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Abstract 

Conventional room temperature stored platelets have a short shelf life and 

require constant agitation. As such, there can be issues when supplying these 

components to remote and military locations. Alternative storage techniques, 

such as cold storage and cryopreservation, represent feasible options to 

circumvent these issues. Cold storage involves storing platelet components in 

the refrigerator (2-6°C); whereas cryopreservation requires the addition of 

DMSO and freezing at -80C. Extensive efforts have been undertaken to 

understand the changes occurring in cold-stored and cryopreserved platelet 

components. However, the lipid profile remained incompletely understood. A 

few historic studies have assessed the lipidome of cold-stored platelets, 

however, an updated assessment was warranted due to advancements in 

transfusion practices and mass spectrometry technology. Further, the lipidome 

of cryopreserved platelets had not yet been characterised. Therefore, the aim 

of this thesis was to characterise the changes occurring to the lipid profile of 

alternatively stored platelet components. 

The characterisation of the lipid profile of cold-stored and cryopreserved 

platelet components was conducted as two discrete studies. Apheresis 

derived platelet components were stored at either room temperature (20-24C 

with constant agitation) or cold-stored (2-6°C without agitation) and sampled 

on day 1, 5, and 14 post-collection. Buffy coat derived platelet components 

were frozen with 5-6% DMSO and stored at -80C. Frozen components were 

thawed and then stored at room temperature for 24 hours, and samples were 

taken before freezing, after thawing and after post-thaw storage. The platelet, 

microparticle and supernatant fractions were separated by differential 

centrifugation. Lipids were extracted using methyl tert-butyl ether (MTBE) and 

the lipid profile of the component fractions were assessed by LC-MS/MS. 

Several bioactive lipid mediators were assessed by ELISA. 

The lipid profile of platelets was relatively unchanged during storage for 5 

days, regardless of temperature. However, over extended storage (14 days) 
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changes became apparent, and these were exaggerated by cold storage. 

Conversely, the lipid profile of the supernatant was changed during early 

storage at both temperatures, but changes stabilised during extended storage. 

These changes may be the result of an exchange of lipids between the 

fractions. More specifically, the proportion of the procoagulant lipids, PS and 

PE, increased during extended cold storage. Further, several LPC species 

associated with inflammation were altered during extended room temperature 

storage. Most interestingly, alterations were observed in apoptosis-associated 

ceramide species suggesting that cold storage of platelets may delay the 

progression of apoptosis.  

The lipidome of the cryopreserved platelets was not considerably altered 

immediately after thawing. However, changes became apparent during post-

thaw storage. In contrast, the lipid profile of microparticles formed after thawing 

was significantly different to the lipid profile of the microparticles present prior 

to freezing. The changes present after thawing are likely the result of 

interactions between fractions. More specifically, externalisation of lipids 

associated with coagulation (PS and PE) were increased immediately after 

thawing. Further, lipid changes present in the post-thaw microparticles and the 

supernatant (LPC and LPE) may be associated with altered inflammation and 

signalling.  

Overall, the research presented in this dissertation has expanded the 

knowledge of alternatively stored platelet products and thus may be valuable 

in expanding their utility.  
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Chapter 1   Overview of thesis 

This chapter provides an overview of the current state of transfusion practices 

within Australia. It briefly outlines alternatives to conventionally stored 

platelets, including what is currently understood and the knowledge gaps. 

Consequently, an understanding of the significance of this project is provided. 

The aims of the project are outlined, and the structure of the thesis is also 

summarised. 
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1.1 Background and significance of project  

Currently within Australia, platelets are stored at room temperature with 

constant agitation, and the shelf life is limited to seven days. These storage 

requirements are in place to minimise the risk of bacterial proliferation and 

lessen the effects of the storage related changes that accumulate (i.e. ‘the 

platelet storage lesion’). However, the storage requirements of conventionally 

stored platelets present issues in supplying rural and austere locations. The 

lengthy transport times and the logistical limitations may impact the supply and 

quality of platelet components. Further, as there is uncertainty in component 

demand, the potential for wastage is high. Thus, alternative storage solutions, 

such as cold storage and cryopreservation, may present viable options to 

counter these issues.  

