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ABSTRACT

R einforcement learning is a principled AI framework for autonomously experience-
driven learning. The primary goal of reinforcement learning is to train autonomous
agents to learn the optimal behaviors for their interactive environments. Deep

reinforcement learning promotes a higher-level understanding of the visual world in
the field of reinforcement learning by combining deep learning models and reinforce-
ment learning algorithms. Since reinforcement learning is achieving great success in
an increasing number of application fields that may involve huge amounts of private
information, the security of policies and privacy preservation in reinforcement learning
have given rise to widespread concerns. In addition, deep reinforcement learning policies
parameterized by neural networks have been demonstrated to be vulnerable to adversar-
ial attacks in supervised learning settings. Privacy leakage also occurs in multi-agent
reinforcement learning systems where agents’ actions or behaviors are directly exposed
to other agents.

To address these multiple privacy concerns in reinforcement learning, we apply
differential privacy in variant scenarios of reinforcement learning. In this thesis, we
introduce our differentially private methods in those diverse scenarios to preserve privacy,
including the multi-agent advising framework, multi-agent planning framework, the
deep reinforcement learning context, machine learning classifiers and multi-agent game
theoretic framework, respectively. We have provided detailed theoretical analysis and
comprehensive experimental results to demonstrate that our methods can guarantee
privacy preservation as well as the utility of reinforcement learning in diverse scenario
in different chapters.
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INTRODUCTION

1.1 Background

Reinforcement learning (RL) is a principled mathematical framework for au-

tonomously experience-driven learning [112]. The primary goal of RL is to train

autonomous agents to learn the optimal behaviors for their interactive environ-

ments. At each step, an RL agent observes the current state of the environment and

takes an action, which causes a transition from the current state into a new state. The

agent receives a scalar reward that evaluates the quality of the action it takes. The agent

aims to find the optimal policy composed by a sequence of actions in the environment,

which maximizes the total obtained reward.

Deep Reinforcement Learning (DRL) [78] promotes a higher-level understanding

of the visual world in the field of RL by combining deep learning models and RL algo-

rithms. Deep Q-network (DQN) is a typical structure in DRL by combining deep neural

network and Q-learning approach in RL, which convolutional neural networks can be

used as components of RL agents allowing them to learn directly from raw and high-

dimensional inputs. At present, DRL algorithms are widely applied in the fields of video

games [78] [117], autonomous robotics [66], and autonomous driving [100] [99] [6].

Multi-agent reinforcement learning (MARL) is a sub-field of RL, which studies the

behaviors of multiple RL agents in a shared environment. In a MARL system, each agent

is still motivated by its own rewards, however, an agent’s behavior may affect other

agents’ behaviors, or be affected by others’ behaviors, because the agent’s observed states
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include other agents’ states and behaviors. MARL allows multiple agents exploring

different alignments of their interests in the shared environment: cooperation and

competition. In a cooperative environment, all agents learn towards a common goal

with the exact same rewards. An agent is allowed to share learning experience with

others if it meets some state many times before and feels confident enough to take the

correct action. The way of such experience sharing is called the advising framework

which accelerates agents learning by reusing previous knowledge in current repeated

state from other agents [134]. On the other hand, the agents play against each other,

and are motivated by the opposite rewards to each other in a competitive environment.

The competitive MARL system is widely applied to revolve around social dilemmas in

game theory problems, such as prisoner’s dilemma and chicken and stag hunt.

1.2 Privacy Concerns

Since RL is achieving great success in an increasing number of application fields that

may involve huge amounts of private information, the security of policies and privacy

preservation in RL have given rise to widespread concerns. DRL policies are parameter-

ized by neural networks which have been demonstrated to be vulnerable to adversarial

attacks in supervised learning settings [50]. For instance, some perturbations added to

the input can cause the convolutional neural networks to misclassify the adversarial

input unexpectedly [44, 113], and cause negative impacts on the utility of trained mod-

els. Meanwhile, machine learning algorithms have been found possible to leak private

information of individual training data in the past few years, which may contain users’

sensitive information [95]. Membership inference attack [106] is possible to determine if

some individual data points were used to train the model in a black-box setting.

Some attack methods also challenge the security of policies in DRL. DRL policies

can be attacked under different goals such as reducing the final rewards of agents, or

malevolently luring training agents to dangerous states [67]. Most of existing approaches

[42, 50, 60] based on adversarial examples that allow the adversaries to make only

limited changes to the raw inputs. Unlike supervised learning involving a fixed dataset

of training examples during learning, DRL gathers input examples containing observa-

tions and states information throughout the training process dynamically. Therefore, in

domains where an adversary can directly modify the training agent’s input, adversarial

perturbations are injected on frequently during DRL training. Otherwise, adversarial

policy can be applied to maliciously change the training agent’s physical observations, in

2
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order to inject adversarial information into the agent’s input.

Privacy leakage also occurs in MARL systems, which involve multiple agents col-

laboratively explore in a shared environment. In a MARL system, agents’ actions or

behaviors are directly exposed to other agents. Agents can be observed by other agents

as a part of states, which further influence other agents’ selections of actions. In some

scenarios, agents are even required to share with others the learning experience and

the information in the environment which they have met before. Some privacy concerns

have been raised in MARL when multiple agents come from different parties, or agents’

learning experience and policies are private to each other. For example, research into

planning problems in MARL largely focuses on jointly automated planning [118]. During

jointly automated planning, agents have to share information, which often results in the

leaking of agents’ private information.

The privacy concerns do not only exist inside of MARL systems, but also in some

scenarios where MARL algorithms are applied. As MARL algorithms are powerful

tools to learn policies in many tasks, they are also some attackers’ weapons to execute

some cyber attacks. Cyber attacks are typical game theory scenarios where attackers

and defenders are two-party agents of MARL algorithms to play against each other.

Attackers aim to learn how to beat defenders’ policies and maximize their malicious

interests, meanwhile, defenders want to maximally protect their sensitive data from

being attacked by attackers. Such scenarios are undoubtedly challenging the security

and privacy of MARL agents. Therefore, with the continuous developments of RL in

increasing application fields, it is essential to address the privacy and security risks in

RL systems and algorithms.

1.3 Research Objective

Our research objective is to address privacy concerns in the RL environment, especially

the scenarios we discussed above. We contend that differential privacy (DP) [29] has

the potential to provide a privacy-preserving solution in RL. DP introduces the concept

of neighboring datasets, which are two datasets that differ by only one record. DP

offers a strong privacy guarantee through the addition of perturbation to a pair of

datasets, meaning that the results of queries of two neighboring datasets are likely to be

statistically similar [103].

DP has several attractive properties that make it quite valuable for RL. First, DP

provides a strong privacy guarantee by hiding individuals in aggregated information.

3
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DP can add some uncertainty onto agents’ private information during the training, and

reduce the impact of malicious agents in most tasks. Secondly, DP protects a higher-level

model that captures behaviors rather than just limiting itself to a particular data point,

which benefits from its stability that the probability of any outcome from RL algorithm is

statistically unchanged by modifying on any individual record in data. Thirdly, DP has a

great flexibility in RL applications where targets that need to be protected can be varied.

The perturbation from DP can be added on any part of agents’ learning in RL systems as

required. Therefore, we aim to apply DP to benefit RL in the privacy preservation and

security of varied application scenarios.

1.4 Main Contributions

This section will introduce the following four contributions in this thesis.

1.4.1 Differentially Private Advising Framework in
Simultaneously Reinforcement Learning

Advising frameworks address the above problem by reusing previous knowledge in a

repeated state from other agents. Simultaneously learning agents advising can be used

to accelerate learning when all agents start learning in a multiple-state system at the

same time [23, 104, 134, 137]. Some of the learning agents who have visited a state more

times than others, can be seen as more experienced in. A single agent can play both roles

of teacher who can provide advice, and student who will ask for advice.

However, traditional advising frameworks are only appropriate for the situation

which all agents have the same actions, but cannot be applied when agents’ actions

are not the completely same. In real-world, it’s commonly that agents have different

available actions even though they are aiming the same task. We find that differential

privacy property can guarantee that the experience for each action can still be used as

advice if the two actions differ in, at most, one record. We propose a differentially private

advising approach to improve the existing advising frameworks when agents’ actions

are different. This approach can expand the applicable field of advising frameworks and

increase the probability of the occurrence of advising.
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1.4.2 Differentially Private Reinforcement Learning Based
Multi-agent Planning

Multi-agent planning is one of the fundamental research problems in MARL systems

[26, 135], which aims to improve agents’ working efficiency by making plans in advance.

Research into collaborative multi-agent planning largely focuses on jointly automated

planning [118], where agents have to share information. However, this kind of infor-

mation sharing often results in the leaking of agents’ private information. Accordingly,

to protect agents’ privacy, privacy preservation is introduced into the collaborative

multi-agent planning process [101, 102]. The main problem associated with privacy

preservation in collaborative multi-agent planning is that of how to make plans for

agents while also preserving the privacy of each agent.

To address the privacy preservation in multi-agent planning process, we develop a

novel strong differentially private planning approach for distributed and communication-

constrained environments. Our approach focuses primarily on logistic-like problems,

i.e. planning, routing and scheduling problems exploring solutions that how robotics

agents can efficiently deliver items from one city to another, which are typically used

as running examples in multi-agent planning problems. In our proposed approach, the

privacy budget can naturally be used to control communication overhead, with the result

that only a limited number of messages are permitted during a planning phase.

1.4.3 Privacy Preservation in Deep Reinforcement Learning: a
Training Perspective

It has been demonstrated that DRL can leak private information about the training

environment. An illustrative example [86] concerns an agent that aims to navigate the

shortest path between a starting point and a destination in a simple grid world with

obstacles. A well-trained agent will still follow the same trajectory even once all obstacles

in the environment have been removed after training. This example indicates that it is

possible to infer environmental information from a well-trained DRL policy. A DRL agent

tends to memorize the training environment instead of performing visual navigation.

We contend the root cause of privacy leakage in DRL is the agent’s observations of the

training environment. When the agent is brought into a new open environment, the agent

repeats the sequence of actions from memory, which means that private information

concerning its trajectory and the original environment can be inferred. To solve the

above issues, we propose the differentially private DRL method to protect a DRL agent’s
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training environment information against privacy leakage attacks, which is the first

work to defend such attacks. We apply the exponential mechanism of DP to protect an

agent’s observations from each visited state by obfuscating one observation element each

time based on a probability distribution. Our method can also dynamically adjust the

privacy budget to guarantee the privacy for both the agent and the training environment,

as well as the utility of the trained agent’s policy.

1.4.4 One Parameter Defense - Defending against Data Inference
Attacks via Differential Privacy

Our proposed differentially private DRL framework acts on the neural networks of DRL

algorithms, thus, the similar idea can also be applied in classification problems in deep

learning. We develop a time-efficient defense method against both membership inference

and model inversion attacks in deep learning. We are the first to propose a one-parameter

defense method that requires only one parameter to be tuned, the privacy budget. Our

solution is a differential privacy mechanism that modifies and normalizes the confidence

score vectors to confuse the attacker’s classifier. We theoretically demonstrate how to

tune the privacy budget to defend against both types of attacks, while controlling the

utility loss of confidence score vectors. We empirically show that the presented method

effectively mitigates both types of attacks with no loss of classification accuracy, zero

training time, and very low test time.

1.5 Thesis Organization

The reminder of the thesis is organized as follows.

Chapter 2 introduces preliminaries, mainly including the notations applied in this

thesis, some definitions and properties on RL and DP, respectively.

Chapter 3 introduces our proposed differentially private advising framework in

simultaneously RL systems. The chapter includes the algorithms of the proposed method

and demonstrates the performance in its experiment settings.

Chapter 4 proposes a differentially private RL based multi-agent planning frame-

work to protect the agents’ privacy when multiple agents’ collaborative plan an optimal

policy in a RL system. We provide our algorithms and proofs, and demonstrate the

effectiveness of our method in logistic-like scenarios.
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Chapter 5 and Chapter 6 demonstrate how the exponential mechanism of DP to

defense against privacy inference attacks to DRL and deep learning, respectively. In

Chapter 5, we introduce a differentially private DRL framework to defense against

privacy leakage attacks in grid worlds as examples. We provide our theoretical proof,

and demonstrate the performance of the defense method against privacy leakage attacks

in multiple-sized grid maps via different settings of the privacy budget. In Chapter 6,

a similar method applying the exponential mechanism of DP is introduced to defense

against both model inversion attacks and membership inference attacks in classification

problems in deep learning settings.

Chapter 7 summarizes the contributions of this thesis.
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2
PRELIMINARIES OF REINFORCEMENT LEARNING AND

DIFFERENTIAL PRIVACY

In this chapter we will introduce the background knowledge for reinforcement

learning and differential privacy, respectively. Some notations used in this thesis

will be introduced first in the beginning of this chapter. We will then introduce the

basic theory of traditional reinforcement learning with emphasis on Q-learning, and deep

reinforcement learning, which is the combination of reinforcement learning algorithms

and artificial neural networks. After that, we will introduce the general theories of DP.

2.1 Notations

Table 2.1 summarizes some major notations used in this thesis. Some other symbols used

temporarily in different chapters, will be introduced in corresponding chapters.

2.2 Reinforcement Learning

RL is a principled mathematical framework for autonomously experience-driven learning

[112]. In RL an autonomous agent tries to solve a task in an interactive environment

which is unknown to the agent. The agent can shift the state of the environment by

taking actions, and receive immediate feedback for each action from the environment.
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Categories Notations Explanation

RL related

S A set of states
s A state
A A set of actions
a An action
T Transition dynamics
π An agent’s trained policy
O A set of observations
o An observation element
R A reward function
r A reward
γ A discount factor
Q A Q function or a Q value
t Time, time sequence or iterative round
α Learning rate, or accuracy parameter

DP related

M A randomized algorithm
D A dataset
D′ A neighboring dataset
f A query
f̂ A noisy output of a query
F A set of queries
∆S Sensitivity
ϵ Privacy budget
δ Accuracy parameter

Table 2.1: Notations

The primary goal of the agent is to learn the optimal behavior with an optimal chain of

actions in this environment.

RL is one popular area within machine learning, but it is fundamentally different

from traditional machine learning methods in several aspects. First, traditional machine

learning methods strongly depend on data acquisition, however, an RL agent learns

from its own experience for the interaction with the environment and does not rely on

supervision. Second, an RL agent focuses on searching an optimal behavior rather than

analyzing any data. Third, an RL agent can be affected by the sequence of its experience

and actions it takes. Instead, the order of data cannot affect the training of traditional

machine learning methods.

RL techniques are typically used to solve sequential decision-making problems, which

model the learning environment as a Markov decision process (MDP). An MDP model is

10
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depicted as a tuple 〈S ,A ,T ,R,γ〉, where

• S is a set of states;

• A is the set of actions available to the agent;

• T is the transition dynamics defined as a probability mapping from state-action

pairs to states T : (S ×A )×S → [0,1];

• R is a reward function representing the benefit of performing an action a in the

state s;

• γ is a discount factor applied to discount future rewards for reward accumulation,

which satisfies 0≤ γ≤ 1.

The aim of RL is to find an optimal policy π that maps state-action pairs to a probability

distribution π : S ×A → [0,1], in order to maximize the obtainable reward Eπ[
∑P

p=0γprp],

where P is state-action pairs chosen by the agent from the beginning of a training epoch

to the point of its success or failure.

2.2.1 Traditional Reinforcement Learning

Traditional RL is driven by Q learning, also known as temporal difference method (TD).

Q learning is a value-function based algorithm [97] which uses TD evaluation of the Q
value to update the estimated Q function. The update rule is shown as follows:

Q (s,a)← (1−α)Q (s,a)+α
[
r+γmaxaQ

(
s′,a′)] ;

where s′ is the next state, and a′ is an action of the next state s′, which currently has the

largest Q value. The traditional Q learning algorithm is shown in Algorithm 1.

There are some limitations in traditional RL algorithms because all the values

are stored in Q tables. First, the tabular structure limits the number of states and

actions to a very small scale, but in the real-world problems, the state space can be

too large to be stored into a table due to the computer’s storage and capability. Second,

the tabular structure is hard to learn from the previous experience of a similar state

and share knowledge. To improve the traditional RL algorithms and overcome above

restrictions, function approximators are applied to replace tables to map states of the

training environment. DRL is the most common method for function approximation.

DRL extracts relevant features from inputs directly that generalize to unseen states.

11
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Algorithm 1 Q learning
Require: Initialize: Q-value for each actions, initial state s = s0

1: for each epoch do
2: while s is NOT terminal do
3: a ←π(s)
4: r ←R(s,a);
5: a′ ← maxã(Q(s′, ã))
6: Q(s,a)← (1−α)Q(s,a)+α[r+γQ(s′,a′)];
7: s ← s′;
8: end while
9: end for

2.2.2 Deep Reinforcement Learning

DRL [78] promotes a higher-level understanding of the visual world in the field of RL

by combining deep learning models and RL algorithms. DeepMind presented DQN that

combined Q learning with neural networks. DRL algorithms perform well on video games

directly from pixels, such as Atari [78] and Mujoco [117], and autonomous robotics from

camera inputs in the fields of robotic control tasks [66] and autonomous driving [99, 100]

in the real world [6].

The DQN algorithm involves two novel mechanisms, experience replay and frozen
target network. Experience replay can store agent’s experience < st,at, r t, st+1 > as a

tuple in a buffer. At each training step, the agent uniformly sample a mini-batch of

experience tuples from the buffer to update the network. Such mechanism significantly

reduce the correlation between experience samples without overfitting in the network.

Also, reusing previous experience is also beneficial to an DQN agent for a smooth and

efficient learning. Meanwhile, Frozen target network uses two networks with an identical

architecture but different weights values for Q network and the target network, which

are known as θ and θ−, respectively. The target network stays frozen and only updates

itself at every C steps by copying the parameters of Q network, where C is a predefined

constant. This mechanism leads to a more stabilized learning by reducing the oscillation

of a DQN agent’s policy. The Algorithm 2 describes the process of the DQN algorithm

with experience replay and frozen target model mechanisms.

12
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Algorithm 2 DQN algorithm with experience replay and frozen target model
Require: Initialize replay memory D with capacity N, action-value function Q with

random weights θ, target action-value function Q̂ with weights θ− = θ, initial state
s0, training maximum epochs E, current training epoch e, the constant C,ϵg;

1: for e = 1to E do
2: s = s0;
3: while s is NOT terminal do
4: Get observations O (s) at s;
5: Randomly get probability p, p ∈ [0,1];
6: if p > ϵg, where ϵg is threshold of greedy policy then
7: Randomly select action a, a ∈A ;
8: else
9: a ← argmaxA Q(O ′(s),A ;θ) ;

10: end if
11: Obtained reward r ←R(s,a);
12: The next state s′ ←T (s,a);
13: The transition t ← (O ′(s),a, r,O ′(s′));
14: D ← D∪ t;
15: s = s′;
16: if e is divided by C then
17: Sample random mini-batch of transitions (O ′

j,a j, r j,O ′
j+1) from D;

18: Set yj ←
{

r j, if next step j+1 terminates the epoch
r j +γmaxA Q̂(O ′

j+1,A ;θ−), otherwise
;

19: Gradient descent on (yj −Q(O ′
j,A ;θ))2 with θ;

20: Reset Q̂ =Q
21: end if
22: end while
23: end for

2.3 Differential Privacy

DP is a provable privacy concept conceived by Dwork et al. [29]. Its core premise, namely

that the outputs of the queries on neighboring datasets should be statistically similar,

is one of the strongest standards for a privacy guarantee. The formal definitions of

neighboring dataset and DP are presented below.

Definition 2.1 (Neighboring Dataset). The datasets D and D′ are neighbouring datasets

if and only if they differ in one record. This is denoted as D⊕D′ = 1, where ’⊕’ indicates

the difference between two datasets.
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Definition 2.2 ((ϵ, δ)-DP). A randomized algorithm M gives ϵ-DP for neighboring
datasets D and D′, and for every set of outcomes Ω, M satisfies:

(2.1) Pr[M (D) ∈Ω]≤ exp(ϵ) ·Pr[M (D′) ∈Ω]+δ .

For a particular output, the ratio on two probabilities is bounded by eϵ. ϵ is the privacy

parameter, also known as the privacy budget [27], which controls the level of privacy

preservation of a mechanism M . If δ= 0, the randomized mechanism M provides ϵ-DP

by its strictest definition, which is usually called pure DP. (ϵ, δ)-DP gives freedom to

violate strict ϵ-DP for some low probability events, which is called approximate DP [8]. A

smaller ϵ means greater privacy.

The maximum difference on the queried results over neighboring datasets is defined

as the sensitivity ∆S. The formal definition is as follows:

Definition 2.3 (Sensitivity). For a query f : D →R, the global sensitivity of f is defined

as follows:

(2.2) ∆S =maxD,D′∥ f (D)− f (D′)∥1 .

Definition 2.4 (Private prediction interface [28]). A prediction interface M is ϵ-differentially

private, if for every interactive query generating algorithm f , the output ( f ⇄M (F)) is

ϵ-differentially private with respect to model F, where ( f ⇄M (F)) denotes the sequence

of queries and responses generated in the interaction of f and M on model F.

This definition shows that a private prediction interface can guarantee the privacy

preservation of the interaction between queries and responses. Assume an attacker

interacts with a prediction interface. If this interaction is differentially private, for each

query of the attacker to the target model, he receives only an obfuscated response which

breaks the relationship between the attacker’s query and the corresponding response.

In DP, Gaussian and Laplace mechanisms are widely used for the numeric outputs of

queries. These mechanisms add noise to the data to obscure certain sensitive attributes

until others cannot distinguish the exact true answers of quarries. The formal definitions

are as follows:

Definition 2.5 (Gaussian mechanism). The Gaussian mechanism with parameter σ

adds zero-mean Gaussian noise with variance σ. Given a function f : D → R over a

dataset D, if σ= S
p

2ln(2/δ) /ϵ and N (0,σ2) are independent and identically distributed

(i.i.d.) Gaussian random variable, Equation 2.3 provides (ϵ,δ)-DP.

(2.3) f̂ (D)= f (D)+N (0,σ2) .
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Definition 2.6 (Laplace mechanism). Given a function f : D → R over a dataset D,

Equation 2.4 provides ϵ-DP.

(2.4) f̂ (D)= f (D)+Laplace(
∆S
ϵ

) .

The exponential mechanism allows a precise data record from a dataset while pre-

serving DP by specifying a score function, which outputs a score for each element in the

dataset. The formal definitions are as follows:

Definition 2.7 (Score function). The quality of an outcome is measured by a score

function q : N|χ|×R →R, where q(D,φ) is a measure of how good an outcome φ would be

on dataset D.

Definition 2.8 (Exponential mechanism). Let q(D,φ) be a score function of dataset D
that measures the quality of output φ ∈Φ. Thus, an exponential mechanism M satisfies

ϵ-DP when

(2.5) M (D)=φ,with probability∝ exp(
ϵq(D,φ)

2∆S
) .

where ∆S represents the sensitivity of the score function q.
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3
DIFFERENTIALLY PRIVATE ADVISING FRAMEWORK IN

SIMULTANEOUSLY REINFORCEMENT LEARNING

Due to the rapid development of the cloud computing environment, it is widely accepted

that cloud servers are important for users to improve work efficiency. Users need to

know servers’ capabilities and make optimal decisions on selecting the best available

servers for users’ tasks. We consider the process of learning servers’ capabilities by

users as a multi-agent reinforcement learning (MARL) process. The learning speed and

efficiency in RL can be improved by sharing the learning experience among learning

agents which is defined as advising. However, existing advising frameworks are limited

by the requirement that, during advising all learning agents in an RL environment must

have exactly the same actions. To address the above limitation, this chapter proposes a

novel differentially private advising framework for MARL. Our proposed approach can

significantly improve the application of conventional advising frameworks when agents

have one different action. The approach can also widen the applicable field of advising

and speed up RL by triggering more potential advising processes among agents with

different actions.

3.1 Introduction

Regular RL approaches need a large number of interactions with the system environment

to learn a policy [68]. Advising frameworks address the above problem by reusing
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previous knowledge in a repeated state from other agents. Simultaneously learning

agents advising can be used to accelerate learning when all agents start learning in a

multiple-state system at the same time [23, 104, 134, 137]. An agent’s available choices

under this state are called actions. Some of learning agents who have visited a state

more times than others, can be seen as more experienced in. A single agent can play both

roles of teacher who can provide advice, and student who will ask for advice.

Figure 3.1 shows a real-world example, one assignment in a cloud computing course

in a university. Both students and teaching staff need to execute this assignment on

the university’s cloud servers, but students can only access public servers, and staff can

access either public servers or private servers. In this example, the experienced students

who have already executed their assignments more times than others can provide advice

to other students in choosing the optimal server with the best capability to run their

assignments within traditional advising frameworks, and the same applies to staff.

However, traditional advising frameworks are only appropriate for situations in

which all agents have the same actions, and cannot be applied when agents’ actions

are not exactly the same. In the real world, it is common that agents have different

available actions even though they are solving the same problem [104]. Referring back

to Figure 3.1, considering traditional frameworks, experienced teaching staff cannot

advise students which server has a better capability and a better performance due

to different available choices for servers even though they are working on the same

assignment. Therefore, it is crucial to solve the problem of advising among agents with

different available actions. Little previous work has considered experience transfer

between two agents with different available actions, and the challenge is how to transfer

the experience for the actions which are different among teachers and students.

We find that a DP mechanism can address the above challenge through the property

of randomization. We consider all agents’ available actions and their experience on

each state as independent datasets. The two datasets can be considered as neighboring

datasets in terms of DP. In Figure 3.1, if teaching staff and students record the execution

time of tasks as their experience on selecting servers, these records for servers can be

seen as datasets. The less time means the better capability of servers. When there

is a server accessible only to teaching staff, teachers’ datasets have one more record

than students’. In this case, the datasets of teachers and students can be considered as

neighboring datasets. By adding randomization, these datasets can be considered as the

same in a defined scale, and teaching staff and students can share experience with each

other. The DP property in our work is to guarantee that the experience for each action
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Figure 3.1: A real-world example: all students and teaching staff of a course need to
execute their assignments on a cloud computing servers, but they have different choices
available to them.

can still be used as advice if the two actions differ in, at most, one record. This approach

can expand the applicable field of advising frameworks and increase the probability of

the occurrence of advising. To summarize the three main contributions in this chapter:

• Firstly, we propose an improved differentially private advising approach based on

our previous framework, to improve conventional advising frameworks to address

the problem that agents’ actions are different.

• Secondly, we widen the applicable field of conventional advising frameworks in RL

by allowing more possible advising to accelerate agents’ learning stage in RL.

• Thirdly, we propose a new approach to decide when advising happens by calculating

the Euclidean distance of teacher and student’s Q-value, Q(s).
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We design a comprehensive set of experiments to demonstrate our approach in the

simultaneous MARL framework by comparing with conventional advising frameworks

under the same setting. We provide a brief analysis of the convergence of agents’ learning

and why Euclidean distance works here. We also present our experiment results and

the analysis of the performance of DP in the method by changing the value of privacy

budget, ε, in the range from 0.1 to 1.

3.2 Problem Statement

3.2.1 Scenario setting

In this section, we describe a detailed scenario as a motivated case study to demonstrate

existing challenges we are addressing.

Figure 3.2: Overview of Scenario setting

The scenario shown in Figure 3.2 is an extension of above example in a cloud

environment. There are many users, a,b, c,d, · · · , whom we consider as agents partici-

pating in an RL environment. There are many tasks, 1,2,3,4, · · · can treat as the states
s1, s2, s3, s4, · · · in the set of states S . Each user is allocated to a random task each time,

we call a single cycle for a user to finish its task an epoch, from being allocated to a ran-

dom task to the time before being allocated to the next task. Cloud servers A,B,C,D, · · ·
are used to solve tasks for users. In this RL environment, servers are actions taken

by agents to solve tasks. In our scenario, each agent can access different servers and

compose a set of available actions, A , i.e. for agent a, Aa(S ) : A,B,C,D. Each agent can
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only take one action for each task each epoch. However, each server behaves differently

on solving different tasks, and servers behave differently on the same task, i.e. server ’A’

is the best server on executing task 2 with the lowest time cost but the worst on task 4, or

computation capability of the server ’C’ is not enough to solve task 3. Combining all these

factors, a user obtains feedback to evaluate how this server executes this task, which we

call reward r(s,a), meaning the reward from the action a at the state s. A higher reward

means a server has a better capability on solving the task, and vice versa. Therefore, the

aim of users is to solve the task with the optimal server with the maximum reward each

epoch.

3.2.2 Scenario discussion

In the above scenario, each user should repeatedly be allocated tasks and choose servers

to solve them. The process can be considered as a learning process in which users need to

learn capabilities of servers on solving tasks. We explore the problems of how users can

learn servers’ capabilities, whether users can share their experience to others during the

learning process, and how users share the experience to others even they have different

available choices.

To address these questions, each agent needs to know each cloud server’s capabilities

based on their previous sequence of learning experience, in order to make the best

decision next time being allocated to the same tasks. Users continuously expand their

knowledge by receiving the rewards from previous epochs, and use learned knowledge

to make the next decision. The knowledge determines probability distribution for each

agents’ available actions in each state. The agent should ’understand’ this reward and

update their probability distribution for available actions at states by a transition

function T , in order to make a better decision next time when they are allocated to this

task.

Agents can transfer experience to or ask experience from others to accelerate the

learning process. However, due to the randomness of the task allocation to simultaneously

learning agents, the above scenario is very likely to generate a knowledge gap at some

state. The knowledge gap is an experience gap at a state, based on difference of times

that an agent is allocated to a task with others. An agent can be considered as more

experienced than another on a task if this agent has met this task enough times more

than the other. A threshold is used to define ’more experienced’ with a minimum number

of knowledge gap. An agent can ask for advice from the experienced agent while being

allocated to this task again. However, agents will inevitably run into due to the limitation
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we mentioned above, i.e. traditional advising frameworks only focus on knowledge

transfer among agents with the same actions. For instance, referring back to Figure

3.2, agent a’s available actions are Aa : {A,B,C,D}, and agent c’s are Ac : {B,C,D,E}. In

conventionally proposed advising frameworks, agents can only advise other agents with

the same actions. In other words, agent a and c cannot advise each other due to the

difference in their actions sets. Therefore, we propose a differentially private advising

framework to break this limitation. Our approach allows agents to advise in the above

scenario when RL agents have different available actions, which will accelerate their

learning.

