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ABSTRACT 

Bridges are key transportation infrastructure. In Australia, over 60% of bridges 

on local roads are over 50 years old. With the deterioration of the bridge 

performance and ever-increasing amount of traffic, the bridge safety is 

becoming a concern for engineering community. A method that can assess the 

bridge's condition in real-time is urgently needed. Structural health monitoring 

(SHM) provides a practical tool to assess and predict the condition of bridges. 

From the perspective of the real-time monitoring, the main factor that hinders an 

ideal bridge condition assessment is the uncertain operational environment. 

Existing SHM methods either try to assess the structural performance under the 

controlled environmental conditions or eliminate the influence of the 

operational environment using long-term monitoring data to train or calibrate 

the condition assessment model. These two ideas cannot fit the target of the 

real-time monitoring.  

To achieve the real-time monitoring, this study proposes a new damage sensitive 

feature (DSF) based on moving principal component analysis (MPCA). The two 

main operational environmental factors: environmental temperature and traffic 

loads, are studied in the assessment process to verify the robustness and 

practicality of the proposed DSF. The numerical and experimental study has 

been carried out to show the reliability and accuracy of the proposed method. 

The mechanism of the DSF variation induced by changes in environmental 

parameters are discussed to show the interpretability of the proposed DSF. The 

value of the DSF can precisely reflect bridge's overall vibration 'rhythm' which 

is reliable to reflect the bridge's instantaneous vibration state. This DSF is not 

restricted to several few pre-considered parameters but reflects the bridge's 

damage condition from a dynamic perspective. 
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Chapter 1 Introduction 

1.1 Research Background 

Bridges are key component of transportation infrastructure that is crucial for a 

society to function well. They are under increasing pressure from continuing 

deterioration, in particular, due to ageing and the overloading as results of 

population growth and heavy vehicle deregulation. In Australia, over 60% of 

bridges on local roads are over 50 years old and approximately 55% of all 

highway bridges are over 20 years old (Austroads 2012). The catastrophic 

Genova Bridge collapsed in Italy in 2018 with 43 people killed and the 

Nanfang'ao Bridge in Taiwan suddenly gave way, injuring more than 20 people. 

These failures highlighted the importance of accurately assessing, maintaining 

and prolonging the design life of our ageing highway infrastructure. The visual 

inspection is a traditional method that has been widely used and is still evolving 

(Khan et al. 2020). However, the reliability and effectiveness of the structural 

condition assessment are largely based on the inspector's performance and 

experience. Since civil structures are usually on a large scale with many areas 

that cannot be accessed directly, the process of the inspection is always time-

consuming and laborious (Avci et al. 2021). Along with the development of the 

computation technology and data science, plenty of new concepts and methods 

known as structural health monitoring (SHM) began to emerge since the 1970s 

(Cawley 2018). SHM provides a practical tool to assess and predict the 

structural performance of bridges. 

SHM is a multi-discipline field involving the data collection by sensor networks 

and the diagnosis of structural health based on the collected data. The collected 
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data are processed to extract the valuable features that can be analysed through 

model-based or data-driven techniques to enhance the decision making for the 

structural condition assessment (An et al. 2019; Bao et al. 2019). The model-

based method intends to construct an accurate bridge finite-element model to 

simulate real structures by correcting model parameters and will readily be 

affected by structural modelling errors, high measurement noise and uncertain 

operational environments (Law and Zhu 2009). Based on the machine learning 

(ML) technique, the data-driven method shows a promising future and has 

already performed better in practical cases (Avci et al. 2021; Yuan et al. 2020). 

In practice, two main factors that hinder algorithms from obtaining the ideal 

result:  

1) For the traditional SHM system, it is time-consuming and expensive to 

install a lot of sensors on bridges and there are some other practical 

difficulties for the system maintenance.  

2) The operational environmental effect cannot be neglected.  

This project aims to develop a data-driven method that is competent for the 

structural condition assessment under the two main factors mentioned above for 

highway bridges. 

1.2 Research objectives 

This project aims to develop a data-driven structural damage detection approach 

using the moving principal component analysis (MPCA) method for bridge 

long-terming monitoring under operational environments. The detailed 

objectives are as follows, 

1) To develop a data-driven structural damage detection approach for 

highway bridges under moving vehicles. 

2) To develop a data-driven structural damage detection approach which 
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can extract damage features considering environmental temperature effect. 

3)  Numerical and experimental verification of the proposed approach. 

1.3 Significance 

The time series vibration signals have drawn great attention since they are easy 

to obtain and can provide sufficient information. Currently a large branch of 

bridge damage indicators is constructed based on modal analysis theory. Modal 

analysis concentrates more on the global behaviour of the system. It assumes 

that the parameters of the bridge system are time-invariant. However, the two 

most common factors: the moving load and temperature, will directly affect the 

parameters of the bridge system (Yuen 2010; Law and Zhu 2009; Law and Zhu 

2011; Han et al. 2021). The bridge system is a time-varying system when the 

environmental factors are considered. Thus, they still face challenges in the real 

time monitoring of bridges. Another type is the time series regression method 

based statistical models such as Kalman filtering or Autoregressive Moving 

Average (ARMA). In the training stage, they require the training data to cover 

the bridge's all potential states as much as possible to generate the statistical 

distribution of target parameters more comprehensively. Therefore, they put a 

high requirement of the data in the training phase with certain difficulties in the 

actual operation. If numerous influencing factors of bridges are considered 

together, the bridge is a complex high-dimensional information source. Bridges 

are always simplified as specific physical and mathematical models for further 

research. The damage is defined on specific bridge parameters, but these 

parameters are far from the completely representative of the actual bridge. 

Damage can affect the actual bridge on the arbitrary number of parameters or 

dimensions, and the theoretical simplification will cause part of these impacts to 

be ignored. Therefore, we need more perspectives to observe and obtain the 

actual state of the bridge.  
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This study will describe the state of bridges from a dynamic perspective. As a 

machine learning method, this study will more concentrate on mining out the 

state of bridges from data itself. A new damage sensitive feature (DSF) is 

extracted from vehicle induced bridge acceleration responses through MPCA. 

This DSF can reflect the bridge status in real time with enough accuracy and 

robustness. Its computational cost is low. The results obtained from it have a 

good interpretability since the changes of features can be corresponded to the 

variations of operational environments. For the real time monitoring of the 

bridge health considering the temperature impact and moving loads, this method 

has a better prospect for practical applications.  

1.4 Layout of the thesis 

This thesis is organised as follows: 

Chapter 1 presents an overview of thesis including background, research 

objectives, significance, and the layout. 

Chapter 2 reviews recent developments of vibration-based bridge SHM methods. 

Bridge SHM under operational environment including moving loads and 

temperature are listed in Section 2.2. Bridge SHM methods of each operational 

environment are introduced separately in corresponding Subsection according to 

two categories: model-based and data-driven based. Section 2.3 introduces 

model-based bridge SHM methods. Section 2.4 introduces data-driven based 

bridge SHM methods including online learning methods and offline monitoring 

methods. Sections 2.2 to 2.4 show the modal analysis-based methods are 

grouped together and introduced into one category in each Subsection according 

to the classification. Section 2.5 introduces bridge SHM methods using PCA. 

Section 2.6 introduces bridge SHM methods using MPCA. 
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Chapter 3 presents the development and numerical verification of the proposed 

approach including introduction of PCA and MPCA, establishment of numerical 

model, results of numerical simulation, results obtained by PCA and MPCA 

with comparison, parametric study of MPCA, and the construction of damage 

sensitive feature with discussions. 

Chapter 4 presents the laboratory experimental study including introduction of 

experimental setup, and experimental results and discussions with an improved 

MPCA. 

Chapter 5 presents the field experimental study including introduction of long-

term monitoring system, and the results and discussions using monitored data 

from different operational conditions. 

Chapter 6 lists conclusions and recommendations from this thesis. 
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Chapter 2 Literature review 

2.1 Overview 

For structural condition assessment, it aims to obtain the information that 

represents the structure's inner situation from outside. Since the vibration signal 

is convenient to obtain with the sufficient information, a large number of 

methods based on vibration measurements have been developed (Cawley 2018). 

In this study, I will focus on vibration-based methods. SHM is an emerging field 

that covers different types of structures, and the review will be specialized in the 

bridge SHM here. This section covers exist and representative studies among 

bridge SHM. From the perspective of the practical use, two characteristics 

become interested points to judge the quality of a method: robustness and 

practicality. These two goals result in two research objectives in this study. The 

next two sections review recent developments in these two aspects. 

2.2 Bridge structural condition assessment under operational environments 

2.2.1 Bridge structural health monitoring under moving loads 

As an essential factor throughout the whole SHM, the operational 

environmental impact has drawn much attention and two main research trends 

to deal with it have been studied: utilization and elimination. The elimination is 

a traditional thinking that enhances the robustness of the method to confront 

uncertainty from environmental impact. On the contrary, the utilization, known 

as ambient vibration survey (AVS), aims at obtaining dynamic responses under 

natural excitation such as traffic loads, wind and micro-tremors. Since it does 

not require a special excitation on structures, the AVS is usually economical, 

convenient and time-saving (Yuen 2010). For bridge engineering, vehicle-bridge 

interaction is a common problem that will affect the analytic accuracy for 
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dynamic analysis. Scholars have done a great effort to fully understand its 

mechanism for further practical applications (Law and Zhu 2011). Based on 

these studies, we can extract useful bridge information from the response of the 

bridge subjected to the moving load excitation. Therefore, as the most common 

live loads in bridges, the moving-load is more preferred to be used as the 

excitation for bridge SHM considering operational environments. 

2.2.1.1 Model based methods 

For moving loads driven methods, most of them are based on vehicle-bridge 

interaction model. Martinez et al. (2020a) used an instrumented moving vehicle 

with installed sensors as both the moving exciter and the moving sensor, by 

solving an inverse problem to obtain bridge’s deflection based on the vehicle-

bridge interaction model for structural condition assessment. The characteristics 

of the vehicle are known and the measurement noise should be low for the 

method. This method is not suitable for the practical application. Another 

moving loads-driven method has been developed using three displacement 

transducers on the bridge (Martinez et al. 2020b). The absolute deflection of the 

bridge is predicted using the displacement measurements, and then the vehicle 

axle loads and bridge structural element stiffness are identified. This method is 

very sensitive to the measurement noise and it is relatively expensive to measure 

the absolute deflection using displacement transducers on the bridge. 

Shahbaznia et al. (2020) proposes a model updating approach which is based on 

the response sensitivity in time-domain to identify damage in railway bridges 

under unknown moving loads. The damage is introduced as a reduction in the 

stiffness of structural elements, and it may not be suitable for other damage 

scenarios such as changing in boundary conditions. Mao et al. (2020) put 

forward a state-space based statistical method using the response sensitivity. It is 

tested on a simply supported beam model under moving loads. The acceleration 
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measurements are used to predict the damage using the finite element model and 

the results are compared with that by Monte Carlo method. Since the 

environmental uncertainties are not considered, the application in real structures 

is limited. Based on the above, the traditional moving loads driven methods can 

perform precisely with good interpretability as they have a relatively strong 

theoretical basis. However, these methods are only suitable to the controlled 

environmental condition, and it is laborious and time-consuming to ensure their 

performance due to their limited anti-noise ability.  

2.2.1.2 Data driven methods 

For moving loads-based data-driven methods, Yeung and Smith (2005) 

proposed a pattern recognition method for structural damage detection using 

two unsupervised artificial neural networks (ANNs): DIGNET and probabilistic 

resource allocating network (PRAN). The finite element model (FEM) of a 

suspension bridge subjected to traffic excitation is established to obtain the 

frequency spectra included the first five vibration modes under the undamaged 

condition as the feature vectors for the training stage of ANNs, and the test 

feature vectors under damaged condition are generated for verifying. The 

responses generated from the FEM are polluted by the thermal stressing and the 

Gaussian noise of 0.5 mm to 3.0 mm standard deviation, and the overall 

identification accuracy is about 70% since the sensitivity thresholds of ANNs 

can be tuned according to the noise level. Ma et al. (2020) provide a variation 

auto-encoder based unsupervised deep-learning method using measured 

accelerations for structural damage detection under moving loads. It is a 

baseline-free approach and received good performances from both the 

numerical study and a scaled-model test of a simply supported beam under a 

single moving load. It needs to further verify under complex environmental 

conditions like real traffic condition to test its robustness. Since most of moving 
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loads-based data-driven damage detection methods base on principal component 

analysis (PCA), it will be further discussed in Section 2.5.1. 

2.2.2 Bridge structural health monitoring under environmental 

temperature 

Although traffic-load is most common operational loads on bridges, the 

temperature effect is far more complicated than the traffic effect. For the 

abnormal detection, the temperature impacts had drawn enormous research 

since it could lead to periodically or anomaly variations in measurements (Zhu 

et al. 2018; Han et al. 2021). 

2.2.2.1 Model based methods 

Since model-based methods use responses from real structures to update the 

FEM model by iteration. The temperature effect takes a leading position for 

some large bridges. Some methods utilize the temperature-induced response to 

identify the stiffness changes and those methods are known as structural 

identification (st-id). Murphy and Yarnold (2018) proposed a temperature-driven 

st-id method based on the thermal response of a highway bridge. They deploy 

different kinds of sensors to monitor the temperature gradient, thermal strain, 

environmental temperature and displacement of the bridge. 70 days' data have 

been collected for a FEM model’s validation and updating. Kulprapha and 

Warnitchai (2012) proposed a model-based approach using ambient thermal 

responses to adjust the analytical model and forecast the bridge's behaviour. It 

uses discrepancy between prediction and measured data to judge structure's state. 

The method has been verified using a scaled bridge model in laboratory. Jesus et 

al. (2019) proposed a model-based hybrid modular Bayesian approach (MBA) 

using Markov chain Monte Carlo (MCMC). The MBA is used to forecast the 

discrepancy between the model and MCMC for multi-parameter identification. 
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This method has been verified on a suspension bridge to predict natural 

frequencies and mid-span displacements under thermal and traffic loads. 

Rather than st-id approach which is based on static responses (e.g., deflection or 

strain), another group of model-based methods concentrate on dynamic features 

like modal parameters and they aim to eliminate the temperature effect. 

Meruane and Heylen (2012) proposed a model-based damage detection method 

using parallel genetic algorithm to solve inverse problem under various 

environmental temperatures using I40 bridge monitored data. The objective 

function includes the changes of the natural frequency and mode-shape. 

Structural damage detection becomes a nonlinear optimization problem which is 

solved by genetic algorithm. Although the accuracy of numerical results can be 

ensured by the input and the iteration of temperature and damage parameters, a 

large number of temperature measured points are required to collect the enough 

information for precisely simulating the temperature field. Huang et al. (2018) 

proposed a similar model-based method using genetic algorithm. The objective 

function is based on the weighted frequency and mode shape changes and this 

method shows good robustness. Wang et al. (2020) proposed a model-based 

damage detection method based on particle swarm optimization (PSO) using 

autoregressive with exogenous input model (ARX) or linear regression (LR) to 

correlate the temperature and frequency. It is tested using one year monitored 

data of a reinforced concrete slab with the temperature range from 0 to 5 Celsius. 

It proves the temperature change will induce large changes of the natural 

frequency. Therefore, for model-based method, the key issue is laborious, time-

consuming for the process of collecting enough data to reduce the effect of 

measurement noise and a high requirement of the operator's knowledge and 

experience for ensuring the accuracy of the established model.  

2.2.2.2 Data-driven methods 
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For data-driven methods based on static responses, the temperature-driven 

approach has drawn some attention recently. Kromanis and Kripakaran (2016) 

proposed a two-stage data-driven temperature-based measurement interpretation 

(TB-MI) method for online monitoring. This method has been verified using a 

scaled truss bridge model. The regression based thermal response prediction 

(RBTRP) is used firstly to generate a statistical model by the statistical or 

machine learning algorithms and then the signal subtraction method (SSM) is 

used for anomaly detection from prediction errors obtained from RBTRP. Since 

it does not rely on the physical model, the regression model can be easily 

transferred to other type of structures. Wang and Ni (2020) proposed a Bayesian 

dynamic linear model (BDLM) to forecast structure's strain responses using 

Gibbs sampling to calculate hidden parameters. The approach is aimed at 

eliminating temperature's effect, and it can forecast strain responses of a bridge 

under seasonal temperature fluctuation that provides a foundation for a real-time 

structural damage detection. 

For data-driven methods using dynamic responses, a large category of studies 

uses modal parameters as damage features. Kim et al. (2007) proposed a 

frequency-based damage detection method using a control chart for early 

warning of damage occurrence under temperature's impact of modal parameters. 

As the damage sensitive feature, nature frequencies extracted from measured 

accelerations are used for damage localization and extent evaluation based on 

analysis of modal strain energy (a model-based method), and the temperature's 

effect is eliminated by the empirical equation obtained at 20 degrees Celsius 

based on linear regression. Since the accuracy of the empirical equation will 

reduce when the gap of the temperature between reference and actual value 

raises, this method is inconvenient for practical application. Gu et al. (2017) 

proposed an unsupervised damage detection method using multiple ANNs to 

eliminate the temperature's effect. Natural frequencies are processed by multiple 
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ANNs, and the state of the structure is identified by using Euclidean distance as 

a novelty index. This method has been verified on the FEM and laboratory 

experiment with good performances. Sarmadi and Karamodin (2020) proposed 

an adaptive Mahalanobis-squared distance (AMSD) based unsupervised damage 

detection method using natural frequencies as input. K-nearest neighbor (kNN) 

method is used for clustering similar state's vectors into the same group based 

on AMSD, and the generalized extreme value distribution (GEV) constructed by 

the block maxima (BM) method is used to decide the threshold. It performs well 

on two real bridge datasets with a high requirement of training samples due to 

its strong theoretical hypotheses.  

