example, cells with higher expression of miRNAs should have, on average, lower expression of their 

targets and conversely cells with lower expression of miRNAs should have, on average, higher 

expression of their targets. To investigate the regulatory effects of miRNAs from the Dlk1-Dio3 locus 

or miR-224/452 clusters with cells in each of the cell states, we calculated the mean expression of 

targets within each cell and then binned cells as high (score > 1), none (-1 > score >= 1), or low (score 

<= -1) scoring for each cell state score calculated in the previous section (Figure 2.15 and 2.16). As 

several factors, including library preparation and sequencing method are known to influence gene 

quantification, we treated cells from different datasets separately.  

With the Dlk1-Dio3 miRNA targets, there was typically a high amount of variation in target expression 

across cells even within the same scoring bin (Figure 2.15). We observed a minor but statistically 

significant increase in target expression when comparing low to high scoring MES1 (in 5/5 datasets) 

and MES2 (in 4/5 datasets) cells. For the other cell state modules, there was a general lack of 

consistency in results when comparing cells from different datasets, indicating no association between 

target expression and cell state score. Similar results were observed with the miR-224/452 cluster 

targets, which also had a high variation in expression with cells in each scoring bin. For both the MES1 

and MES2 cell states, there was a similar trend with increased expression in the low scoring cells in 

the Darmanis, Neftel, and Filbin datasets and no significant difference detected in the remaining 

datasets. Additionally, no clear trend was evident when examining the other cell states for the miR-

224/452 cluster targets (Figure 2.16).  

We considered that the high stochastic variability of gene expression between cells may confound any 

measurable changes in target expression between high and low scoring cell states. The scoring method 

used previously for the cell states effectively measures mean expression of associated marker genes, 

while also adjusting values by expression of a set of control genes of each cell. Therefore, to account 

for stochastic variability we used this method to score cells according to their expression of gene 

targets from the Dlk1-Dio3 or miR-224/452 cluster miRNAs and refer to them as cluster target scores. 

The difference between cells with high and low cell state scores was clearer when comparing target 

scores instead of expression (Figure 2.17 and 2.18). The Dlk1-Dio3 (Figure 2.17) and miR-224/452 

(Figure 2.18) target scores were both increased in the high scoring MES1 and MES2 cells, and 

decreased in high scoring NPC1, NPC2. A decrease in miRNA target scores was also observed in high 
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scoring OPC and AC cells however this was less pronounced in the miR-224/452 target scores. 

Together this data suggested there was a measurable change in the expression of targets by the Dlk1-

Dio3 and miR-224/452 miRNA cluster when comparing cells in different cell states, and this may 

indicate that the Dlk1-Dio3 miRNA cluster is more active in MES cells and less active in NPC cells. 

Finally, we calculated the Pearson correlation of target scores and cell state scores, calculating 

coefficients for each tumour separately (Figure 2.19). For the Dlk1-Dio3 cluster targets, there was a 

weak positive correlation between the AC, NPC1, NPC2, and OPC scores and a weak negative 

correlation with MES1 scores for cells in most of the glioblastoma tumours (Figure 2.19A). We also 

scored cells using genes targeted by multiple miRNAs for this cluster (up to a maximum of 7) and 

observed a high degree of similarity when including all targets (Figure 2.19A). A median weak positive 

correlation for the AC, NPC1, NPC2, and OPC scores and median weak negative correlation for the 

MES1 scores was also observed with targets from the miR-224/452 cluster (Figure 2.19B). These 

results suggested that downregulation of the Dlk1-Dio3 cluster targets was not evident in cells scoring 

highly for the NPC1, NPC2, OPC and AC modules, despite our previous work indicating an upregulation 

of this cluster’s miRNAs. For the miR-224/452 cluster targets, the observed negative correlation with 

the MES1 module (genes targeted by at least one miRNA from this cluster) and MES2 (only with genes 

targeted by at least 2 miRNAs from this cluster) was consistent with a regulatory effect from this 

cluster’s miRNAs on the mesenchymal cell state. 

To investigate if this trend was exclusive to these miRNA clusters, we expanded these results to include 

targets from each of the top 200 expressed miRNAs across TCGA glioblastoma tumours (Figure 2.20). 

We found that there was a general trend for targets of miRNAs to be positively correlated with the 

NPC1, NPC2, and OPC scores as well as negatively correlated with the MES1 and MES2 scores, 

indicating the results were not specific to these two miRNA clusters. The correlation coefficients for 

the AC scores were more mixed. Notably, target scores for miRNAs with a stronger positive correlation 

with the NPC1, NPC2, and OPC scores nearly always corresponded with a stronger negative correlation 

to the MES1 and MES2 scores, mirroring previous observations of an inverse relationship between 

NPC/OPC and MES states when comparing miRNA expression and cell state scores (Figure 2.9). 
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Figure 2.15. Expression of gene targets for miRNAs from the Dlk1-Dio3 cluster. For each cell state score, 
glioblastoma cells were divided into high (score > 1), none (-1 > score >= 1), or low (score <= -1) scoring 
bins and mean expression of targets was compared between high and low bins using the Student’s t-
test. Data is shown from 5 different datasets – Darmanis, Filbin, Neftel, Neftel_10X, and Patel. 
Significance shown as asterisks - *: 0.005 <= p-value < 0.05; **: 0.0005 <= p-value < 0.005; ***: 0.00005 
<= p-value < 0.0005; ****: 0.000005 <= p-value < 0.00005. AC: Astrocyte-like. MES:  Mesenchymal-like. 
NPC: Neural-progenitor-like. OPC: Oligodendrocyte-progenitor-like.  
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Figure 2.16. Expression of gene targets for miRNAs from the miR-224/452 cluster. For each cell state 
score, glioblastoma cells were divided into high (score > 1), none (-1 > score >= 1), or low (score <= -1) 
scoring bins and mean expression of targets was compared between high and low bins using the 
Student’s t-test. Data is shown from 5 different datasets – Darmanis, Filbin, Neftel, Neftel_10X, and 
Patel. Significance shown as asterisks - *: 0.005 <= p-value < 0.05; **: 0.0005 <= p-value < 0.005; ***: 
0.00005 <= p-value < 0.0005; ****: 0.000005 <= p-value < 0.00005. AC: Astrocyte-like. MES:  
Mesenchymal-like. NPC: Neural-progenitor-like. OPC: Oligodendrocyte-progenitor-like.  
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Figure 2.17. Cluster target scores for the Dlk1-Dio3 cluster. Target scores were calculated using the 
same scoring method for cell states. For each cell state score, glioblastoma cells were divided into high 
(score > 1), none (-1 > score >= 1), or low (score <= -1) scoring bins and mean expression of targets was 
compared between high and low bins using the Student’s t-test. Data is shown from 5 different datasets 
– Darmanis, Filbin, Neftel, Neftel_10X, and Patel. Significance shown as asterisks - *: 0.005 <= p-value < 
0.05; **: 0.0005 <= p-value < 0.005; ***: 0.00005 <= p-value < 0.0005; ****: 0.000005 <= p-value < 
0.00005. AC: Astrocyte-like. MES:  Mesenchymal-like. NPC: Neural-progenitor-like. OPC: 
Oligodendrocyte-progenitor-like.  
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Figure 2.18. Cluster target scores for the miR-224/452 cluster. Target scores were calculated using the 
same scoring method for cell states. For each cell state score, glioblastoma cells were divided into high 
(score > 1), none (-1 > score >= 1), or low (score <= -1) scoring bins and mean expression of targets was 
compared between high and low bins using the Student’s t-test. Data is shown from 5 different datasets 
– Darmanis, Filbin, Neftel, Neftel_10X, and Patel. Significance shown as asterisks - *: 0.005 <= p-value < 
0.05; **: 0.0005 <= p-value < 0.005; ***: 0.00005 <= p-value < 0.0005; ****: 0.000005 <= p-value < 
0.00005. AC: Astrocyte-like. MES:  Mesenchymal-like. NPC: Neural-progenitor-like. OPC: 
Oligodendrocyte-progenitor-like.  
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Figure 2.19. Correlation of scores for cluster targets and cell states in glioblastoma tumours. A. Multiple 
target scores were calculated for the Dlk1-Dio3 cluster by including genes which were common targets 
of up to 7 miRNAs. B. Two target scores were calculated for the miR-224/452 cluster, including all 
targets (1 minimum miRNA) and common targets of 2 miRNAs. Pearson correlations were calculated 
using cell scores from each tumour. AC: Astrocyte-like. MES:  Mesenchymal-like. NPC: Neural-
progenitor-like. OPC: Oligodendrocyte-progenitor-like. 
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Figure 2.20. Correlation of miRNA target scores for 200 miRNAs highly expressed in glioblastoma tumours. miRNAs are ordered by ascending Pearson correlation 
coefficients for the NPC1 module. miRNAs are highlighted from the Dlk1-Dio3 locus (red) and miR-224/452 cluster (blue). Non-significant coefficients are shown 
as transparent dots. AC: Astrocyte-like. MES:  Mesenchymal-like. NPC: Neural-progenitor-like. OPC: Oligodendrocyte-progenitor-like.
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2.7. Discussion 

In this chapter we investigated miRNA heterogeneity in glioblastoma to determine if miRNAs may play 

a role in the regulation of glioblastoma cell states. We identified two miRNA clusters in a primary 

glioblastoma culture which discriminated between two subpopulations of cells, suggesting they are 

expressed in a cell autonomous manner, and hypothesized that they may represent two different 

glioblastoma cell states. There were mixed results regarding both miRNA clusters and their association 

with the cell states defined in this study. The results suggest miRNA expression from the Dlk1-Dio3 

locus, as well as the putatively co-expressed long non-coding RNA MEG3, is increased in NPC cells and 

decreased in MES cells. However, expression of their miRNA targets was also increased in NPC cells 

and decreased in MES cells, which suggests miRNA activity is higher in the MES cells and lower in the 

NPC cells. Several factors may have contributed to these observations, including an incomplete or 

oversimplistic characterization of glioblastoma cell states, poor performance of miRNA target 

prediction algorithms, or limitations with sequencing that challenge the inference of miRNA activity 

through expression of their targets. Furthermore, cause-and-effect is difficult to establish via 

association and it remains to be seen if any of these miRNAs are capable of driving or maintaining 

cancer cell states, or if their expression simply changes in response to other, more critical genes. Even 

in the absence of a functional role, miRNAs may still hold value as biomarkers for cell states once the 

field evolves towards clinical strategies which factor intra-tumoural heterogeneity. 

2.7.1. Defining glioblastoma cell states 

Although there is some evidence that discrete subpopulations of cells can be identified using RNA or 

miRNA expression, many large scale single cell studies have observed that cells are often continuously 

distributed between cell states with a high number of cells in ‘intermediate’ states184,194,240,241. 

Additionally, ‘hybrid’ states which have upregulated gene modules for multiple states have been 

detected in glioblastoma184. These ‘hybrid’ states do not appear completely random as some 

combinations were much more common than others. It is plausible that the models of glioblastoma 

cell states used in this study imperfectly capture the intra-tumoural relationships between 

glioblastoma cells and may have confounded the results. 

A key question is whether cell states defined with RNA expression are also mirrored with changes in 

miRNA expression, or if examining each expression modality will lead to the detection of different 

subpopulations. For example, in a study with hepatocellular carcinoma cells, the authors used 

hierarchical clustering to identify 3 subpopulations of cells with RNA expression but found only 2 with 

miRNA expression194. There was significant overlap between 2 of the RNA expression-based 

subpopulations and the miRNA subpopulations, however the third was not identifiable in the miRNA 
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expression data. This suggests that it cannot always be assumed that there is concordance between 

RNA-based cell states and miRNA expression. Consequently, if the miRNAs examined in this study, 

including those from the Dlk1-Dio3 and miR-224/452 clusters, regulate cell subpopulations in a 

manner that is different to the cell states used in this study, then it is less likely that we would observe 

any strong association with them.  

2.7.2. Challenges of determining miRNA activity through changes in target expression 

In the absence of multi-omic sequencing data which captures miRNA and RNA expression in single 

cells, we opted to make use of more accessible scRNA-seq data for glioblastoma cells to infer miRNA 

activity through down-regulation of their targets. For target prediction we used miRNAtap, which 

aggregates target predictions from popular prediction tools (DIANA, Targetscan, PicTar, Miranda, and 

miRDB), and only used targets predicted by at least two tools to improve the detection of true positive 

targets233,242–246. However, target prediction still remains unreliable, and algorithms still fail to capture 

the true range of regulatory targets247. Early target prediction algorithms relied on the detection of 

canonical interactions where miRNA-target pairs were matched between the seed sequence and 

3´UTR respectively248. More recent iterations of target prediction algorithms employ machine learning 

to improve performance and can also identify targets with non-canonical interactions248,249. Despite 

some improvements in performance over the years, experimental validation of targets are still needed 

to confidently identify regulatory interactions with miRNAs247. Unfortunately, the number of predicted 

miRNA-target interactions make it impractical to validate all miRNA-target pairs, though high 

throughput validation methods using CLIP or bind-n-seq approaches can help to alleviate this 

issue250,251.  

Measuring the biological impact of individual miRNAs is extremely challenging, and many studies fail 

to identify quantifiable relationships between expression of miRNAs and their expected targets. 

Modulating RNA levels is just one of several mechanisms that miRNAs use to regulate their targets, 

and other mechanisms such as translational inhibition are not detectable with this approach. 

Additionally, miRNAs are each predicted to regulate hundreds to thousands of genes and their 

influence on each gene may be minor, acting in concert with other miRNAs to be effective. Previous 

studies which examine mRNA expression profiles from microarrays or sequencing have shown that 

miRNA activity can be extrapolated from this data, indeed many target prediction algorithms such as 

miRDB and MirTarget are trained with mRNA expression data246,252,253. However, the suitability of 

single cell sequencing data for predicting miRNA activity has not been validated. Individual cells are 

inherently stochastic, and current methods for both single cell RNA and miRNA sequencing are 

plagued by technical issues which lead to noisy data and feature dropouts254. 
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Finally, our work assumes that miRNA activity can be captured through negative correlations between 

miRNAs and the genes they regulate, however this may not always be true. For example, gene 

networks which involve co-expression of miRNAs and their targets, could lead to a positive correlation 

between the two despite the miRNAs role in suppressing these targets. This may also explain why 

NFIB, a marker gene of the NPC1 module, was targeted by 7 of the Dlk1-Dio3 miRNAs despite evidence 

that these miRNAs were upregulated in this cell state. When we scaled our analysis to include the 

targets of 200 miRNAs, this highlighted a broader trend of positive correlations with NPC and OPC 

scores and negative correlations with MES scores, indicating the correlations observed for the Dlk1-

Dio3 and miR-224/452 miRNA clusters were not isolated to them. While it is possible that the miRNA 

pathway has a more generalized role in promoting or suppressing specific cell states, an alternative 

explanation is that the results are capturing correlations of cell state scores and gene expression in a 

manner unrelated to the miRNAs. For example, as sequencing is inherently relative, an increase in 

expression of RNAs which dominate one cell state may decrease measurements for the remaining 

RNAs, translating into a negative correlation with most mRNAs as that state is more highly expressed. 

Furthermore, as miRNA targets would be biased towards protein coding RNAs, a general change in 

their levels relative to other RNA classes within a cell state may also produce a false correlation. Thus, 

we were not able to determine if the miRNAs were truly having an impact on the expression of their 

targets. 

2.7.3. miRNAs are potential biomarkers of glioblastoma heterogeneity 

miRNAs such as miR-9-3p, miR-27a, and miR-23a, have previously been identified as markers for 

discriminating TCGA-PN and TCGA-MS subtypes. Interestingly, results from our study were consistent 

with this work, as these 3 miRNAs had some of the strongest correlation coefficients with the 

corresponding subtypes compared to other miRNAs, suggesting at least some the associations here 

are genuine. How well these observations translate to single cell level miRNA expression and their 

association with cell states remains to be confirmed. 

Our study is the first to implicate the Dlk1-Dio3 and miR-224/452 miRNA clusters as potential 

regulators of glioblastoma heterogeneity. We identified an inverse relationship between RNA 

expression in cells with high expression of NPC/OPC genes compared to cells with high expression of 

MES genes. This observation was also evident in bulk miRNA expression data when comparing 

NPC/OPC and MES scores which suggests miRNA expression is highly responsive to cell states and 

likely incorporated into the gene networks regulating them. Although we have limited evidence that 

the two subpopulations of KS4 cells are most strongly associated with the NPC and MES cell states, 

further research which pairs miRNA sequencing with a more direct way of identifying biologically 

relevant cell states is critical. Furthermore, studies will need to be scaled up to included multiple 
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tumours to determine if heterogenous expression of miRNAs from the Dlk1-Dio3 and miR-224/452 

clusters are a common feature in glioblastoma or an isolated case.  
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3. A comparative analysis of single cell small RNA sequencing data 

reveals heterogenous isomiR expression and regulation 

3.1. Chapter introduction 

miRNAs play a critical role in the regulation of gene expression in normal and cancerous cells. IsomiRs 

are variants of miRNAs with alterations in their nucleotide sequence, which can occur at the 5´ or 3´ 

ends of the miRNA where bases are added or subtracted, or anywhere within the sequence, including 

the seed region255. Variations at the 3´ end can also be distinguished in terms of whether they match 

their precursor RNA/originating gene sequence or not, as different sequences can be generated during 

miRNA biogenesis from proteins such as Drosha and Dicer, or by additional factors which can 

introduce new bases to the 3´ end. IsomiRs may possess alternative regulatory functions as evidence 

suggests that changes to bases at the 3´ end can alter a miRNAs regulatory activity or stability, whereas 

shortening or extending the 5´ end of a miRNA can affect target recognition due to a shift in the seed 

sequence256. Additionally, isomiR expression is closely associated with disease states, including cancer, 

however their role in many diseases is poorly understood.  

