
Crack Detection and Classification using 
Digital Image Processing

by Thi Hong Nhung Nguyen 

Thesis submitted in fulfilment of the requirements for 
the degree of  

Doctor of Philosophy 

under the supervision of 
- Prof. Stuart Perry, Principal supervisor
- A/Prof. Donald Bone, Co-supervisor
- A/Prof. Thuy Thi Nguyen, External supervisor
- A/Prof. Le Thanh Ha, External supervisor

University of Technology Sydney 
Faculty of Engineering and IT 

Dec 2022 





Certificate of Original Authorship

I, Thi Hong Nhung Nguyen declare that this thesis, is submitted in fulfilment of the re-

quirements for the award of Doctor of Philosophy, in the School of Electrical and Data

Engineering/Faculty of Engineering and Information Technology at the University of Tech-

nology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addi-

tion, I certify that all information sources and literature used are indicated in the thesis.

I certify that the work in this thesis has not previously been submitted for a degree nor

has it been submitted as part of the requirements for a degree at any other academic

institution except as fully acknowledged within the text. This thesis is the result of a

Collaborative Doctoral Research Degree program with The VNU University of Engineering

and Technology (VNU-UET).

This research is supported by the Australian Government Research Training Program. 

Signed:

Date:

iii

22/12/2022

Production Note:

Signature removed prior to publication.





Crack Detection and Classification using Digital Image

Processing

by

Thi Hong Nhung Nguyen

A thesis submitted in partial fulfilment of the requirements for the

degree of Doctor of Philosophy

Abstract

Crack detection and segmentation, and the processes of crack classification and crack

index calculation which they support, are essential tools in road survey and maintenance

applications. The outputs of crack detection and segmentation are used to define the

severity levels of the cracking of road surfaces. Based on the crack severity levels, necessary

repair and maintainence can be decided.

There are many image processing methods that may be applied to this domain, including

traditional methods using low-level features such as edges, and modern methods using

machine learning algorithms such as deep learning which are able to abstract high-level

features. However, many challenges associated with the use of digital image processing

to detect and segment cracks in images are still not solved. Some of these challenges and

limitations include: (1) crack images are often noisy, have low-resolution, and contain

many artifacts; (2) the associated road crack datasets are imbalanced, with only a small

proportion of the data repesenting crack information; (3) three dimensional (3D) data such

as crack point clouds are informative to analyze and monitor the development of crack

but current acquisition methods for this data produce low-density point clouds and this

problem needs to be addressed to make these data sets more useful; (4) the automated

calculation of crack indices is frustrated by the lack of robust, standardised methods for

automatically identifying cracks and measuring crack parameters such as crack length and

crack width.
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To solve the above limitations, this thesis focuses on three main contributions:

The first contribution is the proposal of a new architecture for crack detection and segmen-

tation. This method improves the ability to segment the crack from noisy and imbalanced

road crack datasets. A combination of crack detection at the region (or sample) level and

crack segmentation at the pixel level is shown to increase the accuracy of crack segmenta-

tion.

In the second contribution, a novel method of crack point cloud upsampling is proposed.

By combining the point clouds and their corresponding 2D images in a model based on a

GAN (Generative Adversarial Network) framework, the proposed method aims to generate

high-resolution point clouds from low-resolution point clouds and matched 2D images. The

high-resolution point clouds can be used to improve the classification of crack point clouds

and support crack monitoring.

The final contribution is a method to calculate crack parameters such as crack length and

crack width from segmented cracks. This contribution proposes an approach for evaluating

the crack length results based on the traditional metric Precision Recall Curve (PRC). The

new approach is suitable for a range of narrow features such as crack lines.

This thesis shows the impressive power of using digital image processing and machine

learning for crack analysis in both 2D or 3D crack data.
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(f) Canny edges, (g) à trous algorithm–based edges at scaling 21, (h) à trous
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