Cold storage of platelets and platelet cryopreservation both present attractive 

alternatives to room temperature storage as they increase the platelet shelf 

life to two weeks and up to two years, respectively. Cold storage of platelets 

involves storing platelets between 2-6 °C without agitation, and 

cryopreservation involves freezing at -80 °C with dimethyl sulfoxide (DMSO). 

Considerable work has been done to understand the changes occurring in 

platelet components as a result of storage at these conditions. As such, it is 

known that cold-stored and cryopreserved platelets have altered metabolism, 

surface receptor profile, proteome, and increased haemostatic potential, 

compared to room temperature stored platelets. Similarly, both storage 

methods have been assessed in vivo, where they have been shown to be safe, 

although their efficacy is still under investigation. Despite the expanding 

knowledge base of cold-stored and cryopreserved platelets, little is known 

regarding the lipid profile of these components.  

Lipids are essential for platelet structure and function. While the lipidome of 

room temperature stored platelets has been characterised, the lipidome of 

cold-stored and cryopreserved platelets is yet to be fully assessed. Lipidomic 

investigations are of interest as the increased haemostatic potential seen in 
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alternatively stored platelet components is partially attributed to the 

externalisation of phospholipids. Further, the transformation of phospholipids 

to bioactive lipid mediators is essential for platelet activation and platelet 

function. Additionally, certain bioactive lipid mediators have been associated 

with transfusion outcomes, both favourable and adverse. As such, there is a 

need to characterise the lipidomic changes occurring as a result of alternative 

storage. This would provide greater insight into how alternative storage may 

affect component function and safety. 

1.2 Hypothesis and aims of the project  

As outlined above, significant efforts have been made to understand many 

facets of alternatively stored platelet components. However, comprehensive 

lipidomic studies are yet to be completed. As such, the overall aim of this study 

was to characterise the lipidome of alternatively stored platelet components. It 

was hypothesised that cold storage and cryopreservation would affect the 

platelet lipidome compared to conventionally stored platelets. To assess this, 

two primary aims were developed.  

Aim 1: To characterise the lipidome of cold-stored platelets.  

Aim 2: To characterise the lipidome of cryopreserved platelets. 
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1.3 Thesis structure 

Chapter 2: Introduction 

This chapter outlines the necessary background information regarding the 

origins, structure, and function of platelets. Additionally, a brief background to 

lipids and lipids within platelets is provided. As this project assessed lipids in 

the context of platelets for transfusion, the collection and preparation methods 

for platelet components are summarised, including conventional and 

alternative platelet storage modes. Lastly, the body of literature regarding the 

lipidome of stored platelet components is critically reviewed, highlighting the 

clinical importance of this project.  

Chapter 3: Materials and methods 

This chapter describes the materials used and the methods performed in order 

to complete the aims of this dissertation. Contents includes platelet component 

production, analysis of the platelet component, lipidomic assessments and the 

statistical analysis performed.  

Chapter 4: Results: lipidomic characterisation of cold-stored platelet 

components  

While historic studies have been conducted assessing the lipidome of cold-

stored platelets, advances in transfusion practices and improved lipidomic 

technologies justify a reassessment of the lipid profile of cold-stored platelets. 

In this chapter, the lipidome of the platelets and supernatant of cold-stored 

platelet components are described. Cold-stored platelet components were 

compared to room temperature stored platelet components for 14 days. The 

lipid profile of platelets was relatively unchanged at day 5 of storage at both 

temperatures; however, changes were evident at day 14, and these were 

exacerbated by cold storage. Further, the lipid profile of the supernatant was 

changed at day 5 of storage at both temperatures, and the changes stabilised 

at day 14 of storage.  
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Chapter 5: Results: lipidomic characterisation of cryopreserved platelet 

components 

To date, no studies have been conducted which assess the lipidome of 

cryopreserved platelets. In this chapter, the lipidome of the platelets, 

microparticle and supernatant fractions of cryopreserved platelets are 

described. Thawed platelet components were compared to paired platelet 

components prior to freezing. While the lipidome of the platelet fraction was 

not extensively altered by the cryopreservation process, post-thaw storage for 

24 hours at room temperature resulted in significant changes. Further, the 

microparticles formed after thawing had a distinct lipid profile compared to 

those present prior to freezing. The lipid profile of the supernatant was 

primarily defined by the resuspension solution.  