3.3 Related Work

The early advising approaches mostly focused on humans as teachers to provide advice.

Clouse and Utgoff[21] proposed that humans can offer advice at any time as an expert

monitoring a single student learning a multiple-step decision task via an RL. Maclin and

Shavlik[69] proposed that the teacher occasionally gives the suggestions to the student

while watching the student’s learning process. In 2005, Torrey et al. [122] proposed

a method which requires a human-provided and hand-coded mapping to link the two

tasks, to transfer knowledge from one task to another as advice. Clouse [20] proposed to

train an RL agent using autonomous teacher that is assumed to perform at a moderate

level of expertise for the task. However, this approach may restrict the performance of

advising due to receiving too much advice. Teacher-student framework is firstly proposed

by Torrey and Taylor [121] and further improved by Taylor et al. [116], which introduces

a numeric communication budget to limit the number of times of advising during the

learning steps, which becomes an essential part of the advising model to imitate humans’

availability and attention capability in real-world [77]. Zimmer et al. [146] introduced

an approach that an agent should learn when to give advice with building a sequential

decision-making problem. Even though internal representations of the student are not

supposed to be known, the teacher must observe the student reward to solve the problem.

All the aforementioned works rely on a single teacher with a fixed policy. Nunes and

Oliveira [84] proposed that multiple agents can broadcast their average reward at the

end of each learning epoch while learning in the same system, and agents whose average

reward is lower than the best one can ask for device from the best agent. Zhan et al. [139]

considered the possibility of receiving sub-optimal advice, and combined multiple bits of

advice by a majority vote to make this method more robust to against bad advising.
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In above approaches, either teacher or student alone can trigger a process of advising

in RL stage. Amir et al. [3] proposed a jointly-initiated framework that both students

and teachers need to agree to receive and provide advice simultaneously. Da Silva

et al. [23] proposed an advising framework among simultaneously learning agents

based on teacher-student framework, in which agents start learning together without

an experienced agent. Their method is also based on jointly-initiated teacher-student

relations which are established on demand when a student is not confident enough to

make choice alone, and a teacher has enough confidence to provide advice at the same

time, which is highly related to our proposed method. Ye et al. [137] proposed to use DP

to protect benign agents against malicious agents in the advising stage. Zhu et al. [142]

proposed a partaker-sharer advising framework (PSAF) for cooperative agents under

limited communication. The framework allows Q-value transfer from an agent who has

visited a state more times to an agent who has visited a state fewer times.

3.4 Preliminary

Supposing that an agent has learned an optimal policy π for a specific task and become

experienced, it can teach another agent which is beginning to learn the same task using

this fixed policy. As the student learns, the teacher will observe each state s the student

encounters and each action a taken by the student. In n of these states, the teacher can

advise the student to take the ’correct’ action π (s) with its own learning experience or

policy. The teacher-student framework aims to accelerate a student’s training process.

However, a budget b can limit the advising process. The teacher cannot provide further

advice when the budget b is spent. Therefore, it is critical to define when to give advice

to accelerate student’s learning.

3.5 Differentially Private Advising Framework

We have proposed a differentially private advising framework by combining RL, teacher-

student advising framework, DP mechanism and Euclidean distance together. The

Figure 3.3 is the overview of our proposed method. An RL agent j wants to update its

probability distribution by obtaining a reward from an action. Any reason leading to

the failure of advising results in the fact that agent j has to choose the action alone

based on its own probability distribution. The agent j has a communication budget

bask to control its communication overhead and each successful advising process costs
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Figure 3.3: Overview of Differentially Private Advising Framework

some communication budget from it. bask is initialized with a constant C, and each ask

consumes 1 from the budget. When it runs out the budget bask, it leads to the failure of

advising. Agents can trigger advising with their neighbouring agents whose actions differ

in at most one record with the agent. When bask > 0, agent j check if its neighbouring

agents have communication budget bgive for giving advice. bgive is also initialized with

a constant C, and each advice consumes 1 from the budget. If all neighbouring agents

run out their bgive, the advising process fails. If some of neighbouring agents’ bgive > 0,

j starts to calculate the Euclidean distance with each available neighbouring agent’s

Q-value. None of Euclidean distance results are greater than a threshold d will lead to

the failure of advising process. If one or more than one Euclidean distance is greater

than d, the agent with the maximum distance with j will become j’s teacher to choose

an action for j for further updating Q-value and probability distribution in this epoch.

We will introduce details and algorithms for each part in following subsections.

3.5.1 Reinforcement Learning And Normalization

Algorithm 3 introduces the RL algorithm with normalization. For each epoch, an agent

j selects an action ak ∈ A( j) based on its probability distribution over the available

actions at state s. The agent g obtains a reward r by taking this action, and uses this

reward to update its Q-value of the action ak at state s, which this update is based on: 1)
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Algorithm 3 Reinforcement Learning with Normalization
Require: /* Taking agent j at state s as an example */
Require: Initialize probability distribution, Q-value for each actions

1: repeat for each epoch
2: Agent j chooses an action ak, based on the probability distribution: π(s) =

〈π (s,a1) , · · · ,π (s,an)〉;
3: r ←R 〈s,ak〉;
4: Q (s,ak)← (1−α)Q (s,ak)+α

[
r+γmaxaQ

(
s′,a

)]
;

5: r̄ ←Σa∈A (s)π (s,a)Q (s,a);
6: for a ∈A(s) do
7: π (s,a)←π (s,a)+ξ (Q (s,a)− r̄);
8: end for
9: π (s)←Algorithm 2 (π (s));

10: s ← s′;
11: until finish learning

Q(s,ak), the current value of Q(s,ak), 2) maxQ(s′,a), the maximum Q-value of an action

at the next state s′, 3) γ, a discount rate to control the effect of maxQ(s′,a) on update

this time, 4) α, a learning rate to control the speed of updating Q-value and learning, and

5) the reward r. An agent should to adjust its probability distribution using the updated

Q-value. Similar to the process of updating Q-value, the agent updates its probability

distribution π(s) for each action based on the current π(s,a), a learning rate ξ, and r̄
which is the sum of the product of each action’s probability and Q-value. The update

of π(s) can only show the trend of experience accumulation and reflect the relationship

between each action’s Q-value, therefore, we require normalization function shown in

Algorithm 4 to adjust the probability distribution π(s) to satisfy the requirement that

the sum of π(s) is 1 while keeping the ratio relationship.

3.5.2 When To Ask For And Give Advice

In this section, we introduce when to ask for and give advice and why the DP mecha-

nism is appropriate here. In our advising environment, agents’ actions are not private

information, which means every agent knows their neighbours and neighbours’ actions.

Therefore, neighbouring relationship has been defined for each client to trigger advis-

ing processes. We firstly present the convergence proof for Q-value in our case as a

base, and explain why the vector Q(s,a) and our queries on the vector satisfy DP. The

solution we used to decide the timing of advising is calculating Euclidean distance

d2
E(teacher, student) between the student’s Q-value vector and its optimal teacher’s
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Algorithm 4 Normalization
Require: A vector p with the length n
Require: d = min1≤k≤n p (k), mapping centre co = 0.5 and mapping lower bound ∆ =

0.001;
1: if d <∆ then
2: ρ ← co−∆

co−d ;
3: for k = 1 to n do
4: p (k)← co −ρ (co − p (k));
5: end for
6: end if
7: Π←Σ1≤k≤n p (k);
8: for k = 1 to n do
9: p (k)← p(k)

Π ;
10: end for
11: return p

Q-value vector. A threshold d is set that when the distance d2
E(teacher, student)> d we

consider the teacher to be sufficiently more experienced than the student to be able to

advise them.

3.5.2.1 The Convergence Of Q-value

Much of the previous research on the proof of Q-value has been exploratory in nature.

We refer readers who are interested in the proof to [76, 125, 130]. In our case, due

to the discreteness of our states and actions, it is not necessary to think about the

optimal Q(s′,a′) from the next state s′ while updating current state’s Q(s,a), or simply

let Q(s′,a′)= 0. The equation of updating Q-value is transformed to

Q(s,a)←Q(s,a)+α · (r(s,a)−Q(s,a))

← (1−α) ·Q(s,a)+α · r(s,a)

Lemma 3.1. Assume that an agent has selected the action a whose reward is r(s,a), at
the state s enough times, and updated its Q-value Q(s,a) until full convergence, we have

lim
t→+∞Q(s,a)= r(s,a)

Proof. Let q =Q(s,a), r = r(s,a), and t is the index of times for updating q, so, qt is the

current value of Q(s,a). When the (t+1)th time to update q, we have

qt+1 = (1−α) · qt +α · r
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where α is learning rate in the range 0<α< 1. We have

qt+1 − r = (1−α) · qt +α · r− r

= (1−α) · (qt − r)

So we have
qt+1 − r
qt − r

= 1−α

So (qt − r) is a geometric progression with the common ratio (1−α), we have

qt = (q0 − r) · (1−α)t + r

Because when 0<α< 1

lim
t→+∞(1−α)t = 0

So we have

lim
t→+∞qt = (q0 − r) ·0+ r = r

■

3.5.2.2 Differential Privacy

Assume that all agents have learned enough times, and Q(s,a) and its probability

distribution are fully convergent, for the state s and the action a, the value of Q(s,a)

is fixed and Q(s,a) = r(s,a) for each agent. Consider a single agent, i’s Q-value, who

has n available actions, Q(s) : {Q(s,a1),Q(s,a2), · · · ,Q(s,an)}. We use a table to record i’s
Q(s) value as a dataset as shown in TABLE 3.1. Similarly, an agent j’s Q(s) value as

shown in TABLE 3.2. When Q(s,a) values of agent i, j are fully convergent, TABLE 3.1
and TABLE 3.2 is then transformed to TABLE 3.3 and TABLE 3.4, separately. The

difference between TABLE 3.3 and TABLE 3.4 has been highlighted where agent i has

a different action ak at the state s from agent j’s action a∗
k, and accordingly different

convergent Q(s,ak) and Q(s,a∗
k). According to Definition 2.1, we consider two datasets

in TABLE 3.3 and TABLE 3.4 are neighboring datasets which satisfy DP mechanism.

Because Q(s) maps the probability distribution π(s), we consider π(s) is a query on the

dataset Q(s). We define the query f (Q(s)) is the process of calculating π(s) from Q(s).

According to Definition 2.2, existing a privacy budget ϵ and a randomized algorithm M

satisfy

Pr[M (Q i(s)) ∈Ω]≤ exp(ϵ) ·Pr[M (Q j(s)) ∈Ω]
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Action Q(s)

a0 Q(s,a0)

a1 Q(s,a1)
...

...

ak Q(s,ak)
...

...

an Q(s,an)

Table 3.1: Agent
i’s Dataset of Q-
value

Action Q(s)

a0 Q(s,a0)

a1 Q(s,a1)
...

...

a∗
k Q(s,a∗

k)
...

...

an Q(s,an)

Table 3.2: Agent
j’s Dataset of Q-
value

Action Q(s)

a0 r(s,a0)

a1 r(s,a1)
...

...

ak r(s,ak)
...

...

an r(s,an)

Table 3.3: Agent
i’s Convergent Q-
value

Action Q(s)

a0 r(s,a0)

a1 r(s,a1)
...

...

a∗
k r(s,a∗

k)
...

...

an r(s,an)

Table 3.4: Agent
j’s Convergent Q-
value

The randomized algorithm M in our case is Laplace mechanism introduced in Definition
2.6, Where the sensitivity S satisfies

S = max f (Q i(s)), f (Q j(s))∥ f (Q i(s))− f (Q j(s))∥1

3.5.2.3 Euclidean Distance

We use Euclidean Distance to calculate the difference of Q-value between teacher and

student’s. Euclidean distance is most commonly used to calculate the distance between

two vectors in a Euclidean space due to its simplicity. Let x, y be two N-dimension vectors

and x = (x1, x2, · · · , xN), y= (y1, y2, · · · , yN). The Euclidean distance d2
E(x, y) is given by

(3.1) d2
E(x, y)=

N∑
i=1

(xi − yi)2

We set a threshold d that when the distance d2
E(teacher, student)> d, we consider

the teacher to be sufficiently more experienced than the student to be able to provide

advice. We have presented the convergence proof of Q(s,a) in our setting in the above

subsection. Q(s,a) is convergent to r(s,a), so two agents can learn the same knowledge

when they are in the completely same setting. d2
E(teacher, student) is the knowledge

gap that indicates how much more the teacher has learned compared to the student.

3.5.3 Algorithm Of Differentially Private Advising Framework

The Algorithm 5 is the algorithm of our proposed differentially private advising frame-

work. In this algorithm, we assume the agent j as a student and the agent i as a
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Algorithm 5 Differentially Private Advising Framework
Require: /* Taking student agent j and teacher agent i at state s as an example */
Require: Initialize probability distribution, Q-value for each actions
Require: bgive = c and bask = c for each agent, c is a constant
Require: Sensitivity S and privacy budget ϵ

Require: The distance threshold d
1: function EUCLIDEAN DISTANCE(i, j)
2: if A (i)==A ( j) then
3: d2

E(i, j)=∑len(A j)
p=1 (Q i(s,ap)−Q j(s,ap))2

4: else if len(A (i))> len(A ( j)) then
5: d2

E(i, j)=∑len(A j)
p=1 [(Q i(s,ap)+Laplace( S

ϵ
))−Q j(s,ap)]2

6: else if len(A (i))< len(A ( j)) then
7: adi f f : the action in A ( j) but not in A (i)
8: d2

E(i, j) = ∑len(A j)
p=1 [(Q i(s,ap) + Laplace( S

ϵ
)) − Q j(s,ap)]2 + (Q j(s,adi f f ) +

Laplace( S
ϵ
))2

9: else if len(A (i))== len(A ( j)) and A (i)!=A ( j) then
10: adi f f 1: the action in A ( j) but not in A (i)
11: adi f f 2: the action in A (i) but not in A ( j)
12: d2

E(i, j) = ∑len(A j)−1
p=1 [(Q i(s,ap) + Laplace( S

ϵ
)) − Q j(s,ap)]2 + [(Q i(s,adi f f 2) +

Laplace( S
ϵ
))−Q j(s,adi f f 1)]2

13: end if
14: return d2

E(i, j)
15: end function
16: repeat for each epoch
17: if bask( j)> 0 then
18: i = [argmaxi∈|Neig|(EuclideanDistance(i, j)) and bgive(i)> 0]
19: if d2

E(i, j)> d then
20: r̄ ←Σa∈A (s)π (s,a) (Q i(s,a)+Laplace( S

ϵ
));

21: for a ∈A j(s) do
22: π′ (s,a)←π (s,a)+ξ(Q i(s,a)+Laplace( S

ϵ
));

23: end for
24: i selects an action ak for j, based on the new probability distribution:

π′(s)= 〈
π′ (s,a1) , · · · ,π′ (s,an)

〉
;

25: r ←R 〈s,ak〉;
26: Q (s,ak)← (1−α)Q (s,ak)+α

[
r+γmaxaQ

(
s′,a

)]
;

27: r̄ ←Σa∈A (s)π (s,a)Q (s,a);
28: for a ∈A(s) do
29: π (s,a)←π (s,a)+ξ (Q (s,a)− r̄);
30: end for
31: π (s)←Algorithm 2 (π (s));
32: s ← s′;
33: bask( j)−1;
34: bgive(i)−1
35: else Algorithm 1
36: end if
37: else Algorithm 1
38: end if
39: until finish learning
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teacher, and set the distance threshold d to trigger the advising process. We include

Euclidean distance, DP mechanism and teacher-student advising framework into the

RL algorithm. We firstly propose the function Euclidean distance with DP to decide

the timing of advising. There are four possible situations involved in our scenario to

calculate Euclidean distance between i and j’s Q-value. Firstly, when two agents have

identical actions, they directly calculate Euclidean distance based on their original Q(s).

In the second situation, when the teacher has one action more than the student, we

add Laplace noise onto the teacher’s Q(s) and only calculate the Euclidean distance of

same actions’ Q-value between teacher and student. Thirdly, when the teacher has one

action fewer than the student, we temporarily add the missing action to the teacher with

an initial value of Q-value, normally 0. Following this, we add Laplace noise onto the

teacher’s new Q−value including the additional action to calculate Euclidean distance

with the student’s Q(s). The last situation is when the teacher and student have the

same number of actions but one of them is different. In this situation, we temporarily

consider the teacher’s different action as the student’s action differing with the teacher,

and then add Laplace noise on the teacher’s new Q(s) to calculate Euclidean distance

with the student’s Q(s) normally. All of these four situations satisfy the definition of

neighbouring dataset, and are allowed within our proposed framework. This is how we

calculate Euclidean distance to determine when advising happens.

We introduce the function Euclideandistance(i, j) in the main part our algorithm

to determine who the teacher agent is. While the agent j has not depleted its ask

budget bask, it can ask advice from its ’neighbouring agents’. In the line 18, |Neig| is

the dataset of agent j’s neighbouring agents who can provide advice to j. The agent

j first checks its neighbouring agents to determine whether they still have remaining

budget bgive, and then calculates the Euclidean distance with every neighbour with

non-zero bgive. The teacher i must satisfy the following three requirements: 1) i does

not deplete its bgive, 2) the Euclidean distance between i and j is the greatest among

all neighbouring agents, and 3) their Euclidean distance is greater than the threshold

d. If existing an agent i satisfies these three requirements, it can select an action

based on its new probability distribution π′(s) transitioned from a new Q(s) during the

function Euclideandistance(i, j) (line 20 to 24). Remarkably, the i’s noised Q-value is

only involved in the Euclidean distance calculation and selecting action for the student,

but does not update i’s original Q-value and affect its learning process. The student

agent j then gets the reward from this action and then adjusts the Q(s,a) and probability

distribution. The advising process costs 1 for student’s budget bask and teacher’s budget
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bgive. If no neighbouring agent meets above three requirements, or the agent j runs out

its asking budget bask, the agent j then proceeds with traditional RL as in Algorithm 3.

In general, our algorithm allows more advising processes to occur while guaranteeing

the original teacher-student advising framework runs normally in an RL system. We

use the DP mechanism to eliminate the difference between two agents’ actions in a

reasonable bound, which facilitates more effective advising with limited communication

budgets.

3.6 Experiments

3.6.1 Experiment Setting

In order to demonstrate our method intuitively, we have designed experiments with

the scenario introduced in Section 2. There are three parts of experiment. In the first

experiment, we investigate the following three strategies:

1. Traditional Reinforcement learning (No Advice) – As reference, we evaluate

the SARSA learning algorithm without advising;

2. Traditional Advising Framework – As reference, we evaluate the traditional

teacher-student advising framework. Advising only happens between two agents

with completely the same actions.

3. Differentially Private Advising Framework – Our proposed method. Advising

process occurs between two agents with either the same actions or differing by one.

This strategy applies DP, which means that students accept teachers knowledge

with additional noise to adjust their own knowledge influencing action

We involve our approach and two compared strategies together in the experiment 1

via the controlled variable method where each strategy has the same number of users,

servers and tasks. We also set the same learning rate, rewards and initial Q-value for

each action to guarantee the total knowledge is the same among every strategy. The

only different setting in our proposed method is that each agent has one different ac-

tion, (i.e. A (a1) : {A,B,C,D},A (a2) : {A,B,C,E},A (a3) : {A,B,D,E}, · · · ), but each agent’s

actions are the same for the other two strategies. The purpose of this experiment is to

demonstrate that our method can allow advising to occur between two agents with one

different action. The expectation is that our algorithm can have a same performance

with traditional advising framework.
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Our second experiment is designed to demonstrate the second contribution that

our proposed approach can widen the traditional advising framework. We compare

two approaches’ performance in a completely same setting. In this RL system, only a

subset of agents have the same available actions and others have one different actions

among each other. In this case, only a small amount of agents with the same actions can

advise each other in traditional advising framework, but all of agents can advise their

neighbouring agents in our proposed method. In theory, our method can trigger more

advising processes to positively accelerate convergence. We use the traditional advising

framework as the base to demonstrate how much performance our differentially private

advising framework can improve. In the third experiment, we explore how the privacy

budget ϵ affect the DP performance in our algorithm. We set the epsilon as 0.1, 0.4, 0.7, 1

and 2 separately.

The comparison criteria is convergence ratio, the accuracy of agents’ learning, which

is described by the following equation:∑n
k∈A

π(s,ak)∗R(s,ak)∑n
m∈A

π(s,am)∗R(s,am)

where n is each agent, k is each action of an agent, π(s,ak) is the probability of this

action, R(s,ak) is the reward of this action, m is the action with theoretically maximum

reward. Due to the fixed reward r(s,a), the change of the ratio is affected by the change of

probability. The greater convergence ratio means that agents have the higher probability

to select the action with higher reward.

TABLE 3.5 shows three experiments’ parameters. Note that, we set the reward for

the optimal action as 2 while others are 0. The Euclidean distance threshold is set to

0.7, calculated by the theoretical convergent value of Q-value regarding related settings.

We assign an advising budget of 30 for both giving and asking for each agent during

learning processes until convergence.

3.6.2 Experiment Results

The Figure 3.4 shows the result of experiment 1 with the comparison between three

strategies with the different setting of actions but in the same numbers. Our proposed

approach is shown with the red line, and other two approaches are demonstrated with

blue and black lines separately. The result shows that all three strategies are convergent

to about 92%, and the red line is above the other two, that is, our proposed method

converges the fastest, especially in the early learning stage from 0 to 250 epochs. The
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������������������Parameters
Experiment

Experiment 1 Experiment 2 Experiment 3

users nusers 10
servers nservers 12
tasks ntasks 10

privacy budget ε 1 1 (0,2)
privacy sensitivity S 1

reward r 2, 0
Euclidean distance threshold d 0.7

Budget for giving advice bgive 30
Budget for asking advice bask 30

epoch 700

Table 3.5: Parameter setting

Figure 3.4: Experiment 1: Comparison be-
tween three strategies

Figure 3.5: Experiment 1: Performance
Comparison Between three strategies (Tra-
ditional Reinforcement Learning as base)

details are shown in Figure 3.5 which is the performance comparison between three

strategies with the traditional RL as a base to checked how much we improve the learning

process. Although our proposed method may slightly drop the convergence rate within

0.5% after 400 epochs due to the excess advises in some epochs and its negative impact

from the DP noise on agents’ Q tables, our proposed method has a higher convergence

percentage than the other two. Our proposed method makes a huge improvement which

is around 7% from the beginning to 200 epochs, which means our approach can accelerate

agents’ learning during the whole learning process, especially in the early stage.

The experiment 2 demonstrates our second contribution that our approach allows

more advising processes to occur in an RL system. Figure 3.6 shows the result of

experiment 2 with the comparison among three mentioned strategies in an identical

environment, which differs from experiment 1 in that we only guarantee the total

knowledge is the same for three strategies but with different actions in experiment 1.
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Figure 3.6: Experiment 2: Comparison be-
tween three strategies with the same set-
ting

Figure 3.7: Experiment 2: Performance
Comparison Between three strategies (Tra-
ditional Reinforcement Learning as base)

Similar to Figure 3.5, Figure 3.7 shows how much we improve the learning speed

in this RL setting. The performance of the traditional advising framework shown by

the blue line is very close to the traditional RL strategy, that is, it can only achieve a

limited acceleration of learning due to the fact that advising can only occur among few

agents with the same actions in the setting. However, our approach shown by the red

line, accelerates the learning speed much more in the same setting than the other two

strategies.

Figure 3.8: Experiment 3: Comparison be-
tween different epsilon value with the
same setting

Figure 3.9: Experiment 3: Performance
Comparison Between different epsilon
value (Traditional Reinforcement Learn-
ing as base)

The experiment 3 explores the performance of DP with different value of epsilon. The

experimental results shown in Figure 3.8 and Figure 3.9 indicate that the performance

is increasingly higher with the greater value of epsilon. When ε = 0.1, it even has a

negative impact on the performance and performs worse than the traditional RL due

to the impact from the large noise on agents’ Q tables resulting in inefficient advises

among agents.
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3.6.3 Result Discussion

In this section, we will discuss and analyze our experimental results. Our purpose in the

first experiment is to demonstrate our first contribution that agents can give advice to or

ask advice from others even when they have different actions. Our original expectation

for the proposed method was that it would have the same effect as the traditional

advising framework. However, the experiment shows that we have a better performance

in the early learning state with a higher convergent percentage. We believe that it is

positively affected by DP noise. Referring back to our Algorithm 5, we see that a teacher

calculates Euclidean distance with the noised Q-value with a student’s Q-value, and

transitions the noised Q-value to the new probability distribution to make the decision

for the student. An appropriate randomized noise positively influences the calculation of

Euclidean distance and facilitates more advising occurring in the early learning stage.

The noise also keeps the shape of the probability distribution of the teacher, that is, the

teacher still has a high probability to choose the best action, and this positively increases

the result of Euclidean distance to easily satisfy the threshold to trigger advising process.

The experiment 2 corresponds to our second contribution that our method can widen

the applicable field of advising in an RL system. Our approach performs much better than

the other two compared strategies because our method allows more advising happen by

breaking the limitation of the traditional advising framework. As we mentioned earlier,

in the environment of this experiment, only a subset of agents have the same actions,

and others have one different action with each other. The traditional advising framework

performs worse because only a small number of agents with same actions can advise each

other, and the effectiveness of advising is not obvious due to limited times that advising

is able to occur and the effect from learning rate. However, our proposed method allows

more potential advising to occur among agents with the same actions or neighbouring

agents with one different action. Agents have more opportunities to ask advice from

more experienced neighbouring agents. The learning process is positively affected by

more advice and better advice in our framework. Therefore, our proposed method can

widen the applicable field of advising by allowing more potential advising.

The experiment 3 demonstrates the performance of DP in our proposed framework.

We set five different values of privacy budget ϵ ranging from 0.1 to 2, to explore how

the DP noise affects the performance. Referring back to Equation 2.4 we can see that

the scale of the randomized noise is determined by sensitivity S and privacy budget ϵ,

and we have mentioned that in our case S is fixed as 1 because the maximum value of

a percentage is 1. So ϵ is the only factor affecting the scale of noise with an inversely
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proportional relationship. When ϵ= 0.1, our proposed method even performs worse than

traditional RL because the noise is so large that it negatively impacts on the teacher’s

selection and student’s action. It is obvious that the red line has a sharp increase

at epoch 300 because most agents have run out their asking and giving budgets and

start independently learning without the negative impact from the randomized noise.

Therefore, in Figure 3.8 and Figure 3.9, it is clear that our algorithm perform better

when the value of ϵ is greater within a reasonable range.

3.7 Summary and Future Work

In this chapter, we introduce a novel differentially private advising framework for MARL

applying into a real-world cloud server environment. Our proposed method allows agents

with at most one different action to advise each other to accelerate learning speed toward

convergence in a simultaneously learning setting. We applied DP mechanism to add a

randomized noise on the teacher agent’s Q-value, and calculated the Euclidean distance

between teacher’s noised Q-value and student’s Q-value to decide the timing of advising.

If the Euclidean distance is greater than a threshold, the teacher agent selects an action

for students based on the new probability distribution transitioned from the new noised

Q-value.

We summarize three key contributions of our chapter: 1) we break the limitation

of conventional advising framework which only allows advising between agents with

the same available actions, 2) we widen the applicable field of conventional advising

framework and thus allow more potential advising in some RL systems, and 3) we design

a new approach to decide when advising occurs by calculating the Euclidean distance of

teacher and student’s Q-value.

Our three experimental results demonstrate our contributions and also explore

how the DP budget ϵ affects the DP in the proposed method. The experimental results

indicate that our framework can facilitate potential advising between two agents with one

different action, and can perform better in the early learning state than the traditional

advising framework in the same setting. Our approach may direct some further research

in server selection, resource allocation and task allocation problems.
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4
DIFFERENTIALLY PRIVATE MULTI-AGENT PLANNING

FOR LOGISTIC-LIKE PROBLEMS

Planning is one of the main approaches used to improve agents’ working efficiency in

a MARL system by making plans beforehand. However, during planning, agents face

the risk of having their private information leaked. This chapter proposes a novel strong

privacy-preserving planning approach for logistic-like problems. This approach outper-

forms existing approaches by addressing two challenges: 1) simultaneously achieving

strong privacy, completeness and efficiency, and 2) addressing communication constraints.

These two challenges are prevalent in many real-world applications including logistics

in military environments and packet routing in networks. To tackle these two challenges,

our approach adopts the DP technique, which can both guarantee strong privacy and

control communication overhead. To the best of our knowledge, this is the first work to

apply DP to the field of multi-agent planning as a means of preserving the privacy of

agents for logistic-like problems. We theoretically prove the strong privacy and complete-

ness of our approach and empirically demonstrate its efficiency. We also theoretically

analyze the communication overhead of our approach and illustrate how DP can be used

to control it.
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4.1 Introduction

Multi-agent planning is one of the fundamental research problems in multi-agent sys-

tems [26, 135] and has been widely used in real-world applications [71, 85]. Multi-agent

planning research aims to improve agents’ working efficiency by making plans in advance.

In traditional multi-agent planning, each agent makes plans independently [24]. How-

ever, in complex problems, such as logistics, agents have to work together collaboratively

to make plans in order to achieve joint goals [73]. Collaborative multi-agent planning is

thus required. Collaborative multi-agent planning has been applied to various real-world

applications, such as logistics [72], job machine assignment [59], and aircraft simula-

tion [74]. Research into collaborative multi-agent planning largely focuses on jointly

automated planning [118]. During jointly automated planning, agents have to share

information. However, this kind of information sharing often results in the leaking of

agents’ private information. Accordingly, to protect agents’ privacy, privacy preservation

is introduced into the collaborative multi-agent planning process [101, 102]. The main

problem associated with privacy preservation in collaborative multi-agent planning is

that of how to make plans for agents while also preserving the privacy of each agent.