For other data-driven methods, Erazo et al. (2019) proposed a residual-based 

damage detection method using spectrum analysis to extract damage features 

which are peak indicators of the spectral density measured from velocity 

responses. It has been verified using a continuous beam bridge model with the 

uniform and non-uniform temperature fields and Kalman filter is used to filter 

temperature effect. Kostić and Gül (2017) proposed a residual-based damage 

detection method using ARX to extract damage features which are the fit ratio 

of ARX measured from acceleration measurements. It has been verified using a 

footbridge model under different temperature conditions and a back-propagation 

artificial neural networks is used to eliminate temperature's effect. Zhang et al. 

(2019) proposed an adapted method based on auto-associative neural networks 

(AANNs). Both of these two methods are verified with 5% noise measurements. 

As above, the data-driven method under varying temperature conditions shows 

great potential for practical application with high robustness and low operation 

difficulty. These methods are mainly for anomaly detection, and they cannot 

provide the accurate estimation of damage severity as the model-based method 

does. So the further study on actual structure under complex conditions is 

needed. However, since these methods concentrate more on the features of 
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uncertain operational environments, they need to take all of possible operational 

environments in which the bridge is in normal operation into account. The 

biggest obstacle to the effect of these methods comes from the unpredictability 

of the future since it is impossible to traverse all possible interference factors in 

bridge health monitoring. The performance of the regression models or neural 

networks on a bridge that has been affected by unconsidered factors cannot be 

ensured. 

2.3 Model based bridge structural condition assessment methods 

The model-based method extracts the information from structure's responses to 

rebuild the physical-model which is simplified by some theoretic hypothesis and 

focuses on interested parameters or features. This model is updated by 

continuous monitored data input aimed at matching actual situation and finally 

we can obtain target information from the updated model. By contrast, the data-

driven method processes structure's response directly based on statistical 

learning methods. A noteworthy point is that the statistical learning model 

should be distinguished from the physical model. The difference between them 

is that the physical model is used to simulate real conditions, while the other is 

constructed in the data space (mathematical space), mainly a series of 

mathematical algorithms designed to extract interested features from the 

complex and assorted information (Li 2019). As discussed above, these models 

propose a high demand of operator's experience and knowledge, and it is time-

consuming and laborious to adjust these models to fit the real structure. 

Although many statistical methods are introduced, the uncertainty in real case is 

far beyond than we can take into consideration in advance based on a theoretic 

hypothesis. The performance of model-based methods in real scenarios under 

the complex environment situation need to be further tested. 
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A large category of model-based methods uses modal parameters as damage 

features. Miguel et al. (2012) proposed a model-based damage detection method 

using time domain stochastic subspace identification (SSI) technique with 

evolutionary harmony search algorithm (HS) to identify, locate and quantity 

severity of damage. The natural frequencies obtained by SSI from measured 

acceleration are used as damage sensitive feature for model updating using HS 

algorithm. This method has been verified using the experimental and numerical 

study under 5% noise. Since the damage severity is set more than 20%, it may 

not be suitable for early warning which usually aims at detecting slight damage. 

Cao et al. (2021) proposed a model-based damage detection and quantification 

method specialized for the bridge structure with a parked vehicle on it. 

Frequency change rate (FCR) obtained from the measured acceleration is used 

to construct structure's baseline as a damage sensitive feature. This method has 

been verified on numerical and experimental study in which 5% stiffness 

deviation is detected under 7% measurement noise with the standard normal 

distribution of elastic modulus' modeling error. It needs further verification on 

real parked vehicle-bridge system. Meixedo et al. (2021) proposed a traditional 

model-based monitoring system using environment vibration. Static responses 

induced by the temperature variation and dynamic responses by traffic loading 

are used to calibrate a nonlinear FEM of a real railway bridge under operational 

environments. Aided with visual inspection, the hourly measured data from 

different types of sensors in five years are used to update the FEM. This FEM 

shows a good performance of estimating modal parameters and static responses 

but requires further study of different damage scenarios in bridge's different 

components. The modal parameters are sensitive to moisture, temperature, and 

measurement noise and they are not robust enough and often make false alarm 

(Moughty and Casas 2016;Avci et al. 2021). Therefore, current model-based 
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method using modal parameters is always combined with other methods or 

under controlled situation to eliminate the disturbance from these factors.  

For other model-based methods, since the accuracy of the model will be 

affected by uncertainty of the material, boundary conditions and simplification 

theoretical hypotheses (Law and Zhu 2009), many mathematical methods are 

introduced. Pai et al. (2019) introduced error-domain model falsification 

(EDMF) and the modified Bayesian model updating (mBMU) to obtain 

structure's parameters under numerous uncertainties. This method has been 

verified on a real bridge with a good performance. The EDMF does not require 

a complete restart between iterations of identification and could define target 

reliability levels at the beginning. Thus, it is more compatible for practical 

application with low computational cost and robust to deal with biased and 

correlated error sources since it sacrifices precision. Zhang et al. (2021) 

proposed a model-based stress monitoring system using partial least-squares 

regression (PLSR). It has been verified on numerical and experimental steel 

bridge. The boundary condition is estimated from the fusion of measured strains, 

rotations and displacements, and the stress distribution is calculated when the 

location of vehicle loads is known. This method is suitable for small and 

medium bridges since nonlinear effects are not considered. Guidio and Jeong 

(2021) proposed a real-time identifying method using finite element method to 

back-calculate elastic modulus's variation. Genetic Algorithm (GA) is used as 

the inversion solver and its anti-noise ability will reduce when the number of 

controlled parameters increases. For practical application, this method needs to 

be extended to three dimensions since it is based on one dimension beam model 

currently. As mentioned above, the model-based methods are more 

concentrating on the accuracy than robustness since they can quantify the 

severity of damage. Due to the high cost of achieving both goals simultaneously, 
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these methods need to create a criterion to control the balance of accuracy and 

robustness in practical use.  

2.4 Data driven based bridge condition assessment methods 

2.4.1 Online learning methods 

Among data-driven methods, a large category of studies that concentrate on the 

online learning. They are usually semi-supervised methods with two stages: the 

offline learning for training and the online learning for monitoring. The training 

stage uses representative data to form identification methods (most of them are 

classification or cluster approaches) and the monitoring stage is for the 

identification. The online learning methods aim at establishing a monitoring 

system which can self-update automatically while encountering a new and 

unknown condition. It is unrealistic to obtain the data covering all structures’ 

conditions and not easy to acquire the enough data from real structures for 

training. Thus, a big challenge for the online learning methods is that they 

should be robust and accurate enough for unknown conditions. This difficulty 

puts a higher request for monitoring algorithms. Entezami et al. (2019) proposed 

a new autoregressive modeling (AR)-based classification approach using 

partition-based Kullback-Leibler (KL) divergence for measuring statistical 

distance. The residuals of AR coefficients are obtained as damage sensitive 

features by AR model’s time-series auto-regress and classified into damaged or 

undamaged clusters for condition assessment based on KL divergence. The 

bridge experiment is on a scaled model with indoor environment condition and 

the online stage is absolutely executed by the program itself after limited data 

training. Therefore, the performance of this method under unscheduled 

conditions on real bridges needs to be further studied since some non-ignorable 

false alarms still appear in this study. Rogers et al. (2019) proposed a modified 

Dirichlet process (DP)-finite Gaussian mixture models (GMM) based Bayesian 
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non-parametric clustering method. It is an ease of use online method with the 

simple feedback since a single user-tunable hyperparameter is set after little 

information input. It has been verified on the Z24 bridge dataset. An essential 

issue is that at the beginning stage, this method needs more interventions that 

require experts to match algorithm with structure’s behaviour under different 

environment situations. Santos et al. (2016) proposed an online unsupervised 

early warning method for cable-stayed bridge. The feed-forward multi-layer 

perception (MLP) neural networks are used to model the structure’s response 

and calculate the residual errors for one step ahead estimation, and the advanced 

k-means clustering-based statistical method is for creating damage index. Two 

methods are used to achieve automatic monitoring without operator’s 

intervention. The Gowda-Diday dissimilarity is used to measure distance for 

clustering, and the global silhouette index (SIL) is used to automatically select 

the cluster’s number to construct the average dissimilarity value, which is 

defined as t-student distribution to form damage index. Since this method is 

specialized for damage in stay cables and they cannot detect the damage 

occurred far away from the sensors, it may not be suitable for other types’ 

bridge. Silva et al. (2017) proposed an unsupervised and non-parametric online 

monitoring clustering method using agglomerative concentric hypersphere 

(ACH) algorithm. This method is compared with Mahalanobis Squared Distance 

(MSD) and GMM method. It has been verified on the Z24 bridge dataset and 

shows a promising future for practical application since it does not require any 

input after the training data matrix has been constructed as baseline. Since the 

initialization of each iteration will affect clustering’s results, it needs further 

verification under more complex scenarios.  

Another type of online learning methods uses modal analysis. Since traditional 

modal analysis requires modal testing that cannot be performed when the bridge 

is in operation, a technique called the operational modal analysis (OMA) is 
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developed. The modal parameters, which are sensitive to the occurrence of 

damage, can be extracted by OMA continuously and in real time when the 

bridge is in running. Cheema et al. (2021) proposed an automatic operational 

modal analysis (OMA) method to identify the natural physical modes out of the 

mathematically spurious modes. It has been verified on an actual cable-stayed 

bridge with higher accuracy than other DP-GMM based OMA method. The 

stabilization diagram contained with many artificial modes are obtained by 

covariance driven stochastic subspace identification (SSI-Cov) method, and 

then real physical modes with uncertainty bounds are calculated by a two 

consecutive DP-GMM approach (cluster and identify). Since the traffic load 

excitation and damage are not considered in this study, this method needs 

further tests under complex situations. Favarelli and Giorgetti (2021) proposed a 

similar OMA based online damage detection method. The stabilization diagram 

calculated by SSI from acceleration signals is used to obtain natural frequencies 

of real modes based on four-mode selection criteria. The natural frequencies are 

selected as damage features by k-means clustering algorithm and frequencies 

density-based time-domain tracking method. One-class classifier neural network 

(OCCNN) is used for anomaly detection on damage features. This method has 

been verified on the Z24 bridge dataset with a satisfactory performance 

compared to other traditional methods like ANN, GMM, KPCA and ANN. It 

needs a further test on other real bridges under complex situations to confirm its 

practicality. Santos et al. (2020) proposed an advanced data-driven OMA 

method using SSI-Cov method and k-medoids algorithm. It has been verified on 

an actual suspension bridge under complex environmental conditions. The 

natural frequencies are obtained by modified SSI-Cov method using Moore-

Penrose pseudo-inverse with moving frequency windows. Modal assurance 

criterion (MAC) based dissimilarity measurement of natural frequencies are 

used in k-medoids clustering for modal parameters’ identification. The SIL 
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index is used to judge the clustering’s performance and bilinear regression 

method is used to decide initial cluster’s number. Except OMA, de Almeida 

Cardoso et al. (2019) proposed an unsupervised symbolic data objects (SDOs) 

based real-time damage detection method called time-frequency interquartile 

range median object (TF-IQRM). Two triple vectors contained with quartiles in 

frequency domain are extracted as SDOs by fast Fourier transform (FFT) from 

acceleration signals. The quartiles in time domain calculated from statistical 

distribution of acceleration’s amplitude values, are used to create dissimilarity 

matrix. The damage index is constructed by the dissimilarity matrix based on k-

medoids algorithm and a statistical threshold called confidence boundaries. 

Since the structural reinforcement is detected simultaneously when the signal is 

truncated in this study, the operational and environmental factors’ impact of this 

method needs further verification. The modal parameters can be easily affected 

by the uncertain operational environments (e.g., traffic, temperature or wind). 

Currently OMA is more deployed on the large and complex bridges to study the 

impact of these uncertain factors. The statistical analysis-based technique is 

widely used to make the decision for the damage detection after the modal 

parameters are identified.  

These online learning methods usually state that they have considered the 

operational environmental impact. However, their primary target is to establish 

an automatic long-term SHM system which can hardly be achieved by the 

traditional way. The influence of operational environmental impact is a 

considerable obstacle for these emerging methods to achieve automatic process 

without human’s interference. Thus, although these methods show their 

robustness by highlighting these factors, their topic is concentrating more on 

automation since most of their experiments do not consider the conditions that 

environmental factors take the principal place. These methods are essentially 

black box models. Instead of the robustness, the accuracy of these methods 
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should be further verified on more examples that have been deeply studied for 

evaluating the performance of these online methods to avoid false alarm. 

Currently, the Z24 bridge dataset is famous and has been extensively used 

among online monitoring methods. These methods should be verified on other 

actual bridges’ dataset with different bridge types and damage scenarios to avoid 

overfitting.  

2.4.2 Offline monitoring methods 

The online monitoring methods which can incorporate the unknown operational 

environmental impact into the corresponding structure's state (i.e., damaged or 

undamaged) by the method itself at the monitoring stage without the 

requirement of the labeled (damaged) data input. Other data-driven methods use 

some algorithms to eliminate the operational environmental factors' effect by 

learning the labeled input data. These data are usually generated from the FEM 

simulation since the damaged data of an actual bridge are not easy to obtain.  

Some offline data-driven methods use modal analysis called the parametric 

approach. Zhou et al. (2014) proposed a modal frequency-based damage 

localization method specialized for long-span bridges using a probabilistic 

neural network (PNN). The modal frequency change ratios generated from two 

bridges' FEM with measurement noise, are used for training and testing in PNN. 

This frequency-only method shows 90% accuracy rate of damage identification 

and localization in two numerical studies when the noise level is within 10%. 

Niu et al. (2021) proposed a practical method to identify modal parameters of a 

real bridge using Chebyshev filter-complementary ensemble empirical mode 

decomposition (CF-CEEMD) with data-driven SSI (DD-SSI) method and real-

time kinematic of a global navigation satellite system (GNSS-RTK). Since 

measured dynamic displacements by GNSS-RTK will include background noise, 

the CF-CEEMD is used to reduce noise. The FFT with DD-SSI are used to 
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obtain the natural frequency and other modal parameters. The DD-SSI is a 

combination of several data-driven algorithms with SSI. This real-time method 

has been verified on a numerical study with a good performance and it is 

practical since the displacements of a real long-span bridge can be directly 

obtained. Zhou et al. (2018) proposed a modal parameter identification method 

using DD-SSI and exploratory data analysis (EDA) with morphological filter 

(MF). The EDA is used to inspect wrong data generated by sensor fault, and the 

MF with an automatic structural element size determination process is deployed 

to filter the white noise. The DD-SSI is used to extract modal parameters. This 

method has been verified on a numerical study and a real long-span cable-stayed 

bridge's study with good performances. Gul and Catbas (2008) proposed a 

modal analysis-based damage detection approach using complex mode indicator 

functions (CMIFs) with the random decrement method (RD). The measured 

deflection from ambient vibration is used to calculate unscaled FRFs by FFT. 

The RD is used to solve leakage problem, high computational cost and random 

loading's effect. The CMIFs are used to obtain modal parameters from the 

unscaled FRFs. This method has been verified on an actual suspension bridge 

and successfully obtains the first 20 modes. Currently the data-driven modal-

based damage detection methods are more concentrating on how to precisely 

extract bridges’ modal parameters under the influencing factors such as sensor 

fault and noise among data collection since they have a solid theoretical basis. 

Most of them are studied on the result of the finite-element model simulation. 

These methods need to be implemented on real bridges. 

Other data-driven methods usually consist of the combined machine learning or 

optimization algorithm. Zhu and Hao (2007) proposed a data-driven damage 

detection approach using wavelet support vector machine (WSVM). The energy 

of wavelet packet components is calculated from measured accelerations as 

feature vectors. The feature vectors are used in tightening SVM for training and 
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identifying. This method has been verified on a FE beam under a low noise 

level and can precisely predict location and severity of damage. Entezami et al. 

(2020) proposed a statistical damage detection method using ARMA with 

partition-based Kullback-Leibler divergence-nearest neighbour method (PKLD-

NN). The ARMA coefficients are calculated from measured accelerations as 

damage features for damage detection by PKLD-NN. This method is compared 

with the classical Euclidean-squared distance-NN (ESD-NN) and MSD method 

on a real cable-stayed bridge's study. The result shows PKLD-NN is more 

sensitive and accurate to damage than ESD-NN and MSD. The coefficient-

based feature extraction in ARMA modelling requires much less computational 

cost than residual-based feature extraction in ARMA modelling. Pan et al. (2018) 

proposed a data-driven damage detection method using SVM with three fast 

feature extraction method for comparison: wavelet transform (WT), Hilbert-

Huang transform (HHT) and Teager-Huang transform (THT). It has been 

verified on a cable-stayed bridge's FEM. The result shows the WT has a better 

anti-noise ability, and the THT with HHT run ten times faster than WT. Since 

this method has been verified on the FEM with ideal performance, it needs to be 

implemented on real bridges for practical application. Carden and Brownjohn 

(2008) proposed a time-series damage detection method using ARMA 

modelling technique. The ARMA parameters obtained from measured responses 

are used as damage features to classify the bridge's state based on the sum of 

residuals' square. This method has been verified on the Z24 bridge and a real 

bridge with good performances. They concentrate more on extracting the 

features of damage rather than the influence on the features induced by the 

operational environment. The performance of them under different uncertain 

operational environments is related to how many these different uncertain 

operational environments are included in the labeled input data. The results 

obtained from them are only meaningful (interpretable) if the environmental 
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conditions of actual bridges are close to the scenarios included in the training 

data. So in terms of the interpretability, these methods require a more in-depth 

study. Although these offline methods cannot run as robust as the online 

methods, they are suitable for bridges that are suspiciously under damage. These 

operational methods are specially designed for certain kinds of structures with 

an accurate damage localization and estimation ability. 

2.5 Bridge structural damage assessment using principal component 

analysis 

As one of the most widely used methods, principal component analysis (PCA) 

was first developed by Pearson and then extended by Hotelling (1933). Among 

SHM, the traditional PCA was mainly used in data dimension reduction and 

feature extraction. As an unsupervised machine learning algorithm, PCA is 

mostly used in the data-driven damage detection approach. Thus, this section 

will concentrate on PCA's role in the data-driven structural damage detection 

since the model-based approach normally uses PCA only for data dimension 

reduction. 

