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Abstract. Unsupervised domain adaptation (UDA) methods have been
broadly utilized to improve the models’ adaptation ability in general
computer vision. However, different from the natural images, there exist
huge semantic gaps for the nuclei from different categories in histopathol-
ogy images. It is still under-explored how could we build generalized UDA
models for precise segmentation or classification of nuclei instances across
different datasets. In this work, we propose a novel deep neural net-
work, namely Category-Aware feature alignment and Pseudo-Labelling
Network (CAPL-Net) for UDA nuclei instance segmentation and classi-
fication. Specifically, we first propose a category-level feature alignment
module with dynamic learnable trade-off weights. Second, we propose to
facilitate the model performance on the target data via self-supervised
training with pseudo labels based on nuclei-level prototype features.
Comprehensive experiments on cross-domain nuclei instance segmenta-
tion and classification tasks demonstrate that our approach outperforms
state-of-the-art UDA methods with a remarkable margin.

Keywords: Computational pathology · Nuclear segmentation · Nuclear
classification · Unsupervised domain adaption · Deep learning.

1 Introduction

Automatic nuclei instance segmentation and classification are crucial for digital
pathology with various application scenarios, such as tumour classification and
cancer grading [1]. However, manual labelling is limited by high subjective, low
reproducibility, and resource-intensive [2,3]. Although deep learning-based meth-
ods can achieve appealing nuclei recognition performance, they require sufficient
labelled data for training [3,4,5,6,7]. By directly adopting the off-the-shelf deep
learning models to a new histopathology dataset with a distinct distribution,
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the models suffer from performance drop due to domain bias [8,9]. Recently,
unsupervised domain adaption methods have been proposed to tackle this issue
[10,11,12], and enable the learning models to transfer the knowledge from one
labelled source domain to the other unlabelled target domain [13,14,15].

Several methods have recently been proposed for unsupervised domain adap-
tive nuclei instance segmentation in histopathology images [8,9]. Inspired by
CyCADA [16], Liu et al. [8] first synthesize target-like images and use a nuclei
inpainting mechanism to remove the incorrectly synthesized nuclei. The adver-
sarial training strategies are then used separately at the image-, semantic- and
instance-level with a task re-weighting mechanism. However, this work can only
address the instance segmentation for nuclei within the same class. In Yang et
al.’s work [9] , firstly, local features are aligned by an adversarial domain dis-
criminator, and then a pseudo-labelling self-training approach is used to further
induce the adaptation. However, the performance improvement of this work re-
lies on weak labels and fails to get good training results without target domain
labels. In addition, although this work is validated on the cross-domain nuclei
segmentation and classification, their adaptation strategies are class-agnostic.
In the real clinical, the nuclei objects in the histopathology images belong to
various classes, and the characteristics of the nuclei in different classes are also
distinct [17]. In addition, the number of objects within each category is also im-
balanced in the histopathology datasets [18]. To this end, previous UDA meth-
ods are limited for cross-domain nuclei segmentation and classification due to
the lack of analysis on the nuclei classes when transferring the knowledge.

To address the aforementioned issues, in this work, we study cross-domain
nuclei instance segmentation and classification via a novel class-level adapta-
tion framework. First, we propose a category-aware feature alignment module to
facilitate the knowledge transfer for the cross-domain intra-class features while
avoiding negative transfer for the inter-class ones. Second, a self-supervised learn-
ing stage via nuclei-level feature prototypes is further designed to improve the
model performance on the unlabelled target data. Extensive experiments indi-
cated the effectiveness of our proposed method by outperforming state-of-the-art
UDA methods on nuclei instance segmentation and classification tasks. Further-
more, the performance of our UDA method is comparable or even better than
the fully-supervised upper bound under various metrics.

2 Methods

2.1 Overview

Our proposed model is based on Hover-Net [6], a state-of-the-art method for
fully-supervised nuclei instance segmentation and classification. The framework
is constructed by three branches sharing the same encoder for feature extraction
and using three decoders for different tasks: 1) Nuclear pixel (NP) branch to
perform binary classification of a pixel (nuclei or background); 2) Hover (HV)
branch to predict the horizontal and vertical distances of nuclei pixels to their
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centroid; 3) Nuclear classification (NC) branch to classify the nuclei types of
pixels. The supervised Hover-Net loss function of our model is defined as LF :

LF = Lnp + Lhover + Lnc (1)

The network architecture of our proposed model is shown in Fig. 1. Our
proposed UDA framework is optimized in two stages. First, class-level feature
alignment modules are proposed to alleviate the domain gap at the feature level.
In the second stage, the pseudo-labelling process enhanced by the nuclei-level
prototype is further proposed for self-supervised learning on the unlabelled target
images.

