

Characterisation of the Lipidome of Transfusible Platelet Components

by Sarah Green

Thesis submitted in fulfilment of the requirements for the degree of

Master of Science

under the supervision of Dr Lacey Johnson and Dr Matthew Padula

University of Technology Sydney Faculty of Science

July 2022

Certificate of original authorship

I, Sarah Green, declare that this thesis is submitted in fulfilment of the requirements for the award of Master of Science, in the Faculty of Science, School of Life Sciences at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other institution.

This research is supported by the Australian Government Research Training Program.

30th July 2022

Sarah Green

COVID-19 Impact Statement

The COVID-19 pandemic had a dramatic impact on the progression of my studies and personally impacted me by restricting travel and access to the laboratory to complete my studies. In March 2020, I departed Australia and travelled to the United States of America to visit my husband who lives there. This was intended as a short-term holiday. However, over the next few weeks borders quickly closed and returning to Australia became near impossible. Australian borders were closed for well over 1.5 years and even once they opened, flights were prohibitively expensive and extremely limited. The situation was incredibly uncertain and I prioritised staying with my husband.

Additionally, I was working to obtain my US residency, as upon completion of my studies I was intending to move to the US, and issues arose around this process. It was suggested by our immigration lawyer that I remain in the US until the immigration proceedings could be completed or risk having my US residency application forfeited permanently. Again, I choose to prioritise my husband and my family. Given the border closures and my personal situation if I had returned to Australia, I would have been unable to see my husband for 2 years. It is my belief that being apart from my husband for 2 years would have been extremely detrimental to my own mental health, the mental health of my husband and made progression of my research project extremely difficult.

With uncertainty surrounding border reopening and flights resuming, I took an over 18 month leave of absence, hoping at some point a state of normalcy would resume and I would be able to return to Australia, the laboratory and my studies. However, no such state returned and I was unable to return to Australia. Given this, I could not perform the experiments required to complete an additional results chapter required for a PhD thesis. This study was designed to assess the functional impact for the lipid changes observed in chapters 4 and 5. As such, in May of 2022, I made the decision to complete

data analysis on the data already collected and additional data collected by my supervisors to submit a Masters thesis.

Acknowledgements

First and most importantly, I would like to thank my supervisors, Dr, Lacey Johnson and Dr. Matt Padula. This experience has been less than perfect, and without your support, understanding and encouragement it would not have been possible. Lacey, thank you for being a passionate and thorough advisor who was far too generous with your time. Matt, thank you for your much valued expertise and suggestions. Additionally, I cannot thank you enough for your assistance in performing experiments while I was unable to travel, this work literally would not have been possible without your help.

Thank you to Australian Red Cross Lifeblood. Thank you to my colleagues who provided me with friendship and assistance. In particular, Shuchna Vekariya who collected samples and performed ELISAs while I was unable to return to Australia. I would also like to thank Lauren Waters and Ben Wood; their kindness, support and friendship has helped me through this experience and created lifelong memories. Thank you to A/Prof. Denese Marks for diligently reading my work and always providing constructive feedback. Thank you to the blood donors.

I would like to thank the University of Technology Sydney for their financial support in the form of the UTS Chancellors Research Scholarship as well as the Australian Government Research Training Program. I would like to thank the members of Proteomics Core Facility and the technical staff that assisted me through out. I would like to thank my collaborators, Dr. Tyren Dodgen and Dr. Amani Batarseh, for your expertise, technical assistance and knowledge.

Thank you to my friends and family your support, friendship and care throughout this experience and my entire education has been more than I could ask for. To my husband Jason, your sacrifice and support during this experience has been incredible, and I cannot thank you enough for always supporting and encouraging me. Lastly, I would like to thank the examiners for the time they have taken to review my thesis.

Statement

This is a traditional thesis, as such it contains an introduction, materials and methods, results, and discussion chapter.

Ethics Disclosure

Ethics approval was obtained for this study from the Australian Red Cross Lifeblood Ethics Committee (Johnson 1107218), and was ratified by the University of Technology Sydney Human Research Ethics Committee (ETH18-2795).

Publications

Publications arising from this thesis:

<u>Green SM</u>, Padula MP, Marks DC, Johnson L: The lipid composition of platelets and the impact of storage: An overview. *Transfusion Medicine Reviews* 2020; 34: 108-16.

