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ABSTRACT

driven learning. The primary goal of reinforcement learning is to train autonomous

agents to learn the optimal behaviors for their interactive environments. Deep
reinforcement learning promotes a higher-level understanding of the visual world in
the field of reinforcement learning by combining deep learning models and reinforce-
ment learning algorithms. Since reinforcement learning is achieving great success in
an increasing number of application fields that may involve huge amounts of private
information, the security of policies and privacy preservation in reinforcement learning
have given rise to widespread concerns. In addition, deep reinforcement learning policies
parameterized by neural networks have been demonstrated to be vulnerable to adversar-
ial attacks in supervised learning settings. Privacy leakage also occurs in multi-agent
reinforcement learning systems where agents’ actions or behaviors are directly exposed
to other agents.

To address these multiple privacy concerns in reinforcement learning, we apply
differential privacy in variant scenarios of reinforcement learning. In this thesis, we
introduce our differentially private methods in those diverse scenarios to preserve privacy,
including the multi-agent advising framework, multi-agent planning framework, the
deep reinforcement learning context, machine learning classifiers and multi-agent game
theoretic framework, respectively. We have provided detailed theoretical analysis and
comprehensive experimental results to demonstrate that our methods can guarantee
privacy preservation as well as the utility of reinforcement learning in diverse scenario
in different chapters.

R einforcement learning is a principled Al framework for autonomously experience-
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