Although most miRNA sequencing studies do not design experiments with a focus on studying isomiRs, 

isomiR research benefits from the fact that sequencing data captures complete nucleotide sequence 

information for small RNAs, and therefore isomiR abundance can also be estimated. To this date, 

miRNA and isomiR research has largely been based on population-level sequencing studies which are 

poorly equipped to investigate their role in intra-tumour heterogeneity257. Single cell small RNA 

sequencing methods which can capture and quantify miRNAs, and in principle isomiRs, have been 

recently developed but so far have not been utilized to their full potential191,194,258. Single cell data is 

challenging to work with and analysing single cell data for isomiR studies introduces additional 

problems which have not been addressed to this date254. A fundamental question that remains 

unanswered is whether isomiR expression is the result of stochastic processes or if they are under cell 

autonomous regulation. 

Accurate and reliable isomiR quantification remains challenging as many of the issues with sequencing 

data analysis are more pronounced when studying isomiRs. As many studies have shown, isomiRs with 

as little as one nucleotide difference have potentially distinct regulatory functions55,259. Consequently, 

a common approach to isomiR quantification involves annotation and quantification of each unique 

sequence as distinct isomiRs260–262. However, it is well recognized that errors in read sequence are 

introduced in both the library preparation and sequencing steps, and this can lead to an 

overestimation of the number of unique isomiRs in a sample as well as an underestimation of the 
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quantity of certain isomiRs due to the mis-annotation of some reads263,264. This issue is expected to be 

more pronounced when working with single cell data, which is generally sequenced at a much lower 

read depth than bulk sequencing data, as sequencing costs are usually distributed across a larger 

number of samples. Additionally, the amplification step during library preparation introduces bias 

towards certain cDNAs and can lead to less accuracy in RNA quantification265,266. The low starting 

material of individual cells necessitates a higher number of PCR cycles, therefore greater bias, before 

reaching the required library size for sequencers and leads to a higher proportion of undesirable reads 

from RNA contamination. Several biochemical and bioinformatics approaches have been developed 

to address some of these issues. For example, error correction methods have been proposed to 

improve the accuracy of read sequences, although most have been designed for RNA-seq data and 

quantification. One error correction method was recently developed for miRNA analysis, using a k-

mer lattice approach, however its efficacy on sequencing datasets with low read depth such as single 

cell data has not been demonstrated267. Unique molecular identifiers (UMIs) are short, randomized, 

artificial sequences that are introduced to cDNA prior to PCR amplification, which allows 

compensation for the bias introduced during this stage as reads derived from the same cDNA are 

expected to have identical sequences and UMI sequence268. UMIs have been utilized in a number of 

bulk and single cell sequencing methods including RNA-seq, small RNA-seq and ATAC-seq to improve 

quantification accuracy as well as DNA-seq to distinguish low frequency mutations and sequencing 

errors261,269–272. However, UMIs require a high sequencing depth to reliably distinguish real nucleotide 

changes from errors and concerns have been raised regarding the utility of UMIs in less complex 

libraries, such as small RNA sequencing libraries, where they may result in an underestimation of 

miRNA abundance due to excessive de-duplication273. Despite these concerns, single cell small RNA 

sequencing is currently our only tool to study cell-wide isomiR profiles and so more reliable methods 

of isomiR quantification are needed. 

To our knowledge no study has used single cell small RNA sequencing to investigate isomiR expression 

or regulation on a single cell level274. In the following chapter we apply an alternative approach to 

isomiR quantification using biologically relevant isomiR types to overcome some of the issues from 

working with single cell data. We compare data from three single cell small RNA sequencing protocols 

and assess their strengths, pitfalls, or biases with respect to their isomiR quantification to inform 

future experimental designs. We also find evidence that some isomiR types exert different regulatory 

effects on their canonical targets, suggesting they are functional, and that isomiR regulation is cell 

autonomous. Together this work implicates isomiR expression and processing as an unexplored gene 

regulatory layer that potentially contributes to intra-tumour heterogeneity. 
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3.2. Specific methodology 

3.2.1. Data Collection 

Raw single cell small RNA sequencing data was obtained from the Gene Expression Omnibus (GEO) 

database under accession ids GSE81287 (glioblastoma and embryonic cells), GSE114071 (leukemia 

cells) and the Genome Sequence Archive (Beijing Institute of Genomics) under accession ID 

CRA001133 (hepatocellular carcinoma cells). Bulk small RNA sequencing data was obtained from 

accession id GSE141687 (leukemia), GSE166349 (hepatocellular carcinoma), and GSE76903 (also 

hepatocellular carcinoma). 

3.2.2. Sequencing Data Processing 

For samples derived from the Smallseq protocol, UMI sequences were removed prior to any adapter 

removal and appended to the read headers188. Adapters were then removed using cutadapt (v2.7) 

with a minimum overlap of 1 nt and maximum error rate of 0.1 between reads and adapter 

sequences228. After UMI and adapter removal, reads shorter than 15 nucleotides were excluded. 

To identify duplicated reads, reads were aligned to the human genome (hg38) using bowtie (v1.2.3) 

with the following parameters: -n 2 -e 120 -l 20 --best229. Human-aligned reads were subsequently 

deduplicated with umitools (v1.0.0) with default settings230. 

For the other protocols, as well as the non-deduplicated Smallseq analysis, separate pipelines which 

excluded the alignment to the human genome and subsequent deduplication with umitools were 

used. 

3.2.3. miRNA Mapping and Annotation 

Processed reads were aligned to miRbase (v22.1) annotated precursor miRNAs using miraligner (v3.4), 

with the following parameters: -sub 1 -trim 3 -add 336,231. Reads which successfully aligned to a miRNA 

were also annotated with any variants to the miRbase defined mature sequence. 

The following isomiR categories were defined: Canonical – miRNAs with a perfect match to the 

miRbase mature sequence, 5p Variant – miRNAs differing at the 5` end with respect to the miRbase 

mature sequence, 3p Template – miRNAs deviating in length to the miRbase mature sequence but still 

matching the precursor miRNA sequence, 3p Non-template – miRNAs which did not match the 

precursor miRNA sequence at the 3` end, and Substitution – miRNAs containing a maximum of 1 

mismatch to the miRbase mature sequence, excluding variations at the 5` or 3` ends. Categories were 

then assigned any alignments which contained their respective isomiR modification and were used for 

measuring their proportions relative to the total number of annotated reads.  
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3.2.4. Correlation of miRNA and isomiR Expression with Predicted Targets 

For building miRNA predicted target lists, the miRNAtap (v1.20) package was used to aggregate targets 

across the five supported algorithms (DIANA, Miranda, PicTar, TargetScan and miRDB) using the 

‘minimum’ method and only considering targets predicted by 2 or more algorithms233. The Pearson 

correlation between miRNA and gene expression across all cells was calculated and used for plotting 

each miRNA with its targets.  

3.2.5. Code for Data Analysis and Figures 

Documents containing code used to generate the results in this section can be found in the following 
link: https://cloudstor.aarnet.edu.au/plus/s/GaNTw7rMWztjliu 
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3.3. miRNA and IsomiR abundance are highly variable across cell types in the three single 

cell small RNA-seq protocols 

IsomiRs have been successfully used to classify cancer types and may have a role to play in 

oncogenesis142. However, so far isomiRs have not been studied on a single cell level and the 

mechanisms behind isomiR expression and processing across and within cell types are poorly 

understood.  

To assess miRNA and isomiR expression in different cells and single cell sequencing protocols we 

analysed 9 cell types from 3 different studies (Figure 3.1 and Table 3.1). This included the seven cell 

types sequenced in the Small-seq study188, which after quality control and filtering included 139 cells 

from three glioblastoma primary cell cultures, 35 cells from the U87 glioblastoma cell line, 48 cells 

from the human embryonic kidney cell line HEK293FT, and 107 naïve and 95 primed human embryonic 

stem cells (Table 3.1). Additionally, we included the 19 K562 leukemia cells from Wang et al’s 

miRNA/mRNA Co-sequencing study (Co-seq)191 and 32 hepatocellular carcinoma (HCC) cells isolated 

from a resected tumour sample and sequenced in the Holo-seq study194. Using miRNA expression, we 

calculated the Spearman’s correlation between all pairs of cells and clustered them using hierarchical 

clustering (Figure 3.1A). We found that individual cells from the same cell type typically clustered 

together, except for several of the glioblastoma cell types which formed mixed clusters likely owing 

to their similar miRNA profiles. Using the same methodology for read mapping and miRNA annotation 

for all samples, we found that cells from the Small-seq protocol had a higher number of unique miRNAs 

(Figure 3.1B). This was despite a larger number of total reads being sequenced from the Co-seq and 

Holo-seq protocols (Table 3.1). However, the cells from the Co-seq and Holo-seq protocols had a 

higher number of unique isomiRs than most of the other cell types in the Small-seq protocol (Figure 

3.1C). 

Cell types from each protocol had characteristic miRNA lengths (Figure 3.1D) and expression levels 

(Figure 3.2). Most of the cell types from the Small-seq study had strong peaks at 22 nt, except for the 

primed embryonic stem cells which had a high number of 22nt and 23nt miRNAs. A significant 

proportion of miRNAs, averaged across cell types, in both the Small-seq glioblastoma (42.7-53.7%) and 

embryonic stem (37.9-52.6%) cell types were annotated as canonical. This was in stark contrast to the 

Holo-seq and Co-seq protocols where the majority of miRNAs in the HCC and K562 cells were isomiRs, 

with canonical miRNAs only representing 5.9% and 5.6% of all miRNAs respectively. It is worth noting 

that miRNA expression for some of the cell types, including the HCC and K562 cells, were dominated 

by a small number of miRNAs which would have skewed the overall lengths in favour of those miRNA 

profiles (Figure 3.2). As the HCC and K562 cell types were sequenced using different protocols from 
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independent labs, it is difficult to know how well the significant differences in isomiR abundance 

reflect cell specific differences in miRNA processing, maturation, or turnover, and how much is due to 

technical reasons such as experimental artifacts or bias. Notably, when we compared the single cell 

data to bulk RNA-seq data from other studies (Figures 3.3, 3.4, and 3.5), we found the bulk data had 

length distributions which resembled a more typical 22-23nt peak in both HCC tumour samples and 

K562 cells as opposed to the dual peaks observed in the HCC and K562 single cell data (Figure 3.3). 

Additionally, there was a higher proportion of canonical miRNAs in the bulk sequencing data (Figure 

3.4 and 3.5).  
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Figure 3.1. An overview of the small RNA sequencing samples that were analysed. A. Heatmap showing 
hierarchical clustering using Spearman correlation of miRNA expression between all samples. B. 
Number of unique miRNAs detected in each cell type. C. Number of unique isomiRs detected in each 
cell type. D. Analysis of total miRNA and isomiR length distribution profiles. Distribution of miRNA 
lengths considering all miRNAs (left) and canonical miRNAs only (right; according to miRbase). For 
canonical miRNAs, percentages are relative to total miRNA reads. Includes glioblastoma cell lines JM3, 
JM4, KS4, U87 (Small-seq protocol), embryonic kidney cells (HEK293FT), naïve embryonic (nES), primed 
embryonic stem cells (pES; Small-seq protocol), K562 cells (Co-seq protocol) and hepatocellular 
carcinoma cells (HCC; Holo-seq protocol).  
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Cell Type Cell Origin Culture 
Type/Source Study/Protocol 

No. of Cells 
Included  
(this study) 

Average No. Reads 
Mapped to miRNAs  
(% of Total Reads) 

Avg No. UMIs 
Mapped to miRNAs 

Matched  
RNA-seq data 

JM3 Glioblastoma Primary Cell Culture Faridani et al188 
(Small-seq) 37 6576.46 (0.21%) 2607.30 No 

JM4 Glioblastoma Primary Cell Culture Faridani et al188 
(Small-seq) 42 27847.19 (0.67%) 7064.76 No 

KS4 Glioblastoma Primary Cell Culture Faridani et al188 
(Small-seq) 60 14208.52 (0.41%) 4218.68 No 

U87 Glioblastoma Primary Cell Culture Faridani et al188 
(Small-seq) 35 7819.03 (0.18%) 2321.09 No 

Naïve Embryonic 
Stem Cells 

Embryonic Stem 
Cells Cell Line Faridani et al188 

(Small-seq) 107 43382.87 (1.03%) 6223.42 No 

Primed Embryonic 
Stem Cells 

Embryonic Stem 
Cells Cell Line Faridani et al188 

(Small-seq) 95 20866.96 (0.56%) 3319.39 No 

HEK293FT Embryonic Kidney 
Cells Cell Line Faridani et al188 

(Small-seq) 48 8390.38 (0.24%) 2908.21 No 

K562 Leukemia Cell Line Wang et al191  
(Co-seq) 19 25090.95 (0.38%) N/A Yes 

Hepatocellular 
Carcinoma (HCC) 

Hepatocellular 
Carcinoma Tumor Xiao et al194  

(Holo-seq) 32 31651.66 (0.38%) N/A Yes 

Table 3.1. General features of the single cell small RNA datasets. Number of cells and average mapping values are according to the mapping and filtering 
methodology used in this study. 
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Figure 3.2. Top 20 miRNAs by expression for each cell type included in this study. Percentages shown are in proportion to total reads mapped to miRNAs. 
Includes the glioblastoma primary cultures/cell lines JM3, JM4, KS4 and U87, human embryonic kidney cell line HEK293 (HEK), naïve and primed embryonic 
stem (ES) cells, the K562 leukemia cell line and hepatocellular carcinoma cells (HCC).
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Figure 3.3. Comparison of total miRNA and isomiR length distribution profiles between single cell and 
bulk RNA-seq datasets from independent studies. Includes HCC tumour and K562 cells. Distribution of 
miRNA lengths considering all miRNAs (left) and canonical miRNAs only (right; according to miRbase). 
For canonical miRNAs, percentages are relative to total miRNA reads. 
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Figure 3.4. Expression and relative abundance of isomiRs in Hepatocellular Carcinoma single cell and 
bulk smRNA-seq data from independent studies. Shows each isomiRs expression (rows) across 
individual cells (columns), with respect to their relative abundance of their miRNA gene (dot colour) 
and the isomiRs expression normalized to total miRNAs for each cell (dot size). Top 15 isomiRs for the 
3 highest expressed miRNAs in the single cell dataset are displayed. Cells which did not have any reads 
mapping to the miRNA are indicated by grey circles. 
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Figure 3.5. Expression and relative abundance of isomiRs in K562 Leukemia single cell and bulk smRNA-
seq data from independent studies. Shows each isomiRs expression (rows) across individual cells 
(columns), with respect to their relative abundance of their miRNA gene (dot colour) and the isomiRs 
expression normalized to total miRNAs for each cell (dot size). Top 15 isomiRs for 3 highly expressed 
miRNAs in the single cell dataset are displayed. Cells which did not have any reads mapping to the 
miRNA are indicated by grey circles. 
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3.4. IsomiR processing is likely regulated by cell autonomous mechanisms 

3.4.1. Global expression of isomiRs is specific to cell types 

In the previous section we found substantial differences in miRNA and isomiR abundance between 

cell types. Following this we compared isomiR processing between individual cells by focusing on the 

5´ and 3´ templated positions in each miRNA, calculating the proportion of isomiRs (averaged across 

single cells in each cell type) starting or ending at each position +/- 3 nucleotides (nts) around the 

canonical ends (Figure 3.6A). Additionally, we included the isomiRs with adenine or uridine bases 

added to the 3´ end (Figure 3.6A) as many studies have shown isomiRs with these additions are more 

common and can lead to changes in miRNA stability and target recognition56,275,276.  

5´ variants which extended the isomiR from the canonical site were almost completely absent in all 

cells (Figure 3.6A). 5´ variants shorter than the canonical site were also rare, particularly in the Small-

seq derived cells, except for primed embryonic stem cells which had a notable amount of isomiRs 

shortened at the 5´ end by 3 nucleotides (13.0%). However, for the K562 cells, there was a high 

number of 5´ variants predominantly 1 nt shorter than the canonical site (61.7%), with smaller 

amounts of 2 and 3 nt shortened isomiRs (4.7% and 8.7% respectively). 

With 3´ variants, all cells from the Small-seq and Co-seq protocols showed very similar 3´ templated 

isomiR profiles according to position (Figure 3.6A), with a strong peak at the canonical site and sharp 

decline in proportions for the surrounding 1-2 nts. However, HCC cells had nearly equivalent 

abundances of miRNAs with 3´ canonical sites as well as those shortened or extended by 1 nucleotide, 

indicating more extensive processing at the 3´ end. Non-templated 3´ variants containing adenine 

and/or uridine were present at low levels (12.8-24.2%) in all cell types except K562 cells, where more 

than half the isomiRs had an untemplated addition (58.2%), most with at least one non-templated 

adenine (48.8%). 