Fig. 1. Overview of the proposed category-aware prototype pseudo-labelling network.

2.2 Category-aware Feature Alignment

In the histopathology datasets with multi-class nuclei, there is a very large gap
in the number of nuclear in each category. This may lead to many images in the
dataset having only a few nuclear categories, and some nuclear types are absent
from an image. In addition, the features of the nuclei from different classes also
vary. Under this situation, the typical class-agnostic feature alignment strategies
may lead to the negative transfer of the features in different categories. To tackle
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this issue, for the NC branch on nuclei classification, we propose to conduct
feature alignment for the cross-domain features within each class separately.
Particularly, an adversarial domain discriminator Dc is introduced to adapt the
features under the class c. Compared with directly employing a class-agnostic
domain discriminator for the NC branch, the class-aware domain discriminators
can avoid the misalignment across different classes and further encourage the
knowledge transfer in classification learning.

The detailed paradigm is shown in Fig. 1a. First, we denote the features of
the NC branch in the typical Hover-Net as Fnc, and the N-class prediction as
Pnc. Note that Pnc contains N channels, and the predictions in each channel
represent the classification results for each specific class. For each category c,
we formulate the Pnc into a binary class prediction map P c

nc, where the pixel
value is set to 1 if it belongs to the nuclei in this category, otherwise set to 0. To
incorporate the class-aware information into the feature alignment, we propose
to generate the prototype features F c

pt for the class c by dot-multiplying Fnc with
the binary P c

nc. In addition, if any P c
nc is empty, we will not perform subsequent

training on the nuclei in this class. In other words, we only deal with the nuclear
types that exist in the input images. In each domain, the prototype features F c

pt

for the class c pass through the corresponding adversarial discriminators Dc for
class-aware adaption at the feature level.

To avoid manually finetuning the trade-off weights for the adversarial loss in
N categories of the NC branch, we let the overall framework automatically learn
these weight parameters during training. The learnable weighted discriminator
loss is formulated as follows:

Lca
NC = ωL

c

∑
c=1

Ladv
c (2)

where the Ladv
c denotes the adversarial training loss of Dc for class c, and ωL

c is
its corresponding learnable loss weight.

The overall domain discriminator loss function of our model is defined as:

Ldis = Lca
NC + Ladv

NP + Ladv
HV (3)

where Ladv
NP and Ladv

HV are the feature adaptation loss functions in the NP and HV
branches, respectively. Particularly, we utilize adversarial domain discriminators
on the cross-domain output features of the NP and HV branches for adaptation.
Details of the supervised Hover-Net loss and the adversarial loss are shown in
the Appendices. With the above loss terms, the overall loss function of the first
stage approach can be written as:

Ls1 = LF + Ldis (4)

2.3 Nuclei-level Prototype Pseudo-labelling

Although the class-aware feature alignment modules can narrow the domain
gaps, the lack of supervised optimization on the target images still limits the
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model’s segmentation and classification performance. Therefore, in the second
stage, we use the output of the first stage model as pseudo labels for self-
supervised learning to further improve the model performance on the target
images. The detailed training process can be referred to Fig. 1b.

Different from the traditional self-training process with the pseudo labels, we
only train the target domain of the HV branch during the second stage pseudo-
labelling process. In the extensive experiments, we noticed that the performance
of the classification predictions on the target images from the first stage model
is limited. In addition, the binary segmentation predictions lack object-wise in-
formation. Moreover, the model trained with all pseudo labels may not perform
well due to the low quality of some pseudo-labelling classes. To avoid the dis-
turbance from the less accurate and representative pseudo labels, we no longer
consider classification and binary segmentation branches in the second stage but
particularly focus on the predictions from the HV branch, where the feature
maps describe the distance from each pixel to the nuclei’s centre point. There-
fore, the features for each nuclear object can be regarded as a prototype at the
object level, which contains morphological information such as the shape and
size of the specific nuclear. By self-supervised learning with the pseudo labels on
the predictions of the HV branch, the bias between nuclei objects can be further
reduced. The overall loss function for the second stage is as follows:

Lp =
1

Np

Np∑
i=1

|xp
i − ŷpi |

2 (5)

where xp
i is the predicted features from the HV branch for each nuclear object p

in the second stage and ŷpi is the object features generated by the pseudo labels.