Privacy can be roughly classified into four levels: weak privacy, strong privacy, object

cardinality privacy, and agent privacy [118]. Specifically, weak privacy means that an

agent does not explicitly disclose its private information to others. Strong privacy means

that an agent, regardless of its reasoning power, cannot deduce the private information

of other agents based on the information available to it. Developing a planning method

with strong privacy in distributed and communication-constrained environments is

challenging for the following two reasons. First, it is difficult to achieve strong privacy,

completeness and efficiency simultaneously [123]. Second, in communication-constrained

environments, each agent is allowed to communicate only a limited number of times.

These two challenges are widespread in many real-world applications. A typical

application is military logistics. In military logistics, it is vital that each military unit

should strongly protect its private and sensitive facts. Also, plans for military units

must be complete and efficient to avoid any delay. In addition, communication between

units has to be constrained, since the more communication takes place, the more likely

it will be that sensitive information is leaked. Due to the lack of information in such

environments, It is very challenging to make strongly private and efficient plans with

only limited view and communication.

Most existing planning approaches are either weak privacy-preserving or overlook
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the issue of privacy preservation entirely [118]. Very few approaches are strong privacy-

preserving [12]. These strong privacy-preserving planning approaches, however, may

not achieve strong privacy, completeness and efficiency simultaneously, as summarized

in [123]. Moreover, these approaches also may not work efficiently in distributed and

communication-constrained environments, as they implicitly assume that an agent can

communicate directly with all other agents, and overlook the analysis of communication

overhead.

Accordingly, in this chapter, we develop a novel strong privacy-preserving planning

approach for distributed and communication-constrained environments. Our approach

focuses primarily on logistic-like problems, which are typically used as running exam-

ples in multi-agent planning. To achieve strong privacy, completeness and efficiency

simultaneously, we adopt the DP technique. DP is a promising privacy model, which has

been mathematically proven that when this model is in use, an individual record being

stored in or removed from a dataset makes little difference to the analytical output of

the dataset [22, 143]. To the best of our knowledge, we are the first to apply DP to the

privacy-preserving planning problem. Using a DP mechanism to obfuscate an agent’s

private information can strongly preserve the agent’s privacy while also having minimal

impact on the usability of the agent’s private information.

Furthermore, we also address the communication-constrained environment issue by

adopting the concept of a ‘privacy budget’. In DP, a privacy budget is applied to control

privacy levels. In our proposed approach, the privacy budget can naturally be used to

control communication overhead, with the result that only a limited number of messages

are permitted during a planning phase. In summary, the contributions of this chapter

are two-fold:

• Improving upon existing strong privacy-preserving planning approaches, our ap-

proach can achieve strong privacy, completeness and efficiency simultaneously in

logistic-like problems using the DP technique.

• Our approach is more applicable to distributed and communication-constrained

logistic-like problems than existing approaches.

The remainder of this chapter is organized as follows. In the next section, a detailed

review of related work is presented. Then, a motivating example is given in Section

4.3. Preliminaries are presented in Section 4.4. After that, the novel planning approach

and the theoretical analysis are presented in Sections 4.5 and 4.6, respectively. The

application of our approach to other domains is illustrated in Section 4.7. Next, the
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experimental results are provided in Section 4.8. Finally, Section 4.9 concludes this

chapter.

4.2 Related Work

4.2.1 Weak privacy-preserving approaches

Torreno et al. [119] develop a framework known as FMAP (forward multi-agent planning).

In FMAP, agents maintain a common open list with unexplored refinement plans. Agents

then jointly select an unexplored refinement plan. Each agent then expands the plan

using a forward-chaining procedure. Agents exchange these plans and use a distributed

heuristic approach to evaluate them. Later, based on the FMAP framework, Torreno et al.

[120] develop a set of global heuristic functions: DTG (domain transition graphs) heuristic

and landmarks heuristic, in order to improve the efficiency of the FMAP framework.

Stolba and Komenda [109] present a multi-agent distributed and local asynchronous

(MADLA) planner. This planner adopts a distributed state-space forward-chaining multi-

heuristic search. The multi-heuristic search takes the advantages of both local and

distributed heuristic searches by combining them together. As a result, the combination

of the two heuristics outperforms the two heuristics separately.

Maliah et al. [73] propose a greedy privacy-preserving planner (GPPP). In GPPP,

agents collaboratively generate an abstract global plan based on two privacy-preserving

heuristics: landmark-based heuristic and privacy-preserving pattern database heuristic.

Each agent generates a local plan by extending the global plan.

4.2.2 Strong privacy-preserving approaches

Brafman [12] is the first to theoretically prove strong privacy in multi-agent planning. He

proposes an approach referred to as Secure-MAFS (secure multi-agent forward search).

Secure-MAFS extends the MAFS approach [82] by reducing the amount of information

exchanged between agents. In Secure-MAFS, agents protect their privacy by opting not

to communicate a given two states to others if these two states differ only in their private

elements. This is because other agents could possibly deduce private information through

the non-private or public part of the states.

Tozicka et al. [123] investigate the limits of strong privacy-preserving planning. They

formulate three aspects of strong privacy-preserving planning: privacy, completeness,

and efficiency. They theoretically find that these three aspects are difficult to achieve
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at the same time for a wide class of planning algorithms. Also, they develop a strong

privacy-preserving planner that embodies a family of planning algorithms. The planner

is based on private set intersection, which has been proven to be computationally secure.

Stolba et al. [110, 111] refine privacy metrics by quantifying the amount of privacy

loss. In this case, their analysis of privacy loss is conducted by assessing information leak-

age [14, 107]. The amount of information leakage is measured as the difference between

initial uncertainty and remaining uncertainty. They also develop a general approach

to compute the privacy loss of search-based multi-agent planners. This computation is

based on search tree reconstruction and classification of leaked information pertaining

to the applicability of actions.

4.2.3 Other privacy-preserving approaches

Some other existing works seem to be related to ours, such as differentially private

networks [35] and privacy-preserving distributed constraint optimization [138]. However,

the research aims of these works differ from ours. The research of differentially private

networks mainly aims at hiding specific information contained in a network, which may

be disclosed by answering queries regarding that network. By contrast, multi-agent

privacy-preserving planning aims at collaboratively making plans without revealing the

private facts of each participating agent. In [56], Kasiviswanathan et al. develop a set of

node-differentially private algorithms to engage in the private analysis of network data.

The key concept here is to obfuscate the input graph onto the set of graphs with maximum

degree below a certain threshold. Blocki et al. [10] improve accuracy in differentially

private data analysis by introducing the notion of restricted sensitivity in order to reduce

noise. Restricted sensitivity represents the sensitivity of a query only over a specific

subset of all possible networks.

Proserpio et al. [94] propose a platform for differentially private data analysis: wPINQ

(weighted Privacy Integrated Query). wPINQ treats edges as a weighted dataset on which

it performs ϵ-differentially private computations, such as manipulation of records and

their weights. Thus, the presence or absence of individual edges can be masked. Fioretto

et al. [35] design a privacy-preserving obfuscation mechanism for critical infrastructure

networks. Their mechanism consists of three phases: 1) obfuscating the locations of nodes

using the exponential mechanism, 2) obfuscating the values of nodes using the Laplace

mechanism, and 3) redistributing the noise introduced in the previous two phases using

a bi-level optimization problem. These works assume the existence of adversaries while

in multi-agent planning, agents are typically assumed to be honest but curious.
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Research into privacy-preserving distributed constraint optimization aims at securely

coordinating the value assignment for the variables under a set of constraints in order

to optimize a global objective function [36]. By contrast, multi-agent privacy-preserving

planning aims at securely making plans that enable individual agents to achieve their

goals. Grinshpoun and Tassa [45] devise a novel distributed constraint optimization

problem (DCOP) algorithm that preserves constraint privacy. In their problem, a group

of agents needs to compare the sum of private inputs possessed by those agents against

an upper bound held by another agent. During this comparison, none of these agents

learns information on either the sum or the private inputs of other agents. Their algo-

rithm accomplishes this through the use of a secure summation protocol and a secure

comparison protocol.

Tassa et al. [115] propose a DCOP algorithm that is immune to collusion and offers

constraint, topology and decision privacy. To achieve this goal, they adopt a secure multi-

party computation protocol [9] which is capable of securely comparing the cost of the

current full assignment and the upper bound and guaranteeing the security of collusion

of up to half of the total agents. From an examination of the two above-mentioned works,

it can be seen that the privacy-preserving DCOP mainly focuses on securely comparing

the values of variables against an upper bound, while multi-agent privacy-preserving

planning mainly focuses on the secure computation of each individual agent.

4.3 A Motivating Example

Figure 4.1 presents a military logistic map. In this map, a circle denotes a military base

while a rectangle denotes a logistic center. The lines connecting the bases and logistic

centers are routes. Each route has a length, which is not indicated on the map in the

interests of clarity. Each letter in a circle indicates a military unit’s name, while each

number in a circle is the index of a base in the military unit’s local area. For example,

‘(a,3)’ denotes the third base in military unit a’s local area. Six military units are included

on this map: a, b, c, d, e, and f . Each unit exclusively operates in a local area of the map.

Information about a local area is private to the corresponding military unit. This

information includes 1) the number of military bases in this local area, 2) the number

of routes in this local area, 3) the length of these routes in this local area, and 4) the

positions of packages in this local area. However, information regarding whether a given

package is or is not located in a particular logistic center is public. For example, in

Figure 4.2, we extract military unit a’s local area from Figure 4.1. In Figure 4.2, there
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Figure 4.1: An example of a logistic map

are five bases: (a,1), (a,2), (a,3), (a,4) and (a,5). The number of these bases and routes

is private to military unit a. Moreover, the length of these routes is also private to unit a.

As noted above, the information that a package is located in logistic center A is public

and known to all military units.

Figure 4.2: Unit a’s local area

The problem in this example is as follows: how should a plan be made for a military

unit to transport a package from one base to another, while strongly preserving each

military unit’s privacy? For example, unit a wants to transport a package from (a,2)

to ( f ,4), but ( f ,4) is located in military unit f ’s local area. Thus, multiple units must

collaborate to make a plan to deliver the package, while each unit’s privacy is required

to be strongly preserved during this process. This problem therefore includes the above-

mentioned two challenges. First, planning for military units is highly expected to achieve
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strong privacy, completeness and efficiency simultaneously, especially when military

units are involved in a war. Second, the communication of each military unit may

be constrained, as increased level of communication may result in a higher chance

of private information being leaked [83]. As the above two challenges have not been

adequately addressed by existing approaches, these approaches may not be suitable

for this environment. Accordingly, in this chapter, a novel strong privacy-preserving

planning approach is proposed that takes these two challenges into account.

4.4 Preliminaries

4.4.1 The planning model

We propose a multi-agent planning model, Graph-STRIPS, which is based on a widely

used privacy-aware planning model, MA-STRIPS [13]. Graph-STRIPS is defined by a

12-tuple: 〈A G ,V , {Vi}m
i=1,VPub,E , {E i}m

i=1,P , {P i}m
i=1, A , {Ai}m

i=1,I ,G 〉:

• A G is a set of agents in the environment;

• V is a set of nodes (e.g., physical entities) in the environment;

• Vi is the set of nodes private to agent i;

• VPub is the set of public nodes in the environment, VPub = V −∪|A G |
l=1 Vl ;

• E is a set of edges (e.g., the relationships between physical entities) in the environ-

ment;

• E i is the set of edges private to agent i;

• P is a set of possible facts about the environment;

• P i is the set of private facts of agent i;

• A is a set of possible actions of all the agents;

• Ai is the set of private actions of agent i;

• m is the number of agents in the environment;

• I is the initial state of the environment;

• G is the goal state.
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For example, in Figure 4.1, each military unit is modelled as an agent. In this case,

we have the following:

• A G = {a,b, c,d, e, f } and m = 6;

• V is the set of military bases and logistic centers;

• Vi denotes the set of bases in the local area of agent i; for example, in agent a’s

local area, Va = {(a,1), (a,2), (a,3), (a,4), (a,5)};

• VPub denotes the set of logistic centers;

• E is the set of routes connecting bases and centers;

• E i denotes the set of routes in the local area of agent i; for example, in agent a’s

local area, Ea = {(a,1)∼ (a,2), (a,2)∼ (a,3), (a,3)∼ (a,4), ...};

• P includes the position of bases, logistic centers and packages;

• P i includes 1) the position of packages in the local area of agent i; for example, if

agent a has a package in (a,1), then Pa = {package_in_(a,1)}; 2) the number of

bases in the local area of agent i; 3) the number of routes in the local area of agent

i and 4) the length of these routes.

• A includes the actions of moving from a base or a logistic center to another base or

logistic center;

• Ai includes the actions of moving from a base or a logistic center to another base

or logistic center in the local area of agent i; for example, an action of agent a
can be: moving from (a,1) to (a,2) which is abbreviated as (a,1) → (a,2), where

the pre-condition of this action is package_in_(a,1) and the effect of this action is

package_in_(a,2);

• If a wants to transport a package from (a,3) to (e,2), then I = {package_in_(a,3)}

and G = {package_in_(e,2)}: VI = (a,3) and VG = (e,2).

If agent a is to transport a package from (a,3) to (e,2), the associated plan could be

Π�
a = 〈VI → (a,4), (a,4) → A, A → B,B → E,E → VG 〉. In plan Π�

a , the details of how to

move from A to B, from B to E and from E to (e,2) are not included, as these details

involve other agents’ private information that is unknown to agent a. In fact, as (e,2) is
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private to agent e, agent a is unaware of the existence of (e,2). Agent a, however, knows

that the destination is in agent e’s local area.

Specifically, each agent’s private information includes two parts: private facts and

private actions. An agent’s private facts include four components: 1) the number of nodes

in its local area, i.e., the number of military bases in the logistic example, 2) the number

of edges in its local area, i.e., the number of routes in the logistic example, 3) the length

of these edges, i.e., the length of routes in the logistic example and 4) the positions of any

items in its local area, i.e., the positions of packages in the logistic example. An agent’s

private actions are the movements of items in its local area. In this private information,

the positions and movements of items are not required by other agents. Thus, these two

pieces of information will not be disclosed to other agents. For the other three pieces of

information: the number of nodes, the number of edges and the length of edges, since

agents have to share the three pieces of information for planning, we need to develop a

privacy-preserving mechanism to protect them.

Formally, we have the following definition.

Definition 4.1 (Agents’ privacy). An agent i’s privacy is defined as a 3-tuple: 〈Vi,E i,L(E i)〉,
where Vi is the set of nodes in agent i’s local area, E i is the set of edges and L(E i) denotes

the set of length of the edges.

To protect the privacy of Vi and E i, we adopt the node-DP technique and uses the

Laplace mechanism to mask the number of both nodes and edges. To protect the privacy

of L(E i), we adopt the exponential mechanism along with an RL algorithm.

4.4.2 Privacy-preserving multi-agent planning

Privacy-preserving multi-agent planning aims to prevent private facts and private

actions from being revealed. The idea behind privacy-preserving multi-agent planning

is based mainly on research in the field of secure multi-party computation [140], where

multiple agents jointly compute a function while each agent possesses private input data.

The goal is to compute the function without revealing agents’ private input data.

One intuitive solution would be to simply not disclose any private information to

others. However, since an agent must collaborate with other agents in order to achieve

its goals, it is infeasible to hide all private information completely. To ensure that this

private information is disclosed securely to the other agents, it is necessary to use

privacy-preserving techniques.
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Definition 4.2 (Strong Privacy [118]). A multi-agent planning approach is strong

privacy-preserving if none of the agents is able to infer any private facts regarding

an agent’s tasks from the public information it obtains during planning. A planning

approach is strong privacy-preserving if agents cannot deduce extra private information

based on public information and exchanged modified private information.

Generally speaking, the goal of strong privacy is to preserve all private information

of each agent. More specifically, in the logistics example in Section 4.3, an agent’s private

information includes 1) the topology of an agent’s local map, 2) the length of each route

on an agent’s local map, and 3) an agent’s private facts and private actions as defined

in Section 4.4.1. To guarantee strong privacy, it is necessary to consider several factors,

such as the nature of the communication channel or the computational power of the

agents [118].

We adopt DP to achieve strong privacy. In addition to a privacy guarantee, a planning

approach also needs soundness and completeness guarantees.

Definition 4.3 (Soundness [73]). A planning approach is sound if and only if (iff), for a

given task, there is at least one valid plan followed by all participating agents to reach

the goal state.

Definition 4.4 (Completeness [123]). A planning approach is complete iff, for a given

task, 1) the approach is sound and 2) the approach can guarantee to create a valid plan.

If a graph is treated as a dataset, a given node in the graph can be interpreted as a

record in the dataset. According to Definition 2.2, we can have a similar definition for

ϵ-node-DP as follows.

Definition 4.5 (ϵ-node-DP [96]). A mechanism M gives ϵ-node-DP for any input pair of

neighboring graphs G and G′, where G and G′ differ by at most one node, and for any

possible output set, Ω, if M satisfies:

(4.1) Pr[M (G) ∈Ω]≤ exp(ϵ) ·Pr[M (G′) ∈Ω]

Node-DP guarantees similar output distributions on any pair of neighboring graphs

that differ in one node and the edges adjacent to that node. Thus, the privacy of both

nodes and edges can be preserved.

47



CHAPTER 4. DIFFERENTIALLY PRIVATE MULTI-AGENT PLANNING FOR
LOGISTIC-LIKE PROBLEMS

4.5 The strong privacy-preserving planning approach

In this section, we first outline our approach in a general form, then use the aforemen-

tioned logistic example to instantiate our approach. A generalized form of our approach

is presented in Algorithm 6. In Line 5 of Algorithm 6, agent i takes all the available

public nodes into account to create a plan. These available public nodes are on the way

from the initial state to the goal state and found by agent i during its searching phase.

However, some of these available public nodes are not needed in the final plan. Then, in

Line 8, agent i uses an RL algorithm to find the shortest route from the initial state to

the goal state, and selects the public nodes on the shortest route to create a plan. The

learning is based on the information obtained in Lines 6 and 7.

Algorithm 6 The general form of our approach
1: /*Take agent i ∈A G as an example;*/
2: Intput:agent i’s local sets: Vi, E i, P i, Ai, and all the public facts and actions; also,

the initial state I and the goal state G ;
3: Output: a complete plan Π�

i from I to G ;
4: Agent i identifies VI and VG from the initial state I and the goal state G , respectively,

and initializes plan: Π�
i = 〈VI → VG 〉;

5: Agent i searches the goal state, and details plan Π�
i by adding the available public

actions into plan Π�
i : Π�

i = 〈VI → v j, ...,vk → VG 〉, where {v j, ...,vk}⊂ VPub;
6: Agent i queries the intermediate agents to request local private facts;
7: Each of these intermediate agents obfuscates its local private facts using the DP

technique;
8: Agent i uses the obfuscated facts to refine the plan by removing unnecessary public

actions by means of an RL algorithm: Π�
i = 〈VI → vx, ...,vy → VG 〉, where j ≤ x, y≤ k;

9: Each action in plan Π�
i is further refined by each agent creating a local plan; for exam-

ple, action VI → vx is refined by agent i creating a local plan as 〈VI → via , ...,vib → vx〉,
where {via , ...,vib }⊂ Vi;

10: Agent i merges these local plans to form a complete plan: Π�
i = 〈VI → via , ...,vib →

vx, ...,vy → VG 〉; note that the details of local plans, created by intermediate agents,
are not shown in plan Π�

i , since they contain non-obfuscated private facts belonging
to the intermediate agents;

To instantiate this general approach, we use the logistic example given in Section 4.3.

In this example, we assume that 1) all routes in the logistic map are bi-directional; 2)

each individual agent controls only one local area; and 3) there are no isolated nodes on

the map. An agent follows three steps to create a plan:

• Step 1: the agent creates a high-level logistic map;

48



4.5. THE STRONG PRIVACY-PRESERVING PLANNING APPROACH

• Step 2: the agent asks the agents in the intermediate areas to provide route and

map information;

• Step 3: the agent uses the received information to create a complete plan.

4.5.1 Step 1: Creating a high-level map

In Figure 4.1, it is supposed that agent a has a package to transport from (a,2) to ( f ,4).

As agent f is not agent a’s neighbor, a must query its neighbors, b, c, and d, regarding

the position of f . Two agents are deemed neighbors if there is at least one logistic center

connecting two military bases, such that one of these bases belongs to each of the agents.

In the case that agents, b, c and d, also do not have f as a neighbor, they pass this query

on to their neighbors, e.g., agent e. Finally, agent f is found through agent e. By using

the information acquired while finding agent f , agent a can create a high-level logistic

map, as shown in Figure 4.3.

Figure 4.3: A high-level logistic map from agent a’s perspective

4.5.2 Step 2: Each intermediate agent provides map and route
information

After creating the high-level map, agent a asks the agents in the intermediate areas

to provide route and map information. In Figure 4.3, the intermediate agents are b, c,

d and e. To protect the topological privacy of local maps, each intermediate agent uses

the Laplace mechanism to obfuscate its local map, i.e., modify the number of bases and

routes. Moreover, to protect length privacy, each intermediate agent uses the exponential

mechanism, along with an RL algorithm, to assign probability distributions over the

routes on its obfuscated local map while removing the distance information. Finally, each
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intermediate agent presents an obfuscated local map, with probability distributions over

routes, to agent a. An example explaining this process is presented below.
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Figure 4.4: Obfuscation of agent b’s local map

In this example, Figure 4.4(a) is agent b’s local map with route length. Figure
4.4(b) is agent b’s obfuscated local map. Referring to the obfuscated local map, agent b
calculates the shortest route between logistic centers A and B. Then, agent b marks the

probability distributions over the routes, as shown in Figure 4.4(c). Each probability

on a route indicates the probability of that route being selected. To guarantee the

route length privacy, agent b uses the exponential mechanism to redistribute these

probabilities over the routes, as shown in Figure 4.4(d). Agent b then sends Figure
4.4(d) to agent a. Finally, agent a receives a map where the topology has been obfuscated

and the distance information has been replaced by probability distributions.
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4.5.2.1 Using the Laplace mechanism to obfuscate topology

The Laplace mechanism is applied to the statistical information contained in a map. We

utilize a 1K-distribution [70] to obtain the statistical information. More specifically, the

1K-distribution is used to calculate the node degree distribution of a given graph. To

describe how the 1K-distribution is utilized for this purpose, we employ the following

example. In Figure 4.4(a), the number of nodes with 1 degree is 0; the number of nodes

with 2 degrees is 4, (i.e., nodes A, B, (b,4) and (b,5)); the number of nodes with 3 degrees

is 2, (i.e., nodes (b,2) and (b,3)); and the number of nodes with 4 degrees is 1, (i.e., node

(b,1)). Thus, the 1K-distribution, i.e., the node degree distribution, of Figure 4.4(a) is:

P(1)= 0, P(2)= 4, P(3)= 2, and P(4)= 1.

Algorithm 7 The Laplace mechanism-based obfuscation
1: /*Take agent b as an example*/
2: Input: agent b’s map (Figure 4.4(a));
3: Output: agent b’s obfuscated map (Figure 4.4(b));
4: Use 1K-distribution to obtain the statistical information of b’s map;
5: for k = 1 to dmax do
6: P̃(k)← P(k)+⌈Lap(∆S·dmax

ϵ
)⌉;

7: end for
8: Rewire nodes to satisfy each P̃(k);

The Laplace mechanism-based obfuscation is outlined in Algorithm 7. In Line 4,

the statistical information of b’s map is obtained using the 1K-distribution. In Lines

5-6, the Laplace noise is added to each P(k) in order to randomize the node degree

distribution; accordingly the number of nodes now becomes
∑

1≤k≤dmax P̃(k). Here, dmax

is the maximum node degree in a map, and dmax = 4 in the example of Figure 4.4(a).
After adding Laplace noise, the node degree distribution could be as follows: P̃(1) = 1,

P̃(2)= 2, P̃(3)= 5, and P̃(4)= 0. Next, in Line 7, nodes are rewired to satisfy each P̃(k),

where k ∈ {1, ...,dmax}. The node rewiring is carried out using the graph model generator

provided in [70]. After node rewiring is complete, fake routes may be introduced, such

as route A → (b,6) in Figure 4.4(b). The length of a fake route is randomly generated

based on the average length of the existing real routes.

The reason why the Laplace mechanism is used here is that our aim is to obfuscate the

topology of each agent’s local map by modifying the degree distribution. Since a degree

distribution consists of a set of numbers, the Laplace mechanism is more appropriate

here than the exponential mechanism which is mainly used for proportionally selecting

an element from a set.It should also be noted at this point that the Laplace mechanism
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may generate negative numbers. This, however, is not a problem in this chapter, as we

need both positive and negative Laplace noise to ensure that our approach satisfies ϵ-DP.

Moreover, we adopt the Laplace mechanism to add noise to node degree distributions

rather than directly adding noise to the number of nodes or edges. By adding noise to

node degree distributions, our approach can not only guarantee the node and edge privacy

of agents, but also guarantee the connection of an obfuscated graph. The connection of

an obfuscated graph is a necessity for the completeness of our planning approach. The

detailed theoretical analysis will be given in the next section.

The rationale behind Algorithm 7 is as follows. According to the definitions of DP, a

map is interpreted as a dataset D, while a node on a map is interpreted as a record in a

dataset. As with the concept of neighboring datasets, two maps are deemed neighbors if

they differ by only one node. Thus, using 1K-distribution to obtain a map’s statistical

information can be thought of as querying some interesting information from a dataset,

f (D). If we compare Definition 2.6 to Line 6 in Algorithm 7, we can see that just as the

Laplace mechanism can guarantee the privacy of a dataset, it can also guarantee the

privacy of a map. More discussion about the preservation of privacy will be provided in

the next section.

In Algorithm 7, ∆S represents the sensitivity of the degree distribution in a map. The

value of ∆S is determined by the maximum change in degree distribution when a node is

added into or removed from the map. For example, in Figure 4.4(a), the degree scaling

is from 1 to 4: P(1),P(2),P(3),P(4). According to Algorithm 7, Line 6, when a node is

added into or removed from the map, one of the four values, P(1),P(2),P(3),P(4), will be

incremented or decremented by 1. Thus, the maximum change of degree distribution is

1, i.e., ∆S = 1 in Algorithm 7.

4.5.2.2 Using reinforcement learning to compute probability distributions

In a local area, such as the one in Figure 4.4(a), there is a set of local military bases

and logistic centers, along with a set of routes connecting these bases and centers. As

discussed in Section 4.4, in the Graph-STRIPS model, V and E can be used to represent

the topology of a map. Accordingly, we use V to represent the military bases and logistic

centers, while E is used to denote the set of routes connecting these bases and centers.

Specifically, in Figure 4.4(a), Vb = {(b,1), (b,2), (b,3), (b,4), (b,5)}, and Eb = {A ∼ (b,1), A ∼
(b,2), ..., (b,1) ∼ B, (b,5) ∼ B}. Moreover, different bases or centers will have different

routes available to them. For example, in base (b,1), there are four available routes:

E(b,1) = {(b,1)∼ A, (b,1)∼ (b,2), (b,1)∼ (b,3), (b,1)∼ B}. Furthermore, in center A, there
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are two available routes: EA = {A ∼ (b,1), A ∼ (b,2)}.

Algorithm 8 The reinforcement learning algorithm in map obfuscation
1: /*Take agent b as an example*/
2: Input: agent b’s obfuscated map (Figure 4.4(b));
3: Output: agent b’s obfuscated map with probability distributions (Figure 4.4(c));
4: Initialize probability distributions;
5: Initialize the Q-value of each route;
6: Initialize the current position: v ← A;
7: while v ̸= B do
8: Agent b selects a route, e, based on the probability distribution π(v) =

〈π(v, e1), ...,π(v, en)〉, where e ∈ Ev = {e1, ..., en};
9: r ←R(v, e);

10: Q(v, e)← (1−α)Q(v, e)+α[r+γmaxe i
e i∈Ev′

Q(v′, e i)];

11: r ←∑
e i∈Ev π(v, e i)Q(v, e i);

12: for each route e i ∈ Ev do
13: π(v, e i)←π(v, e i)+ζ(Q(v, e i)− r);
14: end for
15: π(v)← Normalise(π(v));
16: v ← v′;
17: end while
18: Agent b marks the learned probability distributions over the routes;

The RL algorithm is outlined in Algorithm 8. In Line 4, agent b proportionally

initializes probability distributions over actions, where each action indicates the selection

of a route. The initialization is based on the lengths of the routes. For example, in Figure
4.4(b), the probability distribution over routes A ∼ (b,1) and A ∼ (b,6) can be initialized

as 4
9 and 5

9 , respectively. In Line 5, agent b initializes the Q-value of each route; here,

the Q-value is an indication of how good a route is. In this algorithm, the initial Q-value

of a route is set based on the length of the route, such that a shorter route is allocated

a higher Q-value. For example, in Figure 4.4(b), the initial Q-value of route A ∼ (b,1)

can be set to 100
50 = 2, while the initial Q-value of route A ∼ (b,6) can be set to 100

40 = 2.5.

In Line 6, agent b sets the initial position to A and the destination to B. This setting is

based on the fact that, as an intermediate agent, agent b will help agent a to transport

the package from A to B.

Regarding the loop, in Line 8, agent b selects a route e based on the probability

distribution over the available routes in base v. After taking route e, agent b receives

a reward r (Line 9), which is inversely proportional to the route length. For example,

in Figure 4.4(b), r(A ∼ (b,1)) and r(A ∼ (b,6)) can be set to 4 and 5, respectively. The
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reward r is used to update the Q-value of route e in base v (Line 10). This update is based

on: 1) the current Q-value of e in base v, Q(v, e); 2) the maximum Q-value of the routes

in new base v′, maxe i
e i∈Ev′

Q(v′, e i); 3) the immediate reward r; and 4) a learning rate α and a

discount rate γ. In the next step, the updated Q-value and the probability distribution

are used to compute the average reward r (Line 11), where Ev is the set of available

routes in base v. In Lines 12 and 13, the probability of selecting each route i ∈ Ev is

updated. This update is based on: 1) the current probability of each route being selected

π(v, e i); 2) the current Q-value of each route Q(v, e i); 3) the average reward r; and 4)

a learning rate ζ. In Line 14, the updated probability distribution is normalized to be

valid, meaning that for each i ∈ Ev, 0<π(v, e i)< 1 and
∑

e i∈Ev π(v, e i)= 1. In Line 15, the

new base, v′, is set as the current base. The above steps are iterated over until the goal

state is reached. Finally, in Line 16, agent b marks each of the routes with the learned

probability distributions.