To investigate potential cell-specific mechanisms involved in isomiR expression and processing we 

labelled isomiRs according to several categories that describe sequence alterations likely to be driven 

by distinct mechanisms256. We then calculated the proportions of every cell’s miRNA possessing each 

isomiR alteration (Figure 3.6B). Here, we defined the following isomiR types: canonical (identical 

sequence to the miRbase annotated miRNA), 5´ variants (altered sequence on the 5´ end, still 

matching the precursor miRNA sequence), 3´ templated (altered 3´ sequence, but still matching the 

precursor sequence), 3´ non-templated (altered 3´ sequence with bases not matching its precursor), 

or substitutions (single nucleotide differences compared to the canonical sequence, excluding 5´ and 

3´ ends). Note that each isomiR may contain several sequence alterations and therefore contribute to 

multiple isomiR types.  
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Cells from the Small-seq protocol generally showed similar proportions of isomiR types, with 3´ 

templated variants (34.8-50.9%) being the dominant isomiR type (Figure 3.6B). Minor differences 

were observed between cell types which were statistically significant for nearly all isomiR types in this 

protocol. The majority of miRNAs from the Co-seq K562 cells were 5´ variants (76.1%), with a high 

proportion of 3´ non-templated variants (58.2%) and similar levels of 3´ templated variants (34.2%) to 

the Small-seq cells. On the other hand, HCC cells from the Holo-seq protocol produced predominantly 

3´ templated (67.3%) and 5´ variants (27.3%), and there was a large increase in variability among single 

cells across all categories which may reflect the heterogeneity of cells sourced from a tumour sample 

compared to cell lines or primary cell cultures.  

3.4.2. Processing of isomiRs is unique to each miRNA’s gene 

We then re-analysed isomiRs by their 5´ and 3´ templated locations and adenine/uridine additions, 

but this time separating isomiRs by their miRNA gene (Figure 3.7) and found that different miRNAs 

exhibited unique patterns of isomiR expression both at the 5´ and 3´ ends. Expression levels of 3´ 

templated variants were clearly different between miRNAs from the same cell type (Figure 3.7). We 

did not identify high levels of 5´ variants in any of the Small-seq cells (glioblastoma or embryonic stem 

cells) when looking at highly expressed miRNAs (Figure 3.7). While non-canonical 5´ variants were 

pervasive in nearly all miRNAs in HCC cells, K562 cells showed a mixture of some miRNAs being highly 

variable at the 5´ end and others not at all, suggesting miRNA-specific processing at this end. 

3´ non-templated additions were generally rare in the most highly expressed miRNAs (Figure 3.7). One 

exception was miR-92a-3p, where in K562 cells, 60.8% of miR-92-3p had at least one non-templated 

adenine and 20.9% with at least one uridine. This coincided with a high overall expression of the 

miRNA (76.3%) and suggests adenine additions may contribute to the stabilization of miR-92a-3p in 

K562 cells which would be consistent with previous studies56. Adenine and relatively lower levels of 

uridine additions were observed in all cell types for miR-92a-3p, albeit to a lesser extent than K562 

cells. 

Overall, we observed that the profiles of the relative abundance of different 5´ and 3´ variants were 

unique to each miRNA, and it appears that both 5´ and 3´ processing may be driven by mechanisms 

that distinguish between miRNA species.  

3.4.3. Individual cells exhibit cell type specific isomiR processing  

As several of the miRNA genes were expressed across multiple cell types, we compared how miRNAs 

were processed into isomiRs in different biological contexts (Figure 3.7 and 3.8). In general, single cells 

from the same cell type were highly similar with respect to their isomiR processing at both the 5´ and 

3´ ends (Figure 3.7). However, there were substantial differences observed between cells from some 
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of the cell types. This was most clear when comparing cell types from the 3 different protocols but 

was also evident to a lesser extent when considering cell types from the Small-seq protocol. For 

example, when comparing isomiR processing of let-7a-5p (Figure 3.7A), cell types from the Small-seq 

protocol expressed isomiRs which predominantly matched the canonical sequence (position 0) at both 

the 5´ and 3´ ends when considering their templated sequence. However, there were exceptions with 

the K562 cells which expressed a high proportion of shortened 3´ templated isomiRs, as well as the 

HCC cells which expressed a high proportion of shortened 5´ templated isomiRs. With let-7b-5p, the 

HCC cells had high expression of non-canonical processed isomiRs at both the 5´ and 3´ ends (Figure 

3.7B). This contrasted with the cell types from the Small-seq protocol which were predominantly 

canonical at both their 5´ and 3´ templated ends (Figure 3.7B). There was also an increase in variation 

between some of the cell types from the Small-seq protocol, including the HEK and Naïve Embryonic 

Stem cells, that was not evident in the glioblastoma cell types (JM3, JM4, KS4, and U87). For miR-125a-

5p (Figure 3.7C), 3´ templated isomiR expression was skewed to favour the canonical location for some 

cells such as JM3 and HEK but shorter variants were dominant in JM4 and K562 cells (Figure 3.7C). 

Overall, the data supports a cell autonomous isomiR regulatory system as each cell type has an 

intrinsically determined isomiR expression level and individual cells can regulate their processing of 

isomiRs with a high degree of precision. The major differences between cell types in relative isomiR 

abundance of certain miRNA species suggests cell autonomous mechanisms may be involved in miRNA 

processing and isomiR expression.  
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Figure 3.6. Comparison of relative isomiR expression in each cell type. A. Shows the relative templated 
proportion of miRNAs according to their 5’ end (blue) or 3’ end (green) templated (T) locations, as well 
as proportions of miRNAs with non-templated (UT) Adenine (red; A) or Uridine (red; U) additions. B. 
Box plots constructed from single cell data, showing percentage of total miRNAs belonging to each 
isomiR category. ES: Embryonic Stem Cell. 
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Figure 3.7. Comparison of 5´ and 3´ isomiRs in select miRNAs that are highly expressed across multiple cell types. Shows the relative templated nucleotide 
position of miRNAs (averaged) at the 5´end (blue) or 3´ end (green), with respect to the canonical miRNA (according to miRbase). Includes A. let-7a-5p, B. let-
7b-5p, C. miR-125a-5p, D. miR-21-5p, E. miR-222-3p, and F. miR-92a-3p. Non-templated additions for Adenine and Uridine are also shown (red). miRNAs with 
absent plots were either not expressed or did not pass filter criteria. 3´ UT: 3´ Non-templated addition. ES: Embryonic Stem Cell. 
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Figure 3.8. Expression and relative abundance of isomiRs in single cells. Shows each isomiRs expression (rows) across individual cells (columns), with respect to 
their relative abundance of their miRNA gene (dot colour) and the isomiRs expression normalized to total miRNAs for each cell (dot size). Top 15 expressed 
isomiRs for let-7a-5p, miR-21-5p and miR-92a-3p are displayed. 10 cells from each cell type are included. Cells which did not have any reads mapping to the 
miRNA are indicated by grey circles. 
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3.5. IsomiR processing alters regulation of their canonical targets 

The combination of miRNA and mRNA expression data available for the K562 and HCC cells provided 

us with an opportunity to estimate how different isomiR types could affect regulation of their 

predicted canonical targets. For this, we generated predicted target lists for the most highly expressed 

miRNAs using miRNAtap, a tool which aggregates target predictions from multiple sources233. Using 

expression data from each cell, miRNA expression was correlated against expression of each of the 

miRNAs predicted targets. As a negative control, correlation between each miRNA’s expression and 

expression of each transcript not predicted to be targeted by the respective miRNA was determined. 

For each miRNA we also calculated the correlation between expression of isomiRs in each isomiR 

category and the miRNAs predicted canonical targets, calculated by taking the normalized count of 

reads mapping to a given miRNA that contained that particular isomiR type. IsomiR categories included 

– Canonical, 5´ Variant, 3´ Templated, 3´ Non-templated adenine (A), 3´ Non-templated uridine (U) 

and Substitutions. Results were displayed as a cumulative distribution of all miRNA-gene correlations 

(Figure 3.9 and 3.10). A higher proportion of negatively correlated genes in the target gene set 

compared to the negative control (non-targets) would cause the line to shift to the left and would 

suggest that the miRNA was effectively downregulating its targets.  

We observed that the relationship between miRNA expression and expression of its predicted 

canonical targets varied between miRNAs in both cell types (Figure 3.9 and 3.10). As was shown in the 

original Co-seq study, in K562 cells (Figure 3.9) there was a stronger negative correlation of the 

dominantly expressed miR-92a-3p with predicted canonical targets (total) when compared to its 

correlation with all other transcripts (non-targets)191. In contrast, miR-182-5p was more positively 

correlated with predicted canonical targets (total) compared to non-targets, and other highly 

expressed miRNAs such as miR-146b-5p, miR-10a-5p, miR-191-5p, and miR-423-5p were not found to 

be significantly different. In the HCC cells (Figure 3.10), several highly expressed miRNAs were more 

negatively correlated with their predicted targets compared to non-targets, including miR-34a-5p and 

miR-148a-3p. Conversely, miR-122-5p, let-7i-5p, and let-7b-5p were more positively correlated, and 

no significant difference was found with miR-206. The results suggest that despite high expression in 

these cells, many miRNAs may exert a weak or absent regulatory effect on the expression levels of 

their predicted canonical targets. Results from the two-sided Kolmogorov–Smirnov test and read 

counts for isomiR-target pairs can be found in Table Appendix B1 and Appendix B2. 

When analysing correlations between expression of canonical miRNAs or each isomiR category with 

the expression level of the miRNA’s predicted canonical targets it was clear that there were differences 

in certain isomiR categories for several miRNAs. This was most evident in the K562 cell line where 
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canonical miR-92a-3p and its isomiRs with 5´ Variant or 3´ Templated changes had a negative 

correlation with its predicted targets. Contrasting this, miR-92a-3p with Non-templated (Adenine) or 

Non-templated (Uridine) additions were positively correlated (Figure 3.9). Interestingly, with miR-

146b-5p, 5´ variants had the strongest negative correlation with predicted canonical targets compared 

to the other isomiR categories, including canonical miRNAs which was not significantly different to 

non-targets. We did not observe any consistency in the shift in correlations of isomiR categories when 

comparing different miRNAs, indicating that the effect of isomiR types on gene regulation is miRNA 

specific. 
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Figure 3.9. Correlation of expression levels between canonical miRNAs or isomiR categories and the canonical miRNAs predicted targets (mRNAs) in K562 
Leukemia cells. In the same miRNA, isomiR categories vary significantly in correlation strength and direction, suggesting these modifications lead to differences 
in regulatory activity. The 6 highest expressed miRNAs are shown excluding those with low isomiR abundance. For each miRNA, an aggregated list of predicted 
target mRNAs was collected using miRNAtap and expression of targets was correlated against normalized counts for each isomiR category. Percent of total 
reads for each isomiR category are shown (averaged across all K562 cells). Non-targets included all remaining mRNAs which were not predicted as a target for 
that miRNA. Significant differences between each category and Non-targets were calculated using the two-sided Kolmogorov-Smirnov test (p-value < 0.05) and 
are indicated with a blue (positive correlation) or red (negative correlation) asterisk. TR: Total Reads (mapped to miRNAs). 
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Figure 3.10. Correlation of expression levels between canonical miRNAs or isomiR categories and the canonical miRNAs predicted targets (mRNAs) in 
Hepatocellular Carcinoma (HCC) cells. In the same miRNA, isomiR categories vary significantly in correlation strength and direction, suggesting these 
modifications lead to differences in regulatory activity. The 6 highest expressed miRNAs are shown excluding those with low isomiR abundance. For each miRNA, 
an aggregated list of predicted target mRNAs was collected using miRNAtap and expression of targets was correlated against normalized counts for each isomiR 
category. Percent of total reads for each isomiR category are shown (averaged across all HCC cells). Non-targets included all remaining mRNAs which were not 
predicted as a target for that miRNA. Significant differences between each category and Non-targets were calculated using the two-sided Kolmogorov-Smirnov 
test (p-value < 0.05) and are indicated with a blue (positive correlation) or red (negative correlation) asterisk. TR: Total Reads (mapped to miRNAs).
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3.6. Unique Molecular Identifiers increase estimated isomiR abundance 

A key difference in the Small-seq protocol compared to the Holo-seq and Co-seq protocols was the 

incorporation of unique molecular identifiers (UMIs). In bulk studies, UMIs have been found to reduce 

cDNA amplification bias during library preparation and enable a more accurate quantification of the 

transcriptome261,277. However, to our knowledge their effect on isomiR abundance has not been 

thoroughly investigated. Therefore, we assessed how UMI deduplication might influence isomiR 

expression in the glioblastoma cell lines, HEK293 and embryonic stem cells. We found that in all cell 

types, the relative abundance of canonical miRNAs was decreased after UMI deduplication (Figure 

3.11). The corresponding effect on all isomiR categories typically trended towards an increase in 

relative expression levels, with 3p template extensions (+) in naïve primed embryonic stem cells being 

the only significant exception (Figure 3.11). While consistent, the overall effect after UMI 

deduplication was modest for most cell types and isomiR categories, however there were notable 

exceptions such as the naïve embryonic stem cells which had more than a 2-fold increase in extended 

5’ variants as well as a notable increase in shortened 5’ variants and 3´ template variants. 

Correspondingly, there was a clear reduction in extended 3´ template variants. 

In most cases, UMI deduplication had a minor impact on the overall shape of the peak distributions 

(Figure 3.12 and 3.13). However, in the primed embryonic stem cells there was a clear shift in the peak 

length from 23nt to 22nt after deduplication which led it to resemble the other Small-seq cell types 

more closely. When comparing the effect of UMI deduplication on miRNA lengths across each isomiR 

category, we found the increase in measured isomiR expression was not equal across all categories. 

5p variants and substitutions showed more obvious increases in expression, and the expression of 

shorter isomiRs were generally affected to a higher degree after deduplication. We also compared the 

averaged proportions of positional modifications between non-deduplicated and deduplicated cell 

types but did not observe any differences (Figure 3.14). Overall, these findings suggest protocols which 

do not utilize UMIs may underestimate the expression of most isomiRs. 
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Figure 3.11. Impact of UMI deduplication on isomiR types. For each cell non-deduplicated reads (-) are shown next to deduplicated reads (+). ns: Not significant. 
nES: Naïve embryonic stem cells. pES: Primed embryonic stem cells. 
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Figure 3.12. Impact of UMI deduplication on miRNA length distributions in glioblastoma cell lines. 
Shows read lengths without deduplication (light blue) and with UMI deduplication (dark blue). 
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Figure 3.13. Impact of UMI deduplication on miRNA length distributions in the HEK293 cell line, and 
naïve and primed embryonic stem cells. Shows read lengths without deduplication (light blue) and with 
UMI deduplication (dark blue). 
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Figure 3.14. Comparison of 5´ and 3´ modifications between averaged non-deduplicated (-) and deduplicated (+) glioblastoma cells, for selected miRNAs.  
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3.7. Discussion 

In this study we highlighted major differences in the way isomiRs are expressed or processed in various 

cell types, supporting the cell autonomous regulation of isomiRs. When comparing the processing of 

different miRNAs, the single cell data in this analysis mirrored observations with bulk sequencing data 

from other studies which showed sequence modifications vary substantially when comparing different 

miRNAs. Evidently, properties specific to each miRNA dictate how it interacts with the cell’s miRNA or 

isomiR processing machinery, and may be influenced by nucleotide sequence, secondary structure, 

interactions with Argonaute or the miRNA’s targets62,278,279. Collectively, these findings highlight 

isomiR processing as a novel gene regulatory layer whose function has not been fully appreciated with 

population level isomiR studies. We argue that future studies investigating isomiR expression and 

function should consider incorporating single cell methods to better understand their role. However, 

the lack of technological development in single cell small RNA sequencing remains a major constraint 

and cheaper, high throughput methods are likely necessary to support more comprehensive studies. 

3.7.1. Analysis of isomiR types overcomes current limitations with single cell small RNA 

sequencing data 

There are several challenges that we had to consider when analysing isomiR expression in single cell 

sequencing data. This included the low number of reads which mapped to miRNAs for each cell, as a 

high proportion of reads tend to map to ribosomal RNA or do not even map to the human genome, 

possibly due to low level contamination. Low target read counts are a typical problem in single cell 

sequencing studies, however miRNAs in small RNA-seq often represent an even smaller proportion of 

total reads than messenger RNAs in RNA-seq168,188. This issue can be further compounded with isomiR 

studies which separate a miRNA’s reads into each unique sequence, creating a large number of 

isomiRs with extremely low counts. Additionally, the presence of errors from prior stages such as 

library amplification and sequencing can lead to spurious isomiRs which overestimate the number of 

real isomiRs280,281.  

Our approach to address these issues was to focus on the type of isomiR modifications at the 5´ or 3´ 

ends and quantify isomiRs based on biologically relevant isomiR types. There are at least two benefits 

to this approach. Firstly, reads are no longer split across a large number of features and each isomiR 

type will generally have more reads contributing to them, therefore are less influenced by variability 

and drop-outs282. Secondly, this meant that expression of each isomiR type would only be confounded 

by errors in a smaller region (e.g 5´ or 3´ end) and not by errors across the remainder of the sequence. 