2.5.1 Data driven bridge damage detection under operational environment 

For moving loads driven methods, Mei et al. (2019) proposed an indirect 

damage detection approach using Mel-frequency cepstral coefficients (MFCCs) 

and PCA. PCA is used to construct the baseline and extend this method to a 

multi-vehicle version since the MFCCs is based on a single passing vehicle. Yu 

and Zhu (2011) proposed a PCA based moving force identification (MFI) 

approach. The results show that PCA is effective for MFI and the effect of two 

computation patterns with the PCs' number for PCA is discussed. Eshkevari et al. 

(2020) proposed an indirect approach using the vehicular sensor network for 

bridge modal identification with matrix completion (MIMC) method. PCA is 
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used to extract the modal properties from the completed response matrix by 

factorizing it into orthogonal mode shapes. 

Among the temperature-driven approach, PCA was widely applied for 

temperature-induced response separation procedure (Han et al. 2021). 

Deraemaeker et al. (2008) proposed a spectrum analysis-based damage 

detection approach for a scaled cable-stayed bridge using SSI, Shewhart-T 

control charts and PCA. PCA is used to model and eliminate the temperature 

effect using a residual-based least-square approach. A statistical-based threshold 

for PCA is also proposed to enhance the performance (Deraemaeker and 

Worden 2018). Li et al. (2020) proposed a PCA-based estimation approach to 

reconstruct the missing temperature data using statistical analysis and the 

expectation-maximization (EM) algorithm on an actual cable-stayed bridge. 

PCA is used to calculate the correlation of the time-series SHM dataset for 

estimation. Sen et al. (2019) proposed a modal analysis-based damage detection 

method for the Z24 bridge. PCA is used to remove the temperature effect in 

modal frequencies for structural damage detection. 

Some PCA based approaches consider temperature's effect with moving loads 

excitation. Kumar et al. (2019) use PCA for feature vector extraction to 

construct a model space method for damage localization and detection under 

different temperatures and moving loads. PCA is used to extract feature vectors 

for constructing damage index, and the temperature effect is treated as the 

fluctuation on the modulus of elasticity and coefficient of thermal expansion of 

the steel material. Guo et al. (2018) proposed a train recognition approach using 

symbolic data analysis (SDA) and clustering methods on an actual bridge in 

which two temperature sensors are installed to record temperature data. As the 

critical step, PCA is used to reduce noise's effect and extract essential 

characteristics of the signals with good performances. Sakiyama et al. (2021) 
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proposed a real-time abnormal detection approach for the actual large-scale 

bridges using a large number of the long-gauge fibre Bragg grating sensors 

(LGFBG). PCA is used to calculate the sensors' correlation and determine its 

contribution to specific structure's behaviour from hundreds of gigabytes of data 

with satisfactory results. Kromanis and Kripakaran (2017) proposed a detection 

approach using the RBTRP with traffic-induced responses to assess structural 

performance and it cointegrated with the signal subtraction method (SSM) for 

anomaly detection. The temperature distribution measured from a thermal 

imaging camera with thermocouples and the traffic loads with its location 

measured by contact sensors are used as input to predict the bridge's traffic and 

thermal response. PCA is used in RBTRP to reduce the temperature data's 

dimension and transform the temperature data into principal components as 

input of the regression model. Shokrani et al. (2018) proposed a mode shape 

curvature-based damage detection, localisation and quantification approach on a 

bridge model under varying temperature conditions. PCA is used to capture the 

feature from temperature fluctuation and noise on the bridge for creating the 

baseline of damage index. 

2.5.2 Data driven bridge damage detection assessment 

For data-driven damage detection methods, Roveri et al. (2019) use PCA to 

extract damage features from strain responses of a truss bridge for clustering 

and detecting damage. Dackermann et al. (2010) proposed a modal strain 

energy (MSE) based damage detection, localization and quantification 

approach using ANNs ensembles. PCA is used to eliminate the noise in MSE 

based damage index for training ANNs ensembles. Nguyen et al. (2015) 

proposed an FRFs based damage detection and quantification approach on a 

replica of an actual bridge using ANNs ensembles. PCA is used to reduce 

residual FRFs' size as the damage sensitive feature for training ANNs ensembles. 
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Jayasundara et al. (2020) proposed an FRFs based damage location and 

quantification approach on a simulated deck-type arch bridge using ANNs 

ensembles. PCA is used to reduce the size of residual FRFs and remove the 

noise for training ANNs ensembles. In general, PCA is an intermediate step that 

concentrates on improving the data quality in most PCA-based bridge SHM 

studies. The effectiveness of PCA among the removing environmental effects 

(e.g., temperature effect and noise), data size reduction and feature extraction 

have been sufficiently proved. 

2.6 Bridge structural damage assessment using moving principal 

component analysis 

As for traditional PCA, the computational cost of the covariance matrix will 

significantly increase according to the number of measurements and the length 

of the time series. Additionally, the weight of the new data in the covariance 

matrix will be reduced with the increasing number of measurements which will 

dilute everything (Lanata et al. 2007). Thus, Posenato et al. (2008) proposed 

moving principal component analysis (MPCA) for long-term structural 

monitoring. This algorithm calculates the covariance matrix in a fixed size 

window and the data outside of the window's range could not affect results. This 

improved algorithm is competent to reduce the computational cost in long-term 

monitoring. Lanata et al. (2007) deployed MPCA on a real highway bridge for 

damage detection. MPCA is used to capture the correlation in each small cluster 

obtained by the K-means method overlapping for the damage detection. 

Cavadas et al. (2013) compared the performance of damage detection and 

location between MPCA with robust regression analysis (RRA) on a quasi-

bridge rigid frame's quasi-static only response. Compared to RRA, MPCA can 

locate the damage and detect the early damage. Zhu et al. (2019) proposed a 

temperature-driven damage detection approach using the independent 
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component analysis (ICA) on the numerical and experimental study under 

temperature fluctuations and traffic loads. MPCA successfully detected damage 

from the temperature-induced response separated by ICA from environmental 

factors in a two-year data record. Jin et al. (2015) compared results of the modal 

analysis-based damage detection performance under varying temperature 

conditions using PCA or MPCA. The numerical study of a Bernoulli-Euler 

beam shows that MPCA has lower false alarm rates with more vital anti-noise 

ability than PCA. Zhang et al. (2019) deployed MPCA on a rigid frame bridge 

under seasonal temperature fluctuations for damage detection with time and 

space windows. The one-year-length time window of MPCA is for the damage 

detection, and the grouped space window is to locate the damage by 

incorporating the damage sensitive sensors, which are defined by the residuals 

of the sensor's response between the damaged and healthy states. Jin and Jung 

(2018) compared modified MPCA with the static linear principal component 

analysis (SPCA) and incremental linear principal component analysis (IPCA) 

for Z24 bridge using the k-means clustering with Linde-Buzo-Gray algorithm 

(KMC-LBG) and Bayesian information criterion (BIC) to judge the window 

size of MPCA. The proposed three PCA-based approaches are for damage 

features extraction from natural frequencies, and only MPCA successfully 

achieves early detection of two nonlinear damage cases with more than 100 

hour's window size. These MPCA methods have a relatively large window size. 

Since it is not suitable for the real-time monitoring, Nie et al. (2020) developed 

a narrow moving window for MPCA and successfully detected an abnormal 

behaviour of an actual suspension bridge. The window's size is calculated based 

on the cumulative contribution ratio with a convergent spectrum. Compared 

with PCA, MPCA is mainly used for damage detection with a better 

performance under complex environmental conditions since the suitable 

window size can enlarge the inconspicuous fluctuation in the measured data. It 
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has a promising future for early warning and slight damage detection since it 

can reveal the data’s inherent correlation and structure in more detail. Currently, 

it performs well on early damage detection under temperature variations.  

However, how to judge the most appropriate window size has been studied a 

little and requires a further discussion since the size of the moving window will 

greatly affect the effectiveness of the MPCA-based method with varying 

computational cost. From the perspective of frequency domain, the longer the 

length of the window, the lower the frequency of the signal is concerned. The 

window length of current studies is usually determined based on the 

fundamental frequency of bridges or the period of temperature fluctuations. This 

causes a longer window length (e.g., for months or years) is chosen for MPCA 

in current studies. The longer the window, the higher the computational cost. 

Additionally, a series of window selection criteria, such as the fundamental 

frequency of bridges and the temperature fluctuation period, will change with 

uncertain operational environments. Thus, the challenge of this idea is how to 

adjust the window length flexibly and accurately according to the changing 

environmental conditions and the influencing factors to be analysed. For the 

real-time monitoring, A narrow window size (e.g., within a day) seems better for 

the real-time detection, but the small amount of data may not provide the 

sufficient information for the highly accurate detection. Also, this will lead to a 

greatly increase of the impact from the uncertain operational environments on 

the measured data. Since MPCA is a linear method, it may not be enough to deal 

with the nonlinear behaviour of the bridge (Jin and Jung 2018). In different 

studies, the form of external loads and damage is usually inconsistent. This 

inconsistency prevents the comparison of the results obtained by MPCA in 

different studies. 

2.7 Summary 



 

29 
 

 Moving loads driven methods 

The moving load driven bridge damage detection has drawn much attention 

since the moving load excited part can take the dominant place in the bridge 

response compared with other environmental factors in normal condition. The 

moving load induced part can be easily extracted from the bridge response since 

it has an obvious and interpretable pattern. 

Since the traditional moving loads driven methods are based on vehicle-bridge 

interaction theory, they can detect, locate and quantify the severity of damage 

accurately with good interpretability but work in a controlled environment 

which is time-consuming and laborious due to their limited anti-noise ability. 

The data-driven methods concentrate on constructing damage sensitive features 

from data space rather than physical space. Aided by algorithms, they provide a 

convenient and economical way for moving loads driven damage detection 

compared with the traditional methods. As the novelty approach, they are 

underdeveloped with a promising future since they can achieve the real-time 

damage detection under complex environmental conditions. 

 Temperature driven methods 

The study of temperature's effect has attracted significant interest and can be 

categorised into several research branches since the temperature factor is not 

negligible among bridge SHM.  

For model-based methods, they aim to construct a FEM that can represent the 

actual bridge as close as possible for damage detection and behaviour prediction. 

Currently these methods can precisely forecast real bridge's behaviour even 

under complex environmental conditions. However, the critical issue is that the 

model updating procedure is time-consuming and laborious, with a high demand 
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for operator's experience and has limited transferability. Some optimization 

algorithms or machine learning methods are combined into model-based 

methods to eliminate the effect of uncertainties.  

For data-driven methods, a branch of study concentrates on static responses for 

bridge's behaviour prediction based on regression approaches. They can predict 

bridge's static responses in a relatively long period (e.g., several months) with 

enough accuracy. The others are dynamic responses-based anomaly detection 

approaches that show great practical application potentials like easy operation 

and robustness on the service stage. As recently developed methods, they 

require further verification on the actual structure under complex conditions. 

However, they cannot quantify the severity of damage compared with the 

model-based method. Since they focus more on the effects of uncertain 

operational environments, they try to consider every possible operational 

environment under the normal operation of the bridge. The main challenge to 

these methods is from the unpredictability of the future as it can hardly take 

every possible interference factor into account in bridge health monitoring. The 

performance of the neural networks or regression models on a bridge that has 

been influenced by not considered factors cannot be guaranteed. 

 Model-based damage detection methods 

The model-based methods can identify, locate and quantify damage. As 

previously mentioned, current model-based methods are always combined with 

other algorithms or under conditioned circumstances to eliminate the 

disturbance of uncertainties. They are more concentrated on accuracy than 

robustness since they can quantify damage's severity. Due to the high cost of 

achieving both goals simultaneously, these methods need to create a standard to 

control the balance of accuracy and robustness in practical use.  
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The model-based methods using modal analysis have many practical 

applications currently. Since the modal parameters are sensitive to moisture, 

temperature, and measurement noise instead of damage, they can be easily 

affected by environmental conditions and often make false alarm. Thus, they are 

always combined with several algorithms to enhance their performance. Also, 

this is why a large branch concentrating on modal analysis is derived from the 

model-based approach to the data-driven approach under the temperature-driven 

damage detection field. 

As discussed above, the model-based method proposes a high requirement of 

operator's knowledge and experience. It is laborious and time-consuming to 

adjust these models to fit actual structure. 

 Data-driven damage detection methods 

As the ultimate aim, the online learning methods are dedicated to replacing 

human beings as the automatic long-term monitoring method. To achieve this 

goal, the effect of the environment and operation impacts is a considerable 

obstacle for these emerging methods. Currently they can correctly categorise the 

state of the bridge (i.e., damaged or undamaged) based on its behaviour in 

experimental conditions. Their accuracy requires further verification on more 

instances that have been deeply studied for improving their performance by 

reducing false alarm rather than enhancing robustness. Currently, the Z24 bridge 

dataset has been widely used among them. They should be tested on other actual 

bridges’ dataset with different bridge types and damage scenarios to avoid 

overfitting. 

The modal analysis has drawn great attention in the online learning. Since the 

modal testing which is used to extract bridge’s modal parameters in traditional 

modal analysis cannot be deployed when bridge is in running, a method called 
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the operational modal analysis (OMA) is constructed. The modal parameters, 

which can sensitively reveal the existence of damage, can be continuously 

identified by OMA in real time when bridge is in operation. But the uncertain 

operational environments (e.g., traffic, temperature or wind) can also directly 

influence them. Currently OMA is mainly deployed on complex and large 

bridges to study the effect of these uncertain factors. After identifying modal 

parameters, the statistical analysis-based method is extensively adopted to make 

decision for damage detection. The modal-based methods focus more on 

practical use since they have a solid theoretical foundation. They need to be 

implemented on real bridges. 

As for the offline methods, they may not act as robust as the online methods. 

They focus more on extracting damage’s feature instead of the operational 

environment induced effects in obtained features. Their performance on the 

dataset under different uncertain operational environments is based on how 

many these uncertain operational environments are pre-considered in the labeled 

input data. The interpretability of the obtained results from them are ensured 

only if the environmental circumstances of real bridges are pre-considered in the 

training data. From the perspective of interpretability, they need more in-depth 

study. They are appropriate for bridge damage detection. They are specially 

designed for the particular type of bridges with a precise damage localization 

and quantification ability. 

Some modal analysis based offline methods are called the parametric approach. 

They focus on how to accurately extract modal parameters of bridges under the 

interference factors like noise or sensor fault since they have a strong theoretical 

background. Most of these studies use the finite-element model simulation. 

They need to be more deployed on real bridges. 

 PCA-based damage detection methods 
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PCA is an intermediate step used for data size decrease, feature extraction and 

eliminating environmental effects with noise reduction. As a convenient tool, it 

shows a fascinating performance in improving the data's quality. 

MPCA is mainly deployed for damage detection and performs better compared 

to PCA under complex environmental conditions. Since it can extract the 

inherent structure and correlation of data in more detail, it shows great potential 

for slight damage detection and early warning. Currently, it shows good 

performances on early damage detection under temperature variations. However, 

the most appropriate window size is still under discussion, and it will directly 

influence the availability of the MPCA-based approach with different 

computational cost. A narrow window size may be more suitable to achieve the 

real-time detection, but the insufficient data cannot provide the enough 

information to ensure detection's accuracy. This also will result in a significant 

increase of the uncertain operational environments induced impact on the 

detection result. Since MPCA is based on linear theory, it may not be competent 

to cope with the bridge's nonlinear behaviour. The load forms and the causes of 

bridge anomalies (e.g., damage) are often inconsistent in different studies. This 

inconsistency causes the results of MPCA are not interpretable and without a 

specific pattern for the comparison between the studies. 

 Solutions to address the research gaps 

To address the research gaps, there are two promising perspectives worth 

investigating: the real-time and the monitoring. The real-time requires the 

bridge condition assessment model to evaluate the bridge state in a timely 

manner. The monitoring requires that the model can reflect the information of 

the bridge more comprehensively. Not only the overall health condition, the 

detailed information of the operational environment in which the bridge 

operates is needed for providing a more reliable evaluation of the bridge. The 
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existing monitoring methods require a lot of preparations, so it is difficult to 

accurately assess the bridge state in real-time when encountering unknown 

situations. For the temperature-driven cases, a longer time observation 

dimension (e.g., the MPCA window length in months or years) can more easily 

and clearly reflect the more stable change pattern of the bridge state under the 

temperature impact. But this cannot meet the requirement of the real-time. Most 

of the methods concentrate on the general distinction between the damaged and 

undamaged states of the bridge. The real-time assessments can be more reliable 

if the model can provide more relevant information about the bridge beyond its 

damage state. In general, breakthroughs in these two perspectives can 

significantly improve the practicability of the existing methods and make the 

existing methods have grater application value. 
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Chapter 3 Numerical study 

This chapter presents the moving principal component analysis (MPCA) 

approach for structural condition assessment of bridges under moving vehicle 

considering the temperature environment using the numerical study. To 

understand the effect of operational environments such as moving vehicles and 

the temperature environment, the basic mathematical theory is briefly 

introduced and then the proposed method is verified using the numerical 

simulation. The arrangement of this chapter as the following: the theory PCA 

and MPCA is introduced firstly and the main target for current existed data 

processing algorithm is discussed. The second part is to construct the bridge 

finite element model. The details of the simulation of a bridge subjected to a 

moving vehicle, the temperature influence and the crack damage model are 

presented. The third part is the results. The simulation result of the numerical 

model is presented, and the results analysed by PCA and MPCA are compared. 

The parametric study is conducted including the effect of individual parameter 

variations from the bridge finite element model and interactions among these 

parameters’ variations. The fourth part, the damage sensitive feature is 

constructed based on the analysis above in this chapter. The influence of the 

crack’s location with the mechanism behind the variations on this constructed 

damage sensitive feature is interpreted in the discussion part.  

3.1 Introduction of the detection method: PCA and MPCA 

Principal component analysis (PCA) and moving principal component analysis 

(MPCA) are briefly introduced in this section. The detail information could be 

found the textbook (Li, 2019).  