Chapter 6: Discussion: lipidomic characterisation of alternatively stored 

platelet components  

The results from this study outlined changes to the phospholipid and 

sphingolipid profile during cold storage and following cryopreservation, which 

are further discussed in this chapter. The changes to the cold-stored platelet 

component may have arisen due to exchanges of lipids between fractions and 

altered lipid metabolism; whereas the changes occurring following 

cryopreservation are likely the result of uptake from lipoproteins, microparticle 

formation and platelet or microparticle degradation. Functionally, the observed 

changes are associated with coagulation, apoptosis, inflammation and 

signalling. The changes that occurred in both cold-stored and cryopreserved 

platelet components are likely to affect the function once components are 

transfused; as such, further areas of study are outlined to more 

comprehensively understand the functional implications of these changes 

once components are transfused.  
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Chapter 2   Introduction 

This chapter outlines the necessary background information regarding the 

origins, structure, and function of platelets. Additionally, a brief background to 

lipids and lipids within platelets is provided. As this project assessed lipids in 

the context of platelets for transfusion, the collection and preparation methods 

for platelet components are summarised, including conventional and 

alternative platelet storage modes. Lastly, the body of literature regarding the 

lipidome of stored platelet components is critically reviewed, highlighting the 

clinical importance of this project. 
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2.1 Platelets 

2.1.1 Origins of platelets  

Platelets are formed through the fragmentation of megakaryocytes [1-3]. The 

platelet precursor, megakaryocytes, are the largest (50-100 m) and rarest 

progenitor cell within bone marrow [4]. Platelet formation can be summarised 

in several key steps that takes place, in vivo, over approximately five days 

(Figure 2.1). Initially, beginning from haematopoietic stem cells, 

megakaryocytes undergo maturation, which involves chromosomal 

replication, including the synthesis of organelles and granules [4-6]. The 

megakaryocyte then undergoes cytoplasmic changes and the formation of 

pseudopods [7, 8]. Lastly, platelets are released into the circulation, via the 

formation of pro-platelets which are formed when the cytoplasm erodes and 

the organelles and granules are caught within the ends of the protrusions [8, 

9]. Each megakaryocyte is capable of releasing 5 000-10 000 platelets [10].  
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Figure 2.1. Platelet production and release from megakaryocytes 

Platelets are derived from megakaryocytes. In the bone marrow, megakaryocytes undergo 

several key maturation steps. These steps include the replication of chromosomes, the 

synthesis of organelles and granules and pseudopod formation. The cytoplasm dismantles 

and pro-platelet formation begins. The formed organelles and granules are trapped in the ends 

of the pro-platelets, which are released into the circulation forming platelets. (Image by author, 

generated using Motifolio Biology Toolkit Suite). 
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2.1.2 Resting platelets 

Platelets are small anucleate discoid cells, approximately 2-4 m in diameter, 

that circulate within the vascular system and have a lifespan of 7-10 days [10, 

11]. The normal platelet count of whole blood is 150-400 x 103/L [10]. In vivo, 

platelets have an essential role in the maintenance of haemostasis, control of 

thrombosis and in mediating immune responses [10, 11]. 

Regardless of their small size, platelets contain a complex array of organelles 

and express a number of surface receptors which allow for their diverse and 

dynamic function (Figure 2.2) [12, 13]. The platelet membrane is a lipid bilayer 

primarily composed of phospholipids interspersed with other lipids, including 

cholesterol, sphingolipids, and glycoproteins (GP), including GPIb-IX-V, GPVI, 

integrin IIb3 and integrin 21 [10, 14]. Glycoproteins and integrins are 

important for platelet signalling during activation and facilitate the haemostatic 

response [13, 14]. Throughout the membrane surface are invaginations, 

referred to as the open canalicular system (OCS), which provides a channel 

for the transport of contents to and from the platelet, and provides the 

membrane surface area needed for platelet spreading following platelet 

activation [14, 15]. Within the platelet are alpha granules and dense granules 

which contain a variety of soluble mediators, and a dense tubular system 

which stores calcium [12, 14]. Platelets also contain mitochondria, necessary 

for meeting the energy requirements of the cell, and a well-purposed 

cytoskeleton [12, 14]. 
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Figure 2.2. Schematic of platelet structure 

Platelets contain an assortment of organelles. Within resting platelets are mitochondria, alpha 

and dense granules which contain a number of soluble mediators, and a dense tubular system 

that houses calcium (Ca2+) stores. The platelet membrane is a lipid bilayer composed mostly 

of phospholipids and dispersed throughout are glycoproteins (GP) required for platelet 

signalling. Platelets also contain membrane invaginations that allow for transport of vesicles 

and increased surface area during activation, referred to as the open canalicular system. 