We were able to show a relationship between expression of various isomiR types and their miRNA’s 

canonical targets in highly expressed miRNAs, implying this single cell small RNA sequencing data can 
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be used to predict isomiR function when applying this methodology. A limitation of this approach is 

that it may not capture the full range of biological functions driven by isomiRs, for example if some 

isomiRs are only functional when certain combinations of isomiR modifications are present, or if their 

function depends on sequence specific interactions with their targets and/or Argonaute. Nonetheless, 

this may be a more suitable approach for studying isomiRs in single cell data until a greater depth of 

miRNA reads becomes feasible and spurious isomiRs can also be accounted for. 

3.7.2. Biases in small RNA sequencing protocols are likely to influence isomiR quantification 

Since both the Co-seq and Holo-seq studies only sequenced one human cell type each, and there were 

no shared cell types across studies, we were unable to ascertain how much of these differences could 

be attributed to biological or experimental factors. However, the high amount of isomiRs in the single 

cell data for HCC and K562 cells was not reflected in their respective bulk sequencing data obtained 

from several independent studies (Figure 3.3) and were unable to find further evidence that this was 

a feature of these cell types. However, it is possible that this isomiR expression profile is characteristic 

of a smaller cell population that was not evident with bulk or population level sequencing. 

Previous comparisons of small RNA sequencing protocols have demonstrated substantial biases 

depending on the library preparation method. For example, the Clontech small RNA sequencing kit 

utilizes an adapter-free ligation method and was shown to detect a high number of false isomiRs when 

compared to the adapter ligation-based NEXTflex kits283. Many small RNA sequencing protocols, 

including the three single cell methods included in this study, utilize an adapter ligation-based library 

preparation188,191,194,283–285. This approach begins with a 3´ ligation step involving a pre-adenylated DNA 

oligonucleotide, followed by 5´ ligation of an RNA oligonucleotide for small RNA capture. The 

RNA/DNA-joined molecules are then reverse transcribed and amplified with PCR. However, the 

terminal nucleotide sequences of adapters are known to influence their ligation efficiency with small 

RNAs at both the 5´ and 3´ ends due to a change in RNA structure286. Given that the adapter sequences 

including the terminal bases were different in each of the protocols, this may be one factor that 

influenced the detection and quantification of isomiRs. There were also key differences in the sample 

preparation and RNA isolation procedures for each protocol which may have also influenced isomiR 

detection and quantification. Although the global expression profiles of cell types from the small-seq 

protocol were similar, there were still significant differences in isomiR type expression when analysing 

individual miRNAs which indicates that the sequencing protocol cannot fully explain the observed 

differences. This suggests that both cell type and protocol can influence isomiR expression 

measurements. More comprehensive studies will be needed to understand how widespread isomiR 

variation is across cell types in healthy and diseased tissues. 
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3.7.3. Methods to improve single cell small RNA sequencing data quality for isomiR analysis 

Even if present at low frequencies, sequencing artefacts are a particular concern in isomiR studies, as 

single base alterations can completely redefine an isomiR’s type and interpreted function. 

Implementing UMI’s into the sequencing library can assist with more accurate measurements of 

expression levels and enable more confidence in isomiR classification261,287. Additionally, ligation 

biases can be reduced by incorporating random bases at the ends of the adapters which are ligated to 

RNAs, or on splints which can be introduced to facilitate ligation between adapters and small 

RNAs288,289.  

3.7.4. Implications of cell autonomous isomiR regulation in cancer 

Previous studies have already investigated the potential for isomiRs to classify cancers with a high 

degree of success142,200. As this research has traditionally relied on bulk sequencing data to capture 

population level isomiR expression, it is not clear if this inter-tumour heterogeneity extends to intra-

tumorigenic differences between cancer cells. Our findings indicate cells possess autonomous isomiR 

regulation and support a broader function in gene regulation. Furthermore, we found that individual 

cells from the same cell type were relatively homogenous when considering cell lines and primary 

cultures, compared to the more heterogeneous isomiR expression was observed in the resected HCC 

tumour cells. Although there is insufficient data to draw conclusions, this could be an indication that 

cells existing in their native environment may be influenced by a combination of cell autonomous and 

cell-extrinsic factors which tune isomiR expression and contribute to inter-cellular variation. 

Collectively, our work highlights that isomiRs are functional in single cells and their regulation is cell 

autonomous, which necessitates further research as this may be an unexplored contributor to intra-

tumoural heterogeneity. 

  



113 
 

4. Investigating the RNA binding properties of alternatively spliced 

Argonaute 2 (Ago2) isoforms 

4.1. Chapter introduction 

MicroRNA (miRNA) biogenesis involves various proteins to process primary miRNA transcripts into 

mature miRNAs that can regulate gene expression1. The Microprocessor complex formed by Drosha 

and DGCR8 cleaves primary miRNAs into shorter double stranded precursor miRNAs with a stem-loop 

structure5. Precursor miRNAs are exported into the cytoplasm and recognized by Dicer, which removes 

the loop to release a miRNA duplex1. Argonaute then binds the miRNA duplex and selects one strand 

for incorporation (guide strand) into the RNA induced silencing complex (RISC) while the other is 

ejected and degraded (passenger strand)67.  

Argonaute is an essential component of the RNA induced silencing complex (RISC) and is required for 

miRNA-mediated gene regulation11,67,68. While the sequence of the miRNA is critical for target 

recognition, Argonaute provides miRNAs with their function by directly cleaving targets or recruiting 

various proteins to suppress gene expression through translational inhibition and deadenylation278,290. 

Argonaute also affords miRNAs protection from cytoplasmic nucleases and speeds up target searching 

by changing the conformation of the miRNA279,291. In humans, Argonaute proteins are expressed from 

four different genes (AGO1, AGO2, AGO3 and AGO4)292. Although there are minor differences in 

sequence, each Argonaute contains identical protein domains and appear mostly redundant in terms 

of RNA binding and function, except for Ago2’s slicer activity292.  

4.1.1. Argonaute loads multiple classes of small RNAs 

Although miRNAs typically form the bulk of small RNAs that are loaded into Argonaute, many other 

classes of small RNAs can form a functional RISC through non-canonical biogenesis pathways293. This 

includes ribosomal RNA-derived fragments, transfer RNA-derived fragments, small nuclear RNAs, 

small nucleolar RNAs and other classes of small RNAs293.  

Functionally distinct Argonautes that bind to different classes of small RNAs have been described in 

the fruit fly Drosophila melanogaster and nematode Caenorhabditis elegans. Drosophila expresses 

two structurally and functionally distinct Argonautes, Argonaute 1 (AGO1) and Argonaute 2 (AGO2). 

AGO1 binds and mediates miRNA-directed cleavage whereas AGO2 binds siRNAs and is essential for 

siRNA-directed cleavage294. In C. elegans there are 19 different functional Argonautes which either 

participate in miRNA-mediated gene regulation or bind other classes of small RNAs to function as part 

of a broader genomic immune system that suppresses foreign RNA or endogenous retroviruses and 

transposons295. Although studies have found that the four Argonaute genes in humans tend to bind 
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similar profiles of small RNA classes and miRNAs, they typically rely on antibodies which are unable to 

distinguish between their isoforms67,296. Many Argonaute isoforms have been annotated in the 

reference sequence databases RefSeq (National Center for Biotechnology Information) and GENCODE 

(GENCODE consortium)297,298. This includes isoforms with variations in their protein coding sequence 

that still possess the functional domains essential for RISC formation and gene regulation67. Therefore, 

it is possible that multiple Argonaute isoforms function in gene regulation and may have distinct small 

RNA binding characteristics which alter their regulatory activity. However, to date the biological 

significance of any Argonaute isoforms have not been investigated.  

4.1.2. Features of the miRNA duplex influence Argonaute strand selection 

Nearly all miRNA genes encode two miRNAs with distinct nucleotide sequences, enabling alternate 

sets of regulatory targets depending on which miRNA will be incorporated into the RISC299,300. miRNA 

strand selection by Argonaute is not random and is known to be influenced by sequence and structural 

features pertaining to the miRNA duplex299. Primarily, two properties of the miRNA duplex contribute 

to strand selection – the relative thermodynamic stability of each end and the 5´-terminal nucleotides 

of each strand. 

Early studies with siRNAs and miRNAs found that strand selection was dependent on the relative 

thermodynamic stability of each end of the precursor duplex. Argonaute prefers to unwind duplexes 

on the side with weaker pairing, resulting in the incorporation of the strand whose 5´ end has been 

unwound299. The importance of thermodynamic stability was first described by Schwartz et al who 

found that altering the relative thermodynamic stability of each end through sequence mismatches 

could change which strand was incorporated into Argonaute301. The impact of sequence mismatches 

was limited to the first 4 paired nucleotides of each end of the miRNA duplex. However, later studies 

found that thermodynamically unfavourable strands were often highly expressed and sometimes 

more dominant in tissues, suggesting other factors also contributed to strand selection302. 

Subsequent studies found Argonaute has a strong bias towards certain bases at the 5´-terminal end 

of each miRNA strand. Hu et al highlighted a strong bias favouring uridine bases in the first nucleotide 

of 33 expressed miRNA pairs303. Conversely, they found cytosines were strongly unfavored in the first 

nucleotide303. Frank et al found a strong bias for uridine or adenine and against cytosine or guanine304. 

This bias was attributed to a rigid loop structure housed in the MID domain of Argonaute, which 

interacts with the phosphorylated 5´ end of the miRNA guide strand during loading304. To date, no 

study has investigated if alternative splicing can change strand selection bias of Argonaute to 

determine which miRNAs participate in gene regulation.  
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4.1.3. Alternative splicing may produce Argonaute proteins with altered functions 

In this study we investigate alternatively spliced isoforms of Argonaute 2 in humans and highlight 3 

isoforms which are expressed in human tissues and possess distinct RNA binding properties. This 

includes a reduced affinity towards most miRNAs in two isoforms, compared to the canonical 

Argonaute 2 which is studied most extensively, suggesting that alternative splicing may reduce miRNA-

mediated regulation in some tissues. Additionally, we identified several miRNAs with increased 

abundance, relative to other miRNAs, within non-canonical Ago2 isoforms and find evidence that this 

may be caused by a reduction in 5´ nucleotide bias that alters miRNA strand selection in some cases. 

Our work identifies alternative splicing as a novel mechanism which can regulate gene expression by 

tuning miRNA selection. This further highlights the complexity of the miRNA pathway and has 

implications in gene regulation in normal and cancerous cells. 
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4.2. Specific methodology 

4.2.1. Buffers 

• PBS (Phosphate Buffered Saline) (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4) 

• PBST (Phosphate Buffered Saline Tween) (1X PBS + 0.1% Tween 20) 

• NP-40 lysis buffer (20mM Tris-HCl pH 7.5, 150 mM NaCl, 0.5% NP-40, 2mM EDTA, 0.5 mM DTT, 1 

mM NaF, 1 Protease Inhibitor Tablet) 

• IP Washing Buffer (50mM Tris-HCl pH 7.5, 300nM NaCl, 5mM MgCl2, 0.05% NP-40) 

• PK Buffer (200mM Tris-HCl pH 7.5, 25mM, 300 mM NaCl, 2% SDS w/v) 

4.2.2. Reagents 

• DMEM (Dulbecco’s Modified Eagle Medium) (4.5 g/L D-Glucose, L-Glutamine, 25mM HEPES) 

(Gibco) 

• Opti-MEM + GlutaMAX-l (HEPES, 3.024 g/L Sodium Bicarbonate) (Gibco) 

• Trypsin TrypLE™ Select Enzyme (Gibco) 

• DPBS (Dulbecco’s Phosphate Buffered Saline (Gibco) 

• FBS (Fetal Bovine Serum) (Gibco) 

• Penicillin-Streptomycin (Invitrogen) 

• Lipofectamine 2000 (Invitrogen) 

• Trypan Blue Solution (Gibco) 

• Dynabeads Protein G (Invitrogen) 

• Phenol-Chloroform-Isoamyl Alcohol 25:24:1 (Sigma) 

• Proteinase K (Invitrogen) 

• Protease Inhibitor Tablets (Thermo Scientific) 

4.2.3. Antibodies 

 

Target Product Dilution 
Ago2 Rat Monoclonal Anti-Ago2 

clone 11A9 (Sigma Aldrich) 
1:1000 

FLAG Mouse Monoclonal ANTI-
FLAG® M2 (Sigma-Aldrich) 

1:1000 

Mouse IgG Donkey Polyclonal Secondary 
Antibody to Mouse IgG 
(Abcam) 

1:5000 

Table 4.1. Antibodies used for immunoprecipitation experiments  
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4.2.4. Cell provision 

HeLa and HEK293 cells were sourced from the American Type Culture Collection (ATCC). THP-1 cells 

were obtained from Bernadette Sanders from the Faculty of Science at UTS. SCC38, SCR4, LNCaP, and 

PNT2 cell lines were obtained from Nham Tran from the School of Biomedical Engineering at UTS. 

4.2.5. Ago2 isoform plasmid transfection 

All wet lab experiments were performed by Sarah Bajan. HeLa cells were grown to confluency in 15 

cm culture dishes for the transfection. Before transfection, old media was removed, cells were washed 

with DPBS, and then fresh antibiotic-free DMEM.  

All Ago2 isoform plasmids were synthesized and cloned into N-terminal FLAG-tagged CMV 10 plasmids 

through Sigma-Aldrich’s gene synthesis service. A transfection mix was prepared with each of the Ago2 

isoform plasmids. Transfection mix was prepared by creating a DNA plasmid solution diluted with Opti-

MEM and a 0.8% Lipofectamine 2000 solution diluted in Opti-MEM, each at volume of 3.5 ml per 

confluent 15cm dish. 10 ng of plasmid was used for Ago2 Isoform 1, 15 ng for Isoform 2, and 30 ng for 

Isoform 3. Concentrations were adjusted to produce similar concentrations of Ago2 protein as 

determined by Western blot. The DNA plasmid and lipofectamine mixtures were incubated separately 

for 5 mins, then mixed and incubated for an additional 15 min. 7 ml of the transfection mix was 

distributed across each dish and lightly swirled, then incubated for 5 hours. Afterwards, the 

transfection media was then removed, cells washed with DPBS, and fresh antibiotic-free media was 

added. Cells were incubated for 24 hours after transfection before being harvested. 

4.2.6. Cell lysis for immunoprecipitation 

For transfected cells prepared for immunoprecipitation, cells were harvested by adding 2 ml of NP-40 

lysis buffer and using a cell scraper to dislodge cells from the dish. The cell lysate was then moved to 

Eppendorf tubes and incubated at 4°C for 15 min while rotating. Lysis was confirmed with Trypan Blue 

solution. After incubation, the lysates were centrifuged at 14000g for 5 min, then the supernatant was 

moved to a new tube. For each sample, 40 µl was removed for Western blot to confirm successful 

transfection and the remaining sample was snap frozen with liquid nitrogen and stored at -80°C until 

immunoprecipitation. 

4.2.7. Immunoprecipitation of FLAG-tagged Ago2 isoforms 

Prior to immunoprecipitation, 100 µl per sample of Dynabeads Protein G were washed three times 

with 1ml PBST for 1 min using a magnetic rack to remove supernatant. The Dynabeads Protein G was 

then split in half, with one half mixed with 10 µg of either FLAG or 11A9 antibody and the remaining 

50 µl mixed with 10 µg of IgG antibody as a control. The antibody-bead mixtures were incubated at 

4°C for 30 min. Beads were then washed three times with 1ml PBST for 2 min using a magnetic rack 
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and then resuspending in 50 µl PBST. 50 µl of antibody-bead mixture was added to each lysate for 

immunoprecipitation and incubated at 4°C overnight. Afterwards, the supernatant from each sample 

was isolated for Western blot and beads were washed three times in 1ml IP Washing Buffer for 2 min 

using a magnetic rack. After washing, the immunoprecipitated beads were resuspended in 100 µl IP 

Washing Buffer. 90 µl of the immunoprecipitated beads were used for Proteinase K digestion and RNA 

extraction while the remaining 10 µl was reserved for Western blot. Proteinase K digestion was 

performed by adding 210 µl of PK Buffer, 40 µg Proteinase K, and 1 µl Glycogen to each sample and 

incubating at 65°C for 20 min. 

4.2.8. RNA extraction  

For RNA extraction, 300 µl of phenol-chloroform was added to each sample, vortexed, then 

centrifuged at 16000g for 15 min at 4°C. The aqueous layer containing RNA was removed and added 

to 900 µl of 100% ethanol. Samples were left overnight at -80°C for precipitation. The next day, 

samples were centrifuged at 16000g for 30 min at 4°C. The supernatant was removed, and the 

remaining RNA pellet was washed with 1 ml of 75% ethanol. Samples were centrifuged at 16000g for 

15 min at 4°C, then the supernatant was removed, and the RNA was air dried for approximately 5 min 

or until it became translucent. RNA was then resuspended in 20-50 µl of RNase-free water and the 

RNA concentration was measured using the Nanodrop according to manufacturer’s instructions. 

Samples were snap-frozen using liquid nitrogen and stored at -80°C. 

4.2.9. Sequencing data generation 

Sequencing data for Ago2 isoform quantification was generated from a previous Capture-seq 

experiment by the Hutvagner lab. RNA from cell lines and tissues were sent to the Ramaciotti Centre 

for Genomics for Capture-Seq with a gene panel that included Ago2. RNA for the human tissues was 

sourced from Clontech as part of the Human Total RNA Master Panel II, except for Heart tissue which 

was bought separately.  