Peer reviewed conference abstracts arising from this thesis:

<u>Green SM</u>, Padula MP, Dodgen TM, Batarseh A, Marks DC, Johnson L: Alternative storage of platelets alters the abundance of bioactive lipid mediators. *Transfusion* 2020; 60: 7A-260A.

Publications alongside this thesis:

Johnson L, Waters L, <u>Green S</u>, Wood B, Marks DC: Freezing expired platelets does not compromise in vitro quality: An opportunity to maximize inventory potential. *Transfusion* 2019; 60: 454-9.

Johnson L, Vekariya S, Wood B, Costa M, Waters L, <u>Green S</u>, Marks DC: The in vitro quality of x-irradiated platelet components in pas-e is equivalent to gamma-irradiated components. Transfusion 2021; 61: 3075-80.

Table of Contents

Certificate of original authorshipi
COVID-19 Impact Statementii
Acknowledgementsiv
Statementvi
Ethics Disclosure
Publicationsvii
Table of Contents viii
List of Figures xiii
List of Tables xvii
Abbreviationsxviii
Abstractxxi
Chapter 1 Overview of thesis1
1.1 Background and significance of project2
1.2 Hypothesis and aims of the project
1.3 Thesis structure4
Chapter 2 Introduction
2.1 Platelets7
2.1.1 Origins of platelets7
2.1.2 Resting platelets9
2.1.3 Platelet activation and haemostatic function11
2.1.3.1 Platelet microparticles and platelet microparticles formed
during activation14
2.1.4 Lipid classes and their role in platelets
2.1.4.1 Lipid profile of resting platelets21
2.1.4.2 Changes to platelet lipids as a result of activation23 viii

2	.1.4.3	Changes to the lipid profile of platelet micropartic	les as a
re	esult of	activation	24
2.2	Platele	et components for transfusion	25
2.2	.1 Pla	atelet collection and preparation	25
2.2	.2 Co	onventional platelet storage	29
2	.2.2.1	Challenges to conventional platelet storage	29
2.2	.3 Co	old-stored platelets	33
2.2.	.4 Cr	yopreserved platelets	34
2	.2.4.1	Microparticle formation in cryopreserved platelets	35
2.3	Chang	es to the lipidome during platelet storage	36
2.3	.1 Lip	bidome of conventionally stored platelets	36
2.3	.2 Lip	pidome of cold-stored platelets	36
2.3	.3 Lip	bidome of cryopreserved platelets	37
2.3	.4 Cli	inical importance of understanding the lipid profile	e of
plat	telet co	mponents	38
2.4	Definiti	ion of research question	39
Chapter	·3 N	laterials and Methods	40
3.1	Ethics		41
3.2	Materia	als	41
3.3	Platele	et collection and preparation	41
3.3.	.1 Ap	heresis platelet components	41
3.3.	.2 Bu	Iffy coat derived platelet components	41
3.4	Experi	mental design	42
3.4	.1 Lip	bidomic characterisation of cold-stored platelets	42
3.4	.2 Lip	bidomic characterisation of cryopreserved platelets	44
3	.4.2.1	Cryopreservation process	46

3.4.2.2 Thawing process	48
3.5 Analysis of platelet component	50
3.5.1 Platelet recovery of cryopreserved platelets	50
3.6 Flow cytometric analysis	50
3.7 Isolation of component fractions	53
3.8 Lipidomic analysis	56
3.8.1 Lipid extraction	56
3.8.2 Lipid mass spectrometry	56
3.8.3 Mass spectral data processing	59
3.8.4 Nomenclature	59
3.8.5 Bioinformatics methodology for pathway analysis	59
3.9 Enzyme linked immunosorbent assay	60
3.10 Statistical analysis	61
3.10.1 Cold-stored platelets	61
3.10.2 Cryopreserved platelets	61
Chapter 4 Results of the lipidomic characterisation of cold-	
stored platelet components	62
4.1 Assessment of platelet number and morphology over	
room temperature and cold storage	64
4.2 Assessment of global lipidomic changes over room temperature and cold storage	68
4.3 Assessment of bioactive lipid mediators over room	
temperature and cold storage	97
4.4 Assessment of lipid dynamics and lipid pathways	
over room temperature and cold storage	101
Chapter 5 Results of the lipidomic characterisation of	
cryopreserved platelet components	110