3 Experiments

3.1 Datasets and Evaluation Metrics

We conduct experiments on two datasets from Lizard [18], a large-scale colon
tissue histopathology database at the 20x objective magnification for nuclei in-
stance segmentation and classification under six types: epithelial, connective
tissue, lymphocytes, plasma, neutrophils, and eosinophils.

In this work, DigestPath (Dpath) and CRAG are employed, where the images
in Dpath are extracted from histological samples from four different hospitals
in China, and the CRAG dataset contains images extracted from whole-slide
images (WSIs) from University Hospitals Coventry and Warwickshire (UHCW).
For both two datasets, we select 2/3 of the whole images for training, and the
remaining 1/3 for testing and validation. Specifically, we use Dpath as the source
domain, with 46 images for training and the rest 22 for validation. CRAG dataset
is used as the target domain, with 42 images for training and the remaining 21
for testing. The training images are randomly cropped to 256×256 patches, and
the data augmentation methods are applied, including flip, rotate, Gaussian blur
and median blur.



6 C. Li et al.

For evaluation, we choose the same metrics as Hover-Net [6]. Dice, Aggre-
gated Jaccard Index (AJI), Detection Quality (DQ), Segmentation Quality (SQ),
and Panoptic Quality (PQ) are for nuclei instance segmentation. In addition, the
F1-scores at the detection and classification levels are employed to evaluate the
nuclei detection and classification performance.

3.2 Implementation Details

We utilize the Hover-Net framework with ResNet50 [19] pre-trained weights on
ImageNet as our base architecture. In the first stage of our adaptation process,
the model is trained in two steps following the Hover-Net [6]. In the first step,
only the decoders are trained 50 epochs. In the second step, all layers are trained
for another 50 epochs. We use Adam optimization in both steps, with an initial
learning rate of 1e-4, which is then reduced to 1e-5 after 25 epochs. In the self-
training pseudo-labelling part, the Adam optimizer with a learning rate of 1e-4
was used to train 50 epochs with a batch size of 20. Experiments were conducted
on one NVIDIA GeForce 3090 GPU and implemented using PyTorch.

3.3 Comparison Experiments

We conduct a series of comparative experiments to compare the performance.
The details are as follows: (1) Source Only [6]: original Hover-Net without adap-
tation. (2) PDAM [8]: a UDA nuclei instance segmentation method with pixel-
level and feature-level adaptation. Since it can only be used for binary classifi-
cation for objects, we only compare the results of nuclei instance segmentation
with this method. (3) Yang et al. [9]: a UDA framework is proposed based on
global-level feature alignment for nuclei classification and nuclear instance seg-
mentation. In addition, a weakly-supervised DA method is also proposed using
weak labels for the target images such as nuclei centroid. We only compare with
the UDA method in this work for a fair comparison. (4) Fully-supervised: fully
supervised training on the labelled target images, as the upper bound.

Table 1. Experimental results on UDA nuclei instance segmentation.

Dpath → CRAG

Methods Dice AJI DQ SQ PQ

Source Only [6] 0.378 0.201 0.336 0.768 0.259
PDAM [8] 0.596 0.323 0.467 0.676 0.316
Yang et al. [9] 0.766 0.494 0.648 0.765 0.496

Baseline 0.750 0.455 0.604 0.759 0.458
Baseline+CA 0.772 0.502 0.661 0.773 0.510
Baseline+CA+PL 0.781 0.517 0.675 0.772 0.522
Proposed 0.785 0.519 0.681 0.769 0.524
Full-supervised 0.778 0.526 0.683 0.783 0.535
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Evaluation on Nucleus Instance Segmentation. A comparison of the seg-
mentation performance between our model and state-of-the-art methods is re-
ported in Table 6. From the table, it can be observed that our instance segmenta-
tion effect is better than the two existing models. Compared with the source-only
method, PDAM [8] has a performance improvement by aligning features at the
panoptic level. The UDA method of Yang et al. [9] achieves good segmentation
performance. Our method achieves the highest scores among all methods, with
Dice and AJI being 2.3% and 1.6% higher than the previous methods, respec-
tively. In comparison with the full-supervised model, the performance of our
proposed UDA architecture is close to it. In particular, our Dice is higher than
the results of the full-supervised model.

Table 2. Experimental results on UDA nuclei classification. F 1
c , F 2

c , F 3
c , F 4

c , F 5
c and F 6

c

denote the F1 classification score for the Eosinophil, Epithelial, Lymphocyte, Plasma,
Neutrophil and Connective tissue, respectively. Favg denotes the average of all the
F1-score for the classification under each category.