For generating the Ago2 isoform small RNA sequencing data with HeLa cells, wet lab experiments were 

performed by Sarah Bajan which included 2 biological replicates for each isoform.  

4.2.10. Calculation of Percent Spliced with Junction (PSJ) values  

To estimate the proportion of Ago2 transcripts containing an exon junction, a STAR index was 

prepared with RefSeq’s human genome (GRCh38) and with default parameters except: --

sjdbOverhang 150305. Raw reads from the Capture-seq dataset were then aligned with STAR to this 

index with default parameters. The spliced junction file (SJ.out.tab) from STAR’s output was used to 

quantify the Percent Spliced with Junction (PSJ) values, determined by considering the unique read 
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count at each relevant exon junction, divided by the total reads belonging to junctions overlapping 

the selected exon junction’s genomic region. 

4.2.11. Small RNA biotype quantification 

Raw reads were trimmed using cutadapt (v2.7) and reads shorter than 10 nucleotides or containing 

any N bases were removed. Reads were then mapped sequentially using bowtie (v1.2.3), with the 

following parameters: n 2 -e 120 -l 20 --best228,229. Reads were first mapped to miRNAs, then the 

remaining unmapped reads were mapped to ribosomal RNAs (rRNAs), followed by transfer RNAs 

(tRNAs), then remaining small RNAs. Bowtie indexes for miRNAs were generated using miRBase's 

precursor hairpins (v22.1), for rRNAs using merged sequences from filtered rRNAs in Gencode’s 

primary annotations (v35) and Arb-silva’s LSU and SSU rRNA databases (v138.1), for tRNAs using 

filtered tRNAs in Gencode’s primary annotations (v35), for remaining small RNAs using filtered small 

RNA biotypes in Gencode’s primary annotations (v35) – including miRNA, misc_RNA, rRNA, scRNA, 

snRNA, snoRNA, ribozyme, sRNA, scaRNA, and vaultRNA36,298,306. The resulting sam files were merged 

and reads mapping to each biotype were quantified. 

4.2.12. miRNA and isomiR quantification 

Raw reads were trimmed using cutadapt (v2.7) and reads shorter than 10 nucleotides were 

removed228. Data was converted from FASTQ to FASTA file format and reads were collapsed so that 

each unique sequence only appeared once in each file and counts were appended to the headers. 

Collapsed reads were aligned to miRbase (v22.1) annotated precursor miRNAs using miraligner (v3.4), 

with the following parameters: -sub 1 -trim 3 -add 336,231.  

For quantification of isomiR types, the following categories were defined: Canonical – miRNAs with a 

perfect match to the miRbase mature sequence, 5´ Variant – miRNAs differing at the 5´ end with 

respect to the miRbase mature sequence, 3´ Template – miRNAs deviating at the 3´ end to the miRbase 

mature sequence but still matching the precursor miRNA sequence, 3´ Non-template – miRNAs which 

did not match the precursor miRNA sequence at the 3´ end, and Substitution – miRNAs containing a 

maximum of 1 mismatch to the miRbase mature sequence, excluding variations at the 5´ or 3´ ends. 

Categories were then assigned any alignments which contained their respective isomiR variation and 

were used for measuring their proportions relative to the total number of annotated reads.  

4.2.13. Differential expression analysis 

Differential miRNA expression between the Ago2 isoforms was determined using the quantified 

sequencing data from the Ago2 isoform immunoprecipitations and the DESeq2 R package (v1.26.0), 

filtering results by baseMean >= 1000, log2 fold-change >= 3, and adjusted p-value < 0.05307. 
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4.2.14. Estimating base preferences in Ago2 isoforms 

Strand selection probabilities across all miRNAs were estimated by comparing the first base 

(nucleotide) of each mapped miRNA, considered a guide strand, to its predicted passenger strand, and 

for each pair of bases calculating the proportion of events where one base belonged the guide and 

the other to the passenger strand. The miRbase.db R package (v1.2.0) was used to get the nucleotide 

sequences for all passenger strands36. 5´ isomiRs were excluded as we could not determine if the 

isomiR was produced before or after strand selection. For calculations for individual miRNAs, miRNAs 

belonging to precursors without two annotated strands were not included in the analysis. Probabilities 

of any pairs of bases calculated from less than 20 mapped reads were also excluded. 

4.2.15. Code for Data Analysis and Figures 

Documents containing code used to generate the results in this section can be found in the following 
link: https://cloudstor.aarnet.edu.au/plus/s/GaNTw7rMWztjliu 
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4.3. Alternative Splicing of Ago2 Suggests Diversity of Isoform Expression in Human 

Tissues 

To date, expression of Argonaute 2 (Ago2) isoforms have been poorly characterized in human tissues 

and cells, and it is unknown which transcript variants are biologically significant (Figure 4.1A). In a 

previous experiment from our lab, a targeted panel of genes including Ago2 were enriched and 

sequenced using Capture-Seq308. As this data spanned 16 different human tissues and cell lines, we 

were able to estimate the relative frequency of alternative splicing events that characterised the 

Refseq annotated transcripts of Ago2 (Figure 4.1B; Appendix C)297. We used data from reads 

overlapping each exon junction to calculate a Percent Spliced with Junction (PSJ) value, estimating the 

proportion of Ago2 transcripts containing each splicing event. As our analysis identified reads 

supporting several unannotated splice junctions, we also calculated PSJ values for the top 5 

unannotated junctions by read count across all samples.  

A wide range of PSJ values were observed between samples for all exon junctions, revealing extensive 

splicing across different biological contexts (Figure 4.1B). Our data indicated that the most extensive 

splicing was at the 5´-end of Ago2. Three of the Refseq annotated transcripts (XM_011516965, 

XM_011516966, and XM_011516968) contain alternative starting exons compared to the wild-type 

transcript NM_012154 (Figure 4.1A). PSJ values (Figure 4.1B) for the wild-type (NM_012154) exon 

junction between exon 1 and 2 (red) indicated that, in all samples, splicing of this junction was the 

most dominant across this region, however there was considerable variation across samples where it 

was lowest in the LNCaP cells (59.86%) and highest in the skeletal muscle (97.29%). Our analysis 

supported the presence of two of the annotated transcripts, XM_011516965 (Chr8:140585312-

140596675; yellow) and XM_011516966 (Chr8:140585312-140605796; cyan), in multiple cell lines and 

tissues, as well as at least three unannotated transcripts (grey) due to the presence of novel exon 

junctions with exon 2 of the wild-type transcript (Chr8:140585312-140588721, Chr8:140585312-

140590593 and Chr8:140585312-140633774; grey). There was a paucity of reads spanning the regions 

near each unannotated junction and any other exon, suggesting these splicing events could also be 

alternative starting exons, and not exon inclusion events between exon 1 and 2. Among these exon 

junctions, representing putative alternative starting exons (excluding the wild-type junction), each had 

the highest PSJ value in at least one sample, suggesting cell or tissue specific functions for these 

splicing events.  

The Refseq annotations also describe two transcripts which are characterised by exon skipping events 

at exon 2 (XM_017013317) and exon 17 (NM_001164623) in relation to the wild-type transcript. Reads 

spanning the exon junctions that represent these skipping events were identified in nearly all samples. 
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For the exon junction Chr8:140572933-140635484, uniquely associated with XM_017013317 (blue), 

PSJ ranged from 0% in whole brain and testes up to 5.77% in kidney. Splicing of the exon junction 

Chr8:140532616-140539319, uniquely associated with NM_001164623 (green), was relatively low 

with PSJ ranging from 0% in foetal brain, bone marrow, and testes, to 0.85% in LNCaP cells.  

Finally, we highlighted two additional unannotated exons junctions which were evidence of an 

alternative donor splice junction site and inclusion of a novel exon. There was an alternative donor 

(5´) splice site identified between exon 6 and 7 (Chr8:140558573-140559419), which was almost 

exclusively expressed in bone marrow tissue with a PSJ of 4.23%.  

A novel exon junction was identified connecting to exon 3 (Chr8:140572604-140572811), which 

ranged in PSJ from 0% in foetal brain, whole brain, and testes tissue to 9.36% in bone marrow. We did 

not find evidence of reads connecting this novel exon with downstream exons, suggesting this may 

lead to a truncated transcript. 

Collectively, these results suggest that transcripts from the Ago2 gene are extensively spliced and that 

many of these splicing events are altered in various biological contexts. Following this, our study 

focused on three Ago2 transcripts - NM_01254.5 (Isoform 1), NM_001164623.3 (Isoform 2), 

XM_017011317.2 (Isoform 3), which are likely to produce proteins with altered functional domains 

(Figure 4.1C) and investigated functional differences through their association with small RNAs (Figure 

4.1B). 
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Figure 4.1. Alternative splicing events from RNA Capture-seq read data indicate multiple isoforms of Ago2 are expressed in humans. A. Refseq annotated 
transcripts for Ago2. Boxes show exons and lines show introns. B. Percent Spliced with Junction (PSJ) for each exon junction that varies across annotated 
transcripts, as well as the top 5 unannotated exon junctions by read count across all samples. PSJ was calculated as the proportion of reads including versus 
excluding an exon junction. Sashimi plots (top) for four representative cell lines show the position that each exon junction spans (curved lines) in relation to the 
wild-type transcript (NM_012154) and their respective PSJ values, coloured by the associated Ago2 transcript that each exon junction is unique to. Bar plots 
(bottom) show the PSJ values across exon junctions for all 16 cell lines and tissues. C. Shows the protein domains of NM_012154 (Isoform 1) and the location 
of amino acid deletions (dark grey) in the two splice variants selected for further study, NM_001164623 (Isoform 2) and XM_017013317 (Isoform 3).
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4.4. Alternatively spliced Ago2 isoforms do not bind miRNAs as strongly as the canonical 

isoform 

Ago2’s primary function of gene regulation is mediated through its association with miRNAs, however 

prior studies have demonstrated that Argonaute can also bind other classes of small RNAs293. 

Compared to the canonical Ago2 isoform (Isoform 1), the two alternatively spliced isoforms we 

focused on have deletions in their protein coding sequences of the PIWI (Isoform 2) and N-terminal 

domains (Isoform 3). Both the PIWI and N-terminal domains have an important role in loading miRNAs 

during biogenesis, so we hypothesized that this would be altered in both isoforms and would change 

which small RNAs associate with them.  

To study the small RNA binding properties of each isoform, DNA plasmids were transfected expressing 

each of the three Ago2 isoforms of interest. Each isoform’s plasmid contained their respective protein 

coding sequence as well as a FLAG epitope at one of the terminal ends. The DNA plasmids were then 

transfected into HeLa cells, expressed for 24 hours, then immunoprecipitated with a FLAG antibody. 

RNA from the immunoprecipitate was subsequently isolated and sequenced for its small RNAs. The 

FLAG epitope was necessary to detect and isolate Argonaute isoforms as there are no known 

antibodies which can specifically target each of these isoforms. Western blots indicated that the FLAG-

tagged Ago2 isoforms were strongly enriched after immunoprecipitation (Figure Appendix D). 

Results from the sequencing data indicated that Ago2 Isoform 2 and 3 did not bind miRNAs as strongly 

as Isoform 1 (Figure 4.2). We first mapped all reads to known miRNAs from miRBase’s miRNA database 

(v22.1), followed by sequential mapping of the remaining unmapped reads to ribosomal RNAs (rRNAs; 

Gencode’s v35 and arb-silva’s rRNA sequences), transfer RNAs (tRNAs; Gencode’s v35 tRNA 

sequences), and finally other classes of small RNAs (scRNAs, snRNAs, snoRNAs, ribozymes, sRNAs, 

scaRNAs, vault RNAs; Gencode’s v35). Due to the incomplete annotation of small RNA fragments 

derived from rRNAs (rRFs) and tRNAs (tRFs), we considered any mapping to a rRNA or tRNA as a 

positive match for that small RNA class. Most of the small RNAs from Isoform 1 were miRNAs (89.9-

90.3%), which was consistent with miRNA-mediated gene regulation being its primary function (Figure 

4.2). Although miRNAs were still the most abundant small RNA class in Isoform 2 (61.6-67.2%) and 3 

(57.6-61.1%), miRNAs represented a much smaller proportion of small RNAs compared to Isoform 1. 

The order of abundance of small RNA classes was identical in all three Ago2 isoforms. Ribosomal RNAs 

were the second most abundant class, followed by snoRNAs, tRNAs, and snRNAs. The remaining small 

RNA classes collectively represented a sizeable pool in Isoform 2 (13.7-15.1%) and Isoform 3 (15.3-

16.6%), compared to Isoform 1 (3.24-3.63%). There was a general increase in the relative proportion 

of all other small RNA classes in Isoform 2 and 3, implying that this reduction was likely due to a 
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reduced association with miRNAs as opposed to an increased association with another class of small 

RNAs (Figure 4.2B). These results were consistent with our hypothesis that deletions in the PIWI and 

N-terminal domains would lead to changes in miRNA loading efficiency and implied that cells which 

predominantly express these isoforms may have a general reduction in miRNA activity. 
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Figure 4.2. Proportion of small RNA classes immunoprecipitated from Ago2 isoforms in HeLa cells. 
Reads were sequentially mapped to miRNAs, rRNAs, tRNAs and all remaining small RNAs. The other 
small RNAs (scRNA, ribozyme, sRNA, scaRNA, vault RNA) were combined into the ‘Other’ category. A. 
Stacked bar chart showing relative abundance of each small RNA class for each isoform. B. Comparison 
of isoforms for each small RNA class. Error bars show standard error of the mean from two biological 
replicates. miRNA: MicroRNA, rRNA: Ribosomal RNA, snoRNA: Small Nucleolar RNA, tRNA: Transfer RNA, 
snRNA: Small Nuclear RNA, scRNAs: Small Cytoplasmic RNA, sRNA: Small RNA, scaRNA: Small Cajal body-
specific RNA. 
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4.5. Ago2 isoforms have altered miRNA binding preferences 

4.5.1. The relative abundance of certain miRNAs is altered in Ago2 isoforms 

Our previous results revealed a reduction in miRNAs associated with Ago2 Isoforms 2 and 3. Following 

this, we investigated if this reduction in miRNA association applied to all miRNAs or if it was caused by 

a reduction in affinity towards specific miRNAs. We mapped and quantified miRNAs using miRbase’s 

miRNA annotations (v22.1) and normalized the values to the total number of reads mapping to 

miRNAs (Figure 4.3). This way we could compare the relative abundance of each miRNA in different 

Ago2 isoforms, informing us of any preferential loading. We found a high correlation in miRNA 

abundance when comparing each Ago2 isoform, suggesting that the preferences towards miRNAs was 

generally similar across isoforms (Figure 4.3A-C). The strongest correlation was between Isoform 2 

and 3 (r=0.95; Figure 4.3C), followed by Isoform 1 and 2 (r=0.92; Figure 4.3A), then Isoform 1 and 3 

(r=0.85; Figure 4.3B). However, a small subset of miRNAs were differentially expressed when 

comparing isoforms (Table 4.2). This included 5 miRNAs that were differentially expressed between 

Isoform 1 and 2 (hsa-let-7b-3p, hsa-miR-25-5p, hsa-miR-27a-5p, hsa-miR-27b-5p and hsa-miR-365a-

5p), and 7 miRNAs differentially expressed between Isoform 1 and 3 (hsa-let-7b-3p, hsa-miR-181a-3p, 

hsa-miR-181a-2-3p, hsa-miR-25-5p, hsa-miR-27a-5p, hsa-miR-27b-5p and hsa-miR-424-3p). All 

differentially expressed miRNAs had reduced abundance in Isoform 1, and four of these miRNAs (hsa-

let-7b-3p, miR-25-5p, hsa-miR-27a-5p, hsa-miR-27b-5p) were common to both comparisons. Only one 

miRNA, hsa-miR-25-5p, was significantly different when comparing Isoform 2 and 3, which was 

identified in all comparisons of isoforms. The difference in miR-25-5p abundance was pronounced in 

each isoform, as it was only the 168th most abundant miRNA in Isoform 1, increasing to 54th in Isoform 

2 and 9th in Isoform 3. For miR-27b-5p, this was only the 186th most abundant miRNA in Isoform 1 but 

increased to 79th in Isoform 2 and 22nd in Isoform 3. Together the results suggested that some Ago2 

isoforms have preferences towards a small set of miRNAs, which may lead to a change in gene 

regulation for the targets of these miRNAs. 

4.5.2. Alternative splicing of Ago2 changes miRNA strand selection preference 

Published sequencing data on miRbase revealed that all the miRNAs identified from our differential 

expression analysis were typically the least expressed strand derived from their precursor, suggesting 

they were all passenger strands that are normally not favoured for selection during miRNA duplex 

loading. This led us to consider if strand selection for specific miRNAs was altered in these Ago2 

isoforms, which could cause an increase in the measured relative abundance for certain miRNAs. To 

estimate strand selection preference, we quantified the number of reads mapping to the 5p and 3p 

strands for each miRNA precursor (Figure 4.4). We surmised that if the difference in abundance of 

miRNAs between isoforms was a consequence of a change in strand preference, the ratio of reads 
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mapping to the 5p and 3p strands would change, however if this observation was caused by precursor 

expression, we would expect there to be no change in their ratio. We included the top 50 expressed 

miRNAs in each Ago2 isoform, and excluded precursors only containing one strand, totalling 64 unique 

miRNAs (Figure 4.4). We found that most miRNA precursors strongly favoured a single strand, with a 

slightly greater number of miRNAs preferring 5p over 3p strands for selection. For a minority of miRNA 

precursors, including miR-92b, miR-423, and let-7d, the data suggested that both strands make a 

substantial contribution to the miRNA pool (Figure 4.4).  