5.1 Assessment of platelet number and morphology following cryopreservation112
5.2 Assessment of the global lipidomic changes following cryopreservation116
5.3 Assessment of bioactive lipid mediators following cryopreservation
5.4 Assessment of lipid dynamics and lipid pathways following cryopreservation159
Chapter 6Discussion of the lipidome of alternatively storedplatelets166
6.1 Addressing challenges of platelet storage167
6.2 Assessment of the lipid profile of cold-stored platelets
6.2.1 Changes to the lipid profile of platelets following cold storage 169
6.2.2 Changes to the lipid profile of the supernatant following cold storage
6.3 Assessment of the lipid profile of cryopreserved platelet components
6.3.1 Changes to the lipid profile of platelets following cryopreservation181
6.3.2 Changes to the lipid profile of microparticles following cryopreservation
6.3.3 Changes to the lipid profile of the supernatant following cryopreservation
6.4 Limitations
6.5 Future directions190
6.6 Concluding remarks192

Supplemental data	193
References	

List of Figures

Figure 2.1. Platelet production and release from megakaryocytes
Figure 2.2. Schematic of platelet structure 10
Figure 2.3. Haemostatic function of platelets
Figure 2.4. General structure of lipids within platelets
Figure 2.5. Lipid dynamics of resting, activated and stored platelets
Figure 2.6. Methods of platelet component preparation
Figure 2.7. Conventional and alternate storage results in changes to the
platelet structure
Figure 3.1. Study design for the lipidomic characterisation of cold-stored
platelet components
Figure 3.2. Study design for the lipidomic characterisation of cryopreserved
platelet components 45
Figure 3.3. Overview of the platelet cryopreservation process
Figure 3.4. Overview of the platelet thawing process
Figure 3.5. Gating strategy for discrimination of microparticles and platelets by
flow cytometry
Figure 3.6. Summary of sample preparation be differential centrifugation 54
Figure 3.7. Differential centrifugation clears supernatant of most platelets and
microparticles
Figure 3.8. Representative total ion chromatograms from platelet samples 58
Figure 4.1. The effect of cold storage on platelet count and mean platelet
volume
Figure 4.2. The effect of cold storage on phosphatidylserine externalisation
Figure 4.3. The effect of cold storage on the lipid content of platelets and
supernatant
Figure 4.4. The effect of cold storage on phospholipids and sphingolipids 72
Figure 4.5. The effect of cold storage on phosphatidylcholine species 76
Figure 4.6. The effect of cold storage on lysophosphatidylcholine species 79

Figure 4.7. The effect of cold storage on phosphatidylethanolamine species Figure 4.8. The effect of cold storage on ether linked phosphatidylcholine linked Figure 4.9. The effect of cold storage on ether Figure 4.10. The effect of cold storage on phosphatidylserine species....... 91 Figure 4.13. The effect of cold storage on concentration of bioactive lipid Figure 4.14. The effect of cold storage on the formation of certain bioactive Figure 4.15. BioPAN lipid networks depicting active reactions over cold storage 105 Figure 4.16. Summary of Z-scores for given reactions over room temperature and cold storage from BioPAN......108 Figure 5.1. The effect of cryopreservation on the platelet count and mean Figure 5.2. The effect of cryopreservation on the externalisation of phosphatidylserine, phosphatidylethanolamine and release of microparticles Figure 5.3. The effect of cryopreservation on the relative abundance of phospholipids and sphingolipids117 Figure 5.4. The effect of cryopreservation on the phospholipids and sphingolipids 120 Figure 5.5. The effect of cryopreservation on the phosphatidylcholine species Figure 5.6. The effect of cryopreservation on the lysophosphatidylcholine Figure 5.7. The effect of cryopreservation on the phosphatidylethanolamine xiv