4.5.2.3 Using the exponential mechanism to redistribute probabilities

After using the RL algorithm to replace distance information with probability distribu-

tions, agents’ local distance information can be hidden. Hiding distance information can

reduce the risk of leaking this information but cannot guarantee the privacy preserva-

tion of this information. Therefore, we adopt the exponential mechanism to redistribute

probabilities.

We use an example to explain how to use the exponential mechanism to redistribute

probabilities. Suppose a node in a local map has two adjacent edges, x and y, and the

probabilities of selecting x and y are 0.7 and 0.3, respectively. Based on the definition of

exponential mechanism, the exponential mechanism selects and outputs an element r
with probability proportional to exp( ϵur

2∆u ), where ϵ is the privacy budget, ur is the utility

of selecting r and ∆u is the sensitivity of utility. If we set the utility of selecting a route

to be the probability of selecting that route, then we have: ux = 0.7 and uy = 0.3, and in

this setting, ∆u = 1. Then, if we set ϵ= 2, we have exp( ϵux
2∆u )= 2.014 and exp( ϵuy

2∆u )= 1.350.

Finally, the probabilities of selecting x and y become 2.014
2.014+1.350 = 0.6 and 1.350

2.014+1.350 = 0.4,

respectively. The above process is performed on each node in the local map.

Another simple way to preserve the distance information privacy is to let each agent

use the Dijkstra’s algorithm [25] to compute the shortest route length between two

logistic centers in its local area and add a Laplace noise to that length. However, other

agents may still get an approximate idea about the route length. For example, after

adding a Laplace noise, the route length changes from 100 to 105. Although other agents
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cannot deduce the real length, they can still guess that the real length must be near 105.

In some situations, e.g., the military logistic example, an approximate length is good

enough for other agents. By contrast, if an agent uses RL and shares only probabilities,

other agents cannot obtain even an approximate length. This idea is based on the spirit

of federated learning by allowing agents to share only parameters [131]. In federated

learning, to protect each client’s training data privacy, each client only sends the model

parameters, trained based on her private data, to the server. The server, thus, has only

clients’ model parameters without any clients’ private data.

4.5.3 Step 3: Creating a complete plan

After receiving obfuscated local maps from intermediate agents, agent a creates a logistic

map by combining these obfuscated local maps, as shown in Figure 4.5. On each

obfuscated local map, although both real and fake nodes and edges are involved, agent a
is unable to determine whether a given node or edge is real. More detailed discussion on

this matter will be presented in Section 4.6.
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Figure 4.5: A logistic map created by obfuscated local maps

Next, agent a uses an RL algorithm to calculate the length of the route between each

pair of connected logistic centers, e.g., A → B, B → E and so on. The RL algorithm is

similar to Algorithm 8. Since agent a is only provided with probability distributions
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about the other areas, agent a must generate the distance information itself based on the

probability distributions. Agent a relates the probabilities to the distance based on the

average route length in agent a’s local area. For example, in Figure 4.5, the probabilities

of selecting routes A ∼ (b,1) and A ∼ (b,6) are 0.7 and 0.2, respectively. If the average

route length in agent a’s local area is 45, agent a can simply set the distances from A
to (b,1) and A to (b,6) to 20 and 70, respectively, whose average is 45. Here, we operate

under the assumption that there are no significant differences between the average route

length in each local area.

After agent a calculates the length of the shortest route between each pair of con-

nected logistic centers (as shown in Figure 4.6), the shortest route from the origin to the

destination can also be obtained. It is clear at this point that this calculation is not very

accurate, as it is based on estimated length. However, the aim of this calculation is not

to find the real shortest route, rather to select the intermediate agents which are located

on the shortest route. In Fig 4.6, the agents on the shortest route are: b, e and f .

Figure 4.6: A high-level map featuring relative distances from agent a’s perspective

The final plan, thus, can be expressed as Π�
a = 〈I → (a,3) → (a,4) → A → B →

E → F →G 〉, where I = {package_in_(a,2)} and G = {package_in_( f ,4)}. In this plan,

I → (a,3)→ (a,4)→ A is the local plan formulated and carried out by agent a. At logistic

center A, agent a gives its package to agent b, which makes a local plan to transport

the package to logistic center B. At center B, agent e takes control of the package and

devises a local plan to deliver the package to logistic center F. Finally, agent f picks up

the package at center F and makes a local plan to transfer the package to ( f ,4).
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4.5.4 A simplification of the proposed approach

In some situations, if the distance information is not private, we can let logistic centers

do the routing planning and consider the routing only between logistic centers. Each

logistic center can directly communicate with the agent that is connected with the logistic

center. As the distance information is not private, each logistic center is also aware of the

local routing information within the agent. Compared with the proposed approach, this

simplified approach can 1) significantly reduce the problem complexity; and 2) enable

agents to obtain accurate distance information for further calculation; and 3) fully hide

the topology information belonging to each agent from other agents.

A typical example is daily logistic, where the distance information between two

public places do not need to be hidden. In daily logistic, packages are transported from

their starting points to their destinations across multiple states or provinces. Here,

the distance among states/provinces is not a privacy concern and can be considered as

public information. The simplified version of our approach can be applied to this example.

Each state/province is assumed to have a logistic center. To transport a package, the

logistic center at the starting point utilizes the accurate distance information among

states/provinces to make an optimal global plan. Then, each logistic center in the global

planning path conducts the local routing planning.

4.6 Theoretical analysis

4.6.1 Soundness analysis

Theorem 4.1. The proposed approach is sound.

Proof. We prove this theorem by considering one task, e.g., delivering one package in

the logistics example. In Step 1 of our approach, we start from the initial agent which

has a task to complete and initializes a plan, each queried agent sets up a link to the

querying agent. Thus, all the queried agents are reachable. If a goal agent is identified

whose private facts include the goal state, there must be at least one plan connecting the

initial agent to the goal agent through some or all of the queried agents. ■

4.6.2 Completeness analysis

Lemma 4.1. Obfuscating local maps does not affect the completeness of the proposed
approach.
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Proof. In Step 2 of our approach, each intermediate agent obfuscates its local map by

adding and/or removing nodes and/or edges (see Algorithm 7). During the obfuscation

process, Laplace noise is added to the node degree distribution of the local map: P(1),

..., P(dmax). As P(0) is not counted, isolated nodes will not be created. Moreover, as the

obfuscated map is undirected, it can be guaranteed that the obfuscated map will be

connected. Hence, there must be at least one route between the two logistic centers on

the local map. Since this property is common to the local maps of all intermediate areas,

there must be at least one route from the initial area to the goal area via intermediate

logistic centers. Thus, the completeness is not affected. ■

Theorem 4.2. The proposed approach is complete.

Proof. Step 1 of our approach guarantees that a goal agent can be found. According to

Theorem 4.1, there must be at least one plan connecting the initial agent to the goal

agent. We now need only to prove that our approach is capable of finding at least one of

these plans. According to Lemma 4.1, there is at least one route from the initial area

to the goal area. One of these routes can be treated as a high-level plan, which can be

identified using Algorithm 8. Based on the high-level plan, each intermediate agent

creates a local plan (Step 3). Given that each agent is honest1, each local plan is valid,

which ensures that the two logistic centers in the local area will be connected. Therefore,

a high-level plan and a set of local plans constitute a complete plan. ■

4.6.3 Privacy-preserving analysis

Theorem 4.3. The proposed planning approach satisfies ϵ-DP.

Proof. To analyze the privacy guarantee, we apply two composite properties of the

privacy budget: the sequential and the parallel compositions [75]. The sequential compo-

sition determines the privacy budget ϵ of each step when a series of private analysis are

performed sequentially on a dataset. The parallel composition corresponds to the case in

which each private step is applied to disjoint subsets of a dataset. The ultimate privacy

guarantee depends on the step which has the maximal ϵ.

In the proposed approach, the Laplace mechanism and the exponential mechanism

consumes the privacy budget. In the Laplace mechanism in Algorithm 7, the Laplace

noise sampled from Lap(∆S·dmax
ϵ

) is added in dmax steps. At each step, the Laplace
1It is a common assumption in privacy-preserving multi-agent planning that agents are honest but

curious about others’ private information [118].
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mechanism consumes the ϵ
dmax

privacy budget; thus for each step, Algorithm 7 satisfies
ϵ

dmax
-DP. By using the sequential composition property, we can conclude that at a total of

dmax steps, the Laplace mechanism consumes the dmax · ϵ
dmax

= ϵ privacy budget, meaning

that Algorithm 7 satisfies ϵ-DP. By comparing Definition 2.2 with Definition 4.5, since

the Laplace mechanism can guarantee the data record privacy of a dataset, it can also

guarantee the node-privacy of a graph.

The exponential mechanism is used to redistribute probabilities on each agent’s local

graph. For a given node in a local graph, suppose the node has k adjacent edges. Then,

the exponential mechanism will be used k times. If we set privacy budget for this node to

be ϵ
k , based on the sequential composition property, the privacy consumption of this node

is ϵ. Thus, the probability redistribution on the adjacent edges of this node satisfies ϵ-DP.

When this method is used on every node, based on the parallel composition property, the

probability redistribution on this local graph satisfies ϵ-DP.

Since the Laplace mechanism and the exponential mechanism are used by each agent,

each agent is guaranteed ϵ-DP. Although an environment may contain multiple agents,

each agent maintains a local area, and these local areas are disjoint with each other.

Since each agent is guaranteed ϵ-DP, according to the parallel composition property, the

proposed approach satisfies ϵ-DP. ■

Remark 1: In Algorithm 7, Laplace noise is used to randomize the node degree

distribution. This implies that both the number of nodes and the number of edges

in a local map will be perturbed. Since the topology of a map consists of nodes and

edges, perturbing the numbers of nodes and edges incurs perturbation of the topology.

Accordingly, as Algorithm 7 satisfies DP, the perturbation of the topology of a map also

satisfies DP.

Corollary 4.1. No agent is able to conclude anything about the existence of any subset of
⌈∆S·dmax

ϵ
⌉ nodes in another agent’s map.

Proof. In Algorithm 7, the Laplace noise is sampled from Lap(∆S·dmax
ϵ

), meaning that

the expected amount of noise is ∆S·dmax
ϵ

. As this noise is used to change the number of

nodes in a map (recall Lines 5-6 in Algorithm 7), the expected number of nodes that

will be changed is ⌈∆S·dmax
ϵ

⌉. Therefore, any subset of ⌈∆S·dmax
ϵ

⌉ nodes could be fake nodes.

According to Definition 4.5 and Theorem 4.3, since Algorithm 7 can guarantee the

node-privacy of a graph, an agent will be unable to distinguish real from fake statistical

information between two neighboring graphs, e.g., the number of real nodes. This means

that an agent cannot determine whether or not a node is fake. Hence, the existence of
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any subset of ⌈∆S·dmax
ϵ

⌉ nodes in an agent’s map cannot be concluded by any other agents.

■

Remark 2: From Corollary 4.1, in the Laplace mechanism in Algorithm 7, the

value of ϵ controls the granularity of privacy, given that the values of ∆S and dmax have

been fixed. A smaller ϵ implies a stronger privacy guarantee. However, a smaller ϵ also

introduces a larger amount of noise. The increase of the amount of noise reduces the

usability of a map. Thus, the value of ϵ should be carefully set.

Remark 3: Similar to the Laplace mechanism, in the exponential mechanism, the

value of ϵ has a huge impact on probability redistribution results. Given that a node

has k adjacent edges and the probabilities of selecting the k edges are u1, ...,uk, if we

set ϵ= 0, the probability of selecting each edge will equally become 1
k ; if we set ϵ→+∞,

probability um becomes 1 and others become 0, where um = max{u1, ...,uk}. In addition

to the two extreme situations, there is a median situation which is that the redistributed

probabilities are identical to the original probabilities: u′
1 = u1, ...,u′

k = uk. Based on the

computation method described in Section 4.5.2, each probability u′
i, 1≤ i ≤ k, is computed

as:

(4.2) u′
i =

exp( ϵui
2∆u )∑

1≤ j≤k exp( ϵu j
2∆u )

.

Let each u′
i = ui, we have k equations.

exp( ϵu1
2∆u )∑

1≤ j≤k exp(
ϵu j
2∆u )

= u1,

...,
exp(

ϵuk
2∆u )∑

1≤ j≤k exp(
ϵu j
2∆u )

= uk.

In our problem, ∆u = 1. By solving the k equations, we have that

ϵi =
2(k · ln(ui)−∑

1≤ j≤k ln(u j))
k ·ui −∑

1≤ j≤k u j
,

where 1≤ i ≤ k. Thus, in applications, on one hand, these values of ϵ should be avoided,

as they will make the redistributed probabilities identical to the original probabilities,

which cannot offer any privacy preservation. On the other hand, the values of ϵ should

be set close to these values to guarantee the usability of the redistributed probabilities.

Remark 3: The privacy guarantee secured by adding noise to the number of nodes

is stronger than that arising from adding noise to the number of edges. This is because
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adding noise to the number of nodes results in more distortion than does adding noise to

the number of edges. For example, adding a node to a map results in the addition of up

to m edges to the map, where m is the number of nodes in the map. By contrast, adding

an edge to a map results in the addition to the map of one node at most. More distortion

leads to a stronger privacy guarantee.

Theorem 4.4. The proposed planning approach can strongly preserve agents’ privacy.

Proof. As defined in Section 4.4.1, an agent’s private information includes 1) the number

of nodes in an agent’s local area, 2) the number of edges in the local area, 3) the length

of these edges, 4) the positions of any items in the local area and 5) the movements

of any items in the local area. To prove this theorem, we only need to prove that the

private information possessed by an agent cannot be inferred by another agent. First,

according to Theorem 4.3 and Corollary 4.1, the proposed planning approach satisfies

ϵ-DP and guarantees the privacy of any subset of ⌈∆S·dmax
ϵ

⌉ nodes in an agent’s local area.

By properly setting the value of ϵ, the privacy of all nodes and edges in an agent’s local

area can be preserved. Therefore, the privacy of the number of nodes and edges of an

agent’s local area will also be preserved.

Second, our approach dictates that the length information in a local area is replaced

by probability distributions (recall Figure 4.4). Also, these probabilities are redistributed

using the exponential mechanism. Thus, the length information is strictly hidden. There-

fore, an agent cannot infer the real length of any individual edge in another agent’s

local area. Third, since the privacy of any node or edge in an agent’s local area has been

preserved, the positions and movements of items have also been preserved. Based on the

definition of strong privacy (Definition 4.2), the proposed approach can strongly preserve

agents’ privacy. ■

4.6.4 Communication analysis

Let us suppose that there are m logistic centers. Each logistic center, i, has a capacity, lci,

which is the maximum number of agents that can share the logistic center. Accordingly,

we derive the following theorem:

Theorem 4.5. In Step 1, the upper bound of the number of communication messages
used to find a goal agent is

∑
1≤i≤m lci.

Proof. In our approach, each agent is only aware of the existence of its own neighbors.

This means that 1) each agent does not know how many neighbors any other agent has,
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and 2) each agent is not aware of how far away the goal agent is. As the information

regarding logistic centers is public, all agents know the capacity of each logistic center.

Thus, to guarantee that the query message is able to reach the goal agent, an agent must

assume that 1) each logistic center is using up its capacity, and 2) the goal agent is located

in the most distant area. In this situation, the number of generated communication

messages is
∑

1≤i≤m lci. ■

Remark 4: Theorem 4.5 describes the communication overhead in the worst case.

However, as time progresses, this communication overhead can be significantly reduced.

This is because an agent memorizes the plans that it has previously created, meaning

that an agent memorizes the routes to goal agents. Thus, in the future, an agent can

simply exploit a route previously determined to reach a goal agent without the need for

communication. Even if an agent decides to explore a new route, the communication

overhead can be limited by setting the maximum number of query messages during the

finding process. The maximum number of query messages is set to be identical to the

number of messages used to find the same goal agent last time. Formally, we have the

following corollary:

Corollary 4.2. As time progresses, the communication overhead of each agent monotoni-
cally decreases.

Proof. Every time an agent explores a new route to a goal agent, the maximum number

of query messages is set to be equal to the number of messages used to find the same

goal agent last time. As each agent memorizes only the shortest routes to goal agents,

only routes that are shorter than these memorized routes will be taken by each agent.

This means that the number of request messages currently being used must be fewer

than or equal to the number used previously. Thus, the communication overhead of each

agent monotonically decreases. ■

In our approach, the setting of the communication budget C can be controlled by

the privacy budget ϵ. In a multi-agent system, each agent k sets ϵ/C as their privacy

budget and ceases to communicate when ϵ is used up. When C >∑
1≤i≤m lci, the system

can guarantee that all communication steps will be completed. However, a large amount

of noise will be added to the system under these circumstances. When C <∑
1≤i≤m lci,

the system is likely to stop before finishing the communication steps. However, the noise

added to the system will be limited. When C =∑
1≤i≤m lci, the system will stop when all

communication steps have been completed. Therefore, by adjusting the privacy budget ϵ
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and the communication budget C, the communication overhead of a multi-agent system

can be controlled.

4.7 Application of our approach to other domains

This section illustrates how our approach can be applied to three other domains: networks,

air travel, and rovers.

4.7.1 Packet routing in networks

In a network, nodes often transmit packets between each other. These nodes may belong

to different areas, which are connected by routers or access points. In this domain,

a router or access point can be thought of as similar to an agent, which manages a

corresponding area. In a given area, the information possessed by each node, e.g., its

load and performance, is private to the agent. Moreover, the number of nodes in an area

and their communication links are also private to the agent. Thus, the agents expect

that their privacy will be preserved.

As each node has only a limited range of communication, when a node transmits a

packet to another node, the packet may be relayed multiple times by intermediate nodes

before reaching its destination. Since it is highly desirable that nodes receive packets in

a timely manner, the transmission must be efficient so that huge delays can be avoided.

The proposed approach can be applied to create efficient plans for packet routing.

4.7.2 Airplane transport

The airplane transport problem consists of a set of planes and airports. Moreover, the

travel map is partitioned into a set of areas. In the real world, each area can be thought

of as a country. Therefore, the planes and airports located in a given area are private

to the area air traffic controller. Clearly, each area controller wants to preserve infor-

mation regarding the status and number of planes and airports in their area as private

information.

The airports located on the boundary of two areas are public. The goal is to transport

passengers between airports. In this problem, each area controller can be thought of as

an agent. When a plane travels from one airport to another, as the plane has only limited

fuel, passengers may be transferred multiple times on their way to their destination.

Moreover, both area controllers and passengers would clearly prefer the plane to reach
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its destination as quickly as possible. Thus, an efficient privacy-preserving planning

approach is required. The proposed approach can be applied to create efficient plans for

passenger transport.

4.7.3 Rover exploration

This domain models Mars exploration rovers. Each rover can be thought of as an agent.

The goal of these rovers is to collect samples. Each rover has its own private sets of

targets and reachable locations. These targets and reachable locations can be thought of

as private facts in our planning model, the privacy of which must be preserved.

Each rover collects samples in its reachable locations. When a rover needs to transmit

the samples it has collected to another rover, these samples may have to be transmitted

by intermediate rovers in the interim, as the number of locations reachable by each rover

is limited. Since samples may decay as time progresses, it is desirable for the rovers

to transmit the samples to the destination as quickly as possible. Hence, an efficient

privacy-preserving planning approach is required. The proposed approach can be applied

to create efficient plans for sample transmission.

In summary, our approach can be applied to all of the planning problems, in which

each party has private information and local plans can be created by each party using

reinforcement learning techniques. Moreover, reinforcement learning has a broad range

of applications, including task scheduling in cloud computing [91], traffic light control

[4], and robot coordination [58]. Since most of these applications may also have privacy

requirements, our method has the potential to be applied to these real-world scheduling

and coordination problems as well.

4.8 Experiments

4.8.1 Experimental setup

The experiments in the present research are conducted based on two scenarios: logistics

and packet routing, which are typical logistic-like problems. In the logistics scenario, as

described in Section 4.3, each military base has a set of packages to transport to other

military bases. These military bases may be located in different areas and managed by

different military units. The information pertaining to each military base is private to

the managing military unit.

64



4.8. EXPERIMENTS

The packet routing scenario is similar to the logistics scenario, in that each node in

an ad hoc network houses a set of packets to be sent to other nodes. Nodes may belong to

different groups and are served by different access points. The information of each node

is private to the serving access point. The key difference between these two scenarios is

that in the packet routing scenario, new nodes may dynamically join the network and

existing nodes may leave the network at any time, while this is not the case for the

logistics scenario. These experiments have also been conducted on the air travel and

rover scenarios. As the results present a similar trend to logistics, they are not discussed

here.

Three evaluation metrics are used in the two scenarios: 1) average route length: the

average length of the routes from initial states to goal states; 2) average communication

overhead: the average number of communication messages used to make a plan; 3)

success rate: the ratio of the number of the successfully transmitted packages/packets to

the total number of packages/packets.

In both scenarios, the map shape or network topology is similar to that in Figure
4.1. The size of the maps/networks varies from 10 logistic centers/access points to 50

logistic centers/access points; correspondingly the number of military bases/network

nodes varies from 50 to 250 2.

The probability of a package/packet being generated on each military base/node is set

to 0.2. The communication budget of each agent varies from C = 40 to C = 80 depending

on variations in the map/network size. The privacy budget of each agent is set to ϵ= 0.5.

Moreover, in the packet routing scenario, during the route finding process, there is a

probability of 0.1 that an existing node will leave the network and a probability of 0.1

that a new node will join the network. The parameter values in the proposed algorithms

are chosen experimentally, and set to α= 0.1, γ= 0.9 and ζ= 0.95.

The proposed planning approach, denoted as DP-based, is evaluated in comparison

with three closely related approaches. The first approach, denoted as No-privacy, is

also developed by us. The major features of No-privacy are the same as DP-based,

but the privacy-preserving mechanism has been removed. Although No-privacy is not

applicable to privacy-preserving planning, it can be used to evaluate how the privacy-

preserving mechanism impacts the performance of our DP-based approach. The second

approach is based on best-first forward search, denoted as Best-first, and has been used

in [12, 82, 109]. In the Best-first approach, when an agent transmits a package/packet to

2The topologies of maps/networks are created by simulation, as most real-world graph datasets [63] do
not contain distance information and thus cannot be used in our experiments. We leave the experiments
with real-world datasets as one of our future studies.
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a logistic center/access point, the agent broadcasts this state to all the other agents. The

nearest agent takes the package/packet based on this state and transmits it to the next

logistic center/access point. This process continues until the goal agent is reached. The

third approach is GPPP (greedy privacy-preserving planner), denoted as Greedy, which

was developed in [73]. The Greedy approach consists of two phases: global planning and

local planning. In the global planning phase, all agents collaboratively devise a global

plan using a best-first search method. Next, in the local planning phase, each agent

creates a local plan by executing a single-agent planning procedure.

4.8.2 Experimental results

4.8.2.1 The logistics scenario
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Figure 4.7: Performance of the four approaches on the logistics scenario with variation of
the map size

Figure 4.7 demonstrates the performance of the four approaches on the logistics

scenario with variation of the map size. As the map size grows larger, for all four

approaches, the average route length and the average communication overhead progres-

sively increase, while the success rate gradually decreases. As the map size increases, the

distance between an original agent and a destination agent may be enlarged accordingly.

Therefore, the average route length increases. Moreover, when this occurs, the number of

intermediate agents also increases. Thus, the average communication overhead rises as

well. Due to this increase in the average communication overhead, the communication

budget of some agents may be used up before a plan is made. Hence, the success rate

reduces.
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The proposed DP-based approach achieves much better performance than the Best-
first and Greedy approaches. The reinforcement learning algorithm in the DP-based
approach can find shorter routes than the other two approaches. Moreover, in the DP-
based approach, agents are allowed to communicate only with neighbors, and a privacy

budget is adopted to control communication overhead.Thus, the DP-based approach

uses less communication overhead than the other two approaches.In addition, the DP-
based approach successfully makes more plans than the other two approaches before

the communication budget is used up. Overall, the performance of No-privacy approach

is slightly better than the DP-based approach. As privacy is not taken into account

in the No-privacy approach, the information shared between agents is accurate, and

agents can make accurate plans based on this accurate information. However, the private

information of each agent is entirely disclosed to other agents under this approach, a

situation that should be avoided in real-world applications. More specifically, the average

route length in the DP-based approach is only about 2% longer than for the No-privacy
approach. This is because in the DP-based approach, a plan is made up of a set of local

plans created by the initial agent and the intermediate agents. Each of these local plans

is created by an individual agent with reference to its private but accurate information.

Since most of the information used to create a plan is accurate, the introduction of our

privacy-preserving mechanism does not substantially impact the average route length.

The Best-first approach achieves the worst performance out of the four approaches.

In the Best-first approach, a package is transmitted to the nearest agent. However, in

large and complex maps, the nearest agent may not always be the best choice. Moreover,

always choosing the nearest agent may result in a transmission loop; if this situation

arises, packages will never reach their destinations. In comparison, the performance of

Greedy approach is better than the Best-first approach, as the Greedy approach features

a global planning phase that involves selecting the appropriate logistic centers to create

a high-level route, which conserves communication overhead.

Figure 4.8 demonstrates the performance of the DP-based approach on the logistics

scenario with variation of the privacy budget ϵ value from 0.2 to 0.8. The number of

logistic centers is fixed at 10. It can be seen that with the increase of the privacy budget ϵ

value, the performance of the DP-based approach improves, namely it achieves a shorter

average route length (Figure 4.8(a)), lower average communication overhead (Figure
4.8(b)), and higher success rate (Figure 4.8(c)). According to the Laplace mechanism,

when the ϵ value is small, the noise, added to the map, is large. A large noise value will

significantly affect the agents planning. For example, agent a has two neighbors b and
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Figure 4.8: Performance of the DP-based approach on the logistics scenario with variation
of the privacy budget value

c. Now, suppose that 1) agent a wants to send a package to d, and 2) delegating the

package to b is a better choice than c. However, when agents b and c obfuscate their

maps, due to the large noise, the obfuscation results may make c appear to be a better

choice than b. Thus, agent a may make a sub-optimal plan. This situation is alleviated

when the ϵ value increases.

4.8.2.2 The packet routing scenario

10 20 30 40 50
Size of the network

500

900

1300

1700

2100

2500

2900

Av
er

ag
e 

ro
ut

e 
le

ng
th

 (m
s) DP-based

No-privacy
Best-first
Greedy

(a) Average route length

10 20 30 40 50
Size of the network

30

50

70

90

110

130

150

170

C
om

m
un

ic
at

io
n 

ov
er

he
ad DP-based

No-privacy
Best-first
Greedy

(b) Average communication
overhead

10 20 30 40 50
Size of the network

0.5

0.6

0.7

0.8

0.9

1

Su
cc

es
s 

ra
te

DP-based
No-privacy
Best-first
Greedy

(c) Success rate

Figure 4.9: Performance of the four approaches on the packet routing scenario with
variation of the network size

Figure 4.9 illustrates the performance of the four approaches on the packet routing

scenario with variation of the network size, while Figure 4.10 depicts the performance

of the DP-based approach on the packet routing scenario with variation of the privacy

budget ϵ. After comparing Figure 4.7 to Figure 4.9 and Figure 4.8 to Figure 4.10, it
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Figure 4.10: Performance of the DP-based approach on the packet routing scenario with
variation of the privacy budget

can be concluded that these approaches exhibit similar trends in terms of their results on

the two scenarios, but that the performance of these approaches is worse on the packet

routing scenario than on the logistic scenario. This is mainly due to the dynamism of

the packet routing scenario. When a node leaves the network, the routes involving that

node are broken. Thus, agents have to re-find routes. This incurs extra communication

overhead and reduces success rates to some extent.
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Figure 4.11: Performance of the three approaches on the packet routing scenario with
variation of the dynamism

Figure 4.11 illustrates the performance of the four approaches on the packet routing

scenario with variation of the dynamism, such that the probability of a node leaving or

joining the network varies from 0.05 to 0.2 and the network size is fixed at 10 access

points. From Figure 4.11, it can be seen that an increase in the dynamism negatively

affects the Best-first and Greedy approaches in terms of their average communication
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overhead and success rates, but does not significantly impact the DP-based and No-
privacy approaches.

As the dynamism increases, the frequency with which nodes leave or join the network

also increases. Thus, the number of affected routes increases as well. In the Best-first
and Greedy approaches, when a route is broken, a new finding process is launched. This

may not significantly affect the average route length (Figure 4.11(a)), as route length

depends on the positions of nodes rather than the number of nodes. However, launching

a new finding process results in additional communication overhead, and may thus

reduce success rates due to depletion of the communication budget. By contrast, the

DP-based and No-privacy approaches do not require a new finding process when a route

is broken. In the DP-based approach, routes are found by using reinforcement learning

on obfuscated local network topologies. These obfuscated local network topologies are

obtained using DP. DP can guarantee that a node being brought in or out of a local

network will have minimum effect on the statistical information. Therefore, when a node

leaves or joins a local network, the serving access point does not need to re-obfuscate the

new network or to communicate with the original access point about the change in the

network. Hence, the communication budget can be conserved, and the success rate is

preserved.

4.8.3 Summary

According to the experimental results, the proposed DP-based approach achieves better

results than the Best-first and Greedy approaches in all experimental situations con-

sidered here. The average length of routes found by the DP-based approach is about

25% and 15% shorter, respectively, than those found using the Best-first and Greedy
approaches. The DP-based approach also uses about 20% and 10% less communication

overhead than the Best-first and Greedy approaches, respectively. Moreover, the DP-based
approach achieves about 10% and 5% higher success rates than the Best-first and Greedy
approaches, respectively.