3.1.1 Principal component analysis (PCA) 
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As the foundation of MPCA, PCA is a statistical learning method that 

decomposes the original data into linearly uncorrelated vectors-principal 

components (PCs) according to the maximum variance's direction. At the same 

time, the new coordinate axis's direction should be orthogonal to all previous 

coordinate axis's directions. This transformation ensures that the selection of the 

coordinate axis's direction can make each PC contain as much information as 

possible. It is widely used in data compression and feature extraction. 

In this study, the singular value decomposition (SVD) method is adopted for 

PCA. Considering a data (signal) matrix 𝐗𝐗𝑚𝑚×𝑛𝑛 with the 𝑘𝑘-order PCs, suppose 

the matrix's rank is 𝑟𝑟  that is greater than or equal to 𝑘𝑘 . The 𝐗𝐗𝑚𝑚×𝑛𝑛  can be 

factorized according to truncated SVD as 

𝐗𝐗𝑚𝑚×𝑛𝑛 ≈ 𝐔𝐔𝑘𝑘𝚺𝚺𝑘𝑘𝐕𝐕𝑘𝑘𝑇𝑇                                        (3-1) 

where 𝐔𝐔𝑘𝑘 is 𝑚𝑚 × 𝑘𝑘 matrix, 𝐕𝐕𝑘𝑘 is 𝑛𝑛 × 𝑘𝑘 matrix and 𝚺𝚺𝑘𝑘 is diagonal matrix of the 

order 𝑘𝑘. 𝐔𝐔𝑘𝑘, 𝐕𝐕𝑘𝑘 are respectively taken from the first 𝑘𝑘 columns of matrices 𝐔𝐔, 𝐕𝐕 

that are singular vectors of the matrix 𝐗𝐗𝑚𝑚×𝑛𝑛 . 𝚺𝚺𝑘𝑘  is obtained from the first 𝑘𝑘 

diagonal elements of matrix 𝚺𝚺 which is the singular value matrix of the matrix 

𝐗𝐗𝑚𝑚×𝑛𝑛. 

Before using PCA, the data in the matrix 𝐗𝐗𝑚𝑚×𝑛𝑛  needs to be standardized to 

obtain the matrix 𝐗𝐗′ according to Eq. (3-2). 

𝑥𝑥𝑖𝑖𝑖𝑖∗ = 𝑥𝑥𝑖𝑖𝑖𝑖−𝑥𝑥𝑖𝑖
�𝑠𝑠𝑖𝑖𝑖𝑖

                                                   (3-2) 

where 𝑥𝑥𝑖𝑖 =  1
𝑛𝑛
∑ 𝑥𝑥𝑖𝑖𝑖𝑖n
j=1 , 𝑖𝑖 = 1,2, . . . , 𝑚𝑚  and 𝑠𝑠𝑖𝑖𝑖𝑖 = 1

𝑛𝑛−1
∑ (𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖)2n
j=1 , 𝑖𝑖 = 1,2, . . . , 𝑚𝑚 . 

𝑥𝑥𝑖𝑖𝑖𝑖 is the 𝐗𝐗𝑚𝑚×𝑛𝑛's element at row 𝑖𝑖 and column 𝑗𝑗. 𝑥𝑥𝑖𝑖𝑖𝑖∗  is the standardized matrix 

𝐗𝐗′'s element at row 𝑖𝑖 and column 𝑗𝑗. 𝑥𝑥𝑖𝑖 is the average value in row 𝑖𝑖 of the matrix 

𝐗𝐗′. 



 

37 
 

After obtaining the standardized data matrix 𝐗𝐗′, the traditional PCA uses the 

eigenvalue decomposition of the 𝐗𝐗′'s correlation matrix or covariance matrix to 

calculate the principal component matrix. According to characteristic of SVD, 

the principal component matrix can be obtained  

𝐗𝐗″ =   1
√𝑛𝑛−1

𝐗𝐗′𝑇𝑇                                      (3-3) 

𝐗𝐗″ =   𝐔𝐔𝚺𝚺𝐕𝐕𝑇𝑇                                          (3-4) 

                                                   𝐘𝐘𝑘𝑘×𝑛𝑛 = 𝐕𝐕𝑇𝑇𝐗𝐗′                                           (3-5) 

where 𝐗𝐗″  is constructed for the truncated SVD. The row of  𝐕𝐕𝑇𝑇  is the 

eigenvector of the 𝐗𝐗′ 's covariance matrix. 𝐘𝐘𝑘𝑘×𝑛𝑛  is the principal component 

matrix and it is also called the score matrix. 𝐕𝐕𝑇𝑇  is called the weight or 

coefficient matrix.  

3.1.2 Moving principal component analysis (MPCA) 

PCA extracts the feature of data on entire signals. This ignores subtle trends 

implied by the observed data on the time axis. MPCA is a method that deploys 

PCA on the signal truncated into the window length instead of the full signal. 

With an additional moving window, MPCA can excavate the inner structure of 

time series signals in detail and reveal the variation trend of data itself. The 

window is like a filter that slides and decomposes the original signals along the 

time axis to different PCs. These PCs obtained from MPCA have more 

significant features than the PCs obtained from PCA. Also, the obtained 

eigenvalue is no longer a constant, but a changing curve. This curve can reflect 

the instantaneous trend of data variations at each moment and provides a new 

approach to calculate the energy of bridge vibration signals. In other words, the 

main difference between MPCA and PCA is that Eq. (3-1) in MPCA is 
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calculated using a window length's signal instead of the whole. MPCA will slide 

the moving window on the data matrix along the whole time axis. The time axis 

location of the window center column vector corresponds to the current time 𝑡𝑡.

Within each movement, MPCA will calculate the principal component matrix 

and eigenvalue vector on the current window's location according to Eqs. (3-2) 

to (3-5). The obtained PC (a single column vector) at the window's location 

from each movement will be saved sequentially to form the final principal 

component matrix of MPCA. Similarly, the eigenvalue vector will be saved in 

the eigenvalue matrix sequentially to form the eigenvalue curves of each 

principal components. Figure 3-1 shows the schema of MPCA. 

Figure 3-1. The schema of MPCA
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3.1.3 Data preprocessing 

For bridge SHM, time series signals are affected by some factors. These signals 

cannot be directly used as the algorithm's input. For every already existed data 

processing algorithm, currently the main target is to find out how to preprocess 

the source signals as the input data. Time series signal processing mainly 

concentrates on two aspects: 

1) How to excavate and expose the intrinsic feature from the source signals. 

This step concentrates on improving the input data's quality and density 

(amount of information). 

2) How to filter out the interference caused by other factors. This step is to 

ensure the robustness. 

Among the data-driven approaches, a large branch of study is on the modal 

analysis. Modal analysis uses some mathematical methods to extract the modal 

parameters from the measured vibration responses. Mode shape decomposition 

factorizes the vibrations into different mode bases which are corresponding to 

natural frequencies. Modal analysis focuses more on the global behaviour of the 

bridge system and presumes the bridge’s parameters are time-invariant. 

However, Eq. (3-13) shows that 𝐌𝐌, 𝐂𝐂 and 𝐊𝐊 are time varying when a beam is 

under a moving mass. The temperature impact will also cause the time-varying 

of these matrices. Thus, the parameters of the bridge under the operational 

environmental conditions are time-varying. This is one reason why the current 

bridge damage detection approach under the moving vehicle excitation using the 

modal analysis needs a lot of preparation before the damage detection model 

training. Although the mathematical approach to deal with time-varying 

problems is segmentation and approximation, the time series signals processed 

by the modal analysis will lose a lot of information in time-domain. Numerous 

information of structure's state in time-domain excited by moving vehicles is 
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lost when the signals are converted into frequency-domain and the basis mode. 

A lot of work is needed to extract the enough information for the damage 

detection algorithm. Thus, the traditional modal analysis may not be suitable for 

this study.  

3.2 Construction of the bridge finite element model 

The research objectives of this study place a higher demand on the required 

numerical model. As a specific problem, this study requires a numerical model 

which can simulate the behaviour of the undamaged or damaged bridge 

subjected to a moving vehicle considering the environmental temperature effect. 

In the existing research, the damage, moving vehicles and temperature are often 

selected as the main influencing factors of the bridge individually. This study 

integrates these factors for the first time to establish a bridge numerical model 

that meets the research objectives. The first subsection in this section describes 

the establishment process of the bridge finite element model. The rest 

subsections introduce the simulation method of these influencing factors on the 

established bridge model. The damage on the bridge is simulated as the 

breathing crack. This allows the model to simulate the behaviour of a slightly 

damaged bridge more realistically. 

3.2.1 Finite element model for a beam bridge 

The bridge is simplified as an Euler-Bernoulli beam and it is evenly discretized 

in this study. The element mass matrix and stiffness matrix of a beam element 

can be obtained as 

𝐌𝐌𝑒𝑒 = 𝜌𝜌𝜌𝜌𝜌𝜌
420

�

156 22𝑙𝑙 54 −13𝑙𝑙
22𝑙𝑙 4𝑙𝑙2 13𝑙𝑙 −3𝑙𝑙2
54 13𝑙𝑙 156 −22𝑙𝑙
−13𝑙𝑙 −3𝑙𝑙2 −22𝑙𝑙 4𝑙𝑙2

� ,𝐊𝐊𝑒𝑒 = 𝐸𝐸𝐸𝐸
𝜌𝜌3
�

12 6𝑙𝑙 −12 6𝑙𝑙
6𝑙𝑙 4𝑙𝑙2 −6𝑙𝑙 2𝑙𝑙2
−12 −6𝑙𝑙 12 −6𝑙𝑙

6𝑙𝑙 2𝑙𝑙2 −6𝑙𝑙 4𝑙𝑙2
�   (3-6) 
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where 𝜌𝜌,𝐴𝐴, 𝑙𝑙  are the density, section's area and length of the beam element 

respectively.  

Figure 3-2 shows the ith beam element. The response at point 𝑥𝑥 and time 𝑡𝑡 can 

be obtained by the Hermite interpolation 𝐻𝐻(𝑥𝑥) from the node responses. Eq. (3-

7) shows the Hermite interpolation 𝐻𝐻(𝑥𝑥): 

    

𝐻𝐻1(𝑥𝑥) = 1 − 3 �𝑥𝑥
𝐿𝐿
�
2

+ 2 �𝑥𝑥
𝐿𝐿
�
3

𝐻𝐻2(𝑥𝑥) = 𝑥𝑥 �1 − 𝑥𝑥
𝐿𝐿
�
2

𝐻𝐻3(𝑥𝑥) = 3 �𝑥𝑥
𝐿𝐿
�
2
− 2 �𝑥𝑥

𝐿𝐿
�
3

𝐻𝐻4(𝑥𝑥) = 𝑥𝑥2

𝐿𝐿
�𝑥𝑥
𝐿𝐿
− 1�

         (3-7) 

 

Figure 3-2. The Hermite interpolation on beam element 

Eq. (3-8) shows the displacement at point 𝑥𝑥 and time 𝑡𝑡: 

𝜔𝜔𝑒𝑒(𝑥𝑥, 𝑡𝑡) = 𝐇𝐇(𝑥𝑥)𝑇𝑇𝐑𝐑(𝑡𝑡) = {𝐻𝐻1(𝑥𝑥) 𝐻𝐻2(𝑥𝑥) 𝐻𝐻3(𝑥𝑥) 𝐻𝐻4(𝑥𝑥)}

⎩
⎪
⎨

⎪
⎧𝜔𝜔𝑖𝑖(𝑡𝑡)
𝜃𝜃𝑖𝑖(𝑡𝑡)
𝜔𝜔𝑖𝑖(𝑡𝑡)
𝜃𝜃𝑖𝑖(𝑡𝑡)⎭

⎪
⎬

⎪
⎫

  (3-8) 

where 𝜔𝜔𝑒𝑒(𝑥𝑥, 𝑡𝑡) is the displacement at point x and time 𝑡𝑡. 𝜔𝜔𝑎𝑎(𝑡𝑡), 𝜃𝜃𝑎𝑎(𝑡𝑡) are the 

displacement and rotation at corresponding joint 𝑎𝑎  and time 𝑡𝑡  of the beam 

element. 𝑥𝑥 is the position in the beam element and 𝐿𝐿 is the length of the beam 

element. 𝐑𝐑(𝑡𝑡) is the node responses. 
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The strain at point 𝑥𝑥 and time 𝑡𝑡 can also be obtained (Law and Zhu 2009) as 

  ε(x, t) = −z ∂𝐇𝐇(𝑥𝑥)𝐑𝐑(𝑡𝑡) 

∂𝑥𝑥2
                            (3-9) 

where 𝑧𝑧 is the distance from the bottom to the neutral axis. 

3.2.2 Equation of motion for the bridge subjected to a moving vehicle 
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Figure 3-3. The damaged beam under a moving mass 

The bridge is modelled as a simply supported beam and the vehicle is modelled 

as a mass 𝑚𝑚, as shown in Figure 3-3. The bridge length is 𝐿𝐿. The vehicle is 

moving along the bridge at a constant speed 𝑣𝑣. The crack damage is considered 

in this study. 𝑙𝑙𝑐𝑐𝑑𝑑 is the crack's location from the left support. The beam bridge is 

discretized into 𝑁𝑁 − 1  elements and 𝑁𝑁  is the number of nodes. Considering 

Rayleigh damping for the bridge, the motion of equation for the bridge 

subjected to a moving vehicle can be obtained as 

 𝐌𝐌𝑏𝑏�̈�𝐑(𝑡𝑡) + 𝐂𝐂𝑏𝑏�̇�𝐑(𝑡𝑡) + 𝐊𝐊𝑏𝑏𝐑𝐑(𝑡𝑡) = 𝐇𝐇𝑚𝑚𝐏𝐏            (3-10) 

where 𝐌𝐌𝑏𝑏 , 𝐂𝐂𝑏𝑏  and 𝐊𝐊𝑏𝑏  are the mass, damping and stiffness matrices of the 

bridge respectively. The �̈�𝐑(𝑡𝑡) , �̇�𝐑(𝑡𝑡)  and 𝐑𝐑(𝑡𝑡)  are the node's acceleration, 

velocity and displacement response vectors respectively. 𝐇𝐇𝑚𝑚𝐏𝐏 is the node's 

equivalent force vector induced by the moving mass. 𝐏𝐏  is the equivalent 

resultant force vector induced by the moving mass. The interaction force 

between the bridge and the mass is 𝑃𝑃(𝑥𝑥(𝑡𝑡), 𝑡𝑡) that can be obtained as 
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𝑃𝑃(𝑥𝑥(𝑡𝑡), 𝑡𝑡) = 𝑚𝑚�𝑔𝑔 − d2�𝜔𝜔(𝑥𝑥(𝑡𝑡),𝑡𝑡)�
d𝑡𝑡2

�                   (3-11) 

where 𝑚𝑚  is the mass of a moving vehicle. 𝐇𝐇𝑚𝑚 =

{0 ⋯ 𝐇𝐇(𝜂𝜂(𝑡𝑡))𝑖𝑖𝑇𝑇 0 ⋯ 0}𝑇𝑇  when (𝑗𝑗 − 1)𝑙𝑙 ⩽ 𝜂𝜂(𝑡𝑡) ⩽ 𝑗𝑗𝑙𝑙 . 𝐻𝐻(𝑥𝑥)  is the 

Hermite interpolation as the beam element's shape function. The beam's 

deflection at point 𝑥𝑥 and time 𝑡𝑡 can be written as 

𝜔𝜔(𝑥𝑥, 𝑡𝑡) = 𝐇𝐇(𝑥𝑥)𝐑𝐑(𝑡𝑡)                                         (3-12) 

where 𝐇𝐇(𝑥𝑥) = {0 ⋯ 𝐻𝐻(𝑥𝑥)𝑖𝑖𝑇𝑇 0 ⋯ 0}𝑇𝑇  when (𝑗𝑗 − 1)𝑙𝑙 ⩽ 𝜂𝜂(𝑡𝑡) ⩽ 𝑗𝑗𝑙𝑙 . 

Combining Eqs. (3-10)-(3-12), the equation of motion can be written as 

𝐌𝐌(𝑡𝑡)�̈�𝐑(𝑡𝑡) + 𝐂𝐂(𝑡𝑡)�̇�𝐑(𝑡𝑡) + 𝐊𝐊(𝑡𝑡)𝐑𝐑(𝑡𝑡) = 𝑚𝑚𝑔𝑔𝐇𝐇𝑚𝑚                       (3-13) 

where 𝐌𝐌(𝑡𝑡) = 𝐌𝐌𝑏𝑏 + 𝑚𝑚𝐇𝐇𝑚𝑚𝐇𝐇(𝑥𝑥) , 𝐂𝐂(𝑡𝑡) = 𝐂𝐂𝑏𝑏 + 2𝑚𝑚𝑣𝑣𝐇𝐇𝑚𝑚𝐇𝐇′(𝑥𝑥) , 𝐊𝐊(𝑡𝑡) = 𝐊𝐊𝑏𝑏 +

𝑚𝑚𝑣𝑣2𝐇𝐇𝑚𝑚𝐇𝐇″(𝑥𝑥). 𝐇𝐇′(𝑥𝑥), 𝐇𝐇″(𝑥𝑥) are the first and second derivatives of the Hermite 

interpolation vector 𝐇𝐇(𝑥𝑥) . Eq. (3-13) can be solved using the Newmark-𝛽𝛽 

method. The parameters are: 𝛼𝛼 = 0.5,𝛽𝛽 = 0.25. The time step is 0.01 s. Then, 

the bridge response at point 𝑥𝑥 can be obtained by Eqs. (3-7) to (3-9). 