Strand preference was nearly identical for most miRNAs when comparing isoforms (Figure 4.4). 

However, a large difference was observed between isoforms for miR-25, miR-27b, miR-365a, as well 

as smaller changes in miR-221, miR-193b and let-7b. With miR-25, nearly all the reads mapping to this 

precursor in Isoform 1 were from the 3p strand (4.19% from 5p strand). However, in Isoform 2 the 

proportion of 5p miRNAs increased (34.4%) and in Isoform 3 the 5p strand became the dominant 

strand (78.8%). Likewise, for miR-27b, reads from this precursor were almost entirely from the 3p 

strand in Isoform 1, with only 1.15% of reads coming from the 5p strand. In Isoform 2 this increased 

to 12.2% from the 5p strand and in isoform 3 there was a larger change with a similar amount of reads 

from both strands (48.9% from 5p strand). For miR-365a, Isoforms 2 and 3 almost completely favoured 

the 5p strand (95.5% and 94.6% respectively) whereas isoform 1 had only 67.3% from the 5p strand. 

These observations may explain why some miRNAs were differentially expressed in the Ago2 isoforms 

we examined. Changes in strand selection probabilities would be expected to alter the abundance of 

each strand, and relatively minor shifts in strand preference for highly expressed miRNA precursors 

could significantly alter the abundance of their passenger strands. However, strand selection did not 

seem to be affected with all the differentially expressed miRNAs identified previously, such as miR-

181a-3p and miR-424-3p, and another explanation is likely relevant for these miRNAs. 
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Figure 4.3. Comparison of miRNA expression between isoforms. A. Correlation of top 200 miRNAs 
according to mean expression (normalized to total miRNAs) across all samples, for Isoform 1 (x axis) 
and 2 (y axis). B. Isoform 1 (x axis) and 3 (y axis). C. Isoform 2 (x axis) and 3 (y axis). D. Shows miRNA 
expression in log2 (Counts per 10000 miRNAs) for all biological replicates of Ago2 isoforms. E. Shows 
mean Ago2 isoform expression in log2 (Counts per 10000 miRNAs), centered for each miRNA. miRNAs 
that are differentially expressed in at least one isoform comparison are shown in bold. 
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miRNA log2FoldChange P-value P-value 
(adj.) 

Isoform Comparison 

hsa-let-7b-3p -3.11603 4.27E-07 1.43E-05 Isoform 1 vs Isoform 2 
hsa-let-7b-3p -3.3647 4.76E-08 1.79E-06 Isoform 1 vs Isoform 3 
hsa-miR-181a-2-3p -3.15678 1.05E-06 2.84E-05 Isoform 1 vs Isoform 3 
hsa-miR-181a-3p -4.07333 6.79E-08 2.44E-06 Isoform 1 vs Isoform 3 
hsa-miR-25-5p -3.94528 7.55E-11 1.57E-08 Isoform 1 vs Isoform 2 
hsa-miR-25-5p -7.29656 2.05E-33 1.77E-30 Isoform 1 vs Isoform 3 
hsa-miR-25-5p -3.35127 3.01E-08 5.25E-05 Isoform 2 vs Isoform 3 
hsa-miR-27a-5p -4.18793 4.58E-10 6.34E-08 Isoform 1 vs Isoform 2 
hsa-miR-27a-5p -5.49585 2.74E-16 5.93E-14 Isoform 1 vs Isoform 3 
hsa-miR-27b-5p -3.62575 4.29E-07 1.43E-05 Isoform 1 vs Isoform 2 
hsa-miR-27b-5p -6.54556 6.68E-20 2.89E-17 Isoform 1 vs Isoform 3 
hsa-miR-365a-5p -3.64105 2.26E-08 1.34E-06 Isoform 1 vs Isoform 2 
hsa-miR-424-3p -4.97974 3.24E-14 5.59E-12 Isoform 1 vs Isoform 3 

Table 4.2. Differentially expressed miRNAs when comparing three isoforms of Ago2. Includes miRNAs 
with an adjusted P-value less than 0.05. 
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Figure 4.4. Isoforms show strand selection bias in specific miRNAs. For miRNA precursors which express 
two strands (5p and 3p), the percentage of reads from the 5p strand were calculated to estimate strand 
selection preference in each Ago2 isoform. 
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4.6. The 5´ nucleotide preference during strand selection is altered in Ago2 isoforms 

We then investigated features of the miRNA precursor duplexes to identify what may be influencing 

the change in strand preference for different Ago2 isoforms. Strand selection is known to be 

determined by two primary factors – a 5´ nucleotide preference in the miRNA duplex and the relative 

thermodynamic stability of the terminal nucleotides on each side of the miRNA duplex. Previous 

studies have shown that the first base at the 5´ end of each strand influences the likelihood of it being 

selected by Argonaute, with bases prioritized in the following order – Uridine > Adenine > Cytosine > 

Guanine304. Additionally, the miRNA strand whose 5´ end lies on the least thermodynamically stable 

side of duplex, determined by the last 5 nucleotides, is often favoured for selection. We considered if 

the 5´ nucleotide preference was altered in the isoforms of Ago2, which may explain why some miRNA 

strands were more favoured. 

Base selection preference was determined by estimating the probability of each base being selected 

over other bases using our data. For this we considered that each miRNA-mapped read represents 

one base selection event, where it’s first nucleotide (5´ end) was selected over the first nucleotide of 

the opposite strand. The opposite strand’s sequence was predicted by examining its canonical miRNA 

sequence in miRbase, as it is not possible to know the actual sequence of the opposite strand which 

is discarded after loading. As 5´ isomiRs were present at a low frequency in our isoform data (8.6-

10.4% of total miRNAs), we expected this prediction to be accurate for most events. We also excluded 

all reads annotated as 5´ isomiRs as we do not know if the alteration at the 5´ end was introduced 

before or after miRNA duplex loading and strand selection. 

We found that each isoform of Ago2 generally adhered to the same base priorities and were similar 

to what has been established in previous studies (Figure 4.5). The only exception was in duplexes with 

Guanine and Adenine, where Guanine was slightly more favoured. Uridine was the most strongly 

favoured base over all other bases, where it was more likely to be selected over Adenine (58.7-68.3%), 

Cytosine (96.1-99.0%), and Guanine (98.7-99.2%). Adenine was strongly favoured over Cytosine (80.1-

87.5%) although was slightly less favoured over Guanine (39.8-49.1%). In duplexes with Cytosine and 

Guanine on each end, Cytosine was strongly favoured (76.4-84.9%).  

Next, we separated each type of base selection event by their miRNA precursor to investigate if this 

base priority held true for each precursor’s duplex (Figure 4.6). We found a large variation in base 

preference between miRNA duplexes, and although they appeared more likely to follow these rules 

there were clear examples which did not, such as miR-31, where Adenine was selected over Uridine 

99.2%-99.5% of the time (Figure 4.6B). For each base selection event, we divided miRNA duplexes by 

which bases was more probable and found that Uridine was the preferred base in 81.0% (68/84) of 
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duplexes for Isoform 1. This number decreased to 72.6% (61/84) in Isoform 2 and 70.2% (59/84) in 

Isoform 3, suggesting the preference for Uridine remained but was not as strong in these isoforms 

(Figure 4.6). Adenine was preferred base in 55.6% (30/54) of duplexes in Isoform 1, to 61.1% (33/54) 

in Isoform 2 and 64.8% (35/54) in Isoform 3. Cytosine was preferred in 39.6% (21/53) for Isoform 1, 

47.2% (25/53) for Isoform 2 and 45.3% (24/53) for Isoform 3. Finally, Guanine was similar between 

isoforms and was preferred in 68.0% (17/25) of duplexes for each isoform. The increased number of 

miRNA duplexes preferring Adenine and Cytosine when comparing Isoform 2 and 3 to Isoform 1 was 

primarily due to the decrease in preference for Uridine (Figure 4.6). We noted for most miRNA 

duplexes where one base was very strongly favoured (>99%) in one Ago2 isoform, base preferences 

did not change. The difference in base preference frequency between isoforms was more apparent in 

duplexes where base selection was already ambiguous, including miR-92a-1 (Figure 4.6A; U>A), miR-

132 (Figure 4.6A; U>A), miR-30b (Figure 4.6A; U>C), miR-485 (Figure 4.6B; A>G), and miR-365b (Figure 

4.6B; A>U).  

Our data is consistent with previous assumptions that base rules influence strand selection, however 

each duplex likely harbors unique features (for example relative thermostability) which also contribute 

to strand selection and may override the 5´ base preference. Although Ago2 Isoforms 2 and 3 seem to 

follow the same principles of base preference, the strength of these preferences is reduced, and this 

may have a large effect on which strands are loaded into Argonaute for a subset of miRNA duplexes. 

Evidently, this can change the pool of active miRNAs within a cell and would have consequences for 

the regulation of miRNA targets. Together these results implicate alternative splicing of Argonaute as 

a novel mechanism of gene regulation through the modulation of miRNA strand selection. 
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Figure 4.5. Base preferences from all miRNA duplexes for each pair of bases. Shows the percentage of 
cases where one base is favoured (top, black) over another (bottom, brown) for each combination of 
bases. Favoured bases are determined by considering the first nucleotide of each read (guide strand) 
and comparing it to the first nucleotide of the predicted passenger strand. Error bars show standard 
error of the mean from two biological replicates.
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Figure 4.6. Base preferences of miRNA duplexes from each precursor miRNA. Shows first 5´ nucleotide 
of guide strand being favoured over their predicted passenger strand’s 5´ nucleotide (guide>passenger) 
for A. Uridine, B. Adenine, C. Cytosine, D. Guanine.  
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4.7. Ago2 isoforms have altered isomiR associations 

Our results revealed a change in 5´ nucleotide preference for Ago2 isoforms that affected strand 

selection. We hypothesized that the length or nucleotide alterations of isomiRs may also change how 

they interact with the Ago2 isoforms and could lead to differences in their relative abundance in RIP-

seq data.  

We first considered if Ago2 isoforms were biased towards miRNAs of certain lengths. Although we 

observed an increase in the proportion of 23 nucleotide long miRNAs for Ago2 Isoform 1, there was a 

high variance between replicates and no significant difference was shown between the isoforms for 

any length (Figure 4.7). 

Following this, we investigated if the Ago2 isoforms had a bias towards certain isomiR types by 

examining the proportion of miRNAs annotated as each isomiR type (Figure 4.8). All three Ago2 

isoforms had a higher proportion of isomiRs compared to canonical miRNAs. However, there were 

minor differences between Ago2 isoforms, where Isoform 1 had the lowest proportion of isomiRs at 

61.3%, Isoform 2 at 64.3%, and the highest proportion of isomiRs in Isoform 3 (65.4%). Isoform 1 had 

the highest proportion of 5´ variants (10.5%), compared to Isoform 2 (8.7%) and Isoform 3 (8.6%). This 

difference was reflected in both longer and shorter 5´ variants. Substitutions were highly similar in all 

isoforms, at 8.8% for Isoform 1, 8.8% for Isoform 2 and 8.7% for Isoform 3. For 3´ templated variants, 

the highest proportion was observed in Isoform 3 (50.5%), followed by Isoform 2 (48.8%), and finally 

Isoform 1 (47.0%). However, this was only true for the shorter 3´ templated variants, whereas the 

longer 3´ templated variants had a higher proportion in Isoform 1 (17.9%) compared to Isoform 2 

(17.2%) and Isoform 3 (15.9%). We also considered 3´ non-templated variants for all four bases and 

found that Isoform 2 and Isoform 3 had a higher proportion of miRNAs with non-templated Adenine, 

Uridine and Cytosine additions compared to Isoform 1. Although much rarer, the opposite was true 

for 3´ non-templated Guanines which were higher in Ago2 Isoform 1 compared to Isoform 2 and 

Isoform 3. 

To investigate this further we compared isomiR types for each miRNA between Ago2 isoforms. The 

change in proportion of isomiRs and isomiR types for individual miRNAs (Figure 4.9-4.12) frequently 

reflected what was observed with the total miRNAs (Figure 4.8). For example, a higher proportion of 

total isomiRs, 3´ templated, 3´ non-templated Adenine, 3´ non-templated Uridine, and 3´ non-

templated Cytosine variants were observed for Isoform 1 compared to both Isoform 2 and 3 in most 

miRNAs. Interestingly a small set of miRNAs had a reverse trend to the other miRNAs. Many of these 

miRNAs were identified in the previous section, which may have different interactions with the Ago2 

isoforms during strand selection. For example, most miRNAs had a modest decrease in the proportion 
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of isomiRs (Figure 4.9A) when comparing Isoform 1 with Isoform 2 and 3. However, several miRNAs 

including miR-424-3p, miR-27b-5p, miR-365a-5p, miR-193b-5p, miR-16-2-3p and miR-25-5p had a 

higher proportion of isomiRs in Isoform 1 compared to Isoform 2 and Isoform 3. Additionally, the 

proportion of 3´ templated variants was higher in Isoform 1 for miR-424-3p, miR-27b-5p, let-7a-3p, 

miR-365a-5p, miR-193b-5p and miR-25-5p compared to Isoform 2 and 3, but lower in Isoform 1 for all 

other miRNAs (Figure 4.11A). 

The data suggests that Ago2 isoforms have low bias towards certain types of isomiRs. Although in 

most cases the impact on the overall pool of loaded miRNAs is modest, there is further evidence of 

distinct interactions between Ago2 isoforms and some miRNAs and the effect on gene regulation for 

these miRNA targets may be significant.  
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Figure 4.7. Comparison of the size of miRNAs associated with the three Ago2 isoforms. Error bars show 
standard error of the mean from two biological replicates. 
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Figure 4.8. IsomiR types associated with Ago2 isoforms. Includes Isoform 1 (red), Isoform 2 (green), and Isoform 3 (blue). 5´ variants, 3´ templated and 3´ non-
templated isomiR types were also subdivided into those longer or shorter than the canonical miRNA. Error bars show standard error of the mean from two 
biological replicates.
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Figure 4.9. Proportion of miRNAs associated with Ago2 isoforms, annotated as A. isomiRs (non-
canonical miRNAs) and B. substitution variants. Isoform 1 is shown in red, Isoform 2 in green and 
Isoform 3 in blue.  
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Figure 4.10. miRNAs associated with Ago2 isoforms annotated as 5´ variants. A. Shows percentage of 
each miRNA that are 5´ variants, B. 5´ variants longer than the canonical sequence, and C. 5´ variants 
shorter than the canonical sequence. Isoform 1 is shown in red, Isoform 2 in green and Isoform 3 in 
blue.  
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Figure 4.11. miRNAs associated with Ago2 isoforms annotated as 3´ templated variants. A. Shows 
percentage of each miRNA that are 3´ templated variants, B. 3´ variants longer than the canonical 
sequence, and C. 3´ variants shorter than the canonical sequence. Isoform 1 is shown in red, Isoform 2 
in green and Isoform 3 in blue.  
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Figure 4.12. miRNAs associated with Ago2 isoforms annotated as 3´ non-templated variants. Shows 
percentage of each miRNA that contains a A. 3´ non-templated Adenine, B. 3´ non-templated Uridine, 
C. 3´ non-templated Cytosine, D. 3´ non-templated Guanine. Isoform 1 is shown in red, Isoform 2 in 
green and Isoform 3 in blue. 
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4.8. Discussion 

Argonaute proteins encoded by different genes can discriminate between some species of 

miRNAs293,309. However, the biological relevance of alternatively spliced variants of Argonaute are 

poorly understood. Here, we identified three isoforms of Ago2 which are expressed in human cells 

and show that these isoforms interact with miRNAs differently, suggesting distinct roles within the 

miRNA pathway. We found a reduction in miRNA abundance in Ago2 Isoforms 2 and 3, described 

above, which suggest that for cells with extensive splicing and/or expression of these isoforms the 

miRNA pathway may exert a weaker regulatory effect on their gene targets due to a reduction in the 

number of RISC-associated miRNAs. Although this assumption is intuitive, the deletions in the PIWI 

and N-terminal domains of Isoforms 2 and 3, respectively, may not just affect miRNA selection and 

loading but also the regulatory activity of the RISC. Preliminary data from our lab has confirmed a 

reduction in let-7a and miR-21 association for Ago2 Isoform 2 and 3 compared to Isoform 1 using RT-

qPCR, as well as a reduced capacity to form a RISC (Bajan, unpublished data). Collectively, this evidence 

supports a reduction in miRNA-mediated gene regulation for Ago2 Isoforms 2 and 3.  

However, this reduced role may not apply to all miRNAs. Several miRNAs, including miR-25, miR-27a, 

miR-27b and miR-365a were more abundant in the RIP-seq data for Ago2 Isoform 2 and 3. We 

attributed this to a change in strand preference between the 5p and 3p strands of the miRNA duplex 

during loading. Although both the PIWI and N-terminal domains participate in miRNA loading, it was 

surprising to see similar changes in miRNA selection for Ago2 Isoform 2 and 3 compared to Isoform 1. 