Figure	5.	8. T	he e	effect	of	cryopr	eserv	ation	on	the
lysopho	ospha	tidyletha	anolamin	e spec	cies					134
Figure	5.9.	The	effect	of c	ryopre	eservation	on	the	ether	linked
phosph	atidyl	choline	species							138
Figure	5.10	. The	effect	of c	ryopr	eservation	on	the	ether	linked
phosph	natidyl	ethanola	amine sp	ecies						141
Figure	5.11.	The effe	ect of cryo	oprese	ervatio	on on the pl	nosph	atidyl	serine s	pecies
										144
Figure	5.12.	The effe	ect of cry	opres	ervati	ion on the p	phosp	hatidi	c acid s	pecies
										147
Figure	5.13.	The e	ffect of o	cryopr	reserv	ation on th	ne lys	sopho	sphatid	ic acid
species	S									150
Figure	5.14. [·]	The effe	ect of cryo	oprese	ervatio	on on the sp	ohingo	omyel	in speci	es 153
Figure	5.15.	The effe	ect of cryo	oprese	ervatio	on on the ce	erami	de spe	ecies	156
Figure	5.16.	Th effec	t of cryop	oreser	vatior	n on the pre	sence	e of ce	rtain bi	oactive
lipid me	ediato	rs in the	superna	itant o	fplate	elet compor	nents			158
Figure	5.17.	BioPA	N lipid	netwo	orks c	lepicting a	ctive	react	ions fo	llowing
cryopre	eserva	tion								161
Figure	5.18.	Summa	ary of Z-	score	s for	given react	tions	from	cryopre	served
platelet	t comp	onents	obtained	l from	BioP	AN				164
Figure	6.1. S	implified	d pictogra	am of	the h	ypothesised	d sphi	ngolip	id meta	ıbolism
in room	n temp	erature	and cold	l-store	ed plat	telets				174
Figure	S.1. I	Represe	entative t	otal io	on ch	romatogran	ns fro	m pla	atelet sa	amples
										193
Figure	S.2. I	Represe	entative t	otal io	on ch	romatogran	ns fro	m pla	atelet sa	amples
										194
Figure	S.3. I	Represe	entative t	otal io	on ch	romatogran	ns fro	m pla	atelet sa	amples
										195
Figure	S.4.	Repres	sentative	total	ion	chromatog	grams	from	n supe	rnatant
sample	s									196
Figure	S.5.	Repres	sentative	total	ion	chromatog	grams	from	n supe	rnatant
sample	s									197
										xv

Figure S.6. Representative total ion chromatograms from supernatant
samples
Figure S.7. BioPAN lipid networks depicting active reactions over storage 199
Figure S.8. BioPAN lipid networks depicting active reactions over storage 200
Figure S.9. BioPAN lipid networks depicting active reactions following post-
thaw storage 201
Figure S.10. BioPAN lipid networks depicting active reactions following
thawing and post-thaw storage

List of Tables

Table 2.1. Distribution of lipids within resting platelets and an indication of
changes occurring in response to platelet activation
Table 3.1. Solutions used in flow cytometric analysis 52
Table 3.2. Dilutions used for enzyme linked immunosorbent assays
Table 4.1. Lipid class ratios of platelets and supernatant in room temperature
and cold-stored platelet components 103
Table 4.2. BioPAN predicted genes to be activated or supressed in the given
reaction in room temperature and cold-stored components
Table 5.1. Lipid class ratios of platelets, microparticles and supernatant from
cryopreserved platelet components 160
Table 5.2. BioPAN predicted genes to be activated or supressed in the given
reaction in cryopreserved platelet components

Abbreviations

ACD	Acid Citrate Dextrose			
ADP	Adenosine diphosphate			
ANOVA	Analysis of variance			
ATP	Adenosine triphosphate			
BioPAN	Bioinformatics Methodology For Pathway			
	Analysis			
C1P	Ceramide 1-phosphate			
C1PP	Ceramide 1-phosphate phosphatase			
Ca ²⁺	Calcium			
CCS	Collisional cross section			
CDase	Ceramidase			
CE	Cholesterol ester			
Cer	Ceramide			
CerK	Ceramide kinase			
CerS	Ceramide synthase			
CID	Collision induced dissociation			
CLIP-II	Cryopreserved vs Liquid Platelet-II			
COX	Cyclooxygenase			
CPD	Citrate-phosphate-dextrose			
DAG	Diacylglyceride			
DIA	Data-independent acquisition			
DMSO	Dimethyl sulfoxide			
ELISA	Enzyme linked immunosorbent assay			
eV	Electronvolts			
FDA	Food and Drug Administration			
GLA	Gamma-carboxyglutamic acid-rich			
GP	Glycoprotein			
HDLs	High density lipoproteins			
HETE	Hydroxyeicosatetraenoic acid			
HLA	Human leukocyte antigens			