3.2.3 Temperature influence 

The temperature's impact can be divided into two parts. The first one is the 

variation of the beam's parameters which will directly influence the beam's 

dynamic property. In the model, the thermal coefficients of the temperature 

impact on each parameter are listed in Table 3-1 (Yuen, 2010). 𝐴𝐴0, 𝐸𝐸0 and 𝐼𝐼0 are 

the cross-section area, Young’s modulus and second moment of inertia at the 

reference temperature 𝑇𝑇0 respectively. The influence of the temperature on the 

section's Young's modulus is linearly weights according to the steel and 

concrete's bearing ratio of the section's ultimate bending moment at the 
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reference temperature. The section's expansion only considers the concrete's 

area growth.  

Table 3-1. The temperature coefficients of beam's parameters (Yuen, 2010) 

Parameters Formula Coefficient Steel (/∘𝐶𝐶) Concrete (/∘𝐶𝐶) 

Expansion 𝐴𝐴 = 𝐴𝐴0(1 + 𝛼𝛼𝐿𝐿Δ𝑇𝑇)2 𝛼𝛼𝐿𝐿 1.2 × 10−5 1.3 × 10−5 

Young’s modulus 𝐸𝐸 = 𝐸𝐸0(1 + 𝛼𝛼𝐸𝐸Δ𝑇𝑇) 𝛼𝛼𝐸𝐸 −3.2 × 10−4 −7.2 × 10−3 

Second moment 

of inertia 
𝐼𝐼 = 𝐼𝐼0(1 + 𝛼𝛼𝐿𝐿Δ𝑇𝑇)4 𝛼𝛼𝐿𝐿 1.2 × 10−5 1.3 × 10−5 

The second impact is induced by vertical temperature gradient. This temperature 

gradient is to influence the bending curvature of the beam. For a simply 

supported beam, the influence of the vertical temperature gradient can be taken 

as (Zhou et al. 2021): 

               𝑟𝑟1  = −𝛼𝛼𝜌𝜌0⋅Δ𝑇𝑇
2√3⋅ℎ

⋅ 𝜆𝜆+1
𝜆𝜆−1

                (3-14) 

  𝑟𝑟2  = −𝑟𝑟1                          (3-15) 

𝑀𝑀1 = �1 − 1
√3
⋅ 𝜆𝜆+1
𝜆𝜆−1

� ⋅ 𝛼𝛼𝐸𝐸𝐸𝐸⋅Δ𝑇𝑇
ℎ

           (3-16) 

𝑀𝑀2 = 𝑀𝑀1                     (3-17) 

where 𝑟𝑟1  and 𝑀𝑀1  are the vertical temperature gradient induced rotation and 

moment at the beam's left support. 𝑟𝑟2  and 𝑀𝑀2  are the vertical temperature 

gradient induced rotation and moment at the beam's right support. Δ𝑇𝑇 is the 

temperature difference between the top surface and bottom, and the positive 

reflects the top surface is warmer. ℎ  is the cross-section's height. 𝐸𝐸𝐼𝐼  is the 
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beam's rigidity. 𝛼𝛼 is the concrete's thermal expansion coefficient in Table 3-1. 𝜆𝜆 

is a constant and it is equal to √3+1
√3−1

. 𝑙𝑙0 is the beam's length. According to Eqs. 

(3-14) to (3-17), the vertical temperature gradient induced effect is obtained and 

considered as the boundary condition of the simulated beam.  

3.2.4 Crack damage model 

The beam's damage starts from initial microcracks and develops by many 

factors such as degradation, loads, temperature impact, etc. While expanding, 

these microcracks keep opening and closing due to external dynamic excitation. 

This phenomenon is known as the breathing crack and dominates the beam's 

crack behavior in incipient crack stage (Voggu and Sasmal 2021). Besides, since 

the prestress is widely applied, the crack in the prestressed concrete bridges will 

perform as the breathing crack. Thus, it is necessary to simulate the breathing 

crack in the bridge model since it is close to the actual cracks' behaviour. 
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Figure 3-4. The cracked beam element 

In this study, the breathing crack is studied. Law and Zhu’s damage model is 

used to simulate the breathing crack (Law and Zhu 2006). The breathing crack 

is simulated as a rotational spring at the crack's location 𝑙𝑙𝑐𝑐. Figure 3-4 shows the 

beam element with a breathing crack. This element is considered as two 

undamaged beam sections connected by the proposed rotational spring. 𝐸𝐸𝐼𝐼 is the 
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undamaged beam's flexural rigidity and 𝐿𝐿  is the length of this element. The 

stiffness matrix of this element can be written as 

⎩
⎨

⎧
𝑄𝑄𝑖𝑖
𝑀𝑀𝑖𝑖
𝑄𝑄𝑑𝑑𝐿𝐿

𝑀𝑀𝑑𝑑
𝐿𝐿⎭
⎬

⎫
= 𝐸𝐸𝐸𝐸

𝜌𝜌𝑐𝑐3

⎣
⎢
⎢
⎡

12 6𝑙𝑙𝑐𝑐 −12 6𝑙𝑙𝑐𝑐
6𝑙𝑙𝑐𝑐 4𝑙𝑙𝑐𝑐2 −6𝑙𝑙𝑐𝑐 2𝑙𝑙𝑐𝑐2
−12 −6𝑙𝑙𝑐𝑐 12 −6𝑐𝑐
6𝑙𝑙𝑐𝑐 2𝑙𝑙𝑐𝑐2 −6𝑙𝑙𝑐𝑐 4𝑙𝑙𝑐𝑐2 ⎦

⎥
⎥
⎤
�

𝑤𝑤𝑖𝑖
𝜃𝜃𝑖𝑖
𝑤𝑤𝑑𝑑
𝐿𝐿

𝜃𝜃𝑑𝑑𝐿𝐿
�          (3-18) 

⎩
⎪
⎨

⎪
⎧𝑄𝑄𝑑𝑑

𝑅𝑅

𝑀𝑀𝑑𝑑
𝑅𝑅

𝑄𝑄𝑖𝑖
𝑀𝑀𝑖𝑖 ⎭

⎪
⎬

⎪
⎫

= 𝐸𝐸𝐸𝐸
(𝜌𝜌−𝜌𝜌𝑐𝑐)3

⎣
⎢
⎢
⎡

12 6(𝑙𝑙 − 𝑙𝑙𝑐𝑐) −12 6(𝑙𝑙 − 𝑙𝑙𝑐𝑐)
6(𝑙𝑙 − 𝑙𝑙𝑐𝑐) 4(𝑙𝑙 − 𝑙𝑙𝑐𝑐)2 −6(𝑙𝑙 − 𝑙𝑙𝑐𝑐) 2(𝑙𝑙 − 𝑙𝑙𝑐𝑐)2
−12 −6(𝑙𝑙 − 𝑙𝑙𝑐𝑐) 12 −6(𝑙𝑙 − 𝑙𝑙𝑐𝑐)

6(𝑙𝑙 − 𝑙𝑙𝑐𝑐) 2(𝑙𝑙 − 𝑙𝑙𝑐𝑐)2 −6(𝑙𝑙 − 𝑙𝑙𝑐𝑐) 4(𝑙𝑙 − 𝑙𝑙𝑐𝑐)2 ⎦
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧𝑤𝑤𝑑𝑑

𝑅𝑅

𝜃𝜃𝑑𝑑𝑅𝑅
𝑤𝑤𝑖𝑖
𝜃𝜃𝑖𝑖 ⎭
⎪
⎬

⎪
⎫

  

(3-19) 

Eqs. (3-18) and (3-19) link up the deformation and force at two beam sections' 

ends. The 𝑤𝑤𝑖𝑖 , 𝑤𝑤𝑖𝑖 , 𝜃𝜃𝑖𝑖 , 𝜃𝜃𝑖𝑖  are the displacement and rotation angle of two beam 

sections' joint. The 𝑄𝑄𝑖𝑖, 𝑄𝑄𝑖𝑖, 𝑀𝑀𝑖𝑖 , 𝑀𝑀𝑖𝑖  are the transverse shear force and moment. 

The 𝑤𝑤𝑑𝑑
𝐿𝐿, 𝜃𝜃𝑑𝑑𝐿𝐿, 𝑤𝑤𝑑𝑑

𝑅𝑅, 𝜃𝜃𝑑𝑑𝑅𝑅 are the spring's displacement and rotation angle at the joint. 

The 𝑄𝑄𝑑𝑑𝐿𝐿, 𝑀𝑀𝑑𝑑
𝐿𝐿, 𝑄𝑄𝑑𝑑𝑅𝑅, 𝑀𝑀𝑑𝑑

𝑅𝑅 are corresponding the shear force and moment.  

According to equilibrium and compatibility condition at the crack's location, the 

cracked beam's element stiffness matrix can be obtained 

𝐊𝐊𝑑𝑑 = 𝐊𝐊1 + 𝐊𝐊2𝐊𝐊3
−1𝐊𝐊4                          (3-20) 

where 

  𝐊𝐊1 =
𝐸𝐸𝐼𝐼
𝑙𝑙3

⎣
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⎢
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(1 − 𝛿𝛿) ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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𝐊𝐊3 =

⎣
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⎢
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⎢
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⎥
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⎥
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⎥
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𝛿𝛿 =
𝑙𝑙𝑐𝑐
𝑙𝑙

, 𝑆𝑆 =
𝐾𝐾𝑟𝑟𝑑𝑑𝑙𝑙3

𝐸𝐸𝐼𝐼
 

The 𝐾𝐾𝑟𝑟𝑑𝑑 is the tangent stiffness which reveals the spring's instant rigidity. As 

shown in Figure 3-5, there is a crack opening at the edge of a rectangular section. 

2ℎ is the cracked element's length and 𝑏𝑏 is the element's height. The crack is 

started on the center of the element's long edge. The rotational displacement due 

to the crack opening at the edge can be obtained using linear-elastic fracture 

mechanics (Tada et al. 2000) as 

𝜃𝜃𝑐𝑐𝑟𝑟𝑎𝑎𝑐𝑐𝑘𝑘 = 4𝜎𝜎
𝐸𝐸
𝑆𝑆 �𝑎𝑎

𝑏𝑏
�                                       (3-21) 

where σ is the applied stress of the whole cracked element induced by bending 

moment. The a
b

 is the ratio of the crack's depth. For ℎ
𝑏𝑏

> 2 , the 𝑆𝑆(𝑎𝑎
𝑏𝑏

) can be 

written (Tada et al. 2000) as 

  𝑆𝑆 �𝑎𝑎
𝑏𝑏
� = �

𝑎𝑎
𝑏𝑏

1−𝑎𝑎𝑏𝑏
�
2

�5.93− 19.69 �𝑎𝑎
𝑏𝑏
� + 37.14 �𝑎𝑎

𝑏𝑏
�
2
− 35.84 �𝑎𝑎

𝑏𝑏
�
3

+ 13.12 �𝑎𝑎
𝑏𝑏
�
4
� (3-22) 

 

 

 

 

Figure 3-5. The crack opening at edge 
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The relationship of 𝜎𝜎 and 𝑀𝑀 for the pure bending element can be written as 

 𝜎𝜎 = 6𝑀𝑀
b2

                                                (3-23) 

where 𝑀𝑀  is the cracked element's bending moment. 𝑏𝑏  is the length of the 

section's short edge. Integrating Eqs. (3-21) to (3-23), the 𝐾𝐾𝑟𝑟𝑑𝑑  which is the 

instant tangent stiffness of the virtual rotational spring, is obtained. 

𝐾𝐾𝑟𝑟𝑑𝑑 = 𝑀𝑀
𝜃𝜃𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐

= 𝐸𝐸𝑏𝑏2

24𝑆𝑆(𝑎𝑎𝑏𝑏)
                             (3-24) 

3.3 Results 

3.3.1 Numerical simulation 

The numerical model is verified by comparing with the results by Zhu and Law 

(2006). A simply supported beam with a 50 m length, a 0.5 m width and a 1 m 

high is used. The elastic modulus of the beam is 2.1 × 1011 Pa, and the density 

is 7860 kg/m3. The moving force is 10 kN. The first six natural frequencies are 

listed in Table 3-2. 

Table 3-2. The numerical model's natural frequencies 

Natural frequencies 

Zhu and Law  In this study 

0.94 0.9375 

3.75 3.7501 

8.44 8.4377 

15.00 15.0004 

23.44 23.4390 

33.75 33.7547 

Figure 3-6 shows the normalized deflection curve at the mid-span. The sampling 

rate is 100 Hz. The deflection is normalized by F0L
3

48EI
 which is the static 
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deflection when the force is at the mid-span. The scattered points are the 

analytical solution obtained by Zhu and Law (2006) and the line curves are the 

numerical solution obtained by the proposed model in this study. 𝑎𝑎/ℎ is the 

crack depth ratio at the mid-span. For 𝑣𝑣=5 m/s, the number of elements is 13. 

For 𝑣𝑣 =40 m/s, the number of elements is 7. The number of elements is 

consistent with the compatibility condition in Eq. (3-22). The results by the 

proposed model are close to those in the reference paper (Zhu and Law 2006). 

The results show that the higher frequency components to obtain when the 

larger number of elements are used. The proposed damage detection method 

will be deployed on this numerical model with enough accuracy. As shown in 

Fig. 3.6, the occurrence of the fluctuations in the responses reflects the high 

frequency components. The number of elements for the case 𝑣𝑣=5 m/s is 13 and 

it is 7 for the case with 40 m/s. To obtain the higher frequency components in 

the response, the larger number of elements should be used.  

 

Figure 3-6. The normalized deflection at mid-span by (Zhu and Law 2006) and 

this study 
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3.3.2 Comparison between principal component analysis and moving 

principal component analysis 

With a moving window, MPCA can reveal more intrinsic feature of the data 

than PCA. A comparison study will be shown here to illustrate this point. The 

simulated beam is taken from Section 3.3.1. The moving load is 10 kN. The 

velocity of the moving load is 5 m/s and the number of elements is 13. The 

beam is undamaged. A sudden and slight change of the load's mass is simulated 

to illustrate the sensitivity and reliability of MPCA. The acceleration signals are 

taken as the input data. Table 3-3 shows simulated three cases. 

Table 3-3. The simulated three cases 

Case Mass change Time duration 
Start time End time 

1 0%   
2 1% 5 s 6 s 
3 1% 5 s 10 s 

Figure 3-7 shows the results of PCA for those three cases in Table 3-3. The first 

PC is shown for comparison. The unit of the results obtained by PCA-based 

methods (PCs and eigenvalues) depends on the unit and amount of the input 

data. The property of the covariance matrix determines that the total amount of 

eigenvalues obtained by PCA is equal to the sum of the norms’ squares of all 

input vectors. Also, the metric of the obtained eigenvectors depends on the 

corresponding eigenvalues. Thus, the number and size of input vectors will 

directly determine the magnitude of the obtained result by PCA. The meaning of 

the obtained result depends on the unit of the input vectors. This also makes the 

obtained result comparable, as long as the vectors can be input according to a 

same rule. Additionally, the Gaussian window proposed in the next chapter will 

scale the magnitude of the obtained results. 
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Figure 3-7. Results of PCA with three different masses 

There are some slight but not obvious changes at the fifth second in Figure 3-7. 

It is difficult to distinguish the difference in the results of PCA. Without a 

moving window, the eigenvalue obtained by PCA is a constant and cannot be 

used as the feature for a time-varying process.  

 

Figure 3-8. Result of MPCA with the mass change 



 

52 
 

The eigenvalues are more sensitive to abrupt changes than PCs (Nie et al. 2020). 

The first eigenvalue is taken for comparison in this study. The size of the 

window is 50 times the sampling interval. Figure 3-8 shows the result using 

MPCA. As shown in Figure 3-8, there are clear changes at 5 s in Cases 2 and 3. 

The results show that the 1% mass variation can be detected immediately in the 

first eigenvalue curve by using MPCA. For Case 2, the magnitude of the first 

eigenvalue is the same with Case 1 after 6 s as the mass returns back the original 

value. For Case 3, the first eigenvalue keeps the same magnitude after 5 s since 

the mass of the moving load does not change after that.  

3.3.3 The effect of damage patterns 

 

Figure 3-9. The influence of the crack depth for MPCA 
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Figure 3-9 shows the pattern change of the first eigenvalue induced by the 

growing crack depth. Other parameters are the same as Case 1 in Section 3.3.2. 

The crack occurred at the mid-span. The image below is an enlarged view of the 

area in the red box of the image above. Figure 3-9 reveals that changes of the 

crack depth mainly affect the distance between each pair of adjacent peaks in 

the first eigenvalue curve. If the damage occurs, the distance between each pair 

of adjacent peaks will increase and this increment will increase with the crack 

depth. This pattern was also observed in Hester and González (2015). 

3.3.4 Orthogonality  

The efficiency of the proposed method requires to be proved by the 

orthogonality. MPCA can decompose the data into different coordinate axes in 

which each axis is orthogonal with other axes. For bridge SHM, the changes 

occurred by damage need to be orthogonal with changes induced by other 

factors such as the vehicle's mass, the temperature, road surface roughness, etc. 

In this section the orthogonality between the vehicle's mass and damage is 

studied. Six cases have been studied. The parameters of the first three cases are 

the same with those in Section 3.3.2. The parameters of the remaining three 

cases are also the same as those in Section 3.3.2 except for the crack depth. 

Table 3-4 shows all six simulated scenarios. 

Table 3-4. Six cases for the orthogonality 

Case Mass 
change 

Time duration 
Crack depth 

Start time End time 
1 0%     0 
2 1% 5 s 6 s 0 
3 1% 5 s 10 s 0 
4 0%     50% 
5 1% 5 s 6 s 50% 
6 1% 5 s 10 s 50% 
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Figure 3-10 shows the result of six simulated scenarios. The image below is an 

enlarged view of the area in the red box of the image above. Comparing Cases 1 

to 3 with Cases 4 to 6, we can see the influence of the damage is orthogonal 

with the influence of the moving load's mass. The influence of the damage is 

embodied in the distance between each pair of adjacent peaks. Cases 4 to 6 

show similar patterns which are different with the undamaged beam's patterns in 

Cases 1 to 3. The influence of the moving load's mass is embodied in the 

magnitude of each peak. The first eigenvalue represents the amount of 

information at the corresponding time in acceleration signals. For the 

undamaged beam, the increase of the moving load's mass will lead to the 

decrease of the first eigenvalue. For the damaged beam, the increase of the 

moving load's mass will lead to the increase of the first eigenvalue. For Cases 1, 

2, 4 and 5, the peak magnitude after 6 s is the same and the result shows that the 

proposed method also has the potential for moving load identification. 