Dpath → CRAG

Methods Det F 1
c F 2

c F 3
c F 4

c F 5
c F 6

c Favg

Source Only [6] 0.490 0.022 0.389 0.324 0.195 0.038 0.161 0.188
Yang et al. [9] 0.736 0.037 0.670 0.330 0.371 0.017 0.428 0.309

Baseline 0.702 0.044 0.687 0.292 0.381 0.155 0.475 0.339
Baseline+CA 0.731 0.128 0.697 0.351 0.400 0.084 0.498 0.360
Baseline+CA+PL 0.772 0.110 0.725 0.327 0.383 0.352 0.558 0.409
Proposed 0.775 0.111 0.714 0.389 0.402 0.377 0.535 0.421
Full-supervised 0.748 0.167 0.724 0.388 0.419 0.428 0.545 0.445

Evaluation on Nucleus Classification. Table 5 reports the performance
comparison of our method with other works on nuclei classification. Although
Yang et al. [9] can achieve cross-domain nuclei classification and segmentation
based on Hover-Net, their feature alignment modules are class-agnostic, which
incurs the misalignment issues for the cross-domain features from different cat-
egories and further limits the performance. On the other hand, our proposed
class-aware UDA framework has outperformed [9] by a large margin. Our model
achieves a 4% improvement in the F1 detection score in the detection metric. In
addition, our method improves the classification performance for all categories.
Moreover, our method achieves significant improvements in classes with sparse
samples like Neutrophil and Eosinophil, around 10% and 34%, respectively.

3.4 Ablation Studies

To test the validity of each component of our proposed model, we conducted ab-
lation experiments. Firstly, based on our architecture, we kept only the feature-
level domain discriminator on the three branches as our baseline method. Sec-
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ondly, we kept only the class-aware structure, removing the pseudo labels based
on the nuclei-level prototype (Baseline+CA). In addition, we also compared our
nuclei-prototype pseudo-labelling process with the traditional one, which directly
trains the model on the target images with all predictions in the first stage as
the pseudo labels (Baseline+CA+PL).

Table 6 and Table 5 show the instance segmentation and classification per-
formance of all the ablation methods. From the tables, we can observe that
the class-aware structure substantially improves the classification performance
under categories with sparse samples (e.g. Neutrophil and Eosinophil), with a
higher than 10% improvement in the classification F1-score. This phenomenon
illustrates the effectiveness of class-aware adaptation in transferring the knowl-
edge between the multi-class datasets. We note that the class-aware structure
also has an approximate 2% improvement in nuclei segmentation.

Self-supervised training also improved both instance segmentation and clas-
sification performance. In addition, we note that prototype loss has a higher
than 4% improvement on the F1-score for nuclei detection and achieves a bet-
ter nuclei segmentation performance. In addition, our proposed nuclei prototype
pseudo-labelling process also outperforms the typical pseudo-labelling. Due to
the inferior classification performance of the first stage model, training models
with all the pseudo labels might bring the noise to the network optimization,
and limit the overall performance. Visualization examples of the ablation studies
are shown in Fig. 3.

Fig. 2. Visualization predictions for the ablation experiments. Red: Eosinophil, Green:
Epithelial, Yellow: Lymphocyte, Blue: Plasma, Magenta: Neutrophil, Cyan: Connective
tissue. (Best to viewed in color and zoomed-in)
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4 Conclusion

In this paper, we proposed a category-aware prototype pseudo-labelling archi-
tecture for unsupervised domain adaptive nuclear instance segmentation and
classification. In our two-stage framework, category-aware feature alignment
with learnable trade-off loss weights is proposed to tackle the class-imbalance
issue and avoid misalignment during the cross-domain study. In addition, we
proposed a nuclei-level prototype loss to correct the deviation in the second
stage pseudo-labelling training, which further improves the segmentation and
classification performance on the target images by introducing auxiliary self-
supervision. Comprehensive results on various cross-domain nuclei instance seg-
mentation and classification tasks demonstrate the prominent performance of
our approach. Given the appealing performance of our method on the UDA
nuclei instance segmentation tasks, we suggest that future directions can focus
on the cross-domain multi-class object recognition tasks for other medical and
general computer vision scenarios.
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Appendices

A Summary of the annotations in our experiment

Table 3. Details of the number of nuclei under each class in the datasets we used,
DigestPath, CRAG and GlaS.