One explanation for this is that both deletions may interfere with the MID domain’s rigid loop 

structure that affords Argonaute its strand selection bias304. Unwinding of the duplex is initiated by 

the N-terminal domain, which pries the duplex open and positions the 5´ terminal base of the potential 

guide strand at the interface of the MID and PIWI domain15. Deletions in the PIWI and N-terminal 

domain may alter how the duplex is positioned within the pre-RISC, reducing the bias this loop 

structure has on base preference. An alternative explanation is that both deletions may alter Ago2’s 

interaction with protein cofactors which assist it during RISC formation and contribute to strand 

selection. 

4.8.1. Limitations of sequencing data for the investigation of Argonaute strand selection 

RIP-seq uses antibodies to capture target proteins and the RNAs associated with them310. It is an 

assumption that when targeting Argonaute, the miRNAs sequenced through this method would be 

guide strands that were loaded into an Argonaute protein, as passenger strands are discarded and 

degraded soon after RISC formation67. Because of this, our methodology for determining strand 

selection preference required a prediction of the passenger strand for each captured guide miRNA. 
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We focused on the first 5´ nucleotide of each miRNA strand as this is known to have a significant 

influence on strand selection. Previous studies have shown that Argonaute generally prefers bases in 

the order of Uridine > Adenine > Cytosine > Guanine299,304. However, one study that examined 832 

miRNA precursors annotated in miRbase with corresponding sequencing data, found only 429 (51.6%) 

followed these base preference rules299. Approximately 75% of the miRNAs annotated in miRbase 

could be explained by either the 5´ nucleotide order or their relative thermostability299. Our data was 

generally consistent with this base order, except that Guanines were more likely to be selected over 

Adenines. We found that a high proportion of the reads which indicated Guanine was selected over 

Adenine were from a single miRNA, miR-409-3p, and may have skewed this result. Clearly, a multitude 

of features in the miRNA duplex are likely to play a role in strand selection. 

Finally, strand selection is not the only factor which determines miRNA abundance, and we cannot 

rule out any changes in miRNA stability or degradation that would alter the ratio of each strand’s 

abundance.  

4.8.2. Ago2 isoforms may interact with isomiRs to fine-tune miRNA strand selection 

A substantial proportion of miRNAs are expressed as isomiRs, and many are produced in the early 

stages of miRNA biogenesis prior to RISC formation. In principle, 5´ variants can change the terminal 

bases of each strand, and all types of isomiRs may change the thermodynamic properties of a 

duplex311. Indeed, studies have shown how isomiRs produced from alternate Dicer processing and 3´ 

uridylation can affect strand selection312,313. Our evidence suggests that the isoforms of Ago2 that we 

studied differentially interact with isomiRs, so it is possible that the alternative splicing of Argonaute 

and the production of isomiRs are two mechanisms that work in concert to fine-tune the frequencies 

for each miRNA strand’s selection. Although not included in this study, RNA modifications such as 

Adenine to Inosine (A-to-I editing) and chemical modifications (e.g locked nucleic acids), can also lead 

to changes in miRNA strand selection and it remains to be seen if Argonaute isoforms are distinguished 

in their interaction with these modifications314,315. 

4.8.3. Implications of Argonaute isoforms altering miRNA activity in normal and cancerous cells 

Most studies assume that cytoplasmic miRNA levels are representative of what is loaded into RISCs, 

even though previous studies have shown that this is not always true293. Although we found many 

similarities in the types of miRNAs each Ago2 isoform associated with, there was notable examples of 

miRNAs which were nearly absent in one Ago2 isoform but strongly associated with another. This was 

most evident with miR-25-5p, which was the 9th most abundant miRNA in Ago2 Isoform 3 yet only the 

168th most abundant in Isoform 1. Therefore, it is expected that the genes targeted by the miRNA 

pathway can change depending on the expression of Ago2 isoforms. We included several cancer cell 
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lines in our study, including MCF7 (breast cancer), LNCaP (prostate adenocarcinoma), SCC38 

(squamous cell carcinoma), and THP-1 (monocytic leukemia), and found evidence of differential Ago2 

splicing and isoform expression. Dysregulation of Ago2 splicing may contribute to disease states by 

altering the activity or function of oncogenic or tumour suppressive miRNAs. Many of the miRNAs we 

found associated with specific Ago2 isoforms, including let-7b-3p, miR-25-5p, miR-27b-5p have 

documented roles in regulating cancer pathways316–321. However further research is needed to identify 

if Ago2 splicing is perturbed in any cancers and if it is directly involved in altering the activity of these 

miRNAs. 

In conclusion, our study identified alternative splicing of Argonaute as a novel mechanism which 

regulates how miRNAs are loaded into the RISC and may alter miRNA activity in normal and cancerous 

cells.  
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5. Final discussion 

5.1. A multitude of mechanisms regulate the miRNA pathway 

Gene regulation is a fundamental biological process that ensures cells can function properly 

throughout their entire life cycle322. Multicellular organisms, including humans, have evolved many 

different mechanisms for gene regulation, such as epigenetics, transcription initiation and alternative 

splicing, the miRNA pathway, and post-translational protein modifications, all to control gene 

expression spatially and temporally with a high degree of precision196,322–324. As research continues to 

show, each of these gene regulatory mechanisms is immensely complicated and can be modulated to 

serve the specific requirements of each cell196,322–324. Emerging evidence suggests that nearly every 

aspect of the miRNA pathway is tightly regulated196,325. At each stage of biogenesis, the immature 

miRNAs interact with proteins such Drosha, Dicer, and many auxiliary proteins, to regulate the pool of 

mature miRNAs and ultimately influence their function1,51,53.  

We identify a novel intersection between two gene regulatory mechanisms, the miRNA pathway and 

alternative splicing, which influence the selection of miRNAs by controlling the expression of various 

Argonaute isoforms. As mentioned previously, there is already evidence that alternative splicing 

regulates miRNA biogenesis through isoforms of Drosha and Dicer, however it is unclear how 

widespread their expression is across human tissues24,26. We identified at least 2 isoforms, which can 

both be expressed as the dominant isoform in various human tissues and cells. Our evidence suggests 

miRNA duplex loading is affected in some isoforms of Ago2, which can alter the pool of miRNAs that 

are functionally active. Interestingly, biases in miRNA selection appear to be restricted to a subset of 

miRNAs. A likely explanation for this, is that if Argonaute isoforms bound completely different miRNAs, 

then cells may not be able to tolerate the drastic changes in miRNA activity that would be induced by 

modulating their expression. We suspect that other factors associated with the miRNA duplex, such 

as the relative thermodynamic stability of its ends, allows the activity of some miRNAs to remain stable 

when Ago2 isoform expression changes, while others are more greatly impacted.  

Another key finding in our study was evidence that isomiR processing is regulated cell autonomously. 

It is possible that a combination of changes in protein expression, as well as alternative splicing, 

contribute to the unique isomiR profiles that different cell types maintain. Dicer, Drosha, and many 

other proteins involved in the miRNA pathway may have splice variants that favour the processing of 

certain isomiRs24,26. As our work investigating isomiR expression using single cell sequencing is the first 

of its kind, it is likely that future research will continue to unearth a complex regulatory layer that has 

not been appreciated to date.  
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5.2. Different mechanisms of miRNA regulation may be perturbed in cancers 

miRNA dysregulation is a common feature in nearly all cancers, therefore a better understanding of 

all the mechanisms regulating the miRNA pathway have potential implications in cancer research.  

To investigate if miRNAs contribute to heterogeneous gene regulation, we analysed miRNA and isomiR 

expression from glioblastoma single cells. Our study identified two miRNA clusters, the Dlk1-Dio3 and 

miR-224/452 clusters, which are differentially expressed in two cell subpopulations from a 

glioblastoma primary cell culture326. As paired single cell small RNA and RNA sequencing data was 

unavailable in glioblastoma, we integrated data from other forms of sequencing, including bulk RNA-

seq and small RNA-seq, as well as single cell RNA-seq, to predict the activity of these miRNAs in 

different cell states. A key aspect of this approach involved analysing the expression of miRNA targets, 

however in this study we highlighted several challenges including poor performance of target 

prediction algorithms and the low signal-to-noise ratio in single cell data247,254. Despite this, we found 

evidence of an association between the identified miRNA clusters and known glioblastoma cell states, 

in particular the NPC and MES states, supporting a potential role for the miRNA pathway in cell state 

regulation. We did not find evidence of altered isomiR processing between the glioblastoma cells in 

this study, however our sample size was small and only included three primary cultures and one cell 

line. Additionally, more extensive miRNA and isomiR heterogeneity may be observed in cells that are 

sourced directly from fresh tumours, as they exist within a more complex microenvironment157.  

We then expanded our analysis to include single cell miRNA sequencing data which included cell types 

from other cancers such as leukemia and hepatocellular carcinoma. Our work found evidence that 

individual cells precisely regulate the expression of their isomiRs and suggests some of these isomiRs 

are likely to possess distinct regulatory functions with respect to their miRNA targets. We identified 

several miRNAs, expressed as multiple isomiRs, which are likely to have altered regulation of their 

targets in both leukemia and hepatocellular carcinoma cells. Some of these miRNAs are highly 

expressed in cells derived from their normal tissues and it is possible their dysregulation may be 

involved in either disease327–330. For example, miR-92a-3p is one of the most highly expressed miRNAs 

in leukemia and other blood-derived cells, and within our study we found nearly all this miRNA was 

expressed as 3´ non-templated variants that were less active in regulating their canonical targets328,331. 

Therefore, dysregulation of isomiR processing could lead to a major shift in the miRNA pathway’s 

activity that promotes oncogenesis. Future studies looking to investigate the role of miRNAs in 

leukemia and other cancers may benefit from incorporating isomiR-level comparisons.  

Finally, like the miRNA pathway, alternative splicing is another form of gene regulation commonly 

perturbed in cancers332,333. However, it remains unknown how splicing of Argonaute may be affected 
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in many cancers and if misexpression of its isoforms contributes to miRNA dysregulation. Changes in 

Ago2 isoform expression may stabilize different miRNAs, which may in turn modulate the expression 

and activity of oncogenic or tumour suppressive miRNAs. Indeed, many of the miRNAs with the largest 

difference in abundance between Ago2 isoforms, including let-7b, miR-25, and miR-27b, have been 

described as oncomiRs334–336. 

Most studies in cancer research study the biological significance of miRNAs with the assumption that 

miRNA activity depends on expression of their canonical variants, and that wild-type Argonaute is the 

typical protein which forms the RISC90,95,337. However, our work suggests that two mechanisms – 

isomiR processing and Ago2 isoform expression – are key components of the miRNA pathway that can 

significantly impact miRNA activity in ways that don’t always translate to changes in miRNA 

expression. This has serious implications that may explain, at least in part, why it has been so 

challenging to understand miRNA contributions to many cancers338. Furthermore, an incomplete 

understanding of the mechanisms that regulate the miRNA pathway may underlie some of the reasons 

that miRNA or siRNA-based therapies have mostly failed to translate into the clinic thus far339,340. It is 

clear from our work, and others, that there are significant shortcomings with our understanding of 

the miRNA pathway. However future research which builds on these findings may ultimately result in 

a greater chance of success with developing effective miRNA or siRNA-based therapies that improve 

patient outcomes. 

5.3. miRNAs as biomarkers in cancer 

Although studies have shown both RNA or miRNA expression profiles can classify cancers with a high 

degree of accuracy, several comparisons have shown improved performance with miRNAs and isomiRs 

over other classes of RNAs200,341,342. This suggests that miRNA and isomiR expression is tethered to 

cellular or tumour identity and argues for their utility as biomarkers in cancer. Their use as biomarkers 

is further encouraged by research suggesting many miRNAs are exported into the blood and remain 

stable for extended periods of time, creating the possibility of developing non-invasive diagnostic or 

prognostic tests that enable more personalized forms of therapy146. A recent study showed that 

miRNAs from the Dlk1-Dio3 locus were detectable from exosomes isolated from healthy patient blood 

samples, however we are not aware of any studies which have identified their presence in the blood 

of patients with glioblastoma343. Despite this, the fact that there is clearly a mechanism for their export 

into blood makes them promising biomarkers if they are indeed associated with clinically relevant 

cancer cell states. 
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5.4. Concluding Remarks 

Despite limitations with the available data for single cell miRNA sequencing, we were able to find 

evidence of miRNA heterogeneity in glioblastoma. We identified two miRNA clusters that appear to 

be regulated by cell autonomous mechanisms and may be involved in cell state regulation. 

Additionally, we provide evidence that isomiRs are tightly controlled and can alter miRNA target 

regulation within individual cells, highlighting an additional layer of regulation that may contribute to 

intra-tumour heterogeneity. Finally, we showed that alternatively splicing can produce variants of 

Ago2 with altered functions through their selection of different miRNAs.  
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Appendix B – Statistical Values and Read Counts for IsomiR-Target Pairs 

miRNA Category KS 
Statistic P.Value Signif. 

Mean Prop. 
of Total 
Reads 

Delta 
Mean 

Mean 
Read 
Count 

miR-92a-3p Total 0.0981 0.0219 * 0.7633 -0.057 19364.37 
Canonical 0.1334 0.000473 *** 0.0173 -0.0841 453.3158 
5´ Variant 0.121 0.00209 ** 0.6986 -0.0436 17701.95 
3´ Templated 0.1455 9.77E-05 *** 0.183 -0.0709 4596.263 
3´ Non-templated (A) 0.2106 1.86E-09 *** 0.4637 0.1122 11748.74 
3´ Non-templated (U) 0.1644 6.24E-06 *** 0.1592 0.057 4107.526 
Substitutions 0.0864 0.0601  0.0509 -0.0333 1292.053 

miR-146b-5p Total 0.0367 0.984  0.04 0.0016 1046.474 
Canonical 0.1071 0.0555  0.0059 -0.0293 158.1579 
5´ Variant 0.1846 4.70E-05 *** 0.0023 -0.0747 61 
3´ Templated 0.0398 0.965  0.0285 0.0102 744.1579 
3´ Non-templated (A) 0.0561 0.708  0.0026 -0.0073 68.7895 
3´ Non-templated (U) 0.0892 0.167  0.0009 -0.0501 24.8947 
Substitutions 0.1203 0.0217 * 0.0044 -0.0431 112.6316 

miR-10a-5p Total 0.0839 0.335  0.0303 0.0108 765.1579 
Canonical 0.0839 0.336  0.0023 -0.0419 61.2105 
5´ Variant 0.0766 0.447  0.0116 -0.0101 294.6842 
3´ Templated 0.0734 0.503  0.0233 0.027 576.8421 
3´ Non-templated (A) 0.0548 0.842  0.0019 -0.0077 50.0526 
3´ Non-templated (U) 0.1789 0.000606 ** 0.0001 -0.085 2.8421 
Substitutions 0.1294 0.0289 * 0.0043 -0.0544 109.6316 

miR-191-5p Total 0.1074 0.367  0.0232 0.0116 576.1579 
Canonical 0.1275 0.185  0.0036 0.017 87.7368 
5´ Variant 0.1687 0.031 * 0.0018 -0.0493 43.3158 
3´ Templated 0.0684 0.883  0.0174 0.0051 436.5789 
3´ Non-templated (A) 0.0785 0.758  0.0026 -0.0246 67.8947 
3´ Non-templated (U) 0.1034 0.414  0.0003 -0.0445 9.3158 
Substitutions 0.1707 0.028 * 0.0033 -0.0634 82.0526 

miR-423-5p Total 0.0445 0.61  0.0174 0.0088 440.8421 
Canonical 0.0791 0.0519  0.0097 0.0295 249.2105 
5´ Variant 0.0778 0.0588  0.0005 0.0353 12.3684 
3´ Templated 0.0834 0.0345 * 0.006 -0.0302 146.5263 
3´ Non-templated (A) 0.1231 0.000289 *** 0.0005 -0.0607 11.7895 
3´ Non-templated (U) 0.1689 1.19E-07 *** 0.0002 -0.0982 4.2632 
Substitutions 0.077 0.063  0.0021 0.0219 53.5789 

miR-182-5p Total 0.0806 0.0135 * 0.0132 0.0396 317.8947 
Canonical 0.0698 0.0472 * 0.002 0.0311 49.2632 
5´ Variant 0.1182 4.23E-05 *** 0.0018 0.0505 45.1053 
3´ Templated 0.0693 0.0496 * 0.0106 0.0231 252.3158 
3´ Non-templated (A) 0.0626 0.0975  0.0003 -0.026 5.5789 
3´ Non-templated (U) 0.0269 0.944  0.0001 -0.0056 2.9474 
Substitutions 0.0746 0.0277 * 0.0015 0.0323 35.2632 
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Table Appendix B1. Statistical Values and Read Counts for IsomiR-Target Pairs in K562 cells. Two sets 
of correlation values were determined, comparing expression of each isomiR category against either 
the miRNAs canonical targets, or non-targets (control). Distributions of correlation values were 
compared with the two-sided Kolmogorov–Smirnov test to identify pairs with a significant difference. 
Signif: Significance represented as asterisks - *: 0.005 < p.value < 0.05, **: 0.0005 < p.value < 0.005, 
***:  p.value < 0.0005. Mean Prop. of Total Reads: Mean proportion of total reads each category 
represents across all cells. Delta Mean: Difference between the mean of correlation values for isomiR-
target gene pairs and mean of correlation values for isomiR-control gene pairs. 
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miRNA Category KS 
Statistic P.Value Signif. 