 

Figure 3-10. Result of six cases for the orthogonality 
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3.3.5 Temperature influence 

To investigate temperature's impact on MPCA, the following cases are 

considered for comparison. Table 3-5 summaries all considered scenarios.   

Table 3-5. Cases to investigate temperature's impact on MPCA 

Case Average temperature 
difference(℃) 

Vertical temperature difference(℃) Crack 
depth 

Start time End time 

1 0 0 0 0 
2 0 0 0 50% 
3 +15 28 25 0 
4 +15 28 25 50% 
5 -15 20 15 0 
6 -15 20 15 50% 

The two kinds of temperature changes are based on the reference temperature. 

The average temperature difference means the average temperature of the whole 

beam in different cases. The +15 means that the average beam temperature is 15 

degrees Celsius higher than the reference temperature. The -15 means that the 

average beam temperature is 15 degrees Celsius lower than the reference 

temperature. The vertical temperature difference will slightly change when the 

vehicle is passing the bridge. All the considered temperature changes are linear 

since the moving load will pass the beam in a short time. The average 

temperature difference between Cases 3, 4 and Cases 5, 6 reaches 30 degrees 

Celsius to simulate the temperature difference between day and night in mid-

summer, and the corresponding vertical temperature difference is to simulate 

strong sunlight conditions. The other parameters are the same as Case 1 in 

Section 3.3.4.  

Figure 3-11 shows the temperature's impact on the first eigenvalue of MPCA. 

The image below is an enlarged view of the area in the red box of the image 
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above. Since the temperature difference considered in this section is relatively 

extreme, a small amount of deviation is caused to the first eigenvalue curve's 

fluctuations. However, the deviation caused by the temperature difference is 

concentrated in a specific small range, which is an order of the magnitude 

different from the change in the curve pattern caused by the damage. 

 

Figure 3-11. Temperature impact on MPCA 

3.4 Damage sensitive feature 
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3.4.1 Observation 

According to previous discussions, the crack depth mainly affects the distance 

between each pair of adjacent peaks in the first eigenvalue curve. If damage 

occurs, the distance between each pair of adjacent peaks will increase and this 

increment will grow along with the growth of the crack depth. Although the first 

eigenvalue curve has an obvious and identifiable pattern, some sawtooth-like 

interference information occurs near the peak and trough areas. This 

information will greatly affect the accuracy of the detection. To avoid the 

influence of these perturbation, a special treatment is adopted. Following the 

idea of PCA, the information we actually need is the principal component in the 

first eigenvalue curve. Figure 3-12 shows that the steadiest part which can 

reflect the main trend of the first eigenvalue is the two limbs of each peak. Thus, 

the mean line of the first eigenvalue curve is taken to cut the first eigenvalue 

curve. The midpoints of each pair of intersections in each peak are taken as the 

foundation of the DSF’s construction.  

 

Figure 3-12. The detail of DSF's construction 
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3.4.2 Construction 

Figure 3-13 shows that the growth trend of the x-axis location of each midpoint 

is linear. The thumbnail in this figure is an enlarged view of the red boxed area. 

The crack depth's change will influence the inclination of each midpoint's x-axis 

location's growth trend line. In this section all cracks are occurred at the mid-

span.  

 

 

Figure 3-13. The growth trend of each peak's midpoints  

 

Thus, the gradient of the line in Figure 3-13 can be used as the DSF. The 

numerical derivatives of each pair of discrete midpoints are obtained. The mean 

of all numerical derivatives in each line is calculated corresponding to its crack 

depth. The angle of each line is obtained by the mean's arctangent. Figure 3-14 

shows the angle of each line corresponding to its crack depth. 



 

59 
 

 

Figure 3-14. The angle of each line when crack is growing  

3.4.3 Influence by crack's location 

 

Figure 3-15. The angle of each line when crack locates at different position 

Figure 3-15 shows the crack location's influence. The result reveals that for each 

crack depth the crack located around the midpoint of the beam has a larger 

influence than the crack located near the beam's end. This phenomenon will be 

more obvious when the crack grows deeper. This result complies with the 
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beam's dynamic analysis theory. In PCA, the first eigenvalue represents the 

variance of the first dimension. In this study, the first dimension is dominated by 

the acceleration changes caused by the moving loads. The vertical fluctuation 

and slow decline of the first eigenvalue reveal that the amount of the 

information (energy) brought by the moving load is gradually dissipated in the 

beam's response over time due to the beam's vibration. The existence of cracks 

will change the rate of this dissipation. Therefore, the increases in the distance 

between each midpoint represent these crack induced changes. Additionally, this 

DSF reflects the damage of the beam from the overall perspective, which is the 

so-called equivalent crack depth. Since cracks in actual structure are distributed 

near the damaged area of the beam, this DSF can provide a more realistic beam 

damage situation. When the crack depth is greater than 30%, the Maxwell-Betti 

reciprocal theorem is no longer valid due to the nonlinearity caused by the 

cracks. Thus, although the two damage locations with a distance of the 1/10 L 

on both sides of the beam’s midpoint are symmetrical in space, the damage 

extent reflected by these two DSFs is no longer consistent due to the 

directionality of the moving load on the time axis. In this case, the first 

eigenvalue is dominated by the moving load and the breathing crack. Within this 

range, the moving load passing through the crack earlier means that the beam 

has more time to dissipate, so the reflected degree of the damage will be slightly 

higher than the other places that the moving load passes the crack later. 

Therefore, the proposed DSF describes the damage extent of the beam from a 

dynamic perspective. In other words, it depicts beam's "rhythm". The traditional 

modal analysis describes the beam’s vibration from a static perspective. Since 

the analysis is based on the simply supported beam model, the magnitude of the 

first eigenvalue represents a measure of the maximum variance direction 

dimension. For a simply supported beam, the direction of the maximum 

variance of the measuring points' acceleration is in the direction of the gravity 
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axis when a uniaxial moving load is passing. Therefore, MPCA can capture a 

continuous peak fluctuation of the same magnitude in the first eigenvalue curve. 

3.5 Summary 

 Introduction of PCA and MPCA 

As the used detection method in this study, PCA and MPCA are first introduced 

at the beginning of this chapter. For PCA, the obtained eigenvalue is a constant 

and the resolution of the corresponding principal component vector 

(eigenvector) depends on the length of the input data. In other words, the 

obtained eigenvalues and eigenvectors reflect the unweighted statistical 

characteristics over the entire length of the input data. This can cause some local 

subtle features to be overwhelmed by the overall features of the entire signal. 

For MPCA, the additional moving window expands the constant eigenvalues 

obtained by PCA into the eigenvalue curves along the time axis based on local 

fluctuations of the data. The corresponding eigenvectors also have higher 

resolution and become more sensitive to local subtle variations. This enables 

MPCA to excavate the inner structure of time series signals in detail and reveal 

the variation trend of the data itself. For current existed data processing 

algorithms, their main target is to extract the enough inherent features of the 

data and filter out the interference caused by the other factors as possible.  

 Construction of bridge finite element model 

The numerical model is used to develop the damage detection method for the 

bridges under the moving vehicles considering the environmental temperature 

effect. The bridge is simulated as a simply supported Euler Bernoulli beam with 

the breathing crack subjected to a moving vehicle. The Hermite interpolation 

and Newmark-β method are used to solve the equation of motion and obtain the 

bridge response. The temperature influence is simulated as the variation of the 
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beam's parameters and thermal stress induced by the vertical temperature 

difference. The cracked beam element is modelled with a virtual rotational 

spring and its stiffness matrix is obtained based on the equilibrium and 

compatibility condition and the linear-elastic fracture mechanics. The result in a 

reference paper is used to ensure the accuracy of the proposed numerical model. 

 Results of numerical simulation  

By the comparison with the result in the reference paper, this numerical model 

is accurate enough to develop the damage detection method. 

 Results of comparison between PCA and MPCA 

According to the results, it is difficult to observe and distinguish the slight 

changes detected by PCA in the input data. The first eigenvalues obtained by 

MPCA are more sensitive to the abrupt and slight changes in the input data. The 

sudden slight changes in the input data can be timely and clearly detected and 

observed on the first eigenvalue curves. This comparison study is used to 

illustrate the superior of MPCA. Based on this conclusion, the first eigenvalue 

curve is used as the foundation to create the damage sensitive feature. 

 Parametric study 

The parametric study is conducted to investigate the effect of the single 

parameter variations and the interactions between these parameters’ variations 

on the changes of the first eigenvalue. This is to demonstrate the feasibility and 

robustness of using the first eigenvalue curve to construct the damage sensitive 

feature. The pattern change of the first eigenvalue induced by the growing crack 

depth is presented. The first eigenvalue curve can obviously reveal the 

occurrence of the damage induced by the breathing crack. In the first eigenvalue 

curve, the changes induced by a moving vehicle are orthogonal with the changes 

induced by the breathing crack, and the changes caused by the temperature 
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difference are an order of the magnitude different from the changes caused by 

the breathing crack. These conclusions ensure the feasibility and robustness of 

using the first eigenvalue curve to construct the damage sensitive feature.  

 Construction of damage sensitive feature with discussion 

Based on the results above in this chapter, the final form of the damage sensitive 

feature is determined. The mean line of the first eigenvalue curve is taken to cut 

the first eigenvalue curve and a series of intersections are obtained. The 

midpoints' x-axis location of each pair of intersections in each peak is obtained. 

Connect these x-axis coordinate values into a line, and the gradient of this line is 

used as the damage sensitive feature. The effects of the different damage depth 

and location on the damage sensitive feature are studied, and the discussions are 

conducted based on these results. From the perspective of mechanics and 

MPCA, the mechanism and meaning behind the feature changes are analysed. 

The result shows that the proposed damage sensitive feature can reflect the 

damage of the bridge more truly. In bridge, the cracks are actually formed by the 

accumulation of small cracks distributed in different positions. The equivalent 

crack depth reflected by the proposed damage sensitive feature can more 

accurately measure the damage extent caused by these distributed cracks on the 

bridge. This feature provides the bridge information from a dynamic perspective 

and is strongly interpretable. 
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Chapter 4 Laboratory Study 

A laboratory study has been conducted in this study. The acceleration data of the 

experimental beam subjected to a moving model vehicle load under undamaged 

and damaged states from Zhu and Law (2006) have been used. The wavelet 

transform is used to extract the discontinuity of the displacement response for 

the potential damage detection in Zhu and Law (2006). In this study, the 

acceleration response is adopted. The first eigenvalue curve has been obtained 

using the proposed method in Chapter 3. The Gaussian window is adopted to 

reduce the measurement noise and the vehicle-bridge interaction. The selection 

of the window parameters is also discussed. The results of the obtained damage 

sensitive feature on this laboratory data using the proposed method in Chapter 3 

are presented and discussed.  

4.1 Experimental setup 

Figure 4-1 shows the experimental setup. The cross-section of the concrete 

beam is shown in Figure 4-1 (a). As shown in Figure 4-1 (b), the whole 

experimental beam is composed of three T-section reinforcement concrete 

beams: the front beam, the main beam and the tail beam. The front and tail 

beams are 4.5 m long each. The main beam is 5.0 m long. The gaps between 

these three beams are 10 mm. An electric motor is used to pull the vehicle along 

the beam at a speed of approximately 0.5 m/s. The vehicle's axle spacing is 0.8 

m, and its wheel spacing is 0.39 m. There are two vehicle models with different 

weights in this study. The whole weight of the first vehicle model (without 

elastic spring) is 10.60 kN with the front axle load 5.58 kN and the rear axle 

load 5.02 kN. The whole weight of the second vehicle model (with elastic 

spring) is 15.00 kN with the front axle load 6.20 kN and the rear axle load 9.00 

kN. Since the mass of the whole concrete beam is 1050 kg, the weight ratios 
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between the vehicle and the beam bridge for these two vehicle models are 1.01 

and 1.43 respectively. Figures 4-1 (c) and (d) are the photos taken during this 

experiment. Figure 4-1 (c) shows the vehicle model passing through the beam 

and Figure 4-1 (d) shows the large damage case being generated. 

 

(a) Cross-section of the concrete beam  

 

(b) Sensor location  

   

(c) Moving vehicle model       (d) Generating large damage case 

Figure 4-1. Experimental setup  
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As shown in Figure 4-1 (b), seven accelerometers are evenly installed along the 

beam at the bottom surface. Thirteen photo-electric sensors are distributed on 

the lead and main beams with 0.56 m spacing to measure the vehicle's moving 

velocity. The third and thirteenth photo-electric sensors are installed at the entry 

and exit points of the main beam respectively. The INV300E data acquisition 

system is used to obtain the response data. The duration for each test is 30 

seconds and the sampling frequency is 2024.292 Hz. 

 

(a) Small damage 

 

(b) Large damage 

Figure 4-2. The damage loading and the crack zone 

A three-point load system is used to create the damage. The small damage is 

created by deploying the load at the 1/3 L from the beam's right support as 

marked in Figure 4-2 (a). The load is gradually added with a 2 kN increment. 

Several tensile cracks are obviously appeared on the beam rib when the load 

reaches 36 kN. When the load is 50 kN, the largest crack at the beam's bottom is 
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measured as a 0.10 mm width. This crack is located close to the loading point 

but on the span inside with a 213 mm depth and a 760 mm wide crack zone 

visually. The beam is unloaded after the load is kept for 30 minutes. Then the 

crack at the beam's bottom decreases to a 0.025 mm width and closes partly. 

These descriptions are referred to as the small damage case. 

For the large damage case, a 50 kN load is first loaded at the 2/3 L of the beam 

from the right support by the three-point load system. This produces a crack 

pattern similar in the extent and magnitude to the existing crack zone at the 1/3 

L. After that, a four-point load system is used for a further loading as marked in 

Figure 4-2 (b). The final total load was 105 kN without the main reinforcement 

yielding and the largest crack is located near the beam's midpoint with a 281 

mm depth. This crack is a 0.1 mm width at the beam's bottom when the load is 

105 kN. When the beam is unloaded after keeping the 105 kN static load on the 

top surface for 30 minutes, this crack width reduces to 0.038 mm. The crack 

zone is 2371 mm long. 

4.2 Results 

4.2.1 The Gaussian window 

Figure 4-3 shows the first eigenvalue curves under different moving vehicle 

models. Figure 4-3 (a) shows the results for the undamaged beam, and the 

beams with the small and large damage under a 10.6 kN moving vehicle. Figure 

4-3 (b) shows the results under a 15 kN moving vehicle. The results show that 

the pattern of the first eigenvalue curve is severely affected due to the existence 

of measurement noise and the vehicle-bridge interaction. Measurement noise 

and the vehicle-bridge interaction are two main influencing factors for the first 

eigenvalue curve. Comparing Figure 4-3 (a) with Figure 4-3 (b), since the latter 

uses a 30% heavier vehicle, its curve is less affected by those influencing factors. 

The window length in these two cases is randomly selected with 54 sampling 
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intervals for a comparison and illustration. Therefore, following this idea, if a 

smaller window can be used, more components caused by the moving load can 

be extracted. However, due to the limitation of PCA algorithm, the window's 

length cannot be less than the number of input signal's channels. Additionally, a 

small window length may lose the important information caused by the moving 

loads. Thus, the Gaussian window is proposed. 

 
(a) The moving load is 10.6 kN 

 

(b) The moving load is 15kN 
Figure 4-3. The first eigenvalue curve in experimental study 
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Figure 4-4. The Gaussian window 

The Gaussian window draws on the idea of regularization. Figure 4-4 shows a 

Gaussian window (𝜎𝜎 (0,5)) when the normal window's length is 50 sampling 

intervals. It is equivalent to add a penalty term: the farther the time is from the 

current moment, the smaller the impact on the current moment. The greater the 

weight in the middle, the deeper the consideration of instantaneous effects. The 

influencing factors' impact on the time axis is diffuse, so their effects can be 

significantly reduced by the Gaussian window and the proportion of the vehicle 

excitation in this window is magnified at the same time. In other words, PCA is 

a multi-channel data processing method and the additional normal moving 

window expands the eigenvalue along the time axis. Through the expansion of 

eigenvalues, not only the same overall movement trend of each measuring point 

on the bridge is displayed along the time axis, but also each interference factor 

is expanded on the time axis. Therefore, the Gaussian window realigns this 

expansion on the time axis again. This minimizes the effect of interference 

factors on the detection results. 
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(a) The moving load is 10.6 Kn 

 

 

(b) The moving load is 15kN 

Figure 4-5. The first eigenvalue curve with the Gaussian window in 
experimental study 
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In Figure 4-3, the first eigenvalue curve has many distortions or buckling caused 

by the noise, the vehicle bridge interaction or other factors like human 

interference or operational error. Figure 4-5 shows the first eigenvalue curves 

smoothed by the Gaussian window. The Gaussian window can reduce the effect 

from those factors and pay more attention on the data which are closer to the 

current time by giving more coefficient weight.  

4.2.2 Parametric study 

4.2.2.1 The effect of the window length 

 

Figure 4-6. The effect of the Gaussian window's length 
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This section will discuss the selection of the window's parameters. The first is to 

investigate the influence of the window length on the first eigenvalue curve. In 

this section, the responses of the undamaged experimental beam under the 10.6 

kN moving load are used. Figure 4-6 shows the first eigenvalue curves obtained 

under three commonly used lengths of the window. The image below is an 

enlarged view of the area in the red box of the image above. It is not 

recommended to use a length more than 200 times the sampling interval since a 

large window will greatly increase the MPCA's computational cost. From the 

first eigenvalue curves under different window lengths, we can see they have 

the same shape. Their only difference is the magnitude. The window length will 

not influence the damage detection since the damage influences the distance 

between each pair of adjacent peaks instead of the magnitude. Therefore, the 

second contribution of the Gaussian window is that it simplifies the problem of 

the window length’s selection. The Gaussian window transforms the selection of 

the window length into the hyperparameter 𝜎𝜎's selection of itself and allows the 

use of a small window to reduce the amount of calculation. 