Regarding performance, the DP-based approach is slightly worse than the No-privacy
approach by a factor of about 3% in terms of average route length, 2% in communication

overhead and 2% in success rate. The DP-based approach, however, strongly protects the

privacy of agents, which is entirely disregarded in the No-privacy approach. Therefore,

based on the experimental results, the efficiency of our DP-based approach can be proven.
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4.9 Summary and Future Work

This chapter proposes a novel strong privacy-preserving planning approach for logistic-

like problems. In this approach, an agent creates a complete plan by using obfuscated

private information from each intermediate agent, where this obfuscation is achieved by

adopting the DP technique. Due to the advantages of DP, following obfuscation, an agent’s

private information cannot be deduced by other agents regardless of their reasoning

power. This approach is the first in existence to achieve strong privacy, completeness

and efficiency simultaneously by taking advantage of DP. Moreover, this approach is

communication-efficient. Compared to the benchmark approaches, our approach achieves

better performance in various aspects.

In the future, we intend to extend our approach by introducing malicious agents.

Existing approaches commonly assume that agents are honest but curious. Introducing

malicious agents, which provide false information to others, may be a challenging and

interesting addition to the field of multi-agent planning. Also, as described in the exper-

imental part, we will continue to search usable real-world datasets and evaluate our

approach with them.
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5
PRIVACY PRESERVATION IN DEEP REINFORCEMENT

LEARNING: A TRAINING PERSPECTIVE

Reinforcement learning (RL) is a principled AI framework for autonomously experience-

driven learning. DRL promotes a higher-level understanding of the visual world by

incorporating deep learning models. Concerns related to privacy preservation in the

context of RL are emerging due to an increasing number of applications involving a huge

amount of private information. Some recent studies have demonstrated that DRL can

leak private information and be vulnerable to attacks that attempt to infer the training

environment from a training agent’s behaviors without accessing the environment. To

address these privacy concerns, we propose a differentially private DRL approach to ob-

fuscate the agent’s observations from each visited state, thereby preventing the inference

of the agent’s training environment from its optimized policy and defending against pri-

vacy leakage attacks. We provide detailed theoretical analysis and design comprehensive

experiments in a grid world environment to maximally reproduce the privacy leakage

attack. Both theoretical analysis and experimental results demonstrate that our method

can effectively defend against privacy leakage attacks as well as guarantee the model

utility of the RL agent.
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5.1 Introduction

Since deep reinforcement learning (DRL) is achieving great success in an increasing

number of application fields that may involve huge amounts of private information, the

security of policies and privacy preservation in DRL models have given rise to widespread

concerns. For example, it has been demonstrated that DRL can leak private information

about the training environment. An illustrative example presented by Pan et al. [86]

concerns an agent that aims to navigate the shortest path between a starting point

and a destination in a simple grid world with obstacles. As the example in Figure 5.1
shows, a well-trained agent will still follow the same trajectory even once all obstacles

in the environment have been removed after training. This example indicates that it is

possible to infer environmental information from a well-trained DRL policy. A DRL agent

tends to memorize the training environment instead of performing visual navigation. An

adversary can thus recover the position of obstacles in the grid environment from the

agent’s memory without needing to access the training environment directly. Similarly,

Ye et al. [136] considered another concern related to privacy leakage in a multi-agent

RL environment, specifically that an RL agent can leak information in the training

environment of each party when multiple parties collaboratively train the RL agent.

Therefore, it is possible for both conventional RL and DRL policies to leak sensitive

information about a private training environment.

Figure 5.1: An example of trajectory disclosure from a well-trained DRL agent

We contend that the root cause of privacy leakage in DRL is the agent’s observations

of the training environment. When an agent starts learning its task in a new DRL

environment, the agent takes actions based on what it observes from the environment at

every state. The agent obtains rewards from selected actions and links these rewards to
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observations of its environment. Through repeatedly observing and learning about the

environment, the agent takes actions with increasing confidence and tends to remember

the sequence of actions it takes alongside its memory of the environment. When the agent

is brought into a new open environment, the agent repeats the sequence of actions from

memory, meaning that private information concerning its trajectory and the original

environment can be inferred. This raises an interesting question: can the agent train its

policy to complete the task successfully, but with inaccurate observations to prevent the

environmental information from being leaked?

DP has the potential to provide a privacy-preserving solution. DP offers a strong

privacy guarantee through the addition of perturbation to a pair of datasets, meaning

that the results of queries of two neighboring datasets are likely to be statistically

similar [103]. However, it is difficult to directly apply DP to the DRL in terms of the

agent policy for the following reasons. First, it is a challenge for DP to balance the privacy

guarantee and model utility. More specifically, DP has a stronger privacy guarantee

with larger randomization, but this large randomization may have a huge negative

impact on model utility. Conversely, small randomization can only provide a limited

privacy guarantee. Thus, it is important to find a way to balance both privacy and utility

simultaneously. Second, estimating how suitable randomization might be arranged in

the learning process is no easy task. In other words, we have to estimate how ‘good’ the

performance is in terms of DP.

To solve the above issues, we propose the Differentially Private Deep Reinforcement
Learning (DP-DRL) method to protect a DRL agent’s training environment information

against privacy leakage attacks. We apply the exponential mechanism of DP to protect an

agent’s observations from each visited state by obfuscating one observation element each

time based on a probability distribution. While considering the vector of a DRL agent’s

observations as a dataset, if we apply DP to obfuscate one observation of the vector, the

original observations and obfuscated observations in the agents training process will

be statistically similar. Moreover, we dynamically adjust the privacy budget of DP to

maximally guarantee model utility based on the impact on model utility from obfuscation,

as well as providing the privacy guarantee. The proposed method can guarantee that

the DRL agent can successfully train a well-performed policy in a privacy-preserving

environment without information being leaked due to a privacy leakage attack. The

main contributions of this chapter can be summarized as follows:

• This is the first work to defend against privacy leakage attacks [86] in the DRL

context. Specifically, we apply an exponential mechanism of DP to an agent’s
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observations in training in order to prevent the environmental information from

being recovered by a privacy leakage attacker. The defense method can effectively

reduce recovery rate to the DRL environment from privacy leakage.

• The proposed method can dynamically adjust the privacy budget to guarantee

privacy for both the agent and the environment, as well as the utility of the trained

agent’s policy.

• We design a comprehensive experiment to support our proposed method.

5.2 Related Work

5.2.1 Sensitivity of RL Training Environment

DRL policies are demonstrated to be highly sensitive to training hyper-parameters,

including reward scale, environment dynamics and random seeds. Variation in these

parameters can lead to significantly different results [48]. A DRL agent typically over-fits

to the original training environment and its policy frequently cannot be generalized

to unseen domains [114]; for example, a well-trained agent will still follow the same

trajectory even once all obstacles in the grid have been removed after the training process

[86], meaning that adversaries can attempt to steal information pertaining to the original

training environment. These studies indicate that RL models have implicitly memorized

the training environment and are thus vulnerable to attacks that steal private training

environment information.

5.2.2 Membership Inference Attack

Only a small number of studies have explored privacy leakage in RL. One such study

proposes a privacy leakage attack [86] to infer RL agent training transition dynamics

from certain recovered candidates using a genetic algorithm and neural network. Similar

to the privacy leakage attack in RL, some studies have shown that machine learning

models can leak various types of sensitive information contained in the training data [95].

Membership inference is a common type of tracing attack used to determine whether

or not a specific individual is a member of a given dataset [31]. Membership inference

attacks on machine learning models were first proposed by [106], which trained multiple

shadow policies and a neural network to identify whether a specific data point is con-

tained in the training dataset. A similar idea is also applied to attack the differentially

76



5.2. RELATED WORK

private deep learning model, revealing that differentially private deep learning models

are vulnerable to membership inference attack [95]. Some further studies related to

membership inference attacks have examined why membership inference is possible

[124] and mounted inference attacks on other forms of generative models [46]. A fur-

ther work [108] shows how membership inference attacks can be used to determine if

a model was trained using any individual user’s personal information. Another study

[15] contends that the fact that membership inference is highly related to unintended

memorization.

5.2.3 Inverse Reinforcement Learning

Inverse RL was initially proposed in [81] as a paradigm to infer an expert RL agent’s

reward function which is optimized from a given policy or observed agent behavior. The

concept has attracted substantial interest in the communities of artificial intelligence,

control theory, machine learning and psychology [5]. Inverse RL approaches include

maximum margin approaches [2, 93] which maximally attain the experts’ performance

even without recovering the reward function, and probabilistic approaches [64, 144, 145],

which employ maximum entropy to resolve the ambiguity in choosing a distribution

over decisions in the form of a maximum likelihood problem, and have also been further

developed to incorporate adversarial learning [38]. Inverse RL is beneficial to some

scenarios, such as re-optimizing a reward in novel environments [34], and can be used to

infer a RL agent’s intentions [33].

5.2.4 Privacy Preservation in Reinforcement Learning

Over the past decade, many studies have successfully combined DP and RL over the

past decade. However, most of these studies applied RL algorithms to improve the

performance of DP rather than guaranteeing the privacy of RL. RL is primarily applied

dynamically adjust the allocation of privacy budgets in DP in many scenarios, such as

privacy in trajectory, where RL is embedded into the DP mechanism to improve trajectory

privacy protection in VANET [16] and dynamic data publishing [40]. Therefore, RL can

benefit DP in the context of dynamic privacy budget adjustment.

Some studies have explored DP for RL in certain specific application scenarios. One

study [7] focused on policy evaluation in the batch case by proposing regularized least-

squares algorithms with output perturbation and bounding the excess risk due to the

privacy constraints. Another work [128] provided a differentially private Q-learning
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algorithm with function approximation to address the control problem with private

rewards and public states. Several studies have applied DP in multi-agent RL systems to

protect the process of knowledge transfer from an experienced agent to a less experienced

agent. Two existing works utilized a similar idea, proposing a differentially private

advising framework [104] and a differentially private knowledge transfer framework [18]

respectively to perturb an experienced agent’s Q-table while transferring the knowledge.

These two methods also used the concept of neighboring datasets to allow more possible

knowledge transfer, though, two agents’ actions differ by one record. A similar work

applied an exponential mechanism to help an experienced agent select a perturbed action

for use as advice that aids it in avoiding malicious agents [137].

Far fewer works have addressed DP for general RL. One study [126] designed privacy-

preserving exploration policies for episodic RL with joint DP [49] in which each user only

receives their own sets of output, thereby providing privacy formulation with probable

approximate correctness and regrets in RL. Another work [41] provided an alternative

solution with a stronger privacy guarantee using the notion of local DP [55]. However,

these two papers aimed to provide a privacy guarantee for the personal information of RL

agent users, who may contribute training data collaboratively, rather than considering

the training environment of the agent itself. One study [136] had a similar idea to ours

with regard to obfuscating an RL agent’s training environment through the planning of

logistic-like scenarios using the Laplace mechanism; however, this work still involves

multiple users (called logistic centers in the paper) collaboratively contributing pieces

of a training environment. Also, the work did not require a strong utility guarantee,

because users could manually adjust the planning strategy rather than following the

agent’s strategy. Therefore, we herein initiate the study of privacy preservation of the

training environment of an RL agent in sequential decision-making, with a particular

focus on defense against privacy leakage attacks in RL.

5.3 Preliminaries and Problem Definition

5.3.1 Privacy Leakage of RL

Privacy leakage attacks in the DRL context were first proposed in [86] aiming to infer the

transition dynamics T of an MDP using a well-trained policy π and other components

of that MDP in a DRL setting. The attack is applicable to two scenarios with limited

prior knowledge. In the first scenario, an attacker has access to prior knowledge of
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some structural constraints related to the environment and then searches a transition

dynamics T maximally similar to the target transition dynamics Ttarget using a genetic

algorithm. The attacker maintains a population of transition dynamics candidates {T }

satisfying the known constraints in each searching iteration, and acquires the most

similar transition dynamics T by calculating how similar the action-space probability

distribution of the induced optimal policy πT is to the πtarget’s in order to update the

population of {T } in the next searching iteration. The second scenario is an application

for membership inference attack in a DRL setting, in which the attacker trains shadow

policies to identify the target transition dynamics from a set of transition dynamics

candidates {T }.

5.3.2 Problem Definition

A DRL agent will leak information about its environment during training, because the

agent’s optimal policy contains large amounts of learning experience and memories of

environmental information. The root cause of privacy leakage in DRL is the agent’s

observations of the training environment. The primary task of a DRL agent is to train an

optimal policy in the current environment to meet the requirements of the task. When

an agent begins to learn its task in a new DRL environment, it takes actions based

on what it observes from the environment at every state. The agent obtains rewards

from selected actions and links these rewards to observations from the environment.

Thus, the agent’s observations can significantly affect the actions it takes, while the

rewards it obtains further affect the policy. Through repeatedly observing and learning

of the environment, the agent will take actions with increasing confidence and tends

to remember the sequence of actions it takes alongside its memory of the environment.

When the agent is brought into a new open environment, it will continue to repeat the

sequence of actions from memory, resulting in the leaking of private information about

its trajectory and therefore the original environment. Therefore, it is difficult for us to

prevent the leakage of environmental information from an agent’s well-trained policy.

Privacy leakage attacks are undoubtedly a great challenge to DRL because these

attacks only require an agent’s policy as input. Besides some prior knowledge of struc-

tural constraints related to the environment, only a well-trained policy from the agent is

needed; subsequently, the fitness score can be used to calculate how similar an inferred

transition dynamics candidate T is to the well-trained policy. However, we contend

that this very strength is also a fundamental weakness of the privacy leakage attack,

as it is overwhelmingly dependent on the agent’s well-trained policy. Specifically, the
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attack performance is strongly related to the honesty of the agent during the training

and the accuracy of the well-trained policy itself. In theory, an attacker can only infer

information about a protected environment if an agent’s policy is trained in this protected

environment; in other words, the recovery rate will decrease significantly if the agent’s

policy is trained in an obfuscated environment. Although environmental information is

objective and definite, we can obfuscate the agent’s observations in order to obfuscate

the environmental information in the agent’s memory. Therefore, we suppose that the

key to defense privacy leakage attack is to obfuscate a DRL agent’s observations during

training while simultaneously guaranteeing the utility of the trained policy.

5.4 Differentially Private Deep Reinforcement
Learning (DP-DRL)

5.4.1 Overview of Methodology

A DRL agent’s observations play a significant role in acting as a bridge to link the

agent’s actions and environmental information. The agent’s observations at the current

state are inputs of the neural network Q function, which guides the agent in taking an

action along with previous learning experiences. Therefore, we believe that protecting the

privacy of a DRL agent’s observation is the most straightforward and effective method. In

this work, we accordingly propose a Differentially Private Deep Reinforcement Learning
(DP-DRL) method to protect information about a DRL agent’s training environment

against privacy leakage attack. We apply the exponential mechanism of DP to protect the

agent’s observations from each visited state and further protect the trained policy. A brief

overview of our proposed method is presented in Figure 5.2. Our method acts on the

agent’s observations by obfuscating one observation element for each visited state based

on the probability distribution of the outputs of the exponential mechanism. The agent’s

DRL model receives obfuscated observations as inputs to implement action selection and

model training; thus, the agent’s actions and trained policy are also protected by the

randomization from DP. An attacker attempting a privacy leakage attack can only access

a protected policy trained by obfuscated observations and will thus infer information

about the obfuscated training environment rather than the true training environment.

Our proposed method provides a privacy guarantee that an attacker cannot recover

accurate environment information, thereby significantly reducing the recovery rate from

a privacy leakage attack.
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Figure 5.2: Overview of DP-DRL

We contend that the exponential mechanism is the best solution to guarantee privacy

preservation and model utility at the same time due to its precision and flexibility. Unlike

the Gaussian or Laplace mechanisms, which add numeric noise to all data records of a

dataset, the exponential mechanism allows users to select only one data record based on

the normalized probability distribution from outputs, where these outputs are driven by

the score function and privacy budget. Therefore, the performance of the exponential

mechanism is determined by the definition of the score function and the setting of the

privacy budget. We define the score function as a measurement of the observation element

that is least important to the model utility at each state. The least important observation

can make the least impact on the outputs from the neural network Q function, and will

thus be granted the highest score by the score function. The highest score also indicates

the highest probability of being selected for obfuscation. We also propose a solution

to dynamically adjust the privacy budget in order to balance the privacy guarantee

and model utility to the greatest extent possible. In our method, the privacy budget is

positively correlated to the difference between the minimal impact and the maximal

impact on Q function. Further details are provided in the following subsections.

5.4.2 Definition of Score Function

As noted above, we set the score function as a measurement of the importance of all

observation elements at the current state. Specifically, the least important observation

element is awarded the highest score by the score function and has the highest probability

of being selected for obfuscation. We can observe from Algorithm 10 that an agent’s

observations are inputs of the neural network, action-value function Q, which outputs
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Figure 5.3: Process of the score function

an action-value vector. The action with the largest value in the action-value vector will

be chosen by the agent under a greedy policy. A reward is returned from the selected

action, and both the obtained reward and action are saved in transit as a learning

experience that participates in the updating of the neural network’s Q function by means

of gradient descent and back-propagation. Therefore, the model utility is determined by

the convergence of the Q function and outputs from the Q function based on observations

as inputs.

Algorithm 9 Score function
Require: A set of observations O = {o1, o2, ..., on}, Q function Q(), a positive constant N;

1: D =φ;
2: SR =φ;
3: Compute Q(O);
4: for i = 1 to n do
5: Get O′

(i) by obfuscating the ith element from O;
6: Compute Q(O′

(i));
7: di ←‖Q(O′

(i))−Q(O)‖;
8: D ← D∪di;
9: end for

10: dmin =min(D);
11: dmax =max(D);
12: for i = 1 to n do
13: d′

i ← di−dmin
dmax−dmin

;

14: sri ← N1−d′
i ;

15: SR ← SR∪ sri;
16: end for
17: return SR,dmin,dmax

To explore the impact of our proposed method on model utility, we need to analyze

the difference in the outputs of Q function between original observations and obfuscated
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observations. We contend that the observation element which results in the smallest

manipulation of the Q function’s outputs plays the least important role in action selection.

Thus, the score function is related to the distance between Q function outputs with

true observations as inputs and Q function outputs with obfuscated observations as

inputs. The observation element with the smallest distance is considered to be the least

important element, and is given a larger score that improves the likelihood of its being

chosen to obfuscate. Therefore, there is an inverse monotonicity between an observation

element’s score and its distance from the Q function.

Figure 5.3 shows the definition of the score function. Assume a DRL agent can

observe the closest eight grid squares at each state. For each grid square, 0 denotes a wall

or obstacle while 1 indicates a free space. The agent obtains the set of true observations

O, and brings O into the neural network Q function for the action-value outputs Q(O).

The agent then obfuscate one observation element, and obtains the obfuscated set of

observations O(i)′ with the obfuscation on the ith element where i ∈ [1,n]. The agent

brings these obfuscated observations into the Q function and outputs the action-value

vectors Q(O(i)′). To measure the importance of observations elements, we calculate the

distance di = ∥Q(O(i)′)−Q(O)∥, which indicates the manipulation from obfuscation on

the Q function’s outputs. To simplify the calculation of the score function, we introduce

a normalization function, d′
i = di−dmin

dmax−dmin
to map di, which is theoretically in the range

of [0,∞), to the new range of [0, 1], where dmin and dmax are the smallest and largest

distance, respectively. As mentioned above, there should be an inverse monotonicity

between scores and distances, because the score function is set to measure the least

importance while distance is positively correlated to importance. Thus, the output of

the score function sr i = N1−d′
i where 1− d′

i denotes the least importance and N is a

positive constant to scale the output. The algorithm of the score function is presented in

Algorithm 9.

5.4.3 Dynamic Adjustment of Privacy Budget

The privacy budget is applied to adjust the level of randomization from DP, which can

significantly affect the level of privacy preservation and model utility. There is a common

perception that a smaller privacy budget results in a stronger privacy guarantee but a

lower model utility due to the higher degree of randomization. A small privacy budget

scales all scores from the score function down, which results in close outputs of all

observation elements from the exponential mechanism and a similar probability of being

chosen. Conversely, a large privacy budget leads to a weak privacy guarantee: scores are

83



CHAPTER 5. PRIVACY PRESERVATION IN DEEP REINFORCEMENT LEARNING: A
TRAINING PERSPECTIVE

scaled up, and the element with the highest score has a large probability of being chosen

every time, meaning that the mechanism is insufficiently random and thus loses the

ability to protect data privacy. The value of the privacy budget thus plays a significant

role in the performance of applying DP. However, the question of how to determine the

most beneficial value for the privacy budget has always been a challenge while applying

DP. The most common method is to consider the privacy budget as a constant in a

pre-defined range. The DP user tests variant privacy budgets within this pre-defined

range according to the performance of both the privacy guarantee and model utility.

However, this method can only test the performance of privacy guarantee and model

utility from practical applications rather than providing a real balance between the two.

Therefore, we opt to dynamically adjust privacy budget at each step so as to dynami-

cally balance the privacy guarantee and model utility to the greatest extent possible. We

have explored the impact on outputs of the Q function from each observation element

and calculated di as the distance of Q function outputs between obfuscated observations

and true observations. On one hand, if selecting a different observation element results

in a huge difference in the outputs of the Q function, this means the randomization

may have a significant impact on model utility. In this case, we set a larger privacy

budget to guarantee that the least important observation element is more likely to be

selected, thereby reducing the manipulation of Q function outputs and minimizing the

impact on model utility. On the other hand, if selecting different observation elements

only produces a minor difference in the Q function outputs, the selection of obfuscated

observation will not have too great an impact on model utility. Thus, we can provide a

stronger privacy guarantee by setting a smaller privacy budget.

We can reuse the outputs of the Q function and computed distance di, which measures

the distance of outputs from the Q function between true observations as inputs and

obfuscated observations (with an element obfuscated) as inputs. We obtain the largest

distance as dmax and the smallest score as dmin. |dmax −dmin| is the largest difference

of Q function outputs among observation elements. When |dmax −dmin| is small, a small

privacy budget is set to provide a stronger guarantee, while a larger privacy budget

will be set to reduce the impact on model utility if |dmax −dmin| is large. Therefore, the

privacy budget ϵ is positively correlated to |dmax −dmin|. We define the privacy budget

ϵ= arctan(dmax −dmin).
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5.4.4 Algorithm of DP-DRL

The algorithm of DP-DRL is presented in Algorithm 10. Our method obfuscates one

element of the agent’s true observations based on a probability distribution and returns

a privacy-preserved observation to the agent for further action selection and training.

Assume O (s) is the agent’s true observations on the state s, containing a set of observation

elements {o1, o2, . . . , on} where n represents the length of observations. We apply an

exponential mechanism of DP to protect the agent’s observations. The score function is

presented in Algorithm 9 as an essential component of the exponential mechanism that

measures the importance for all observation elements in O (s). Algorithm 9 returns a

set of scores SR and both the smallest distance dmin and the largest dmax. The privacy

budget is dynamically computed based on the equation ϵ = arctan(dmax −dmin). The

sensitivity S is applied to measure the largest difference of score function outputs

between two neighboring datasets. As the score function is designed to identify the

observation that is least important to the Q function, the sensitivity S = srk−srm, where

srk is the greatest element and srm is the second greatest element of the SR. We use

E = {e0, e1, . . . , en−1} to represent the exponential results for all observation elements.

Because the exponential mechanism of DP aims to select one queried result based on

the probability, but E is a set of values instead of probabilities, a normalization function

should be incorporated to calculate the probability distribution P = {p0, p1, . . . , pn−1}

based on E , where pi = e i∑n−1
j=0 e j

, 1≤ i ≤ n. O (s) becomes O∗(s), with the element oi that is

chosen to be obfuscated denoted as o∗i using a roulette wheel selection method based on

P . The method returns the obfuscated set of observations O∗(s) to the agent for further

action selection and training.
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Algorithm 10 DP-DRL
Require: Current state s, agent’s observation set O (s)= {o1, o2, ..., on};

1: E =φ;
2: P =φ;
3: SR = {sr1, ..., srn},dmin,dmax ←Algorithm 9(O (s));
4: ϵ← arctan(dmax −dmin);
5: S = srk − srm, where srk is the greatest element and srm is the second-greatest

element of the SR;
6: for i = 1 to n do
7: e i ← exp( ϵ·sr i

2S );
8: E ← E ∪ e i;
9: end for

10: for i = 1 to n do
11: pi ← e i∑n−1

j=0 e j
, where e i, e j ∈ E ;

12: P ←P ∪ pi;
13: end for
14: Randomly generate a probability p ∈ [0,1];

15: i ←
{

i, if
∑i−1

j=0 p j < p ≤∑i
j=0 p j, i > 0

0, if 0≤ p ≤ p0
;

16: oi is chosen to be obfuscated as oi∗;
17: O∗(s)←O (s)\ oi ∪ o∗i ;
18: return O∗(s)

Algorithm 11 introduces how DP-DRL can be applied in a typical Deep Q-learning

with experience replay algorithm. In each training epoch, the agent starts training

from the state at the starting point, and terminates training when it has reached the

destination or meets the failure criteria. The agent first observes the environmental

information at the current state and transform observations as a vector or a set. The set

of observations are input into DP-DRL, shown in Algorithm 10, and returned to agent

as an obfuscated set of observations. A randomly generated probability p and a greedy

policy threshold ϵg can determine the method of action selection: the agent randomly

selects an action when p > ϵg, or selects an action based on the current action-value

function Q with the observations vector and weights θ otherwise. Here, ϵg is usually set

as a large percentage in the range [0,1] (e.g., 0.9) or an automatically increasing function

convergent to the large percentage. Once the agent selects an action, it needs to record a

transition to capture its learning experience; this will include its obfuscated observations,

the action taken, the reward obtained from the action taken, and observations made

at the next state transited to from the current state by taking the action. The newly

recorded transition will be incorporated into agent’s memory pool, or replace another

86



5.4. DIFFERENTIALLY PRIVATE DEEP REINFORCEMENT LEARNING (DP-DRL)

transition according to a first-in first-out policy if the capacity is full. The agent samples a

random mini-batch size of transitions from the pool and updates its action-value function

Q using a gradient descent policy based on the current obtained reward in the sampled

transitions and the maximum reward the agent can obtain from the next state in the

sampled transitions. The agent’s target action-value function Q̂ will be duplicated from

the updated action-value function Q every constant C steps, in order to guide better

action selection.

Algorithm 11 Deep Q-learning with DP-DRL
Require: Initialize replay memory D with capacity N, action-value function Q with

random weights θ, target action-value function Q̂ with weights θ− = θ;
1: for e = 1 to EPOCHS do
2: Reset state s as starting point;
3: for step = 1 to STEPS do
4: Get observations O (s) at s;
5: O ′(s)←Algorithm 10(O (s));
6: Randomly get probability p, p ∈ [0,1];
7: if p > ϵg, where ϵg is threshold of greedy policy then
8: Randomly select action a, a ∈A ;
9: else

10: a ← argmaxA Q(O ′(s),A ;θ) ;
11: end if
12: Obtained reward r ←R(s,a);
13: The next state s′ ←T (s,a);
14: The transition t ← (O ′(s),a, r,O ′(s′));
15: D ← D∪ t;
16: Sample random mini-batch of transitions (O ′

j,a j, r j,O ′
j+1) from D;

17: Set yj ←
{

r j, if next step j+1 terminates the epoch
r j +γmaxA Q̂(O ′

j+1,A ;θ−), otherwise
;

18: Gradient descent on (yj −Q(O ′
j,A ;θ))2 with θ;

19: Reset Q̂ =Q every constant C steps;
20: s = s′;
21: if s = s∗ or s meets failure criteria, where s∗ is winning state then;
22: break;
23: end if
24: end for
25: end for
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5.4.5 Discussion

Our method provides a strong privacy guarantee by using the exponential mechanism of

DP. As discussed above in the problem definition, the primary reason for privacy leakage

in DRL is the agent’s observations. Therefore, our approach represents an effective and

straightforward way to protect the agent’s observations directly. DP naturally benefits

DP-DRL due to its strongly statistical privacy guarantee. DP can be involved in a wide

range of fields due to its statistical properties and demonstrates strong flexibility in

applications such as perturbing numeric data or securely selecting a precise data record.

Our method benefits from the exponential mechanism of DP. The exponential mechanism

can select one precise record based on probability distribution from the score function

instead of perturbing all elements of the vector with numeric noise like the Gaussian

mechanism or Laplace mechanism. When obfuscating the agent’s observations with DP-

DRL, the agent can still observe the environment to the greatest extent under protection

because obfuscated observations can be very similar to original observations with privacy

preservation. Therefore, our proposed method can guarantee strong privacy and effective

training at the same time.

Our method can maximally guarantee the utility of trained policy while also providing

a privacy guarantee; in so doing, it benefits from the definition of the score function

in DP-DRL, which significantly improves the performance of the method. The score

function is defined to measure and identify the least important of the agent’s observation

elements by computing the difference in Q function outputs between the agent’s true

observations and every possible obfuscated observation obtained via our method. The

score function can accordingly provide a clear view of the impact of each observation on

the outputs of the Q function by quantifying the importance of each observation element.

The outputs of the score function can thus effectively guide the exponential mechanism

to select the least important element for obfuscation, thereby guaranteeing the model

utility to the greatest extent. Therefore, the score function plays a significant role in both

providing a privacy guarantee and maintaining model utility.

DP-DRL also benefits from the dynamically adjustable privacy budget, which enables

it to balance the privacy guarantee and model utility in an effective way. The privacy

budget is applied to control the level of randomization from DP. We link the level of

randomization to the impact of all observation elements on the outputs of the Q function.

Although the privacy budget cannot directly change the magnitude of the obfuscation’s

impact on the Q function, it can adjust the level of randomization to determine the

selection of the observation element. The privacy budget and the level of randomization
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are positively correlated to the maximal difference of Q function outputs caused by

the selection of observation elements to be obfuscated. The privacy budget is adjusted

to primarily consider model utility by choosing the least important element when the

selection can significantly impact the Q function and model utility. Moreover, it provides

a strong privacy guarantee if observation element selection will have little impact.

Therefore, the dynamically adjustable privacy budget can maximally balance the privacy

guarantee and model utility during the agent’s training by controlling the randomization

level impacting the selection of the observation element.