IMS	Ion Mobility Spectrometry
LC-MS/MS	Liquid chromatography with tandem mass
	spectrometry
LCAT	Lectin-cholesterol transferase
LDLs	Low density lipoproteins
LOX	Lipoxygenase
LPA	Lysophophatidic acid
LPC	Lysophosphatidylcholine
LPE	Lysophosphatidylethanolamine
m/z	Mass-to-charge ratio
MAM	Mitochondria-associated membranes
MPV	Mean platelet volume
MS	Mass spectrometry
MS ^E	Mass spectrometry experiment
MTBE	Methyl tert-butyl ether
OCS	Open canalicular system
PA	Phosphatidic acid
PAF	Platelet activating factor
PC	Phosphatidylcholine
PCO	Ether linked phosphatidylcholine
PE	Phosphatidylethanolamine
PEP	Ether linked phosphatidylethanolamine
PF	Pre-freeze
PG	Phosphatidylglycerol
PI	Phosphatidylinositol
PIP	Phosphoinositide
PS	Phosphatidylserine
PSL	Platelet storage lesion
PT0	Post-thaw 0
PT24	Post-thaw 24
PVC	Polyvinylchloride

PVDF	Polyvinylidene fluoride
QToF	Quadrupole Time-of-Flight
RS	Reconstitution solution
RT	Room temperature
S1P	Sphingosine 1-phosphate
S1P lyase	Sphingosine 1-phosphate lyase
S1PP	Sphingosine 1-phosphate phosphatase
SK	Sphingosine kinase
SM	Sphingomyelin
SM D	Sphingomyelin deaclyase
SMase	Sphingomyelinase
SMS	Sphingomyelin synthase
sP-selectin	Soluble P-selectin
SSP+	Platelet additive solution
TAG	Triacylglyceride
TF	Tissue factor
TRALI	Transfusion related acute lung injury
ТХ	Thromboxane
UPLC	Ultra-pressure liquid chromatography
v/v	Volume/volume
vWF	von Willebrand factor

Abstract

Conventional room temperature stored platelets have a short shelf life and require constant agitation. As such, there can be issues when supplying these components to remote and military locations. Alternative storage techniques, such as cold storage and cryopreservation, represent feasible options to circumvent these issues. Cold storage involves storing platelet components in the refrigerator (2-6°C); whereas cryopreservation requires the addition of DMSO and freezing at -80°C. Extensive efforts have been undertaken to understand the changes occurring in cold-stored and cryopreserved platelet components. However, the lipid profile remained incompletely understood. A few historic studies have assessed the lipidome of cold-stored platelets, however, an updated assessment was warranted due to advancements in transfusion practices and mass spectrometry technology. Further, the lipidome of cryopreserved platelets had not yet been characterised. Therefore, the aim of this thesis was to characterise the changes occurring to the lipid profile of alternatively stored platelet components.

The characterisation of the lipid profile of cold-stored and cryopreserved platelet components was conducted as two discrete studies. Apheresis derived platelet components were stored at either room temperature (20-24°C with constant agitation) or cold-stored (2-6°C without agitation) and sampled on day 1, 5, and 14 post-collection. Buffy coat derived platelet components were frozen with 5-6% DMSO and stored at -80°C. Frozen components were thawed and then stored at room temperature for 24 hours, and samples were taken before freezing, after thawing and after post-thaw storage. The platelet, microparticle and supernatant fractions were separated by differential centrifugation. Lipids were extracted using methyl tert-butyl ether (MTBE) and the lipid profile of the component fractions were assessed by LC-MS/MS. Several bioactive lipid mediators were assessed by ELISA.

The lipid profile of platelets was relatively unchanged during storage for 5 days, regardless of temperature. However, over extended storage (14 days)

changes became apparent, and these were exaggerated by cold storage. Conversely, the lipid profile of the supernatant was changed during early storage at both temperatures, but changes stabilised during extended storage. These changes may be the result of an exchange of lipids between the fractions. More specifically, the proportion of the procoagulant lipids, PS and PE, increased during extended cold storage. Further, several LPC species associated with inflammation were altered during extended room temperature storage. Most interestingly, alterations were observed in apoptosis-associated ceramide species suggesting that cold storage of platelets may delay the progression of apoptosis.

The lipidome of the cryopreserved platelets was not considerably altered immediately after thawing. However, changes became apparent during post-thaw storage. In contrast, the lipid profile of microparticles formed after thawing was significantly different to the lipid profile of the microparticles present prior to freezing. The changes present after thawing are likely the result of interactions between fractions. More specifically, externalisation of lipids associated with coagulation (PS and PE) were increased immediately after thawing. Further, lipid changes present in the post-thaw microparticles and the supernatant (LPC and LPE) may be associated with altered inflammation and signalling.

Overall, the research presented in this dissertation has expanded the knowledge of alternatively stored platelet products and thus may be valuable in expanding their utility.