 

4.2.2.2 Hyperparameter of the Gaussian window 

The choice of the hyperparameter 𝜎𝜎 will affect the Gaussian window's attention 

degree to the current moment and the tolerance of the influencing factors. If the 

value is too small, the anticipated effect cannot be achieved. If the value is too 

large, all the information carried in the data will be destroyed (only taking the 

value at the current time t into account). The numerical model is used to find the 

optimal value. The parameters of the simulated beam are same as Case 1 in 

Section 3.3.2 and the length for both normal and Gaussian windows is 50 

sampling intervals.  
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(a) Overall 

 
(b) Comparison of two windows' detail 

 
(c) Comparison of DSFs obtained by two windows 

Figure 4-7. The result of numerical study proceeded by two types of window 
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Figure 4-7 (a) shows the first eigenvalue curve processed by the Gaussian 

window (𝜎𝜎 (0,5)). Comparing with the curves in Figure 3-12, the curve obtained 

by the Gaussian window is much smooth. The Figure 4-7 (b) is the enlarged 

view of the area in the red box of Figure 3-12 and Figure 4-7 (a) 

correspondingly. Figure 4-7 (b) reveals that the Gaussian window can erase the 

distortions near the peak and trough areas of the first eigenvalue curve. Except 

for the window's type, the damage conditions and other parameters for obtaining 

the DSFs in Figure 3-12 and Figure 4-7 (a) are the same.  Figure 4-7 (c) shows 

that the DSFs obtained by the normal window and the Gaussian window are 

almost the same. They both have the same gradient which could be an indicator 

of the beam's damage extent. Thus, the 𝜎𝜎 (0,5) can be used as the optimal 

hyperparameter of this study. The Gaussian window (𝜎𝜎 (0,5)) can smooth the 

first eigenvalue curve without affecting the accuracy of the DSF for eliminating 

the influence of interference factors. 

4.3 Experimental results and discussions 

Figure 4-8 shows that the proposed DSF can distinguish the beam's damage 

extent well on the experimental dataset. Since the heavier vehicle can better 

excite the response due to the crack, the result in Figure 4-8 (b) is better than 

Figure 4-8 (a) in distinguishing the damage extent. Due to the existence of the 

elastic spring, the wheel can better maintain the contact with the concrete 

surface. The result in Figure 4-8 (b) is smoother and more continuous than that 

in Figure 4-8 (a). The size of the gradient reflects the "rhythm" of the beam. The 

cracks weaken the effective cross-sectional area of the beam, thereby hindering 

the transmission of information in the beam. In this case, the speed at which the 

first eigenvalue reaches each local extreme value will slow down and the 

gradient will become larger. Due to the existence of the elastic spring, part of 

energy in the response is transferred in the beam using the vehicle as the 
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transmission path. This leads to an increase in the information transmission 

bandwidth of the beam. When a visible crack zone occurs in the beam, the load 

in this area will be more borne by the steel bars. Since the vehicle in Figure 4-8 

(b) is 30% heavier than the one in Figure 4-8 (a), this phenomenon will become 

deeper as the load increases. Since the load carried by the steel bars increases as 

the cracks deepen, the overall "rhythm" of the beam becomes faster and the 

gradient becomes smaller. Thus, these two points will reverse the change pattern 

of the DSF when the cracks grow but require a further study. 

 
(a) The moving load is 10.6 kN 

 
(b) The moving load is 15kN 

Figure 4-8. The result of proposed DSF 



 

76 
 

4.4 Summary 

 Experimental setup 

This experimental study is a laboratory test. The whole experimental beam is 

composed of three T-section reinforcement concrete beams and the main beam 

which is the subject for the damage detection is 5.0 m long. The vehicle is at a 

speed of approximately 0.5 m/s. Three different damage cases (the undamaged, 

small and large damage) with two different vehicles' weight are used to verify 

the proposed damage sensitive feature. The elastic spring is deployed on the 

heavier vehicle to simulate the real vehicle axle load. 

 Gaussian window 

The existence of measurement noise and the vehicle-bridge interaction (VBI) 

will severely affect the result of the proposed damage sensitive feature. 

Therefore, a new type of the window called the Gaussian window is proposed 

for MPCA. This window gives more weight to the data near the current moment 

t on the time axis to pay more attention on the same movement trend caused by 

the vehicle movement. The addition of a Gaussian distribution to the window 

realigns the components expanded by the normal window on the time axis. By 

the parametric study on the numerical model and experimental data, this 

window can achieve the following without affecting the detection accuracy:  

1. Reduce the influence of these factors (e.g., noise or VBI) that are more 

diffused on the time axis.  

2. Simplify the problem of the window length's selection to the selection of 

the Gaussian window's hyperparameter.  

3. Reduce the computing cost. 

 The selection of the hyperparameter of the Gaussian window 
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The choice of the hyperparameter 𝜎𝜎 represents the attention of the Gaussian 

window to the current moment and the tolerance of the influencing factors. The 

selection of this hyperparameter is related to many factors: the length of bridge, 

distribution of measuring points, accuracy of sensors, interference degree of 

environmental factors, vehicle weights, traffic flow and so on.  

The responses of the undamaged experimental beam under the 10.6 kN moving 

load in Section 4.2.2.1 are used as an example. Referring to Section 3.4.1, there 

are two major criteria for the selection of the hyperparameter 𝜎𝜎: 

1. Cleanly strip as many of the accompanying peaks as possible from the 

main peaks. This is to clearly expose each peak’s two limbs that are the 

critical principal components of the first eigenvalue curve.  

2. The mean line of the first eigenvalue curve should intersect the peaks 

obtained in the previous step as many as possible. 

Figure 4-9 shows the first eigenvalues curve processed by the Gaussian window 

under different hyperparameters 𝜎𝜎 to illustrate the two criteria mentioned above. 

The image above in each subpicture of Figure 4-9 is the entire eigenvalue curve. 

The image below in each subpicture is an enlarged view of the area in the red 

box of the image above in each subpicture of Figure 4-9, correspondingly. 

In the case of 𝜎𝜎=1 in Figure 4-9 (a), the value of 𝜎𝜎 is too small. In the enlarged 

view, there are still many accompanying peaks at the two limbs of each main 

peak. This causes many jagged distortions in the desired two limbs and 

seriously affects the extraction of the midpoints. Additionally, the accompanying 

peak and the main peak are entangled without a clear separation. In this way, the 

effect of increasing the attention degree to the same instantaneous movement 

trend of the beam cannot be achieved. In other words, some disturbing factors 

still occupy a certain proportion in the first eigenvalue curve. 
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In the case of 𝜎𝜎=5 in Figure 4-9 (b), the Gaussian window successfully smooths 

the desired two limbs. The accompanying peaks are stripped clean to the 

greatest extent, and the mean line can smoothly intersect each main peak 

without the interference. Therefore, 𝜎𝜎=5 is the most ideal hyperparameter value 

for this study and is adopted accordingly. 

Admittedly, in the case of 𝜎𝜎=9 in Figure 4-9 (c), the Gaussian window can also 

distinguish the damage extent of the beam. But this does not mean that the 

larger the value of the hyperparameter, the better the effect. Firstly, overly large 

hyperparameters will further reduce the position of the mean line. This makes 

the mean line miss the chance to intersect some of the peaks and lose the 

information about those peaks. Secondly, in the enlarged view, some not 

negligible main peaks are also stripped away. The excessively large 

hyperparameter overemphasizes the Gaussian window's attention degree to the 

current moment, so that the causal continuity of the entire vibration process in 

the time dimension is ignored. In this way, key information may be lost in some 

cases, thereby affecting the accuracy of the results. 

In short, when the two criteria are satisfied, the hyperparameter value can be 

flexibly selected according to the actual situation of the bridge without affecting 

the DSF’s results. 

  

(a) 𝜎𝜎 = 1                           (b) 𝜎𝜎 = 5                             (c) 𝜎𝜎 = 9 
Figure 4-9. The first eigenvalue curves under different hyperparameters 
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 Results and discussion 

The result shows that the proposed damage sensitive feature can distinguish the 

damaged extent of the beam under the different vehicle weights. In the 

discussion part of the experimental results, several vehicle conditions that affect 

the change pattern of the damage sensitive feature are discussed. These 

conditions can be used as the entry point for a more in-depth study of the 

proposed damage sensitive feature. 
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Chapter 5 Field study 

To further verify the proposed method in Chapter 3, the field bridge monitoring 

data are used. In this chapter, the bridge monitoring system and collected data 

for analysis are introduced. The detection results are introduced according to 

different environmental conditions separately. The discussion summaries these 

results from the different environments for comparison. 

5.1 Introduction 

 
(a) Field bridge model      

 
 

(b) Data acquisition and stroage 

 
(c) Sensor locations 

Figure 5-1. The monitoring system of a cable-stayed bridge 
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Figure 5-1 (a) shows the cable-stayed bridge located in Werrington, New South 

Wales, Australia. The bridge is over the Great Western Highway with a span 46 

m. It is a single lane highway bridge with a 5 meters width. The bridge has been 

fully instrumented with a wired monitoring system in 2016 through the 

collaboration project with DATA61. There are totally 64 channels in the 

monitoring system including 31 channels for accelerations, 31 channels for 

strain, one for temperature and one for optical sensors to detect the presence of 

vehicles. There are 24 accelerometers on the bridge deck and Figure 5-1 (c) 

shows the sensor locations. The data acquisition system continuously records 

the data in the local computer from sensors with a 600 Hz sampling rate. The 

recorded data can be uploaded to the central storage through the fibre optic 

cable. Details of the data acquisition and storage system are shown in Figure 5-1 

(b). With support from DATA61, the data collected from this bridge system 

since 2016 is available for verifying the methods developed. 

 

5.2 Data pre-analysis 

The single A-shaped steel tower is connected to the bridge deck by 16 stay 

cables with a semi fan arrangement. The bridge has a composite steel-concrete 

deck with four I-shape beam steel girders. A group of evenly separated cross 

girders are used to attach these girders internally. As a connection between two 

campuses of Western Sydney University, numerous different vehicles pass this 

bridge at various speeds from two directions. In this study, two acceleration 

signals of the bridge at different times on February 11, 2017, are used for 

analysis. A series of information such as the vehicle weight, vehicle speed, 

driving direction or passing time are unknown. This is closer to the actual bridge 

health monitoring scene and can better reflect the value for the practical use of 

this method.  
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(a) Sample 1 

 

 

(b) Sample 2 

Figure 5-2. Monitored data for analysis 
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Figure 5-2 shows the two segments of the acceleration signal monitored by 

Sensor A10. In Figure 5-2 (a), the signal starts at 11:53:56 and lasts 968 seconds. 

In Figure 5-2 (b), the signal starts at 16:18:07 and lasts 484 seconds. On 

February 11, 2017, the average temperature in Sydney was 31 degrees at 12 

noon and 38 degrees at 4 p.m. The responses fall into three categories in terms 

of the magnitude: a) 10 to the negative 4th power corresponds to the response 

when no vehicle is on the bridge. b) 10 to the negative 3rd power corresponds to 

the response of small vehicles passing the bridge. c) 10 to the negative 2nd 

power corresponds to the response of the large vehicle passing the bridge. In 

Figure 5-2 (a), a large vehicle entered the bridge at 710 seconds. The following 

discussion of the data is based on this classification. In this field study, the 

window of MPCA is the proposed Gaussian window with 54 sampling intervals' 

length and the hyperparameter 𝜎𝜎 (0,5).  

 

5.3 Results 

5.3.1 No vehicle on the bridge 

Two 10-second-long acceleration signals are intercepted from the monitored 

data for studying the pattern of the first eigenvalue curve when there is no 

vehicle on the bridge. Figure 5-3 (a) shows the first segment of the signal 

intercepted from the signal showed in Figure 5-2 (a). The start time of this first 

segment is located 640 seconds after the start time of the signal in Figure 5-2 (a). 

Figure 5-3 (b) shows the second segment of the signal intercepted from the 

signal showed in Figure 5-2 (b). The start time of this second segment is located 

280 seconds after the start time of the signal in Figure 5-2 (b). The data of 

sensors A6, A10, A14 and A18 are used as the input data of MPCA.  
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(a) Sample 1 

 

(b) Sample 2 

Figure 5-3. Accelerations when no vehicle on bridge 
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(a) MPCA for Figure 5-3 (a) 

 
(b) MPCA for Figure 5-3 (b) 

 
(c) Eigenvalue curves 

Figure 5-4. The first eigenvalue curve when no vehicle on bridge 
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Figure 5-4 shows the obtained results by MPCA from the signals in Figure 5-3. 

The input data of Figures 5-4 (a) and (b) correspond to Figures 5-3 (a) and (b), 

respectively. The Figures on the left- and right-hand side in Figure 5-4 (c) are 

enlargements of the eigenvalue curves from the second to seventh seconds in the 

red box of Figures 5-4 (a) and (b), respectively. When no vehicle is on the 

bridge, the first eigenvalue curve fluctuates randomly within a single order of 

the magnitude. Without an obvious external excitation, the first eigenvalue 

curve has no obvious change pattern. 

5.3.2 A single small vehicle passing the bridge 

 
(a) The first segment of the signal in Figure 5-2 (a) 

 
(b) The second segment of the signal in Figure 5-2 (b) 

Figure 5-5. Accelerations when a single small vehicle passing bridge 
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Two 5-second-long acceleration signals are intercepted from the monitored data 

for studying the pattern of the first eigenvalue curve when there is a small 

vehicle passing the bridge. Figure 5-5 (a) shows the first segment of the signal 

intercepted from the signal showed in Figure 5-2 (a). The start time of this first 

segment is located 397 seconds after the start time of the signal in Figure 5-2 (a). 

Figure 5-5 (b) shows the second segment of the signal intercepted from the 

signal showed in Figure 5-2 (b). The start time of this second segment is located 

30 seconds after the start time of the signal in Figure 5-2 (b). The data of 

sensors A6, A10, A14 and A18 are used as the input data of MPCA. 

 

 

Figure 5-6. The first eigenvalue curve when a single small vehicle passing 
bridge 

As mentioned earlier (Section 3.4.3), for simply supported beams, the uniaxial 

moving load is sufficient for MPCA to capture a continuous peak fluctuation of 

the same magnitude in the first eigenvalue curve. In this field study, a single 

vehicle is not sufficient to excite continuous peak fluctuations in the first 

eigenvalue curve. Due to the existence of the stay cables, only the continuous 
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passing of vehicles can ensure that the overall acceleration trend of the bridge is 

consistent. This phenomenon can be observed in the next section. But the 

transient effects caused by the entry of a single vehicle are enough for MPCA to 

extract the valuable information from them.  

Figure 5-6 are the obtained results by MPCA from Figure 5-5. The input data of 

Cases 1 and 2 in Figure 5-6 correspond to Figures 5-5 (a) and (b), respectively. 

It can be seen from the peak height that the vehicle weight of Case 1 is larger 

than that of Case 2. From the peak distance and vehicle type (the distance 

between the front and rear axles of a small vehicle is 3 meters), it can be 

estimated that the speed of two vehicles when they are entering the bridge is 27 

km/h and 18 km/h respectively. In order to make the mean line cut to the only 

two peaks, the original mean lines of Cases 1 and 2 (dashed line) are shifted to 

the appropriate positions (bold line). The intercepted results will be discussed 

together in Section 5.3.5. 

 

5.3.3 Small vehicles passing the bridge continuously 

Two 10-second-long acceleration signals are also intercepted from the 

monitored data for studying the pattern of the first eigenvalue curve when small 

vehicles enter the bridge continuously. Figure 5-7 (a) shows the first segment of 

the signal intercepted from the signal showed in Figure 5-2 (a). The start time of 

this first segment is located 224 seconds after the start time of the signal in 

Figure 5-2 (a). Figure 5-7 (b) shows the second segment of the signal 

intercepted from the signal showed in Figure 5-2 (b). The start time of this 

second segment is located 352 seconds after the start time of the signal in Figure 

5-2 (b). The data of sensors A6, A10, A14 and A18 are used as the input data of 

MPCA. 
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(a) The first segment of the signal in Figure 5-2 (a)  

 

(b) The second segment of the signal in Figure 5-2 (b) 

Figure 5-7. Accelerations when small vehicles passing bridge continuously 

Figure 5-8 are the obtained results by MPCA from Figure 5-7. The input data of 

Cases 1 and 2 in Figure 5-8 correspond to Figures 5-7 (a) and (b), respectively. 

The change pattern of the first eigenvalue curve in Figure 5-8 is in accordance 

with the result in the numerical study. In Case 2, the eigenvalue curve shows a 
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slow downward trend, which reflects that the vehicles are crossing the bridge 

one after another. The small fluctuations in the downtrend are due to the fact 

that the load of a small vehicle is two-axle. In the numerical simulation, a single 

moving force is considered as the excitation of the bridge. The entry of the 

second axle will generate a slight recovery in the downtrend. Within the first 

five seconds of Case 1, the total mass of vehicles passing on the bridge is 

greater than Case 2. The peak value of the eigenvalue curve drops rapidly in the 

first second of Case 1. This shows that the vehicle entering in this second is 

faster. About the 2 s of Case 1, the peak value of the eigenvalue curve shows an 

upward trend. This means that the rear axle of the vehicle entering in this 

second weighs more than the front axle. In the third second of Case 1, another 

car got on the bridge. The weight of this car is relatively close to the one entered 

the bridge in the first second. These discussions illustrate that this method also 

has the potential for moving load identification but requires a further study. 