Class DigestPath CRAG GlaS

Epithelial 70,789 99,124 31,986
Lymphocyte 49,932 27,634 9,763
Plasma 11,352 9,363 2,349
Neutrophil 2,262 1,673 90
Eosinophil 1,349 1,255 286
Connective 32,826 49,994 10,890
Total 168,510 189,043 55,364

B Loss function

B.1 The supervised Hover-net loss

The supervised Hover-Net loss function of our model is defined as LF :

LF = Lnp + Lhover + Lnc (6)

where Lnp, Lhover and Lnc represent the loss with respect to the output at
the NP, HV and NC branch, respectively.

For the NP and the NC branches, the loss is calculated by adding cross-
entropy loss and dice loss:

Lnp = LCE
np + Ldice

np (7)

Lnc = LCE
nc + Ldice

nc (8)

The cross entropy and dice losses are defined as:

LCE = − 1

N

∑
i=1

[pi log (qi)] (9)

Ldice = 1− 2 (qi ∗ pi)
qi + pi

(10)

For the HV branch, we denoted Lmqe as the mean squared error loss, and de-
fined the Lhv loss as the mean squared error between the horizontal and vertical
gradients and the corresponding gradients of the ground truth:
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Lhover = Lmqe + Lhv (11)

Lmqe =
1

N

∑
i=1

(pi − qi)
2

(12)

Lhv =
1

M

∑
i=1

(pi,hor − qi)
2 − 1

M

∑
i=1

(pi,ver − qi)
2

(13)

B.2 The domain discriminator loss

The overall domain discriminator loss function of our model is defined as Ldis:

Ldis = Lca
NC + Ladv

NP + Ladv
HV (14)

where Lca
NC , Ladv

NP and Ladv
HV are the features adaptation loss functions in the

NC, NP and HV branches, respectively.
The learnable weighted discriminator loss is formulated as follows:

Lca
NC = ωL

c

∑
c=1

Ladv
c (15)

where the Ladv
c denotes the adversarial training loss of Dc for class c, and ωL

c

is its corresponding learnable loss weight.
Concretely, we define the adversarial training loss as:

Ladv = − 1

N

∑
i=1

[yi log (pi) + (1− yi) log (1− pi)] (16)

With the above loss terms, the overall loss function of the first stage approach
can be written as:

Ls1 = LF + Ldis (17)

B.3 The prototype pseudo-labelling loss

The prototype pseudo-labelling loss function for the second stage is as follows:

Lp =
1

Np

Np∑
i=1

|xp
i − ŷpi |

2 (18)

where xp
i is the predicted features from the HV branch for each nuclear object p

in the second stage and ŷpi is the object features generated by the pseudo labels.
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C Supplement on the experimental results

Table 4. Experimental results on UDA nuclei instance segmentation by transferring
from Dpath to the Glas dataset.

Dpath → GlaS

Methods Dice AJI DQ SQ PQ

Source Only 0.494 0.264 0.359 0.732 0.262
PDAM 0.571 0.298 0.400 0.667 0.267
Yang et al. 0.639 0.294 0.377 0.735 0.275

Baseline 0.645 0.288 0.374 0.739 0.275
Proposed 0.651 0.296 0.385 0.734 0.281
Full-supervised 0.721 0.423 0.539 0.765 0.411

Table 5. Experimental results on UDA nuclei classification under the UDA scenario:
Dpath → GlaS

Dpath → GlaS

Methods Det F 1
c F 2

c F 3
c F 4

c F 5
c F 6

c Favg

Source Only 0.512 0.022 0.467 0.206 0.068 0.215 0.186 0.194
Yang et al. 0.565 0.000 0.621 0.141 0.152 0.018 0.240 0.195

Baseline 0.566 0.000 0.617 0.145 0.175 0.063 0.249 0.208
Proposed 0.572 0.000 0.647 0.131 0.192 0.168 0.323 0.244
Full-supervised 0.675 0.000 0.775 0.207 0.191 0.000 0.440 0.269

Table 6. Computational complexity analysis, which indicates our proposed modules
can introduce performance gain but bring negligible auxiliary cost.

Dpath → GlaS

Methods Time cost Number of Parameters

Source Only 35 s/iter 3.7M
Baseline 45 s/iter 3.7M
Proposed 45 s/iter 3.7M
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D Visualization predictions for Dpath to GlaS
experiment

Fig. 3. Visualization predictions for the UDA experiment under the Dpath → GlaS
setting.

E Limitations

There are several limitations in our proposed method:
1) The pseudo labels for the nuclei prototype still contain noises, which limits

the self-supervised learning performance.
2) The current method might incur performance drop under some specific

cross-domain nuclei instance segmentation and classification tasks, such as from
Glas to Dpath.
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