Our proposed method is easy to use in that the performance of the method is controlled

by one parameter. As the function score of the exponential mechanism is defined, only two

parameters — the sensitivity S and the privacy budget ϵ — are involved in adjusting the

performance of the mechanism. Moreover, because the sensitivity S is the maximum gap

between the outputs of queries from two neighboring datasets and literally a constant,

the performance is only controlled by the privacy budget ϵ. Our method depends on

an adequate value of ϵ to balance the privacy guarantee and model utility, which is

the same as other approaches that apply DP to deep learning. A very small epsilon

results in similar outputs from the exponential mechanism exp( ϵq(O ,o)
2S ) for all elements

of O , and close to equivalent probabilities after normalization of a given element being

selected for obfuscation. Although the nearly random selection can provide a strong

privacy guarantee, it leads to poor and slow convergence of the agent learning process

and will further impact model utility. By contrast, a large epsilon can provide only a

limited privacy guarantee. Therefore, the key to applying our method is to find a suitable

value of privacy budget ϵ in the exponential mechanism.

The proposed method requires only a small amount of computation and has a very

short running time. Our proposed method targets an agent’s observations at each state

rather than manipulating the DRL model and policy. When an agent transits to a state

and begins to observe the environment, the proposed method is immediately applied

to obfuscate the agent’s observations, which prevents the agent from bringing real

observations into policy training and removes the associated risk of privacy leakage.

The agent’s process of obtaining observations is considered the preparation process at

each state before taking actions and model training. Thus, our method maintains the

structure of the original DRL model procedure, without introducing any new iterations or

adding extra computation into the calculation of model updates, and thereby guarantees

that the time complexity of the original DRL model is not changed.
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5.5 THEORETICAL PROOF ANALYSIS

5.5.1 Differential Privacy Analysis

To prove that DP-DRL can provide a privacy guarantee, we need to prove that the method

satisfies the definition of DP and that the privacy budget ϵ is used to control the level

of randomization in the obfuscation of observations. Our method uses the exponential

mechanism of DP to protect an agent’s observations through obfuscation. The obfuscated

observations act as inputs for the agent’s DRL model in each state to determine the

action taken by the agent. Therefore, to prove that our method satisfies ϵ-DP, we need

to prove that the exponential mechanism in obfuscated observations satisfies ϵ-DP, and

that an agent’s action of applying obfuscated observations satisfies DP, separately.

Theorem 5.1. DP-DRL satisfies ϵ-DP.

Proof. The first step of proving that DP-DRL satisfies ϵ-DP is to prove that the exponen-

tial mechanism in our method satisfies ϵ-DP. Suppose that we have a set of observations

O, and another set of observations O′ with one observation element obfuscated from

O. Obviously, O⊕O′ = 1, so O and O′ are a pair of neighboring datasets according to

Definition 2.1. Moreover, suppose that M denotes the exponential mechanism, meaning

that M (O) denotes applying the exponential mechanism on the set O. For an element

oi in the set O, we have M (O, oi) = exp( ϵq(O,oi)
2S ) based on Definition 2.8. It is easy to

prove [30] that Pr[M (O) = o] ≤ exp(ϵ) ·Pr[M (O′) = o], which satisfies Equation 2.1 in

Definition 2.2. The equation indicates that applying the exponential mechanism to our

obfuscated observations is ϵ-differentially private.

The next step is to prove the action taken by the agent, a, is also ϵ-differentially

private.

Lemma 5.1 (Post-Processing [30]). Let M : N|X | → R be a randomized algorithm that
is ϵ-differentially private. Let f : R → R′ be an arbitrary randomized mapping. Then,
f ◦M : N|X | → R′ is ϵ-differentially private.

We have proved that the exponential mechanism M applied on observations O

in our method satisfies ϵ-DP. In algorithm 11, the agent’s action selection function

a ← argmaxA Q(O (s),A ;θ) where a ∈ A , is a deterministic mapping f : O → A . It has

been proven that Lemma 5.1 also applies to a deterministic function f , because any

randomized mapping can be decomposed into a convex combination of deterministic
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functions [30]. Therefore, the agent’s action selection is also ϵ-differentially private based

on Lemma 5.1. ■

5.5.2 Model Utility

To analyze the impact of our proposed method on DRL model utility, we need to explore

how the obfuscated observations affect Q function, which is a neural network in DRL

algorithm, and calculate whether there exists a bound that can limit the difference

between the results of Q function from the original observations and the obfuscated

observations. To do so, we introduce the concepts of Lipschitz continuity and the Lipschitz

constant (Definition 5.1); here, the Lipschitz constant is the upper bound of the difference

between the outputs of a function with two data points if the function is Lipschitz

continuous. However, because not every neural network is Lipschitz continuous, we

involve definition 5.2 to define a K-layer neural network composed by a set of fully

connected layers and activation functions. It has been proven [127] that a MLP with a

1-Lipschitz activation function (e.g., ReLU) is Lipschitz continuous, and moreover that

calculating the exact Lipschitz constant of the neural network is NP-hard; thus, we opt

to estimate the Lipschitz constant of the neural network. A possible solution, AutoLip

upper bound (Lemma 5.2), is proposed and proven in [127] to estimate the Lipschitz

constant for an MLP-structured neural network.

Definition 5.1 (Lipschitz continuity). A real-valued function f : Rn → Rm is called

Lipschitz continuous if there exists a positive real constant L such that

(5.1) ∀x1, x2 ∈Rn,∥ f (x1)− f (x2)∥2 ≤ L∥x1 − x2∥2

The smallest positive constant L for which this holds is called the Lipschitz constant of

function f .

Definition 5.2 (Multi-Layer Perceptron (MLP)). A K-layer Multi-Layer Perceptron
fMLP : Rn →Rm is the function

(5.2) fMLP (x)=WK ◦ρW−1 ◦ · · · ◦ρ1 ◦W1(x)

where WK : x 7→ωkx+bk is an affine function and ρk : x 7→ (gk(xi))i∈[1,nk] is a non-linear

activation function.

Lemma 5.2 (AutoLip upper bound [127]). For any MLP with 1-Lipschitz activation
functions (e.g., ReLU), the AutoLip upper bound on the Lipschitz constant is

(5.3) L̂AL =
K∏

k=1
∥Wk∥2
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Theorem 5.2. If a DRL algorithm applies a neural network f (x) as Q function, where
f (x)=WK◦ρW−1◦· · ·◦ρ1◦W1(x) is a K-layer MLP (definition 5.2) with 1-Lipschitz activation
function (ReLU), for an agent’s set of observations O and obfuscated set of observations O

′

obtained by DP-DRL, we always have

(5.4) ∥ f (O )− f (O
′
)∥2 ≤

K∏
k=1

∥Wk∥2

Proof. Assume a neural network f (x) is the Q function of a DRL algorithm where

f (x)=WK ◦ρW−1◦· · ·◦ρ1◦W1(x) is a K-layer MLP. It is easy to prove that f (x) is Lipschitz

continuous and that the estimated Lipschitz constant L f (x) from Lemma 5.2 of f (x) is

L f (x) =∏K
k=1∥Wk∥2. Assume that an agent’s true set of observations is O , and that the

obfuscated set of observations obtained via our proposed method is O
′
. According to the

Definition 5.1, for any set of observations O from agent, we have

(5.5) ∥ f (O )− f (O
′
)∥2 ≤

K∏
k=1

∥Wk∥2 · ∥O −O
′∥2

As DP-DRL only obfuscates one element of the observation set transmitting between 0

and 1, thus, ∥O −O
′∥2 = 1. Thus, we have

(5.6) ∥ f (O )− f (O
′
)∥2 ≤

K∏
k=1

∥Wk∥2

which means
∏K

k=1∥Wk∥2 is the upper bound of the neural network of Q function, and

indicates how DP-DRL affects model utility. ■

5.5.3 Time Complexity Analysis

Theorem 5.3. The time complexity of DP-DRL is O(nens), where ne is the number of
training epochs and ns is the training epoch length. DP-DRL does not increase the time
complexity of the conventional DRL algorithm.

Proof. To prove that DP-DRL does not change the time complexity of the conventional

DRL algorithm, we first need to establish that the time complexity of the conventional

DRL algorithm is O(nens) without our proposed method. By assuming the average

running time of each block of lines of algorithm 11 without DP-DRL (Line 5), the total

running time T for the algorithm can be determined by summing all assumed average

time T = tb1+tb2∗ne+tb3∗ne∗ns, in which tb1, tb2 and tb3 are the total average running

time of initialization, Line 1 to Line 2 and Line 3 to Line 22 without Line 5, separately.

Because tb1, tb2, tb3 ≪ ne,ns, the equation above is turned into T = ne ∗ns. Therefore,

the time complexity of DRL algorithm is O(nens).
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The next step is to prove that the time complexity of DP-DRL in Algorithm 10
does not increase the time complexity of the conventional DRL algorithm. Assume the

average running time for each block of lines of Algorithm 9 and Algorithm 10. We

firstly compute the total running time TSF of Algorithm 9 by summing all assumed

average time TSF = t′b1 + t′b2 ∗n+ t′b3 ∗n+ t′b4, in which t′b1, t′b2, t′b3 and t′b4 are the total

average running time of Algorithm 9 (Line 1 to Line 5, Line 6 to Line 9, Line 10 to

Line 13, and Line 14 to Line 18 separately), and n is the size of observations. Because

t′b1, t′b2, t′b3, t′b4 ≪ n, so the equation above is turned into TSF = 2n. Therefore, the time

complexity of Algorithm 9 is O(n). It is obvious that the total average running time of

Algorithm 10 TDP−DRL = 4n and its time complexity is also O(n).

The final step is to compute the average running time of Algorithm 11 with

Algorithm 10 applied, T∗ = tb1 + [tb2 + (tb3 +TDP−DRL)∗ ns]∗ ne, while turning into

T∗ = (1+4n)∗ne∗ns. Because n is the size of a set of observations and is a constant, and

n ≪ ne,ns, the time complexity of Algorithm 11 is O(ne ∗ns). At this point, we have

proven that DP-DRL does not increase the time complexity of the conventional DRL

algorithm. The experimental environment is established in a grid world so that a DRL

agent can navigate the path.

■

5.6 Experiments

In this section, we present our experimental environment settings and experimental

results. In order to demonstrate our method intuitively, we reproduce experimental

environment and settings of a privacy leakage attack [86], then apply our proposed

defense method in the same environment to observe the performance of DP-DRL against

privacy leakage attack.

5.6.1 Experimental Environment

5.6.1.1 Grid World

Grid World is a popular environment for setting up navigation problems to test RL

algorithms. In this environment, an RL agent trains an algorithm to find the path for

assigned tasks, such as by finding the shortest path between two points or reaching

dynamic targets like as in the game Snake. A grid is composed of boundary walls, free

space, obstacles, and some optional targets if the task requires. At each step, the agent is
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normally able to take one of five possible actions, including "up", "down", "left", "right"

and "stay"; moreover, the agent cannot penetrate through walls and obstacles. The agent

can obtain positive rewards by reaching the end point and will be penalized if it collides

with walls and obstacles or stays in one place. No rewards or penalties will be applied if

the agent successfully passes to the next free space. The goal of the agent is to maximize

the obtainable rewards in each training epoch.

5.6.1.2 Structural constraints

The grid is subject to structural constraints, which also constitute the attacker’s prior

knowledge (as discussed in the privacy leakage attack paper). First, there should be one

and only one pair of starting and ending grid squares located in free space, the positions

of which can be considered known to an attacker who can observe the agent’s behavior.

Second, any two free grid spaces are connected, which means the shortest path between

any two free grid squares is definite. Third, the experiment is simulating a floor plan, so

the thickness of walls and obstacles can only be 1; in other words, any 2×2 grid cannot

contain four grid squares of walls and obstacles.

5.6.1.3 Agent’s observations

Agent’s observations are inputs for the DRL model that can significantly affect the

trained policy. To reproduce the environmental settings of a privacy leakage attack, we

assume that the agent takes the view of the closest 8 grids around in 8 directions (up,

down, left, right, upper left, upper right, bottom left, and bottom right) in the current

state. This is the most common view of DRL agents in navigation problems without

human intervention, and is in line with real robotics cases such as sweeping robots.

5.6.2 Experimental Settings

5.6.2.1 Map Size

To enhance the randomness of the experiment and better prove the effectiveness of

our method, our experiment is run within several randomly built maps with different

sizes: 7×7, 9×9, and 11×11. Maps are created under the above-mentioned structural

constraints and the attacker’s prior knowledge. Meanwhile, to provide an intuitive

comparison of attack success rate, we also use the same 12×11 map presented as the

example map in the privacy leakage attack paper. Map examples are shown in Figure
5.4. These map sizes are selected because a smaller map may be too easy for the attacker,
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(a) Example map of
size 7×7

(b) Example map of
size 9×9

(c) Example map of
size 9×9

(d) Example map of
size 12×11

Figure 5.4: Example maps in different sizes

who may perform well on a privacy leakage attack even by randomly guessing. On the

other hand, a larger map requires a very long training time and increased computation

capability, which may lead to underfitting on the part of the agent and subsequently to

inaccurate policy. Therefore, we comprehensively determine that our selection of map

size is persuasive and enables us to better demonstrate our defense method against

privacy leakage attack.

5.6.2.2 Training Parameter

In this experiment, all policies, including the target policy and policies trained from a set

of grid maps, are trained using DQN [78]. The input of the first linear layer is 8, as this

is the size of the agent’s observations (the closest eight grid squares in eight directions).

The output of the last linear layer is 5, as this is the size of the agent’s action spaces. The

reward function plays a significant role in the RL environment by guiding the agent in

searching for the optimal policy. Under our settings, the reward function is defined as

1 when the agent reaches the winning state successfully, -0.1 if the agent collides with

obstacles or chooses to stay in place, and 0 if the agent passes to the next free space. The

number of training epochs is set to 100,000, while the maximum number of steps in each

training epoch is set to 500; thus, the agent is limited to a maximum of 500 steps in each

epoch. This limit helps prevent the agent from infinitely repeating certain actions and

accumulating ineffective training experience, as well as compressing training resources

and time.
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5.6.2.3 Parameters of DP-DRL

We also need to configure the parameters of DP-DRL to effectively implement the defense.

Our defense method applies the exponential mechanism of DP, which requires the setting

of the score function, the sensitivity, and the privacy budget. We have defined the score

function in Algorithm 9 determining the least important observation elements, i.e.,

those that minimally impact the outputs of the Q function. Most outputs are computed

based on the DRL model in Algorithm 9, and we only need to control a constant N to

scale the outputs in order to easily control the effect of the outputs and privacy budget.

N is set to 10 in this experiment. The sensitivity of DP is the maximum difference to the

outputs of the score function, which is computed based on the gap between the greatest

score and the second-greatest score from the score function. The privacy budget is used to

control the randomization level of the privacy preservation and strike a balance between

the privacy guarantee and model utility. As discussed in the methodology section, we

developed a method to dynamically adjust the privacy budget in order to dynamically

balance the privacy guarantee and model utility. To explore how a dynamically adjustable

privacy budget improves the performance of DP, we set a variant privacy budget that

ranges from 0.1 to 1 in increments of 0.1 and that can be dynamically adjusted.

5.6.3 Performance Metrics

Recovery rate plays a significant role in measuring the performance of either a privacy

leakage attack or a defense against such an attack; an attack that can maximally infer

the training data and environment will have a high recovery rate, while a good defense

method will significantly decrease this attack recovery rate. We apply multiple metrics

to demonstrate our results efficiently. General recovery rate (GRR) is used to compare the

similarity of all grid squares of the inferred and original maps. However, as mentioned

above, the attack is based on the attacker’s prior constructional knowledge about the

map (for example, that the outermost grid squares are walls), meaning that the attacker

only needs to make inferences about the other squares. Therefore, we introduce net
recovery rate (NRR) to measure the similarity of grid squares purely inferred by an

attacker without taking prior knowledge into account. Both metrics are used to measure

the recovery rate from privacy leakage attack.

As a defense method, we also need to guarantee the utility of the trained policy

while protecting its private information from being leaked. In the DRL environment,

we determine that the two most significant utility metrics are the convergence rate and
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obtained reward. We compare the performance of the policies trained with and without

the defense method, along with the rewards obtained in training epochs. Moreover, we

also compare the number of epochs required for the agent to find the shortest walk path

and the number of epochs in which the agent obtained the maximum expected reward.

It should be noted here that in a given epoch, obtaining the maximum reward is not

necessarily equivalent to finding the shortest path, as an agent may pass through a free

space and receive 0 reward for taking a step.

5.6.4 Experimental Results

The experimental results indicate that our method can effectively defend against privacy

leakage attack in the DRL context, as well as guaranteeing the utility of the model. In

our defense method, the smaller the privacy budget applied, the lower the inference

recovery rate of the privacy leakage attack, in other words, the better performance of

defense.

5.6.4.1 Attack benchmark

TABLE 5.1 demonstrates the defense performance with no defense method, a variant

fixed privacy budget and a dynamically adjustable privacy budget. The benchmark for

our experiment is the GRR and NRR under a pure privacy leakage attack scenario with

no defense method applied. From the benchmark, we can see that the recovery rate of

privacy leakage attack is higher with smaller map sizes. There are three key reasons

for this result. First, an attacker is required to recover fewer grid squares with larger

weights of recovery rate in small-size maps, which primarily drives a higher recovery

rate. Second, the attacker’s prior knowledge plays a significant role in the recovery

process. When an attacker is confident regarding certain grid squares of a map, other

squares around these squares are very likely to be identified through the application of

knowledge regarding structural constraints; for example, if three grid squares of a 2 x 2

grid are identified as obstacles, the fourth square must be free space. Third, a training

agent is more likely to fully traverse all grids in small-size maps with limited resources,

which can cause significantly more environmental information to leak from the trained

policy if the agent repeatedly visits the same state and takes the same actions.

By contrast, the privacy leakage attack recovery rate decreases with increasing map

size. On one hand, the effectiveness of the attacker’s prior knowledge weakens due to the

lower weight assigned to each recovered grid square. Due to the limited prior knowledge
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Map size 7×7 Map size 9×9 Map size 11×11 Map size 12×11

Defense GRR NRR GRR NRR GRR NRR GRR NRR

No defense 94.26% 88.74% 87.29% 78.99% 85.20% 77.89% 84.17% 76.78%
ϵ = 1.0 92.92% 86.12% 85.10% 75.36% 83.87% 75.90% 82.89% 74.91%
ϵ = 0.7 89.39% 79.20% 83.77% 73.17% 81.13% 71.81% 79.92% 70.55%
ϵ = 0.4 87.29% 75.09% 81.31% 69.10% 77.75% 66.76% 76.88% 66.09%
ϵ = 0.1 84.82% 70.25% 80.11% 67.12% 76.65% 65.12% 76.19% 65.07%

Dynamic ϵ 85.19% 70.97% 80.92% 68.46% 77.27% 66.05% 76.63% 65.72%

Table 5.1: Defense Performance With Varying Privacy Budgets At Different Map Sizes

compared with the larger number of grid squares involved, an attacker is required to

infer more grid squares through the agent’s policy without much confidence. On the other

hand, a DRL agent tends to reuse experiences with higher rewards to optimize its policy

rather than randomly traversing all grid squares of maps. The agent may pass only

rarely over grid squares that are not in the critical path meaning that it will have less

learning experience with these squares; as a result, the agent’s trained policy does not

comprehensively reflect the environmental information, which increases the difficulty of

recovery from the attack. Nevertheless, the attack still reaches a desirable recovery rate,

as NRR is over 75% for all sizes of maps. Therefore, we deem this benchmark effective

for assessing the performance of the proposed defense method in the experiment.

5.6.4.2 Defense performance

TABLE 5.1 also indicates that our proposed method can effectively defense privacy leak-

age attack, reducing the attack’s recovery rate by 10-15%. The attacker’s prior knowledge

and uncertainty still play a role in the recovery process, meaning that our proposed

defense method cannot infinitely reduce the attack accuracy. Thus, we believe that our

proposed method meets expectations in a reasonable range. Apparently, the agent’s

obfuscated observations can further obfuscate trained policy to prevent its learning expe-

riences from the environmental information being disclosed. The obfuscated information

prevents a privacy leakage attacker from accurately recovering the environmental in-

formation. The agent’s obfuscated observations can mislead an agent into remembering

inaccurate environment information when optimizing its policy; thus, an agent’s trained

policy can confuse an attacker by reflecting obfuscated information instead of the ground

truth. TABLE 5.2 presents a comparison of recovered maps between ground truth, no

defense and our proposed defense method with ϵ= 0.1 and dynamically adjustable ϵ. As
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Method Grid Maps

Ground truth

Grid size 7 × 7 Grid size 9 × 9 Grid size 11 × 11 Grid size 12 × 11

No defense

Grid size 7 × 7 Grid size 9 × 9 Grid size 11 × 11 Grid size 12 × 11

ϵ = 0.1

Grid size 7 × 7 Grid size 9 × 9 Grid size 11 × 11 Grid size 12 × 11

Dynamic ϵ

Grid size 7 × 7 Grid size 9 × 9 Grid size 11 × 11 Grid size 12 × 11

Table 5.2: Example of Recovered Grid Maps

is evident, the maps recovered when no defense method is applied are similar to the

ground truth; however, our proposed method significantly misleads the attacker, leading

to recovered maps that differ significantly from the ground truth as the number of grid

squares increases.

We further demonstrate how the privacy budget affects the defense performance

of our proposed method. Our proposed method presents better performance when the

privacy budget epsilon ϵ grows smaller. Comparing variant fixed values of ϵ in TABLE
5.1 from 1.0 to 0.1, the recovery rate continuously decreases by up to 10%. Scores from

the score function are deterministic based on the lowest importance of the observation

element. The privacy budget ϵ can control the level of randomization by scaling the

effectiveness of scores mapping to outputs of the exponential mechanism and probability
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Figure 5.5: NRR vs populations at varying privacy budgets

distribution. A small ϵ results in similar probabilities, or even equivalent probabilities

if ϵ is small enough, for all observation elements being selected for obfuscation. The

small ϵ undoubtedly provides a stronger privacy guarantee for the agent’s observations

of the environmental information and further protects the privacy of the trained policy.

Meanwhile, the dynamic privacy budget can provide an impressive privacy guarantee

for information learned by the agent against privacy leakage attack. The performance

of the dynamic privacy budget is in between the fixed privacy budgets of 0.4 and 0.1,

but very close to 0.1. Figure 5.5 plots the NRR of varying privacy budgets in genetic

algorithm populations under privacy leakage attack. All curves have a similar shape

and trend, however, the curve converges to a lower NRR with the smaller epsilon and
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dynamic epsilons because the attack is convergent to a recovered map that differs more

significantly from the ground truth. Overall, DP-DRL can effectively protect the privacy

of environmental information against privacy leakage attack in DRL. When the privacy

budget is fixed, the defense performance increases as the privacy budget is reduced. Our

dynamic privacy budget also provides a very strong privacy guarantee, similar to when

ϵ= 0.1.

5.6.4.3 Utility

The experimental results also indicate that our proposed method can guarantee the

utility of an agent’s trained policy as well as providing the privacy guarantee. The

primary goal of an agent in a DRL environment is to effectively train the policy and

accurately complete the task. In other words, an ideal agent is expected to learn how

to obtain the maximum reward as fast, and also as steadily, as possible. Thus, it is

necessary to explore how the defense method affects policy utility. In TABLE 5.3, we

demonstrate the average obtained reward and average searching steps in the initial

stage (300-1000 epochs) and final stage (last 1000 epochs) separately with varying

privacy budgets. We found that agent randomly reached the destination for the first time

between 100 and 250 epochs without any rules for all privacy budget settings. Once the

agent obtained the positive reward, it displayed a tendency to reuse the experience and

continuously converge to reach the maximum reward. Therefore, we contend that it is

reasonable to measure the convergence speed of the initial stage after 300 epochs to

exclude randomness from the agent itself.

Privacy
budget

Initial Stage (300 – 1000 epochs) Final Stage (Last 1000 epochs) Time Overhead (s)

Min / Average
reward / Max

Max / Average
steps / Min

Average
reward / Max

Average
steps / Min

DL-DRL
(each step)

DRL (each
step)

No defense -50 / -0.96 / 1 500 / 74.63 / 17 0.98 / 1 20.52 / 17 N/A 9.26e-04
ϵ = 1.0 -50 / -1.13 / 1 500 / 87.35 / 17 0.97 / 1 22.84 / 17 1.63e-05 9.27e-04
ϵ = 0.7 -50 / -1.42 / 1 500 / 97.17 / 17 0.95 / 1 24.92 / 17 1.62e-05 9.26e-04
ϵ = 0.4 -50 / -1.49 / 1 500 / 105.42 / 17 0.94 / 1 26.16 / 17 1.62e-05 9.26e-04
ϵ = 0.1 -50 / -1.60 / 1 500 / 111.91 / 17 0.92 / 1 28.28 / 17 1.63e-05 9.26e-04

Dynamic ϵ -50 / -1.18 / 1 500 / 90.22 / 17 0.96 / 1 23.13 / 17 1.64e-05 9.27e-04

Table 5.3: Model Utility Of Map Size 12×11 At Different Privacy Budgets

For fixed privacy budget settings, the agent converges to the maximum reward more

slowly when the privacy budget is reduced. In the initial stage of TABLE 5.3, a lower

average reward and more average steps come along with the smaller privacy budget;
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however, there is no significant difference on both metrics, especially when compared

with theoretically maximum and minimum rewards and steps. It is worth noting that the

agent with a dynamic privacy budget achieves very good convergence speed performance

in the initial stage, highly similar to that when ϵ= 1.0. This obviously indicates that our

proposed dynamic privacy budget can effectively balance the trade-off between privacy

preservation and agent convergence speed in the initial stage of learning.

TABLE 5.3 also shows that our proposed method can guarantee the utility of the

agent’s policy. In the final stage of the agent’s learning from the environment, the agent’s

policy is sufficiently convergent to the maximally expected reward. Moreover, under

considering fixed privacy budget settings, the proposed method performs very similarly

to no defense method in terms of policy utility, average reward and average steps in

the final stage. Especially when ϵ= 1, the average reward only drops by less than 1%.

Although it still follows the same trend of a lower epsilon bringing about a slightly worse

performance, the drop is only within the range of 1% to 5%.

Better still, the dynamic privacy budget has only a very minor impact on the utility

of the agent’s policy. Again, the agent with dynamic privacy budget has a very similar

performance to when ϵ= 1 , in that the average reward reaches 0.96 out of 1 , which is a

drop of only about 1% compared to no defense method. Unlike the fixed privacy budget,

which cannot effectively balance privacy guarantee and model utility at the same time,

the dynamically adjustable privacy budget achieves impressive performance in terms

of both providing a privacy guarantee and maintaining the utility of the agent’s policy.

In summary, our defense method can effectively guarantee the utility of DRL policy in

terms of both convergence speed and task performance.

5.6.4.4 Time Overhead

The experimental results also demonstrate that our method has an extremely low time

overhead. We have proven that our DP-DRL does not change the time complexity of the

conventional DRL algorithm. The experimental results also confirm this proof. Specifi-

cally, we measure the average time overhead of applying our algorithm and the average

total time overhead of DRL training each step of state transition in the experiment for

both fixed and dynamic privacy budgets. The results are presented in TABLE 5.3. The

average time overhead associated with executing observation obfuscation at each step of

state transition is around 1.62e-05 s with our experiment and equipment settings, which

only occupies around 1.7% of the average total time overhead of each step (9.26e-04 s).

The time overhead of both observation obfuscation and the total DRL training process
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are the same under a varying privacy budget. The computation of the dynamic privacy

budget barely changes the time overhead, which indicates that the time overhead of our

method is not affected by the value of the privacy budget ϵ or even the dynamically ad-

justable privacy budget. In general, our method has a very short time overhead compared

to the conventional DRL training process.

5.7 Summary and Future Work

In conclusion, we have proposed a defense method named DP-DRL to defend against

privacy leakage attacks in a DRL environment, which is the first work to defend against

such attacks. We apply the exponential mechanism of DP to obfuscate the DRL agent’s

observations based on the probability distribution of the score function, which is defined

to measure the least important of the agent’s observation elements with minimal impact

on Q function at each step, in order to protect the privacy of the agent’s learning

environment and trained policy. To maximally balance the trade-off between privacy

guarantee and the utility of task performance, we designed a dynamically adjustable

privacy budget solution based on the magnitude of the observation elements’ impact on

Q function. The experimental results indicate that our defense method can effectively

decrease the privacy leakage attack recovery rate while still maintaining the utility of the

agent’s policy. For future work, current privacy leakage attack methods rely on attackers

possessing prior knowledge, such as the structural constraints of the environment and

the agent’s policy parameters. It would be a very interesting future research direction

that exploring how an attacker might recover a map using only agent behaviors, and

without any prior knowledge. Moreover, more defense methods should be proposed to

guarantee the privacy of DRL.
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6
ONE PARAMETER DEFENSE - DEFENDING AGAINST

DATA INFERENCE ATTACKS VIA DIFFERENTIAL PRIVACY

6.1 Introduction

In the last chapter, we have introduced our defense method, DP-DRL, to defend against

privacy leakage attacks in a DRL context. The exponential mechanism of DP is well-

suited for privacy preservation in the DRL algorithm with a neural network by ob-

fuscating its inputs. Given the rapid development of neural networks and increasing

application scenarios, we wonder if our approach can be more generalized to be applied

to more applicable fields.

We find that a similar approach can also be applied to classification problems in

the deep learning context. To the best of my knowledge, machine learning models are

vulnerable to membership inference and model inversion attacks. In these types of

breaches, an adversary attempts to infer a data record’s membership in a dataset or even

reconstruct this data record using a confidence score vector predicted by the target model.

However, most existing defense methods only protect against membership inference

attacks. Methods that can combat both types of attacks require a new model to be

trained, which may not be time-efficient. In this chapter, we propose a differentially

private defense method that handles both types of attacks in a time-efficient manner

by tuning only one parameter, the privacy budget. The central idea is to modify and

normalize the confidence score vectors with a DP mechanism which preserves privacy and
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obscures membership and reconstructed data. Moreover, this method can guarantee the

order of scores in the vector to avoid any loss in classification accuracy. The experimental

results show the method to be an effective and timely defense against both membership

inference and model inversion attacks with no reduction in accuracy.