Mean Prop. 
of Total 
Reads 

Delta 
Mean 

Mean 
Read 
Count 

miR-122-5p Total 0.2187 6.96E-10 *** 0.4303 0.0255 14103.45 
Canonical 0.3743 0 *** 0.0023 0.0791 75.5161 
5´ Variant 0.2633 3.95E-14 *** 0.0002 -0.0783 5.7097 
3´ Templated 0.2122 2.51E-09 *** 0.2927 0.0252 9597.645 
3´ Non-templated (A) 0.2593 1.03E-13 *** 0.1348 0.0349 4418.581 
3´ Non-templated (U) 0.3885 0 *** 0.0058 0.0881 191.2258 
Substitutions 0.1578 2.38E-05 *** 0.0439 0.0102 1438 

let-7i-5p Total 0.3522 0 *** 0.0751 0.1179 3078.655 
Canonical 0.4573 0 *** 0.0001 0.1747 2.1034 
5´ Variant 0.354 0 *** 0.0576 0.1186 2361.724 
3´ Templated 0.3528 0 *** 0.0575 0.118 2358.552 
3´ Non-templated (A) 0.3468 0 *** 0.001 0.112 39.0345 
3´ Non-templated (U) 0.3441 0 *** 0.0042 0.1109 171.3793 
Substitutions 0.392 0 *** 0.0142 0.1419 576.5172 

let-7b-5p Total 0.1726 0 *** 0.0578 0.0336 2227.419 
Canonical 0.1372 5.19E-11 *** 0.0014 0.0217 52.3871 
5´ Variant 0.1738 0 *** 0.0433 0.0341 1678.032 
3´ Templated 0.1472 1.31E-12 *** 0.0472 0.0254 1833.258 
3´ Non-templated (A) 0.2097 0 *** 0.0024 0.047 89.6774 
3´ Non-templated (U) 0.0629 0.0118 * 0.0198 0.005 798.2903 
Substitutions 0.1332 2.06E-10 *** 0.0179 0.0275 712.6129 

miR-34a-5p Total 0.2874 0 *** 0.0531 -0.1234 1035.083 
Canonical 0.2827 0 *** 0.0012 -0.119 23.0417 
5´ Variant 0.2921 0 *** 0.0094 -0.1262 182.7917 
3´ Templated 0.2846 0 *** 0.0383 -0.1223 747.4583 
3´ Non-templated (A) 0.2797 0 *** 0.0043 -0.1197 84.625 
3´ Non-templated (U) 0.2873 0 *** 0.0068 -0.1244 133.9583 
Substitutions 0.2891 0 *** 0.0211 -0.1246 411.7083 

miR-148a-3p Total 0.1211 2.24E-07 *** 0.0285 -0.0169 1064.065 
Canonical 0.1511 3.04E-11 *** 0.01 -0.0256 373.8065 
5´ Variant 0.0948 0.00011 *** 0.0034 -0.0276 122.6452 
3´ Templated 0.1431 3.94E-10 *** 0.0075 -0.0239 279.7419 
3´ Non-templated (A) 0.1803 7.77E-16 *** 0.0009 -0.0417 34.6774 
3´ Non-templated (U) 0.1379 1.97E-09 *** 0.0049 -0.0201 182.4839 
Substitutions 0.0956 9.30E-05 *** 0.0111 -0.0114 411.7419 

miR-206 Total 0.0361 0.476 
 

0.0317 -0.0055 620.4815 
Canonical 0.034 0.555 

 
0.0065 -0.0027 126.5185 

5´ Variant 0.0337 0.565 
 

0.0069 -0.0059 136.4444 
3´ Templated 0.0349 0.52 

 
0.0202 -0.0067 397.1852 

3´ Non-templated (A) 0.0387 0.388 
 

0.0007 -0.0056 14.2222 
3´ Non-templated (U) 0.063 0.0264 * 0.0007 0.0061 13.5185 
Substitutions 0.0348 0.526 

 
0.0077 -0.0104 151.4074 
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Table Appendix B2. Statistical Values and Read Counts for IsomiR-Target Pairs in Hepatocellular 
Carcinoma cells. Two sets of correlation values were determined, comparing expression of each 
isomiR category against either the miRNAs canonical targets, or non-targets (control). Distributions 
of correlation values were compared with the two-sided Kolmogorov–Smirnov test to identify pairs 
with a significant difference. Signif: Significance represented as asterisks - *: 0.005 < p.value < 0.05, 
**: 0.0005 < p.value < 0.005, ***:  p.value < 0.0005. Mean Prop. of Total Reads: Mean proportion of 
total reads each category represents across all cells. Delta Mean: Difference between the mean of 
correlation values for isomiR-target gene pairs and mean of correlation values for isomiR-control 
gene pairs.  
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Appendix C – Read Counts for Spliced Exon Junctions in Ago2 
Sample Exon Junction Associated 

Transcript 
Reads 
Including 
Junction 

Reads 
Excluding 
Junction 

PSJ (%) 

HeLa Chr8:140532616-140539319 NM_001164623 12 2359 0.51 
Chr8:140558573-140559419 Unannotated 0 2317 0 
Chr8:140572604-140572811 Unannotated 17 632 2.62 
Chr8:140572933-140635484 XM_017013317 16 784 2 
Chr8:140585312-140588721 Unannotated 2 301 0.66 
Chr8:140585312-140590593 Unannotated 0 303 0 
Chr8:140585312-140596675 XM_011516965 9 294 2.97 
Chr8:140585312-140605796 XM_011516966 32 271 10.56 
Chr8:140585312-140633774 Unannotated 14 291 4.59 
Chr8:140585312-140635484 NM_012154 226 79 74.1 

HEK293 Chr8:140532616-140539319 NM_001164623 14 1827 0.76 
Chr8:140558573-140559419 Unannotated 3 2066 0.14 
Chr8:140572604-140572811 Unannotated 4 527 0.75 
Chr8:140572933-140635484 XM_017013317 10 701 1.41 
Chr8:140585312-140588721 Unannotated 4 250 1.57 
Chr8:140585312-140590593 Unannotated 0 254 0 
Chr8:140585312-140596675 XM_011516965 1 253 0.39 
Chr8:140585312-140605796 XM_011516966 23 231 9.06 
Chr8:140585312-140633774 Unannotated 3 251 1.18 
Chr8:140585312-140635484 NM_012154 209 45 82.28 

MCF7 Chr8:140532616-140539319 NM_001164623 16 2007 0.79 
Chr8:140558573-140559419 Unannotated 5 1960 0.25 
Chr8:140572604-140572811 Unannotated 6 607 0.98 
Chr8:140572933-140635484 XM_017013317 13 785 1.63 
Chr8:140585312-140588721 Unannotated 0 277 0 
Chr8:140585312-140590593 Unannotated 0 277 0 
Chr8:140585312-140596675 XM_011516965 5 272 1.81 
Chr8:140585312-140605796 XM_011516966 41 236 14.8 
Chr8:140585312-140633774 Unannotated 9 272 3.2 
Chr8:140585312-140635484 NM_012154 206 76 73.05 

LNCaP Chr8:140532616-140539319 NM_001164623 40 4647 0.85 
Chr8:140558573-140559419 Unannotated 12 4467 0.27 
Chr8:140572604-140572811 Unannotated 56 1376 3.91 
Chr8:140572933-140635484 XM_017013317 12 1872 0.64 
Chr8:140585312-140588721 Unannotated 68 764 8.17 
Chr8:140585312-140590593 Unannotated 51 781 6.13 
Chr8:140585312-140596675 XM_011516965 28 804 3.37 
Chr8:140585312-140605796 XM_011516966 71 762 8.52 
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Chr8:140585312-140633774 Unannotated 10 842 1.17 
Chr8:140585312-140635484 NM_012154 510 342 59.86 

PNT2 Chr8:140532616-140539319 NM_001164623 1 3862 0.03 
Chr8:140558573-140559419 Unannotated 0 4572 0 
Chr8:140572604-140572811 Unannotated 43 1222 3.4 
Chr8:140572933-140635484 XM_017013317 14 2140 0.65 
Chr8:140585312-140588721 Unannotated 17 861 1.94 
Chr8:140585312-140590593 Unannotated 0 878 0 
Chr8:140585312-140596675 XM_011516965 9 869 1.03 
Chr8:140585312-140605796 XM_011516966 31 848 3.53 
Chr8:140585312-140633774 Unannotated 10 878 1.13 
Chr8:140585312-140635484 NM_012154 782 106 88.06 

SCR4 Chr8:140532616-140539319 NM_001164623 46 9419 0.49 
Chr8:140558573-140559419 Unannotated 22 8379 0.26 
Chr8:140572604-140572811 Unannotated 41 2593 1.56 
Chr8:140572933-140635484 XM_017013317 63 3500 1.77 
Chr8:140585312-140588721 Unannotated 24 1342 1.76 
Chr8:140585312-140590593 Unannotated 0 1366 0 
Chr8:140585312-140596675 XM_011516965 22 1344 1.61 
Chr8:140585312-140605796 XM_011516966 115 1252 8.41 
Chr8:140585312-140633774 Unannotated 42 1355 3.01 
Chr8:140585312-140635484 NM_012154 1074 326 76.71 

SCC38 Chr8:140532616-140539319 NM_001164623 10 3599 0.28 
Chr8:140558573-140559419 Unannotated 11 3843 0.29 
Chr8:140572604-140572811 Unannotated 65 1161 5.3 
Chr8:140572933-140635484 XM_017013317 19 1843 1.02 
Chr8:140585312-140588721 Unannotated 4 835 0.48 
Chr8:140585312-140590593 Unannotated 3 836 0.36 
Chr8:140585312-140596675 XM_011516965 14 825 1.67 
Chr8:140585312-140605796 XM_011516966 58 781 6.91 
Chr8:140585312-140633774 Unannotated 27 825 3.17 
Chr8:140585312-140635484 NM_012154 712 143 83.27 

SKN Chr8:140532616-140539319 NM_001164623 12 5922 0.2 
Chr8:140558573-140559419 Unannotated 3 6014 0.05 
Chr8:140572604-140572811 Unannotated 24 1545 1.53 
Chr8:140572933-140635484 XM_017013317 53 2338 2.22 
Chr8:140585312-140588721 Unannotated 2 984 0.2 
Chr8:140585312-140590593 Unannotated 0 986 0 
Chr8:140585312-140596675 XM_011516965 6 980 0.61 
Chr8:140585312-140605796 XM_011516966 127 859 12.88 
Chr8:140585312-140633774 Unannotated 7 1017 0.68 
Chr8:140585312-140635484 NM_012154 782 242 76.37 

THP Chr8:140532616-140539319 NM_001164623 8 1552 0.51 
Chr8:140558573-140559419 Unannotated 1 1665 0.06 



176 
 

Chr8:140572604-140572811 Unannotated 7 392 1.75 
Chr8:140572933-140635484 XM_017013317 11 656 1.65 
Chr8:140585312-140588721 Unannotated 0 214 0 
Chr8:140585312-140590593 Unannotated 0 214 0 
Chr8:140585312-140596675 XM_011516965 7 207 3.27 
Chr8:140585312-140605796 XM_011516966 21 193 9.81 
Chr8:140585312-140633774 Unannotated 2 217 0.91 
Chr8:140585312-140635484 NM_012154 171 48 78.08 

Foetal 
Brain 

Chr8:140532616-140539319 NM_001164623 0 403 0 
Chr8:140558573-140559419 Unannotated 0 310 0 
Chr8:140572604-140572811 Unannotated 0 76 0 
Chr8:140572933-140635484 XM_017013317 2 105 1.87 
Chr8:140585312-140588721 Unannotated 0 35 0 
Chr8:140585312-140590593 Unannotated 0 35 0 
Chr8:140585312-140596675 XM_011516965 2 33 5.71 
Chr8:140585312-140605796 XM_011516966 0 35 0 
Chr8:140585312-140633774 Unannotated 1 34 2.86 
Chr8:140585312-140635484 NM_012154 28 7 80 

Whole 
Brain 

Chr8:140532616-140539319 NM_001164623 1 268 0.37 
Chr8:140558573-140559419 Unannotated 0 172 0 
Chr8:140572604-140572811 Unannotated 0 51 0 
Chr8:140572933-140635484 XM_017013317 0 69 0 
Chr8:140585312-140588721 Unannotated 0 16 0 
Chr8:140585312-140590593 Unannotated 0 16 0 
Chr8:140585312-140596675 XM_011516965 1 15 6.25 
Chr8:140585312-140605796 XM_011516966 0 16 0 
Chr8:140585312-140633774 Unannotated 2 14 12.5 
Chr8:140585312-140635484 NM_012154 11 5 68.75 

Bone 
Marrow 

Chr8:140532616-140539319 NM_001164623 0 1587 0 
Chr8:140558573-140559419 Unannotated 53 1199 4.23 
Chr8:140572604-140572811 Unannotated 25 242 9.36 
Chr8:140572933-140635484 XM_017013317 14 457 2.97 
Chr8:140585312-140588721 Unannotated 0 267 0 
Chr8:140585312-140590593 Unannotated 0 267 0 
Chr8:140585312-140596675 XM_011516965 19 248 7.12 
Chr8:140585312-140605796 XM_011516966 53 214 19.85 
Chr8:140585312-140633774 Unannotated 0 290 0 
Chr8:140585312-140635484 NM_012154 181 109 62.41 

Heart Chr8:140532616-140539319 NM_001164623 22 2590 0.84 
Chr8:140558573-140559419 Unannotated 0 2178 0 
Chr8:140572604-140572811 Unannotated 16 485 3.19 
Chr8:140572933-140635484 XM_017013317 1 840 0.12 
Chr8:140585312-140588721 Unannotated 2 249 0.8 
Chr8:140585312-140590593 Unannotated 0 251 0 



177 
 

Chr8:140585312-140596675 XM_011516965 3 248 1.2 
Chr8:140585312-140605796 XM_011516966 6 245 2.39 
Chr8:140585312-140633774 Unannotated 7 244 2.79 
Chr8:140585312-140635484 NM_012154 232 19 92.43 

Kidney Chr8:140532616-140539319 NM_001164623 4 734 0.54 
Chr8:140558573-140559419 Unannotated 1 695 0.14 
Chr8:140572604-140572811 Unannotated 2 196 1.01 
Chr8:140572933-140635484 XM_017013317 15 245 5.77 
Chr8:140585312-140588721 Unannotated 2 92 2.13 
Chr8:140585312-140590593 Unannotated 0 94 0 
Chr8:140585312-140596675 XM_011516965 0 94 0 
Chr8:140585312-140605796 XM_011516966 5 89 5.32 
Chr8:140585312-140633774 Unannotated 0 94 0 
Chr8:140585312-140635484 NM_012154 72 22 76.6 

Skeletal 
Muscle 

Chr8:140532616-140539319 NM_001164623 8 2222 0.36 
Chr8:140558573-140559419 Unannotated 7 2099 0.33 
Chr8:140572604-140572811 Unannotated 48 544 8.11 
Chr8:140572933-140635484 XM_017013317 5 873 0.57 
Chr8:140585312-140588721 Unannotated 0 258 0 
Chr8:140585312-140590593 Unannotated 0 258 0 
Chr8:140585312-140596675 XM_011516965 0 258 0 
Chr8:140585312-140605796 XM_011516966 0 258 0 
Chr8:140585312-140633774 Unannotated 2 256 0.78 
Chr8:140585312-140635484 NM_012154 251 7 97.29 

Testes Chr8:140532616-140539319 NM_001164623 0 369 0 
Chr8:140558573-140559419 Unannotated 0 239 0 
Chr8:140572604-140572811 Unannotated 0 10 0 
Chr8:140572933-140635484 XM_017013317 0 48 0 
Chr8:140585312-140588721 Unannotated 0 12 0 
Chr8:140585312-140590593 Unannotated 0 12 0 
Chr8:140585312-140596675 XM_011516965 0 12 0 
Chr8:140585312-140605796 XM_011516966 1 11 8.33 
Chr8:140585312-140633774 Unannotated 1 11 8.33 
Chr8:140585312-140635484 NM_012154 10 2 83.33 

Table Appendix C. Read Counts and Percent Spliced with Junction (PSJ) values for Spliced Exon 
Junctions in Ago2. Includes 16 tissues and cell lines, with all junctions unique to annotated 
transcripts and the top 5 unannotated junctions by mean read count across samples. 
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Appendix D – Western Blots for the Immunoprecipitation of Ago2 

Isoforms 

Figure Appendix D. Western blots confirm enrichment of FLAG antibodies in FLAG 
immunoprecipitate compared to control for all three Ago2 isoforms. Equal concentrations of protein 
were used across FLAG and control supernatant and IP samples. Mouse IgG antibody was used as a 
control. RNA isolated from immunoprecipitates were subsequently used for small RNA sequencing. 
In: Input (cell lysate). sup: supernatant of immunoprecipitated lysate. IP: Immunoprecipitated 
sample targeted for enrichment of antibody epitope. Iso: isoform. 
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