 

Figure 5-8. The first eigenvalue curve when small vehicles passing bridge 
continuously 
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Figure 5-9. The DSF when small vehicles enter bridge 

Figure 5-9 is the obtained DSFs from Figure 5-8. In the case of the different 

temperature, vehicle speed and vehicle weight, the results obtained from two 

cases are consistent. The average temperature of Sydney in Case 2 (4 p.m.) is 7 

degrees Celsius higher than in Case 1 (12 noon). During these four hours, the 

increase in the average temperature is mainly caused by the intense sun 

exposure in midsummer. The larger vertical temperature difference caused by 

the strong sunlight increases the bending stiffness of the bridge. Therefore, the 

effects of the average temperature increase and vertical temperature difference 

offset each other on the DSF. The midpoints in both cases form a straight line 

since the steel I-beams are closer to the continuum assumption than reinforced 

concrete. This agrees with the results in the numerical study. This also shows 

that the integrity of the bridge movement is good and the bridge is in a healthy 

condition. Within a certain range, the variation of the vehicle weight will not 

affect the DSFs. 

5.3.4 A single large vehicle passing the bridge 
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Figure 5-10. Acceleration when a single large vehicle passing bridge 

A 5.7-second-long acceleration signal is intercepted from the monitored data for 

studying the pattern of the first eigenvalue curve when a large vehicle enters the 

bridge. Figure 5-10 shows the segment of the signal intercepted from the signal 

showed in Figure 5-2 (a). The start time of this segment is located 710 seconds 

after the start time of the signal in Figure 5-2 (a). The selection of sensors is 

divided into two groups. The first sensor group is A6, A10, A14 and A18 and the 

second is A7, A11, A15 and A19. The data of two sensor groups are respectively 

used as the input data of MPCA. 

Figure 5-11 are the obtained results by MPCA from Figure 5-10. The first 

eigenvalue curve shows that it is a large two-axle vehicle. Similar to the results 

in Section 5.3.2, a single large vehicle is not enough to excite the motion of the 

bridge as a whole. The pattern of the eigenvalue curve in Figure 5-11 is different 

from the one in Figure 5-8. This difference reveals that the passage of a large 

vehicle on the bridge brings more local excitation effects. This phenomenon will 

be detailed discussed in the next section. The peak caused by the rear axle is 

higher than the front axle, indicating that the rear axle is heavier than the front 

axle of this car. The peak induced by the rear axle in the second group is greater 
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than the one at the same time in the first group, which indicates that the centroid 

of the vehicle is closer to the side of the second group sensors while passing the 

bridge. From the distance between two peaks on the time axis, it can be 

estimated that the vehicle's speed is at least 40 km/h. Also, to make the mean 

lines cut to the only two peaks, the original mean lines of Groups 1 and 2 

(dashed line) are shifted to the appropriate positions (bold line). The intercepted 

results will be discussed together in the next section. 

 

 

Figure 5-11. The first eigenvalue curve when a single large vehicle passing 
bridge 

5.3.5 Discussion 

Table 5-1 summarizes the value of the features from Sections 5.3.1 to 5.3.4 for 

comparison. The classification of vehicles and time is consistent with Section 

5.2. The classification of sensors' group is consistent with Section 5.3.4. The 

DSF’s value in Table 5-1 is calculated from the gradient of the DSF line by the 

arc tangent function. 
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Table 5-1. Comparison of DSF's value 

Vehicle Quantity Time Sensor group Origin mean 
line Shifted mean line 

No   
12 noon 

1 1.5269225 

  
2 1.5289591 

4 p.m. 
1 1.5319806 
2 1.5268278 

Small 
Single 

12 noon 
1 

  

1.5614776 
2 1.5625422 

4 p.m. 
1 1.5618204 
2 1.5625856 

Large 12 noon 
1  1.5561754 
2 1.5514023 

Small Continuously 
12 noon 

1 1.5639835 

  
2 1.5639855 

4 p.m. 
1 1.5639658 
2 1.5640453 

 When no vehicle on the bridge 

The bridge is in a state of random vibration when there is no vehicle on the 

bridge. In this state, the vibration of each measuring point on the bridge has no 

obvious trend, so the eigenvalue curve fluctuates frequently and the value of the 

proposed DSF with the magnitude of the first eigenvalue curve is at a local 

minimum. The value under this state can be regarded as the ground state value 

of the bridge vibration. 

 When a single small vehicle on the bridge 

In this study, since it is difficult for a single vehicle to excite the bridge as a 

whole, the obtained value of the DSF depends on many factors. This allows us 

to extract the useful information from the peaks corresponding to the transient 

effects. 
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(a) 12 noon 

 

(b) 4 p.m. 

Figure 5-12. Comparison of peak's height when the single small vehicle passing 

bridge 
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From the height of peaks, it can be judged which group of sensors is closer to 

the vehicle that is entering the bridge. Figure 5-12 compares the peaks 

corresponding to different sensor groups when the same vehicle enters the 

bridge. Figures 5-12 (a) and (b) correspond to the different vehicles enter the 

bridge at 12 noon and 4 p.m., respectively. In both cases, the peak's height of the 

first sensor group is higher than that of the second sensor group. This reflects 

that the centroids of both vehicles are closer to the first group of sensors when 

entering. Figure 5-12 also reveals that the peak excited by the same vehicle 

shares a similar change pattern.  

Only two main peaks can be detected in the first eigenvalue curve when a single 

small vehicle is passing the bridge. Sometimes the mean line cannot ideally 

reach the two limbs of each peak. So it is necessary to shift the mean line to an 

appropriate position. Generally, four intersected midpoints are enough to 

accurately reflect the information of the vehicle and the bridge. These midpoints 

contain the intersections of the main peaks and several accompanying peaks 

attached on the main peaks. Peaks of different scales are induced by different 

influencing factors. The DSF obtained from these midpoints can reflect the 

overall condition of the bridge and the information of the vehicle. 

 

Figure 5-13. Local detail of Figure 5-6 
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Figure 5-13 is the enlarged view of the area in the red box of Figure 5-6. It 

shows two intercepted peaks that are not easily visible in Case 2 of Figure 5-6. 

The number of intersected midpoints for all single vehicle cases in this study is 

4. In Table 5-1, the first sensor group's DSF value in both cases is lower than 

that of the second sensor group. The group of sensors with a lower DSF value 

represents that the centroid is closer to them when the vehicle passes by since a 

closer distance brings more intense vibrations.  

 When a single large vehicle on the bridge 

In this case, both the velocity and weight of the vehicle are much greater than 

the case of a single small vehicle. This leads to the impact of different sensor 

groups on the feature value will become more obvious. Additionally, this 

stronger vibration shock leads to a lower feature value (on the second decimal 

place). When a large vehicle passes through, the stay cables are stressed heavier. 

The stay cables fully participate in the bridge movement, and the overall 

'rhythm' of the bridge is accelerated (the rate of exchange between kinetic and 

potential energy is accelerated). This phenomenon is similar to that in Section 

4.3. In the laboratory study, the concrete cracked but the rebar does not yield. 

The heavier vehicle weight and cracks increase the participation degree of the 

rebar in the vibration, while the elastic spring improves the overall consistency 

of the vehicle-bridge’s motion. So the overall 'rhythm' of the experimental beam 

becomes faster, which causes the DSF value to decrease in Figure 4-8 (b). The 

single large vehicle is still not enough to fully excite the whole bridge. There are 

only two main peaks in Figure 5-11. 

 When small vehicles passing the bridge continuously 

Figure 5-7 shows the acceleration pattern of small vehicles passing through 

continuously is similar to that of a one-dimensional simply supported beam 
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subjected to a moving load in the numerical study.  The continuous vehicle entry 

provides enough energy to bring the bridge into a stable vibration state. The 

main vibration direction of the stay cables and bridge deck is the direction of 

gravity. The bridge vibration under this state has an overall trend, which is 

similar to the vibration pattern of the simply supported beams subjected to a 

moving load. So the results obtained from the bridge under this state share the 

same form with the one in the numerical study. The fluctuation of the 

eigenvalue curve represents the energy exchange of the vehicle-bridge system 

and the feature value reflects the bridge's vibration 'rhythm'.  

5.4 Summary 

In this chapter, the field bridge monitoring data collected from a cable-stayed 

bridge are used to verify the proposed method. The bridge has a composite 

steel-concrete deck with four I-shape beam steel girders. A group of evenly 

separated cross girders are used to attach these girders internally. The single A-

shaped steel tower is connected to the bridge deck by 16 stay cables with a semi 

fan arrangement. The detection results are introduced according to the different 

environmental conditions separately. When the bridge is fully excited, the 

pattern of the proposed feature is consistent with the results in the numerical 

study. This illustrates the accuracy of the numerical model and the reliability of 

the proposed feature. This feature can accurately and timely reflect the health 

condition of the bridges without being affected by the variation of the vehicle 

weight and temperature. Besides, this feature can also reveal the interesting 

information in the transient effects induced by the single vehicle entry such as 

the entering vehicle's axle-load, the velocity and wheel path. This shows the 

variations of this feature have their own physical meaning and can easily 

correspond to the actual situations on the bridge. The value of this feature can 

accurately reflect the bridge's overall vibration 'rhythm' which is reliable to 
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reveal the bridge's instantaneous vibration state. The discussion summaries these 

results from the different environments for comparison. In this field study, the 

proposed feature shows a promising future for addressing the research gaps 

mentioned in Section 2.7. The proposed feature can achieve the real-time since 

the bridge vibration state can be instantaneously obtained from the vehicle 

excitation response without the requirement of the prerequisite information and 

the preparation work such as the detailed information of the vehicle or the 

model calibration. The proposed feature also can achieve the monitoring since it 

can provide the more relevant information about the bridge from the obtained 

responses, such as the entering vehicle's axle-load, the velocity and wheel path. 

This means the information from the results of the proposed feature is more 

reliable since we can read the actual condition on the bridge from the changes in 

the feature. These two points reveal the strong practicability of the proposed 

feature with significant application potential. 
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Chapter 6 Conclusions and recommendations 

6.1 Conclusions 

With the development and expansion of human habitations, the scale and level 

of highway networks are also increasing. As a critical component in highway 

networks, highway bridges are the linkage for crossing obstacles. Within cities, 

they are often built above the existing road network to alleviate traffic pressure. 

Such bridges within cities generally have smaller spans, similar bridge types and 

larger traffic flow. The closure of them will affect the smoothness of urban 

traffic. Thus, for the aging bridges, an easy-transplantable SHM system that can 

conveniently track their status in the real time is urgently needed. 

Since the vehicle loads are the most frequent live loads in bridges with obvious 

response patterns, they provide another orientation to achieve the real-time 

detection. The pattern of moving vehicle excited responses can be extracted into 

the feature space by MPCA from time domain responses and the variations on 

these extracted patterns induced by damage can be intuitively observed. This 

opens up the possibility of deploying a narrower window for MPCA. The 

vehicle-bridge interaction induced bridge responses will take the dominant place 

comparing to other environmental load induced responses under normal 

conditions. The inherent feature of bridge health conditions can be accurately 

extracted since the other environmental load's effect will be decreased when 

vehicles are passing on the bridge. The computational cost of this idea is low 

since the vehicle will pass the bridge in a short period. The bridge acceleration 

data are the better choice as the input data since they are more sensitive to the 

load variation comparing with the strain and deflection. It can provide the 

enough information within a time window in seconds. Moreover, the results 

obtained by MPCA from the vehicle induced responses are better interpretable. 
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The form of the damage and excitation in different studies are inconsistent. This 

will lead to the results obtained by MPCA are not interpretable and impede the 

comparison between different studies. The result obtained by PCA from the data 

in a specific pattern is interpretable. If the vehicle loads are taken as the main 

environmental factor, the results obtained by MPCA are easier to match the 

variations between the changes of external factors and results. 

This project develops a bridge real-time monitoring method considering 

temperature and traffic effects using the moving principal component analysis 

(MPCA). In this study, the real-time monitoring is defined as: no bridge closure, 

no requirement of finite element model, no need of the training data that cover 

various bridge states, no need of accurate vehicle information; only several 

acceleration response segments of vehicles passing the bridge at different time 

with corresponding temperature conditions are required for evaluating the health 

of the bridge in real-time.  

Through the numerical study, the inherent feature which reflects the existence of 

the breathing crack on the bridge is excavated by using MPCA. The robustness 

of this feature is verified. The changes on this feature induced by a moving 

vehicle are orthogonal with the changes induced by the breathing crack. The 

changes caused by the temperature difference are an order of the magnitude 

different from the changes caused by the breathing crack. The influence of the 

crack depth and location on the proposed feature is discussed in detail. From the 

perspective of mechanics and MPCA, the mechanism and meaning behind the 

feature changes are analysed. This feature provides the bridge information from 

a dynamic perspective and is strongly interpretable.  

In the first experimental study, a Gaussian window is proposed to improve the 

performance of MPCA on actual datasets. This window can filter out the impact 

of interference factors like measurement noise and the vehicle-bridge interaction. 
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It also simplifies the selection of the MPCA window's length to the selection of 

the Gaussian window's hyperparameter 𝜎𝜎. It can reduce the computational cost 

of MPCA without affecting the accuracy of the damage detection. The result 

shows that this feature can detect and distinguish the crack damage of different 

extents under the different vehicle's weight.  

In the second experimental study, the pattern of the proposed feature is 

consistent with the results in the numerical study. This illustrates the accuracy of 

the numerical model and the reliability of the proposed feature. When the bridge 

is fully excited, the results show that this feature can accurately and timely 

reflect the health condition of the bridge without being affected by the variation 

of the vehicle weight and temperature. In the cases of a single vehicle passing 

the bridge, the mechanism of the feature change is discussed. The transient 

effects induced by the single vehicle entry are extracted by MPCA to provide 

the valuable information such as the entering vehicle's axle-load, the velocity 

and wheel path. This illustrates the variations of the feature have their own 

physical meaning and are easy to interpreter. The value of the feature can 

accurately reflect the bridge's overall vibration 'rhythm' which is reliable to 

reveal the bridge's instantaneous vibration state. 

There is a special case in both laboratory and field studies. The variation of the 

proposed feature in these two special cases is consistent with the analysis based 

on the actual situation. This illustrates that this feature is not limited to several 

few pre-considered parameters but reflects the beam's damage extent from a 

dynamic perspective. Additionally, both numerical and experimental study 

illustrate that this feature also has the potential for moving load identification 

but requires further study. 
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6.2 Recommendations 

 Real-time monitoring 

For the proposed method, only several acceleration response segments of 

vehicles passing the bridge at different time with corresponding temperature 

conditions are required for evaluating the health of the bridge. 

 Accuracy and Robustness  

The proposed method can detect and distinguish the crack damage of different 

extents under the different vehicle’s weight and temperature conditions in both 

the numerical study and laboratory test. In the numerical study, the changes on 

the feature induced by a moving vehicle are orthogonal with the changes 

induced by the breathing crack. The changes caused by the temperature 

difference are an order of the magnitude different from the changes caused by 

the breathing crack. In the field study, the intense sun exposure in midsummer 

induced average temperature increase and vertical temperature difference does 

not influence the detection result of the proposed method. When the bridge is 

fully excited, the pattern of the proposed feature is consistent with the results in 

the numerical study since the steel I-beams are closer to the continuum 

assumption than the reinforced concrete. 

 Interpretability  

The variation of the damage sensitive feature in the proposed method has its 

own physical meaning and is easy to interpreter. Not only the bridge damage 

condition, but the other interesting information also can be derived from the 

feature variations such as the entering vehicle's axle-load, the velocity and 

wheel path. This allows us to read the actual situation on bridge in real time 

from the changes in the proposed feature. 
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In bridge, the cracks are actually formed by the accumulation of small cracks 

distributed in different positions. The equivalent crack depth reflected by the 

proposed feature can more accurately measure the damage extent caused by 

these distributed cracks on the bridge. This feature provides the bridge 

information from a dynamic perspective and is strongly interpretable. Since 

MPCA is a muti-channel data processing method, it is easy for the proposed 

method to capture the overall movement trend in the bridge vibration signals.  

There is a special case in both experiments. The variation of the proposed 

feature in these two special cases is consistent with the analysis based on the 

actual situation. This illustrates that this feature is not limited to several few pre-

considered parameters and the value of this feature can accurately reflect the 

bridge's overall vibration 'rhythm' which is reliable to reveal the bridge's 

instantaneous vibration state. 

 Gaussian window  

In MPCA, the problem of the window length’s selection is always a big issue 

and will directly relate to the performance of MPCA. Existence of the 

measurement noise and vehicle-bridge interaction (VBI) will severely affect the 

result of traditional MPCA. Therefore, a new type of window called Gaussian 

window is proposed for MPCA. This window gives more weight to the data 

near the current moment t on the time axis to pay more attention on the 

measuring points’ same movement trend caused by the vehicle movement. The 

normal window expands the eigenvalue along the time axis, and the additional 

Gaussian distribution of the window realigns the components expanded by the 

normal window on the time axis.  

This window can achieve the following without affecting the detection accuracy:  
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1. Reduce the influence of these factors (e.g., noise or VBI) that are more 

diffused on the time axis.  

2. Simplify the problem of the window length's selection to the selection of 

the Gaussian window's hyperparameter.  

3. Reduce the computing cost. 

The choice of the hyperparameter 𝜎𝜎 represents the attention of the Gaussian 

window to the current moment and the tolerance of the influencing factors. The 

selection of this hyperparameter is related to many factors: the length of bridge, 

distribution of measuring points, accuracy of sensors, interference degree of 

environmental factors, vehicle weights, traffic flow and so on. 

 Real-world deployment 

For a better application of the proposed method in real-world practical use, 

some noteworthy recommendations are as follows: 

1. According to the actual situation of the bridge, it is better to choose the 

signal excited by the same kind of the load with obvious characteristics 

as the input. For example, in windy areas, the signals caused by wind 

loads can be selected as the input. 

2. It is better to arrange the sensors evenly along the whole bridge to 

reflect the overall state information of the bridge more accurately. 

3. For the case where the vehicle excitation is used as the input, some 

standard vehicles (vehicles with the same weight and speed when 

passing) can be set up as a calibration method for the regular test of the 

system. In this way, abnormalities in daily results, such as sensor 

failures, can be found more easily by comparison. 
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