On the back of the massive amounts of data we humans generate every day, machine

learning (ML) has become a key part of many real-world applications, ranging from image

classification to speech recognition [98]. However, these data often contain sensitive

personal information that is vulnerable to a range of adversarial activities, including

membership inference attacks [80, 106] and model inversion attacks [37, 133]. Both fall

into the category of data inference attacks, which are launched by exploiting redundant

information contained in confidence score vectors. For example, a machine learning

model will usually be more confident in its prediction about a data record that is in

its training dataset, over another data record that is not. Attackers can exploit this

difference in confidence to determine whether a given data record is or not a member

of the target model’s training dataset. Here, a confidence score vector is a probability

distribution over the possible classes predicted by an ML model. Each score in the vector

indicates the model’s confidence in a prediction of the corresponding class. The class with

the largest confidence is predicted as the label of the input data record.

Data inference attacks can result in severe privacy violations. For example, consider

a model that has been trained on data collected from people with a certain disease. If

a particular individual’s data are known to be in the training dataset, the adversary

can immediately infer that person’s health status. Another example is model inversion

attack. As shown in Figure 6.1, an adversary can train an attack model to accurately

reconstruct an input data record using only the confidence score vector, even if the data

record is never seen by the attack model. Hence, defending against data inference attacks

has been the focus of much attention in the privacy community.

The methods proposed to date can be roughly classified into four categories based

on the defense techniques employed. Those in the first category use regularization

techniques to reduce overfitting, such as L2 regularizer [106], dropout [98], model-

stacking [98] and min-max regularization [79]. This is because overfitting is one of the

major factors leading to the distinguish ability between member and non-member data

records [106]. The shortcoming of these methods, however, is that distinguish ability, i.e.,

a model’s vulnerability, is not reduced directly. Moreover, they require retraining the

target model which may not be very efficient for complex neural networks.

The second category of the methods is based on adversarial examples [53]. These
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Figure 6.1: An input data record is accurately reconstructed by an attack model which
has never seen this data record.

methods add a carefully crafted noise vector to a confidence score vector turning it into

an adversarial example to mislead the attacker’s classifier. These methods have formal

utility loss guarantees of confidence score vectors. However, their effectiveness depends

on the transfer ability of adversarial examples[88], which might not generally reduce

the distinguish ability of prediction scores [132].

The third category of the methods is based on deep neural networks [132]. These

methods interpret defense goals as loss functions and train the deep neural networks

as defense models to defend against attacks. These methods can minimize the content

of information attackers can use to infer membership or reconstruct the data records.

However, this strategy requires training new models which may not be very time-efficient.

The fourth category describes the DP methods [1]. These methods carry a theoretical

guarantee of privacy. However, as DP is usually used during the training process, e.g.,

adding noise to gradients, there is always a large classification accuracy loss [79]. As

shown by Jayaraman and Evans [51], existing differentially private machine learning

methods rarely offer acceptable privacy-utility trade-offs for complex models. Moreover,

since existing methods have to be integrated into the training of target models, they are

not applicable to those target models which have already been deployed.

A common limitation shared by the existing defense methods is that all but one only

protect against membership inference attacks. The only method to handle both mem-

bership inference and model inversion attacks was proposed by Yang et al. [132]. Their

method, however, requires training new models which may not be very time-efficient.

In this chapter, we develop a time-efficient defense method against both membership

inference andmodel inversion attacks.

107



CHAPTER 6. ONE PARAMETER DEFENSE - DEFENDING AGAINST DATA
INFERENCE ATTACKS VIA DIFFERENTIAL PRIVACY

Our solution is a DP mechanism that modifies and normalizes the confidence score

vectors to confuse the attacker’s classifier. As such, the only parameter that needs to

be tuned is the privacy budget, which controls the amount of perturbation added to the

vector. For example, when a learning model is very confident in predicting a given data

record, the output confidence score vector will have a very high probability of predicting

one class and very low probabilities of predicting the others. By using our method to

modify the confidence score vector, the probability distribution can be reshaped so that

one class has a slightly higher probability for prediction than other classes. This new

confidence score vector appears less confident than the original one and can be used to

confuse the attacker’s classifier.

The idea of modifying confidence score vectors to defend against data inference attacks

is not new. However, the methods based on this premise, such as those in [53, 106],

do not provide a privacy guarantee plus they can only defend against membership

inference attacks. By comparison, our method has a privacy guarantee, and offers

protection against both membership inference and model inversion attacks. Further, our

method preserves the order of scores in confidence score vectors, which guarantees zero

classification accuracy loss. Moreover, as our method does not require training any new

models, time-efficiency can be achieved. In summary, this chapter makes the following

contributions:

• We are the first to propose a one-parameter defense method that requires only one

parameter to be tuned, the privacy budget. This method guarantees both DP and

time-efficiency against both membership inference and model inversion attacks.

• We theoretically demonstrate how to tune the privacy budget to defend against

both types of attacks, while controlling the utility loss of confidence score vectors.

• We empirically show that the presented method effectively mitigates both types of

attacks with no loss of classification accuracy, zero training time, and very low test

time.

6.2 Related work

Defense methods can be roughly classified into four categories based on the adopted

techniques: regularization, adversarial examples, deep neural networks and DP.
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6.2.1 Regularization-based defense methods

Shokri et al. [106] investigated four methods of defense against membership inference

attacks. The first method is to restrict the prediction vector to the top k classes, where

a smaller k means less information is leaked. The second method is to coarsen the

precision of the confidence score vector by rounding the classification probabilities within

the vector down to d floating point digits. Again, a smaller d means less information is

leaked. The third method is to increase the entropy of the confidence score vector via a

softmax function with a temperature t to compute the output of the logits vector. The

fourth method is to use L2-norm standard regularization.

Nasr et al. [79] formalized the interactions between their defense method and a

membership inference attack as a min-max privacy game. To find the solution to the

game, they train a target model using an adversarial process that minimizes both the

prediction loss of the model and the maximum gain of the inference attacks. Through this

approach, the target model provides both membership privacy and strong regularization

capability.

Salem et al. [98] proposed two defense methods against membership inference attacks.

The first method is called ’dropout’ which randomly deletes a fixed proportion of edges

from a fully connected neural network model in each training iteration to avoid overfitting.

The second method is called ‘model stacking’, which is based on ensemble learning and

constructs the target model using three different machine learning models. Two models

are placed in the first layer to take the original training data while the third is trained

with the conference score vectors of the first two models. The idea of model stacking is to

arrange multiple models in a hierarchy so as to avoid overfitting.

6.2.2 Adversarial example-based defense methods

Jia et al. [53] proposed a defense method named MemGuard that adds noise to each

confidence score vector to make it an adversarial example. Their idea is based on the

fact that deep learning models can be misled by adversarial examples to produce wrong

predictions [44, 89]. They formalized the process of adding noise as an optimization

problem and developed an algorithm to solve the problem based on gradient descent.

6.2.3 Deep neural network-based defense methods

Yang et al. [132] designed a purifier model that takes a confidence score vector as

input and reshapes it to meet defense goals. The purifier model consists of an encoder
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and a decoder. The encoder maps the confidence score vector predicted by the target

model to a latent representation. The decoder then maps the latent representation to a

reconstruction of the confidence score vector.

6.2.4 Differential privacy-based defense methods

Differential privacy has been a prevalent tool to preserve the privacy of deep learning

models [1, 105]. A comprehensive survey regarding DP in deep learning can be found in

[43, 51]. To implement differentially private deep learning, noise can be added to one

of the five places in a deep neural network: input datasets [47], loss functions [141],

gradients [1, 17], weights of neural networks [52, 92], and output classes [87, 90].

Heikkila et al. [47] proposed a general approach for a privacy-preserving learning

schema for distributed settings. Their approach combines secure multiparty communica-

tion with differentially private Bayesian learning methods. In their approach, each client

adds a Gaussian noise to the data and divides the noised data into shares. The shares are

not divided independently. Instead, they are divided using a fixed-point representation of

real numbers which allows exact cancellation of the noise in the sum. Each share is then

sent to a server. This way, the sum of the shares discloses the real value, but separately

they are just random noise.

Zhao et al. [141] proposed a privacy-preserving collaborative deep learning system.

The system allows users to collaboratively build a collective learning model while only

sharing the parameters, not the data. To preserve the private information embodied

in the parameters, they developed a functional mechanism, an extended version of the

Laplace mechanism, to perturb the objective function of the neural network.

Cheng et al. [17] developed a privacy-preserving algorithm for distributed learning

based on a leader-follower framework, where the leaders guide the followers in the right

direction to improve their learning speed. For efficiency, communication is limited to

leader-follower pairs. To preserve the privacy of the leaders, Gaussian noise is added to

the gradients of the leaders’ learning models.

Phan et al. [92] proposed a heterogeneous Gaussian mechanism to preserve privacy

in deep neural networks. Unlike a regular Gaussian mechanism, this heterogeneous

Gaussian mechanism can arbitrarily redistribute noise from the first hidden layer and the

gradient of the model to achieve an ideal trade-off between model utility and privacy loss.

To obtain the property of arbitrary redistribution, they introduce a noise redistribution

vector that can be used to change the variance of the Gaussian distribution. Further, it

can be guaranteed that, by adapting the values of the scores in the noise redistribution
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vector, more noise can be added to the more vulnerable components of the model to

improve robustness and flexibility.

Papernot et al. [87] developed a model called Private Aggregation of Teacher En-

sembles (PATE) which has been successfully applied to generative adversarial nets

(GANs) for a privacy guarantee [54]. PATE consists an ensemble of n teacher models;

an aggregation mechanism; and a student model. Each teacher model is trained inde-

pendently on a subset of private data. To protect the privacy of the data labels, Laplace

noise is added to the output classes, i.e., the teacher votes. Last, the student model is

trained through knowledge transfer from the teacher ensemble with the public data and

privacy-preserving labels. Later, Papernot et al. [90] improved the PATE model to make

it applicable to large-scale tasks and real-world datasets.

In addition to the utilization of standard DP, local DP has also been adopted recently.

For example, Kim et al. [57] adopted Gaussian mechanism to preserve local DP of user

data in federated learning models. They also analyzed the trade-offs between user privacy,

global utility and transmission rate, where a larger noise variance guarantees a stronger

privacy with a lower utility bound and a higher transmission rate bound.

6.2.5 Discussion of related work

Among all these defense methods, the regularization and adversarial example methods

are only designed to defend against membership inference attacks. The DP methods have

mostly been developed for general privacy preservation rather than to protect against a

specific inference attack. Only the deep neural network-based method [132] has been

specifically developed to defend against both membership inference and model inversion

attacks. That method, however, does require new deep neural networks to be trained.

Hence, it is not an optimal strategy if time efficiency is a concern.

Our strategy of modifying then normalizing the output confidence score vectors with

a DP mechanism provides protection against both membership inference and model

inversion attacks, compared to other DP methods which only provide general privacy

preservation during the training. Unlike the deep neural network-based method in [132],

no new models need to be trained, so our method is very time-efficient. Plus, the order of

scores in the confidence vectors is preserved, which skirts the accuracy trade-off inherent

to other DP methods.

111



CHAPTER 6. ONE PARAMETER DEFENSE - DEFENDING AGAINST DATA
INFERENCE ATTACKS VIA DIFFERENTIAL PRIVACY

6.3 Preliminaries

6.3.1 Data inference attacks

Data inference attacks can come in the form of either a membership inference or a

model inversion attack, each of which has a different inference goal. In both of these

attacks, the target model is evaluated by its owner but is open to public users, including

attackers. The model can be accessed only in a black-box manner, where an attacker

inputs a data sample into the model and receives the corresponding output. The real

output confidence scores are modified by the owner while only the modified scores are

published to the attacker. The modification process is integrated into the model and

thus, is hidden to the attacker. Hence, the attacker cannot access any intermediate

classification values, and he can only exploit the modified scores to invert the model or

infer the membership of samples. Moreover, the structure and parameters of the target

model are also unknown to the attacker. The attacker is aware of the distribution of the

training dataset of the target model and can collect a new dataset based on the same

distribution. The attacker, however, cannot directly query the training dataset of the

target model. These assumptions regarding the attacker are the same as those made in

[133].

6.3.1.1 Model inversion attacks

Model inversion attacks aim to reconstruct the input data from the confidence score

vectors predicted by the target model [37]. The attacker trains a separate attack model

on an auxiliary dataset which acts as the inverse of the target model [133]. The attack

model takes the confidence score vectors of the target model as input and tries to output

the original input data of the target model.

Formally, let F, again, be the target model and G be the attack model. Given a data

record (x, y), the attacker inputs x into F and receives F(x), and then feeds F(x) into G
and receives G(F(x)) which is expected to be very similar to x, i.e., G(F(x))≈ x.

In the first phase, the range [0,1) is divided into k non-overlapping sub-ranges.

This division is based on the original scores in vector y to ensure that each sub-range

covers an original score and also, a sub-range with smaller values covers a smaller

score. Specifically, suppose the scores in y have been ranked as y1 ≤ ...≤ yk. Then, each

sub-range i is [ yi−1+yi
2 , yi+yi+1

2 ), where 2 ≤ i ≤ k−1. For i = 1, the sub-range is [0, y1+y2
2 ),

and for i = k, the sub-range is [ yk−1+yk
2 ,1).Then, each sub-range is uniformly discretized

to a set containing m scores. The exponential mechanism is used to select a score y′i from
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Figure 6.2: Overview of our method. The method consists of four steps. In Step 1, the
range [0,1) is divided into k non-overlapping sub-ranges, where k is the number of
classes that the target model T can classify. In Step 2, each sub-range is matched with a
score in vector y, where y is output by T, ensuring that a sub-range with smaller values
is matched with a smaller score. In Step 3, each sub-range is uniformly discretized into
a set with m scores, where m is a hyper-parameter. Then, for each sub-range i, the
exponential mechanism is used to select a score from m scores. The selected score is
named y′i used to replace yi. In Step 4, since it is likely that

∑k
i=1 y′i �= 1, the exponential

mechanism is used again to normalize vector y′ to z which is shown to the attacker.

the m scores in each sub-range i to replace yi, where 1 ≤ i ≤ k. In this way, the order

of the scores in y can be preserved in y′ after replacement. As the user of the target

model will select the predicted class with the highest score, our method can guarantee

zero accuracy loss. In addition, the aim of discretizing each sub-range is to enable the

use of an exponential mechanism to select a value. Since the exponential mechanism

guarantees DP, the attacker cannot deduce the real value from the selected value. By

comparison, other selection methods, e.g., uniformly selection, may not guarantee DP.

In the second phase, since the k scores in y′ may not sum to 1, we use the exponential

mechanism again to normalize them to form a valid confidence score vector z. There are

two reasons to use an exponential mechanism for normalization. First, with exponential

normalization, the utility of vectors can be adjusted by choosing different ε values, which

allows us to precisely control the difference in the content of information between a

confidence score vector and its normalized version. This control, however, may not be

achieved using other normalization methods, e.g., the softmax. The second reason is

that by using the exponential normalization, only one parameter ε needs to be tuned

to achieve both the differentially private modifications and the normalization, which
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matches the title of the chapter: one parameter defense.

We use an example to explain how the method works and guarantees zero classifica-

tion accuracy loss of the target model. Suppose we have a confidence score vector with two

scores: y= 〈y1 = 0.2, y2 = 0.8〉. First, we divide the range [0,1) into k = 2 non-overlapping

sub-ranges based on the scores in y as [0, 0.2+0.8
2 ) and [0.2+0.8

2 ,1). Then, sub-range [0,0.5)

is matched with y1, while sub-range [0.5,1) is matched with y2, recalling that a sub-

range with smaller values is matched with a smaller score. After that, each sub-range is

discretized to a set containing m scores. Suppose m is set to 5, then, sub-range [0,0.5)

becomes {0,0.1,0.2,0.3,0.4} and sub-range [0.5,1) becomes {0.5,0.6,0.7,0.8,0.9}. For each

score in y, we use the exponential mechanism to select a score in the corresponding dis-

cretized sub-range to replace that score. Thus, for y1, we use the exponential mechanism

to select a score in {0,0.1,0.2,0.3,0.4} to replace the score of y1. Similarly, for y2, the

replacing score is selected in {0.5,0.6,0.7,0.8,0.9}. The detail of the selection will be given

in Sub-section 6.3.2. Let the scores selected in {0,0.1,0.2,0.3,0.4} and {0.5,0.6,0.7,0.8,0.9}

be y′1 and y′2, respectively, thus we have y′1 < y′2. Hence, when we use y′1 and y′2 to replace

y1 and y2, respectively, the order of the scores in y can be preserved in y′ after replace-

ment. This means that the highest score in y, after replacement, is still the highest in y′.
Next, suppose the selected scores are y′1 = 0.4 and y′2 = 0.9. Note that 0.4+0.9 ̸= 1. Then,

we use the exponential mechanism again to normalize y′. The aim of the normalization

is to ensure that
∑k

i=1 zi = 1, where each zi is computed based on the scores in y′. The

detail of the normalization will be given in Sub-section 6.3.3. This normalization is a

requirement of machine learning classifiers, i.e., presenting normalized vectors to users.

The normalization result is, say, z= 〈0.3,0.7〉, which is given to the attacker. In Section

6.4, we will prove that the normalization can preserve the order of scores in y′ in the

normalized vector z. As the predicted class is selected only with the highest score, our

method can guarantee zero accuracy loss.

6.3.2 Phase 1: Modify the confidence score vector

The first phase of our method is formalized in Algorithm 12. In summary, the method

takes a confidence score vector y as input and outputs a modified vector y′. In Line 4,

the range [0,1) is divided into k non-overlapping sub-ranges based on y1, ..., yk. In Lines

5 and 6, each sub-range is uniformly discretized to a set containing m scores. In Lines 8

and 9, the exponential mechanism is used to randomly select a score y′i in each sub-range

i to replace yi. As described in Definition 2.8, which score is selected in each sub-range i
is based on its utility. The utility of the jth score is then set to
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Algorithm 12 Division and modification
1: Input: A confidence score vector y= 〈y1, ..., yk〉;
2: Output: A modified confidence score vector y′ = 〈y′1, ..., y′k〉;
3: Sort y1, ..., yk such that y1 ≤ ...≤ yk;
4: Divide range [0,1) into k sub-ranges based on y1, ..., yk: [0, y1+y2

2 ), [ y1+y2
2 , y2+y3

2 ), ...,
[ yk−1+yk

2 ,1);
5: for i = 1 to k do
6: Uniformly discretize sub-range [ yi−1+yi

2 , yi+yi+1
2 ) to { yi−1+yi

2 , yi−1+yi
2 +ρ, ..., yi−1+yi

2 +
(m−1)ρ}, where ρ = yi+1−yi−1

2m and m is a positive integer representing the granularity
of discretization;

7: end for
8: for yi = y1 to yk do
9: Use the exponential mechanism to randomly select a value from the corresponding

dicretized sub-range i as the modified score, y′i;
10: end for

ui
j =

1

|yi − ( i−1
k + ( j−1)ρ)| .

Scores with a smaller difference to yi have a higher utility and thus a higher proba-

bility of being selected. Thus, in the sub-range i, the probability of selecting the jth score

is proportional to exp(
ϵui

j
2∆u ).

In Algorithm 12, we need to conduct k samplings, i.e., selections, and the size of

each sampling domain is m. To avoid a large computation overhead, a finite and small

sampling domain is necessary [39]. To limit the size of the sampling domain, we can

tune the value of m. In the experiments, we set m = 5, i.e., the final result is selected

from 5 candidates using the exponential mechanism. The set of m = 5 yields only a small

sampling domain and does not introduce a large computation overhead.

6.3.3 Phase 2: Normalizing the confidence score vector

The modifications to the confidence score vector y in Phase 1 may result in an invalid

probability distribution, i.e., where the sum of the scores in y′ does not equal 1. Hence,

Phase 2 involves using the exponential mechanism again to normalize y′. This procedure

is as follows.

Let the modified vector be y′ = 〈y′1, ..., y′k〉. Then, y′ can be perturbed into z, where

each zi is computed using the following equation.
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(6.1) zi =
exp(

ϵu(y′,y′i)
2∆u )∑

1≤ j≤k exp(
ϵu(y′,y′j)

2∆u )

Theoretically, u(y′, y′i) can be set to any value which is positively correlated with y′i,
i.e., a larger y′i should be assigned a larger u(y′, y′i). Specifically, by setting u(y′, y′i)= y′i,
i.e., setting the utility of each confidence score to the same value as the score, the

sensitivity ∆u becomes 1 which is easy for both theoretically analyzing the properties of

our defense method and experimentally evaluating its performance. Therefore, Equation

6.1 can be simplified to

(6.2) zi =
exp(

ϵy′i
2 )∑

1≤ j≤k exp(
ϵy′j
2 )

.

The resulting vector z is the final output.

6.3.4 Discussion of the method

In our method, the privacy protection is on confidence score vectors y rather than the

original training dataset Dtrain
target. This is because 1) attackers in our problem are not

allowed to directly access the training dataset, and 2) model inversion attacks are not

against the training dataset, instead, these attacks aim to reconstruct any input data to

the target model. The attackers can access the target model and exploit the prediction

results of the target model to launch both membership inference and model inversion

attacks. Therefore, our protection focuses on the prediction results of the target model,

i.e., confidence score vectors.

Although our method is applied only to the prediction results of the target model, it

can still defend against both membership inference and model inversion attacks. The

attacker queries the target model F by feeding a data record x to it, and expects to

receive a response F(x). However, by using our private prediction interface Md, the

response F(x) is obfuscated to Md(F(x)). Since the existing attack methods must use

F(x) to launch the membership inference and model inversion attacks, altering F(x) to

Md(F(x)) can significantly reduce the attack precision. This can be further explained by

the fact that the attack model G is trained using F(x) as input, i.e., G(F(x)), where for

membership inference attacks, G(F(x))= Pr(x ∈ Dtrain
target), and for model inversion attacks,

G(F(x)) = x̂. Now, F(x) is obfuscated to Md(F(x)) which is used as input to the attack
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model G, i.e., G(Md(F(x))). To achieve a precise attack, the attacker has to guarantee

that G(Md(F(x)))=G(F(x)), which means that Md(F(x)) and F(x) must be in the same

class. However, there is no guarantee that an input can be in the same class as its

obfuscated version with differentially private noise. Moreover, as Md satisfies DP, the

attacker cannot deduce F(x) from Md(F(x)). In the experiments, we have also attempted

to train the attack model G using Md(F(x)) as input, but this training did not converge.

6.4 Properties of the defense method and how to use
them to defend against attacks

This section begins with the proof that our defense method satisfies DP. Also, to maintain

the DP guarantee, a bound is set to limit the number of queries that an attacker can

access the target model F using the same input data record x (Sub-section 6.4.1). Then,

an analysis of tuning ϵ follows, which details the various properties of our method with

different ϵ values (Sub-section 6.4.2). After that, we explain how to use these properties

to defend against the data inference attacks (Sub-sections 6.4.3 and 6.4.4).

6.4.1 Privacy analysis

Lemma 6.1 (Post-processing theorem [30]). Let M1 : Y →Y ′ be a randomized algorithm
that is ϵ-differentially private. Let M2 : Y ′ → Z be any mapping including deterministic
functions. Then M1 ◦M2 : Y → Z is ϵ-differentially private.

Lemma 6.1 states that the combination of a differentially private algorithm and a

deterministic algorithm still guarantees DP.

Theorem 6.1. Algorithm 12 satisfies (k ·ϵ)-DP, where ϵ is the privacy budget and k is
the number of scores in a confidence score vector y, i.e., the number of classes that the
target model F can classify.

Proof. In Line 8 of Algorithm 12 (the first phase of our method), the exponential

mechanism is used k times to randomly select k scores to replace y1, ..., yk, i.e., to

perform the mapping from y to y′. According to Definition 2.8, exponential mechanism

defines a utility function u : N|X |×R → R, which maps dataset-output pairs to utility

scores. In our problem, for each sub-range i: [ yi−1+yi
2 , yi+yi+1

2 ), when 2 ≤ i ≤ k−1, and

[0, y1+y2
2 ) and [ yk−1+yk

2 ,1) when i = 1 and i = k, respectively, by applying Definition 2.8,
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we interpret dataset D as a confidence score vector y, and interpret output set R

as R = { yi−1+yi
2 , yi−1+yi

2 +ρ, ..., yi−1+yi
2 + (m−1)ρ}. In addition, we interpret a neighboring

dataset D′ as another confidence score vector ŷ, where ||ŷ−y||1 ≤ 1 and yi+yi+1 = ŷi+ ŷi+1,

where 1≤ i ≤ k−1. Then, y and ŷ have the same output set R.

Let the probability of selecting the jth score r j from R with vector y be P(r j|y) and

the probability of selecting r j from R with a neighboring vector ŷ be P(r j|ŷ). Also, let

ui(y, r j) and ui(ŷ, r j) be the utility of of selecting r j from R with y and ŷ, respectively.

Then, we have P(r j |y)
P(r j |ŷ) =

[ exp(
ϵui (y,r j )

2∆u )∑
r j′ ∈R exp(

ϵui (y,r j′ )
2∆u )

]/[ exp(
ϵui (ŷ,r j )

2∆u )∑
r j′ ∈R exp(

ϵui (ŷ,r j′ )
2∆u )

]
. Based on the knowledge

of exponential mechanism [30], we have P(r j |y)
P(r j |ŷ) ≤ exp(ϵ).

By symmetry, P(r j |y)
P(r j |ŷ) ≥ exp(−ϵ). Therefore, in each sub-range i, our method satisfies

ϵ-DP. Since there are k sub-ranges and the exponential mechanism is used in each

sub-range, Algorithm 12 gives (k ·ϵ)-DP.

The second phase of our method is deterministic, mapping a differentially private

vector y′ to z. Therefore, according to Lemma 6.1, the combination of the first and second

phases still guarantee (k ·ϵ)-DP. ■

Theorem 6.2. The defense method, Md, is a (k ·ϵ)-differentially private prediction inter-
face.

Proof. Theorem 6.1 shows that for each input query x of the target model F, the

defense method Md can obfuscate the corresponding response, i.e., output vector y, in

a differentially private manner. According to Definition 2.4, as the sequence of queries

and responses satisfies (k ·ϵ)-DP, the defense method Md is a (k ·ϵ)-differentially private

prediction interface. ■

Theorems 6.1 and 6.2 and the accompanying proof demonstrate that our defense

method Md provides a privacy guarantee. By giving DP guarantee, an attacker cannot

deduce the original vector y from the perturbed vector z. As shown in the experiments,

based on z, the attacker can neither precisely reconstruct the input data record x nor

successfully infer whether x is in the training set of the target model F. However, if an

attacker uses the same input data record x to access the target model F multiple times,

the attacker may deduce the original vector y by observing the perturbed vectors. This

is because in DP, a privacy budget is used to control the privacy level. Every time an

original vector is perturbed and released, the privacy budget is partially consumed. Once

the privacy budget is used up, DP cannot guarantee the privacy of the original vector
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anymore. To guarantee the privacy level of an original vector, a bound must be set on the

number of times that a user can access the target model using the same data record. The

detailed computation of the bound is as follows.

Definition 6.1 (KL-Divergence [30]). The KL-Divergence between two random variables

Y and Z taking values from the same domain is defined to be:

(6.3) D(Y ||Z)= Ey∼Y

[
ln

Pr(Y = y)
Pr(Z = y)

]
.

Definition 6.2 (Max Divergence [30]). The Max Divergence between two random vari-

ables Y and Z taking values from the same domain is defined to be:

(6.4) D∞(Y ||Z)= max
S⊆Supp(Y )

[
ln

Pr(Y ∈ S)
Pr(Z ∈ S)

]
.

Lemma 6.2 ([30]). A mechanism M is ϵ-differentially private if and only if on every two
neighboring datasets x and x′, D∞(M (x)||M (x′))≤ ϵ and D∞(M (x′)||M (x))≤ ϵ.

Lemma 6.3 ([30]). Suppose that random variables Y and Z satisfy D∞(Y ||Z) ≤ ϵ and
D∞(Z||Y )≤ ϵ. Then, D(Y ||Z)≤ ϵ · (eϵ−1).

Theorem 6.3. Given that the privacy level of an original vector is k ·ϵ for each access, to
guarantee its overall privacy level to be ϵ′, the upper bound of the number of rounds is
ϵ′·(eϵ′−1)

k·ϵ·(ekϵ−1) .

Proof. Let the upper bound of the number of access times be b, and the corresponding

b perturbed vectors, which can be observed by an attacker, be o= (z1, ...,zb). We have

D(Y ||Z)= ln
[

Pr(Y = o)
Pr(Z = o)

]
= ln

[
b∏

i=1

Pr(Yi = zi)
Pr(Zi = zi)

]

=
b∑

i=1
ln

[
Pr(Yi = zi)
Pr(Zi = zi)

]
=

b∑
i=1

D(Yi||Zi).

As the original vector is guaranteed k · ϵ-DP for each individual access, based on

Lemma 6.2, we have D∞(Yi||Zi) ≤ k · ϵ and D∞(Zi||Yi) ≤ k · ϵ. Based on this result, ac-

cording to Lemma 6.3, we have D(Yi||Zi) ≤ k · ϵ · (ekϵ − 1). Thus, we have D(Y ||Z) =∑b
i=1 D(Yi||Zi)≤ b ·k ·ϵ · (ekϵ−1).

To guarantee the original vector’s overall privacy level to be ϵ′, according to Lemma

6.2, we have D∞(Y ||Z)≤ ϵ′ and D∞(Z||Y )≤ ϵ′. By using Lemma 6.3, we have D(Y ||Z)≤
ϵ′ · (eϵ′ −1). As D(Y ||Z)≤ b ·k ·ϵ · (ekϵ−1) and D(Y ||Z)≤ ϵ′ · (eϵ′ −1), the upper bound b is

limited by ϵ′·(eϵ′−1)
k·ϵ·(ekϵ−1) . ■
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6.4.2 Analysis of tuning ϵ

The input for the first step of our method is a confidence score vector y, and the output is

a perturbed vector y′. The input for the second step is y′, and the output is a normalized

vector z. To maximize the utility of the normalized vector, it should be equal to the original

vector: z=y. This equality does not guarantee any privacy over the original vector and

must be avoided in practice, but this equality gives us a start point to investigate how to

tune the parameter, ϵ, to achieve the balance between privacy and utility. Specifically, the

utility of a normalized vector z is defined as ||z−y||1, where a smaller value of ||z−y||1
means a higher utility but a lower privacy guarantee.

Given that y = 〈y1, ..., yk〉, y′ = 〈y′1, ..., y′k〉 and z = 〈z1, ..., zk〉, we have the following

system of k equations:

(6.5)



z1 = exp(
ϵy′1
2 )∑

1≤ j≤k exp(
ϵy′j
2 )

= y1,

...

zk = exp(
ϵy′k

2 )∑
1≤ j≤k exp(

ϵy′j
2 )

= yk.

We first prove that Algorithm 12 preserves the order of scores in vector y, and

then show that Equation 6.5 has a unique positive solution. After that, we analyze the

properties of the solution to Equation 6.5.

Lemma 6.4. Algorithm 12 preserves the order of scores in vector y, i.e., if yi < yj, then
y′i < y′j, where 1≤ i ̸= j ≤ k.

Proof. According to Line 3 of Algorithm 12, when yi < yj, we have i < j. According to

Line 8 of Algorithm 12, we have y′i ∈ [ yi−1+yi
2 , yi+yi+1

2 ) and y′j ∈ [ yj−1+yj
2 , yj+yj+1

2 ). As i < j,
we have i ≤ j−1 and i+1≤ j. Thus, we have yi ≤ yj−1 and yi+1 ≤ yj, which implies that
yi+yi+1

2 ≤ yj−1+yj
2 . Therefore, we can conclude y′i < y′j. ■

The following Lemmas 6.5 and 6.6 and Theorem 6.4 show that Equation 6.5 has a

unique positive solution.

Lemma 6.5. Let y′min = min{y′1, ..., y′k} and y′max = max{y′1, ..., y′k}, we have: y′min < 1
k and

y′max ≥ 1
k .

Proof. The following proof covers y′max ≥ 1
k . The proof of y′min < 1

k is similar. According

to Lines 4-6 of Algorithm 12, we know that yk−1+yk
2 ≤ y′max < 1.
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Thus, to prove y′max ≥ 1
k , we need only to prove yk−1+yk

2 ≥ 1
k . For this, we use mathe-

matical induction. When k = 2, we have yk−1+yk
2 = y1+y2

2 = 1
2 = 1

k . Thus, the conclusion is

established. Assume that when k = n, the conclusion is also established, i.e., yn−1+yn
2 ≥ 1

n .

Next, we prove that when k = n+1, the conclusion is still established, i.e., proving
yn+yn+1

2 ≥ 1
n+1 . As yn−1+yn

2 ≥ 1
n , we have yn ≥ 2

n − yn−1. Therefore, we have

yn + yn+1

2
≥ ( 2

n − yn−1)+ yn+1

2

= 1
n
+ yn+1 − yn−1

2

≥ 1
n
> 1

n+1
.

The second inequality is based on Line 3 of Algorithm 12, where the scores of vector

y are sorted as y1 ≤ ... ≤ yk. Hence, yn+1 ≥ yn−1 and yn+1−yn−1
2 ≥ 0. The lemma has been

proven.

■

Lemma 6.6. The system in Equation 6.5 has at least one positive solution.

Proof. According to Equation 6.5, we have ymax
yj

= exp( ϵy′max
2 )

exp(
ϵy′j
2 )

, where 1≤ j ≤ k. Then, we

have the following deduction.

ymax

yj
= exp( ϵy′max

2 )

exp(
ϵy′j
2 )

ln(
ymax

yj
)= ln(

exp( ϵy′max
2 )

exp(
ϵy′j
2 )

)

ln(ymax)− ln(yj)= ϵ

2
(y′max − y′j)

ϵ= 2[ln(ymax)− ln(yj)]
y′max − y′j

> 0

This ϵ is a positive solution to the system. ■

Next, we prove that this ϵ is a unique solution. Formally, based on Lemmas 6.5 and

6.6, we have:

Theorem 6.4. The system in Equation 6.5 has a unique positive solution.
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Proof. Assume we have two different positive solutions ϵ1 and ϵ2. Then, we have

ymax

ymin
= exp( ϵ1 y′max

2 )

exp(
ϵ1 y′min

2 )
= exp( ϵ2 y′max

2 )

exp(
ϵ2 y′min

2 )

⇒ exp[
ϵ1 −ϵ2

2
y′max]= exp[

ϵ1 −ϵ2

2
y′min]

⇒ exp[
ϵ1 −ϵ2

2
(y′max − y′min)]= 1.

According to Lemma 6.5, y′max ̸= y′min, thus ϵ1 = ϵ2. According to Lemma 6.6, the

system has at least one solution. Hence, the system has a unique solution. ■

The properties of the solution are analyzed as follows. Given zi = yi = exp(
ϵy′i
2 )∑

1≤ j≤k exp(
ϵy′j
2 )

,

where 1≤ i ≤ k, the solution has the following properties.

Property 6.1. When ϵ> 0, if y′i > y′j, then zi > z j, where 1≤ i, j ≤ k.

Proof. zi
z j
= exp[ ϵ

2 (y′i − y′j)]≥ 1, therefore, zi > z j. ■

Property 6.1 combined with Lemma 6.4 contends that our defense method preserves

the order of scores in confidence score vector y. As such, it holds that since the order

of scores in y can be preserved, when ϵ> 0, the utility of the confidence score vector y
can be guaranteed. This means that the class with the highest probability in y still has

the highest probability in the normalized vector z. This property guarantees a good user

experience, as users usually select the predicted class with the highest probability.

Property 6.1 combined with Lemma 6.4 contends that our defense method preserves

the order of scores in confidence score vector y. As such, it holds that since the order

of scores in y can be preserved, when ϵ> 0, the utility of the confidence score vector y
can be guaranteed. This means that the class with the highest probability in y still has

the highest probability in the normalized vector z. This property guarantees a good user

experience, as users usually select the predicted class with the highest probability.

Further discussions on Property 6.1 are included with the Properties 6.2 and 6.3.

Property 6.2. Let ϵ∗ be the solution of the system and y′i > y′j, where 1≤ i, j ≤ k. Then, if
ϵ> ϵ∗, zi

z j
> yi

yj
; if ϵ< ϵ∗, zi

z j
< yi

yj
.

Proof. Because zi = exp(
ϵy′i
2 )∑

1≤ j≤k exp(
ϵy′j
2 )

and yi = exp(
ϵ∗ y′i

2 )∑
1≤ j≤k exp(

ϵ∗ y′j
2 )

, we have
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zi

z j
/
yi

yj
=

exp[ ϵ
2 (y′i − y′j)]

exp[ ϵ
∗
2 (y′i − y′j)]

= exp[
ϵ−ϵ∗

2
(y′i − y′j)].

Since it is assumed that y′i > y′j, when ϵ> ϵ∗, zi
z j

/ yi
yj
> 1⇒ zi

z j
> yi

yj
; when ϵ< ϵ∗, zi

z j
/ yi

yj
<

1⇒ zi
z j
< yi

yj
. ■

Property 6.3. If ϵ> ϵ∗, then zmin < ymin and zmax > ymax; if ϵ< ϵ∗, then zmin > ymin and
zmax < ymax.

Proof. We know that

∑
1≤i≤k

exp[
ϵ

2
(y′i − y′j)]−

∑
1≤i≤k

exp[
ϵ∗

2
(y′i − y′j)]

= ∑
1≤i≤k

[exp[
ϵ

2
(y′i − y′j)]− exp[

ϵ∗

2
(y′i − y′j)]],

where 1≤ j ≤ k. Therefore, when ϵ> ϵ∗, we have

∑
1≤i≤k

exp[
ϵ

2
(y′i − y′min)]− ∑

1≤i≤k
exp[

ϵ∗

2
(y′i − y′min)]> 0,

∑
1≤i≤k

exp[
ϵ

2
(y′i − y′max)]− ∑

1≤i≤k
exp[

ϵ∗

2
(y′i − y′max)]< 0.

Because

1
zmin

= ∑
1≤i≤k

zi

zmin
= ∑

1≤i≤k
exp[

ϵ

2
(y′i − y′min)],

1
ymin

= ∑
1≤i≤k

yi

ymin
= ∑

1≤i≤k
exp[

ϵ∗

2
(y′i − y′min)],

1
zmax

= ∑
1≤i≤k

zi

zmax
= ∑

1≤i≤k
exp[

ϵ

2
(y′i − y′max)],

1
ymax

= ∑
1≤i≤k

yi

ymax
= ∑

1≤i≤k
exp[

ϵ∗

2
(y′i − y′max)],

thus, we have

1
zmin

− 1
ymin

> 0⇒ zmin < ymin,

1
zmax

− 1
ymax

< 0⇒ zmax > ymax.

By symmetry, we have that when ϵ< ϵ∗, zmin > ymin and zmax < ymax. ■
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Properties 6.2 and 6.3 state that if ϵ> ϵ∗, the difference in probabilities ymax − ymin

within the confidence score vector y will increase in vector z, i.e., zmax−zmin > ymax−ymin.

This means that even if the target model is not very confident in predicting an input

data record x, the defense method can make the output appear very confident to the

attacker. Similarly, the defense method can also make a very confident output appear

less confident to the attacker.

The last property to analyze is the change in the distance between a confidence

score vector y and its perturbed version z. As the success of a model inversion attack

is based on the rich information contained in each confidence score vector, an intuitive

way to defend against model inversion attacks is to widen the distance between y and z.

The distance is formally defined as |z−y|1 =∑k
i=1 |zi − yi|. Then, we have the following

property.

Property 6.4. If ϵ > ϵ∗, then |z−y|1 increases as ϵ increases; if ϵ < ϵ∗, then |z−y|1
increases as ϵ decreases.

Proof.

|z−y|1 =
k∑

i=1
|zi − yi|

=
k∑

i=1
| exp(

ϵy′i
2 )∑k

j=1 exp(
ϵy′j
2 )

− exp(
ϵ∗ y′i

2 )∑k
j=1 exp(

ϵ∗ y′j
2 )

|

=
∑k

i=1 |exp(
ϵy′i
2 )

∑k
j=1 exp(

ϵ∗ y′j
2 )− exp(

ϵ∗ y′i
2 )

∑k
j=1 exp(

ϵy′j
2 )|∑k

j=1 exp(
ϵy′j
2 ) ·∑k

j=1 exp(
ϵ∗ y′j

2 )

As
∑k

j=1 exp(
ϵy′j
2 ) ·∑k

j=1 exp(
ϵ∗ y′j

2 ) > 0, we focus only on
∑k

i=1 |exp(
ϵy′i
2 )

∑k
j=1 exp(

ϵ∗ y′j
2 )−

exp(
ϵ∗ y′i

2 )
∑k

j=1 exp(
ϵy′j
2 )|. Because

k∑
i=1

|exp(
ϵy′i
2

)
k∑

j=1
exp(

ϵ∗y′j
2

)− exp(
ϵ∗y′i

2
)

k∑
j=1

exp(
ϵy′j
2

)|

=
k∑

i=1
|

k∑
j=1

exp[
1
2

(ϵy′i +ϵ∗y′j)]−
k∑

j=1
exp[

1
2

(ϵ∗y′i +ϵy′j)]|,

thus, evaluating
∑k

i=1 |
∑k

j=1 exp[1
2 (ϵy′i +ϵ∗y′j)]−

∑k
j=1 exp[1

2 (ϵ∗y′i +ϵy′j)]| is equivalent

to evaluating
∑k

i=1 |
∑k

j=1(ϵy′i +ϵ∗y′j)−
∑k

j=1(ϵ∗y′i +ϵy′j)|. We have
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k∑
i=1

|
k∑

j=1
(ϵy′i +ϵ∗y′j)−

k∑
j=1

(ϵ∗y′i +ϵy′j)|

=
k∑

i=1
|kϵy′i +

k∑
j=1

ϵ∗y′j − (kϵ∗y′i +
k∑

j=1
ϵy′j)|

=
k∑

i=1
|ky′i(ϵ−ϵ∗)− (ϵ−ϵ∗)

k∑
j=1

y′j|

=
k∑

i=1
|(ϵ−ϵ∗)(ky′i −

k∑
j=1

y′j)|

= |ϵ−ϵ∗|
k∑

i=1
|ky′i −

k∑
j=1

y′j|.

Hence, |ϵ−ϵ∗| determines the distance between y and z, and the conclusion of this

property is achieved. ■

6.4.3 Defending against membership inference attacks

In membership inference attacks, the attacker essentially exploits any overfitting of the

target model, in that models often behave more confidently toward data on which they

were trained versus data they are seeing for the first time [106]. Thus, the overarching

aim of our defense method is to reduce the gap between the confidence score vectors of

training set members versus non-members.

To this end, we set a threshold τ to 0 < τ < 1, which is used to decide whether the

target model is confident in an input data record. To explain, on the one hand, if ymax > τ,

the target model will appear confident in the input data record. Therefore, according to

Property 6.3, the defense method should reduce this confidence to confuse the attacker by

setting ϵ< ϵ∗, where ϵ∗ makes z= y. The exact value of ϵ depends on the expected utility

of the perturbed confidence score vector: ||z−y||1. On the other hand, if ymax ≤ τ, the

target model will appear less confident in the input data record. Therefore, the defense

method should increase the confidence by setting ϵ> ϵ∗.

Moreover, according to Property 6.1, as the value of ϵ is always larger than 0, the

order of the scores in y will be preserved in z after perturbation, i.e., if yi is ymax in y,

then zi is zmax in z. Typically, the user of the target model will select the predicted class

with the highest probability. Hence, this defense method does not affect user experience.
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6.4.4 Defending against model inversion attacks

In model inversion attacks, the attacker trains an inversion model G to approximate

the inverse mapping of the target model F [133]. The attack works due to the rich

information contained in confidence vectors [37]. Thus, this defense method works to

reduce the content of that information. One way to do this is to increase the distance

between the confidence vector and its perturbed version. According to Property 6.4, the

distance between y and z is based on |ϵ−ϵ∗|. Hence, to widen the distance, if ϵ> ϵ∗, then

ϵ should be set a large value. Otherwise, ϵ should be set a small value. In particular,

when ϵ> ϵ∗, increasing the value of ϵ will increase the variance of the scores in z. A high

variance makes z appear as a confident prediction. Oppositely, when ϵ< ϵ∗, increasing

the value of ϵ will decrease the variance of the scores in z. A low variance makes z appear

as an unconfident prediction. Thus, using a large or small value of ϵ depends on the

original vector y. If y is a confident prediction, ϵ should be set a small value which not

only increases the distance between y and z but also makes z appear as an unconfident

prediction. Otherwise, if y is an unconfident prediction, ϵ should be set a large value.

6.5 Experiments

6.5.1 Experimental setup

6.5.1.1 Datasets

The three datasets we chose for the experiments are broadly used in related studies.

These are:

• MNIST [62], which consists of 70,000 handwritten digit images in 10 classes:

0,1,2,3,4,5,6,7,8,9. Each image has been resized to 32×32.

• Fashion-MNIST [32] consisting of 70,000 images across 10 classes, including

T-shirt, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag and ankle boot.

Again, each image has been resized to 32×32.

• CIFAR10 [61] with 60,000 images across 10 classes, including airplane, automo-

bile, bird, cat, deer, dog, horse, ship and truck, also resized to 32×32.

Table 6.1 presents the data allocation in our experiments. Note that the size of the

attacker’s training set is 60,000 for MNIST and Fashion-MNIST and 50,000 for CIFAR10.

In the real world, it is infeasible for an attacker to collect a great many samples that
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share the same distribution with the training set of a target model. In the experiments,

we attempt to build a strong attacker who can collect a large number of samples. Then,

successfully defeating this strong attacker can prove the effectiveness of the proposed

defense method.

Dataset Dtrain
target Dtest

target Dtrain
attack Dtest

attack

MNIST 60,000 10,000 60,000 10,000
Fashion-MNIST 60,000 10,000 60,000 10,000

CIFAR10 50,000 10,000 50,000 10,000

Table 6.1: Data allocation

6.5.1.2 Target models

We used the architecture proposed in [133] for the three datasets, which consists of three

CNN blocks, two fully-connected layers and a softmax function. Each CNN block consists

of a convolutional layer followed by a batch normalization layer, a max-pooling layer and

a ReLU activation layer. The two fully-connected layers are added after the CNN blocks.

Finally, the softmax function is added to the last layer to convert arbitrary neural signals

into a valid confidence score vector y.

Table 6.2: Comprehensive results of the three defense methods

Dataset Defense methods
Utility Model inversion Membership inference Time overhead

Train acc. Test acc. Conf. dist. Inversion error ML-Leaks NSH Train (h) Test (s)

MNIST

No defense 99.94% 99.63% 0 0.935 70.4% 72.3% 0 0
DP-based (ϵ= 0.1) 99.94% 99.63% 0.948 0.924 49.8% 50.3% 0 6.96e−05
DP-based (ϵ= 0.7) 99.94% 99.63% 0.783 0.925 50.4% 50.9% 0 6.95e−05
DP-based (ϵ= 1.4) 99.94% 99.63% 0.535 0.927 51.1% 51.6% 0 6.97e−05
DP-based (ϵ= 2.0) 99.94% 99.63% 0.328 0.928 52.0% 52.5% 0 6.95e−05

MemGuard 99.94% 99.63% 0.392 0.908 57.2% 55.3% 1.02 2.53
Purification 99.87% 99.55% 0.287 0.925 65.5% 68.2% 6.31 1.22e−04

Fashion-MNIST

No defense 99.74% 92.73% 0 0.708 69.3% 71.3% 0 0
DP-based (ϵ= 0.1) 99.74% 92.73% 0.948 0.691 49.7% 50.1% 0 6.91e−05
DP-based (ϵ= 0.7) 99.74% 92.73% 0.774 0.694 50.5% 50.8% 0 6.91e−05
DP-based (ϵ= 1.4) 99.74% 92.73% 0.514 0.695 51.2% 51.7% 0 6.90e−05
DP-based (ϵ= 2.0) 99.74% 92.73% 0.316 0.697 51.9% 52.5% 0 6.93e−05

MemGuard 99.74% 92.73% 0.442 0.697 55.2% 54.2% 1.1 2.62
Purification 99.68% 92.65% 0.301 0.693 65.1% 67.1% 6.40 1.22e−04

CIFAR10

No defense 99.14% 81.63% 0 0.392 65.6% 63.2% 0 0
DP-based (ϵ= 0.1) 99.14% 81.63% 0.947 0.426 50.1% 49.3% 0 7.41e−05
DP-based (ϵ= 0.7) 99.14% 81.63% 0.787 0.428 50.8% 49.9% 0 7.40e−05
DP-based (ϵ= 1.4) 99.14% 81.63% 0.495 0.429 51.5% 50.6% 0 7.39e−05
DP-based (ϵ= 2.0) 99.14% 81.63% 0.305 0.502 52.3% 51.5% 0 7.42e−05

MemGuard 99.14% 81.63% 0.327 0.431 53.9% 52.9% 5.1 2.7
Purification 99.09% 81.56% 0.284 0.403 61.2% 58.0% 8.24 1.24e−04
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6.5.1.3 Attack models

We used two different attack models for the membership inference attacks.

ML-leak attack [98]. This is a confidence-based membership inference attack. The

attacker has no knowledge of the Dtrain
attack and Dtest

attack membership labels. Thus, a shadow

model has to be trained to replicate the target model; then the attack model must be

trained based on the confidence scores of the shadow model. To guarantee the strongest

attack, the shadow model should have the same architecture as the target model. We use

the same architecture as in [98] for the attack model which is a multi-layer perceptron

with a 64-unit hidden layer and a sigmoid output layer.

NSH attack [79]. This is a combined confidence/label-based membership inference

attack. The attacker has knowledge of the Dtrain
attack and Dtest

attack membership labels. Thus,

no shadow model is needed. The adversary can simply directly query the target model

to receive the confidence score vectors. The architecture is the same as in [79] which

consists of three neural networks. The first has the layers of size: [100,1024,512,64] and

takes confidence score vectors as input. The second has the layers of size: [100,512,64]

and takes labels as input. The third network has the layers of size: [256,64,1] and takes

the outputs of the first and second networks as input.

For the model inversion attacks, we adopted the model proposed in [133].

Adversarial model inversion attack [133]. The adversary trains an inversion model

to infer reconstruction of the input data record. We use the same inversion model

architecture as in [133] which consists of four transposed CNN blocks. The first three

blocks each has a transposed convolutional layer followed by a sigmoid activation function

that converts neural signals into real values in [0,1].

6.5.1.4 Comparison defense methods

For comparison, we chose two existing defense methods that have been experimentally

proven as state-of-the-art [132]. These are the MemGuard method [53] for the mem-

bership inference attacks and the Purification method [132] for the model inversion

attacks.

MemGuard [53]. The defense model consists of three hidden layers: [256,128,64].It uses

ReLU in the hidden layers and sigmoid in the output layer.

Purification [132]. The defense model used is an autoencoder with the layers of size

[10,7,4,7,10]. Every hidden layer uses a ReLU activation function and batch normaliza-

tion.
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6.5.1.5 Evaluation metrics

We used five metrics to evaluate the performance and efficiency of these defense methods

following the specifications outlined in [132]. A brief description of each follows.

Classification accuracy. This metric demonstrates the performance of target models

on classification tasks. It is measured on the training set D train
target and test set Dtest

target of

target models.

Confidence score distortion. This metric shows the utility of the perturbed confidence

score vectors. As analyzed in [11], the utility is measured by computing the l2 norm of

the distance between an original confidence score vector, predicted by a target model,

and a perturbed confidence score vector, computed using the defense method.

Membership inference accuracy. This metric shows the classification accuracy of

attack models in predicting the membership of input data records. It is measured on

Dtrain
target −Dtrain

attack, i.e., members, and Dtest
target −Dtest

attack, i.e., non-members.

Inversion error. This metric shows the reconstruction accuracy of the attack model in

reconstructing the input data records. It is measured by computing the mean squared

error between the original input data record and the reconstructed data record. It is

measured on datasets Dtrain
target and Dtest

target.

Time overhead. This metric indicates the efficiency of the defense methods. It is

measured by reporting the extra time consumed by applying defense methods. The time

overhead includes both the training time of any models introduced by these defense

methods and the test time when using these models.

6.5.2 Experimental results

6.5.2.1 Comparison with existing defense methods

The full results of the comparisons appear in Table 6.2. As shown, our method signifi-

cantly reduced the membership inference accuracy with no classification accuracy loss

and 0 training time. By comparison, the other defense methods had a very high training

time. The test time overhead of our method, i.e., perturbing the confidence score vectors,

was also much lower than the other methods. MemGuard’s test time is consumed by

solving an optimization problem, while for the Purification method, it is incurred in

computing a forward pass of the defense model.

After applying our method, the membership inference accuracy drops about 20% on

MNIST and Fashion-MNIST datasets, and about 15% on CIFAR10 dataset. Thus, our

method renders the results of a membership inference attack down to little more than a
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random guess for the attacker, which is better than the other two methods. Additionally,

our method yielded a larger distortion in confidence scores than the other two methods.

We reason this is because those two methods treat perturbing the confidence scores as

an optimizing problem. Our method is also capable of less distortion, simply by setting

a larger ϵ value. However, increase in the value of ϵ will incur the rise of membership

inference attack success rates. Thus, here is a trade-off between the confidence score

distortion and the membership inference attack success rate. During the experiments, we

found that confidence score distortion was not a critical factor in classification accuracy.

This is due to the fact that a classifier typically selects the label with the highest score

as the output. Hence, any defense method can guarantee that the classification accuracy

level will be maintained, as long as there is also a guarantee that the scores in the

perturbed vector will be in the same order as the original vector. Therefore, we can focus

on tuning ϵ value to reduce attack success rates.

The results for model inversion attacks are shown in Figure 6.3, 6.4 and 6.5. We

drew three interesting findings from these experiments. First, the reconstructed images

reveal the average features of one class of images. This means that the images belonging

to one class have a very similar reconstructed image. The second finding is that the

quality of reconstructed images depends heavily on the color and background of the

original images. A grey-scale image with no background usually gives rise to a much

better reconstructed version than a colorful image with a very rich background. As

shown in the second row in Figure 6.5, even without defense, the model inversion attack

method [133] cannot precisely reconstruct images in CIFAR10. Then, as shown in the

third row, using our defense method can make the attack results even worse. The third

finding is that inversion error is not critical to the quality of the reconstructed images.

This is because the aim of model inversion attack is usually for human perception. For

example, slightly rotating or adding a small amount of noise to an image has a negligible

impact on human perception but may induce huge mean squared errors, i.e., inversion

errors. Thus, even if a reconstructed image has a huge inversion error compared with

the original one, it may still be recognizable to a person. This finding also explains the

converse that some reconstructed images have very bad quality despite small inversion

errors. The use of an image-specific evaluation metric, e.g., structural similarity index

measure (SSIM) [129], is left to future work.

From Figure 6.3 and 6.4, we can see that, without any defense mechanism, the

attacker can infer very accurate reconstructions of the images. However, with a defense,

the inversion results become vague. Our method "averages" the images using DP making
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Figure 6.3: Defenses against the model inversion attacks on MNIST. Rows 3-6 show the
results for our DP-based method with different ε values.

them look more the same by removing useful information from the confidence score

vectors. Moreover, as the ε value increases, the reconstructed images become clearer.

This can be explained by the fact that when ε < ε∗, a larger ε value introduces less

perturbation which implies less information removal.

Notably, MemGuard achieved very good results, even though it is not designed to

defend against model inversion attacks. It also removed the "bright points" from the

reconstructed images. These "bright points" represent the average features of one class.

Moreover, the Purification method also did a commendable obfuscation job.

131



CHAPTER 6. ONE PARAMETER DEFENSE - DEFENDING AGAINST DATA
INFERENCE ATTACKS VIA DIFFERENTIAL PRIVACY

Figure 6.4: Defenses against the model inversion attacks on Fashion-MNIST. Rows 3-6
show the results for our DP-based method with different ε values.

6.5.2.2 The impact of different ε values on our method

Figures 6.6, 6.7, 6.8 and 6.9 demonstrate the impact of varying ε values across the five

metrics on our method. We can see that as the ε value increases, classification accuracy

remains the same, confidence score distortion decreases, membership inference accuracy

rises, and inversion error stays mostly steady.

In terms of classification accuracy, as explained above, since our method preserves

the order of the scores in a confidence vector, classification accuracy is not affected by

the value of ε. For confidence score distortion and membership inference accuracy, as

analyzed in Section 6.4, when ε< ε∗, a larger ε value incurs a smaller confidence score

distortion which leads to higher membership inference accuracy. Hence, the confidence

score distortion does not affect the classification accuracy but it does have a huge impact
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Figure 6.5: Defenses against the model inversion attacks on CIFAR10. Row 3 shows the
results for our DP-based method with ε= 0.1.

0.4 1.0 1.7 3.0
 value

0.8

0.9

1

1.1

C
la

ss
if.

 M
N

IS
T DP-based

(a) Classification accuracy in
MNIST

0.4 1.0 1.7 3.0
 value

0.8

0.9

1

1.1

C
la

ss
if.

 F
.-M

N
IS

T

DP-based

(b) Classification accuracy in
Fashion-MNIST

0.4 1.0 1.7 3.0
 value

0.5
0.6
0.7
0.8
0.9

1

C
la

ss
if.

 C
IF

AR DP-based

(c) Classification accuracy in
CIFAR10

Figure 6.6: Classification accuracy with varying ε values

on membership inference accuracy. Finally, the inversion error is not much affected by

the value of ε. This is because the inversion error is used as the loss function to train the

attack model. Therefore, as long as the attack model converges, the inversion error will

also converge to a relatively narrow range. It should be noted, however, that although

different ε values yield almost the same inversion error, they can lead to very different

model inversion results, once more demonstrating that inversion errors are not a critical

determinant in the model inversion results.
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Figure 6.7: Confidence score distortion with varying ϵ values

0.4 1.0 1.7 3.0
 value

0.49
0.51
0.53
0.55
0.57
0.59
0.61

M
em

. I
nf

er
. M

N
IS

T

DP-based

(a) Membership inference accu-
racy in MNIST

0.4 1.0 1.7 3.0
 value

0.49
0.51
0.53
0.55
0.57
0.59
0.61

M
em

. I
nf

er
. F

.-M
N

IS
T

DP-based

(b) Membership inference accu-
racy in Fashion-MNIST

0.4 1.0 1.7 3.0
 value

0.5
0.52
0.54
0.56
0.58

0.6

M
em

. I
nf

er
. C

IF
AR

DP-based

(c) Membership inference accu-
racy in CIFAR10

Figure 6.8: Membership inference accuracy with varying ϵ values

6.6 Summary and Future Work

In this chapter, we proposed a differentially private and time-efficient defense method

against both membership inference attacks and model inversion attacks. Our strategy is

to use an exponential mechanism to modify and normalize the confidence score vectors to

confuse the attacker’s model. The experimental results show that this approach outper-

forms existing defense methods in various respects, especially, in terms of maintaining

classification accuracy loss and not incurring training overhead.

In future, we plan to extend our method to handle the attacks that only make use of

labels [19, 65]. A possible method is to modify the output label using a DP mechanism,

e.g., exponential mechanism. This, certainly, will introduce a classification error. However,

as every target model has an intrinsic classification error when classifying a dataset,

we need only to control the introduced classification error smaller than the intrinsic

classification error by properly tuning the privacy budge ϵ. Another future work is using
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Figure 6.9: Inversion error with varying ϵ values

image-specific evaluation metrics in our experiments, e.g., SSIM, to measure the quality

of reconstructed images.
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CONCLUSION

This thesis addressed some privacy preservation challenges in the RL context by applying

DP mechanisms. We introduced basic background theories of RL and DP in Chapter

2, and addressed variant challenges in RL and MARL systems in the following chap-

ters. In Chapter 3, we proposed a differentially private advising framework to apply

DP to allow more occurrence of advising in a MARL system. We breaks the limit of

traditional advising frameworks that our method allow the occurrence of advising when

two agents’ actions differ in one. In Chapter 4, we proposed a differentially private

planning framework for logistics-like problems in the MARL context. Our method allows

multiple agents collaboratively plan the route in a private way. In Chapter 5, we applied

the exponential mechanism of DP to obfuscate a DRL agent’s observations, in order to

protect its training policy from being inferred by privacy leakage attacks. The similar

method was also applied in Chapter 6, but addressed to protect deep learning classifiers

against membership inference attacks and model inversion attacks.
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