(Image by author, generated using Motifolio Biology Toolkit Suite).
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2.1.3 Platelet activation and haemostatic function 

One of the primary functions of platelets is to maintain haemostasis through 

the formation of a platelet plug at the site of vascular injury [16, 17]. The key 

steps of this process are tethering, adhesion, activation, aggregation, 

coagulation, and stabilisation through fibrin formation (Figure 2.3) [16, 17].  

Haemostasis is initiated when vascular injury exposes collagen and other 

platelet activators. This process leads to the adhesion of platelets to the site 

of injury [16, 17]. Exposed collagen captures von Willebrand factor (vWF) 

circulating within the bloodstream [18]. Platelets are able to form an 

impermanent interaction (tethering) with the site of injury through the binding 

of GPIbα (a subunit of the GPIb-IX-V complex) to vWF [18]. Firm adhesion is 

then formed through the binding of GPVI and integrin 21 to collagen [16, 

18]. 
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Figure 2.3. Haemostatic function of platelets

The primary role of platelets is the restoration of haemostasis, achieved through the formation of a platelet plug and initiation of coagulation. Collagen 

exposed at the site of vascular injury captures platelets through interaction of GPIb-IX-V with von Willebrand factor (vWF) (tethering). At the same time, 

tissue factor (TF) released at the site of injury initiates the coagulation cascade. This initial capture activates platelets allowing the release of granule contents 

and further receptor interaction, including GPVI and integrin 21 with collagen (adhesion). Integrin αIIbβ3 becomes activated, which facilitates platelet-

platelet interactions (aggregation) through fibrinogen and vWF. The coagulation cascade culminates in the formation of thrombin and fibrin and a stable 

platelet plug (Image by author, generated using Motifolio Biology Toolkit Suite). 
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Following surface receptor binding to agonists, platelet activation occurs [16, 

18]. Initially, downstream signalling, which is mediated by tyrosine kinase and 

G protein-coupled receptor signalling, leads to the mobilisation of calcium [19, 

20]. Several of these pathways involve the transformation of phospholipids to 

bioactive lipid mediators [19, 21]. Cytosolic calcium is increased due to the 

release from the dense tubular network and the influx of calcium via activated 

calcium channels in the plasma membrane [19, 21]. These signals culminate 

in dramatic changes to the platelet including a morphological shape change, 

cytoskeleton reorganisation, externalisation of phosphatidylserine (PS), 

microparticle formation, the release of intracellular granules, and conversion 

of surface receptors to a more activated state [19, 20, 22-25].  

Activated platelets are distinct from resting platelets. Platelet shape change 

involves formation of filopodia and platelet spreading that increases the 

platelet surface area, necessary for establishing connections during 

aggregation [26]. Simultaneously, during the platelet activation process, 

membrane asymmetry is lost, resulting in the release of microparticles and the 

externalisation of PS [27, 28]. These processes will be discussed in greater 

depth in section 2.1.3.1 and 2.1.4.2. Platelets release alpha and dense 

granules during activation, which contain potent mediators of platelet adhesion 

and activation, including adenosine diphosphate (ADP), calcium, 

thromboxane A2 and P-selectin [17, 18, 21, 29, 30]. In addition, platelet 

activation changes the conformation of integrin αIIbβ3 receptor to allow high 

affinity binding to fibrinogen, thereby allowing the platelet-platelet interactions 

which are necessary for aggregation [19, 31].  

In parallel to platelet adhesion and activation, the tissue factor released from 

the site of injury by cells, such as smooth muscle and fibroblasts, initiates the 

coagulation cascade. Both the intrinsic and extrinsic pathway involve a series 

of proteolytic reactions of coagulation proteins, which culminate in the 

formation of the tenase complex (Factor IXa and Factor VIIIa). The formation 

of tenase is necessary to form the prothrombinase complex (Factor Xa and 

Factor Va) [18, 32, 33]. The action of the prothrombinase complex leads to the 
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formation of a large amount of thrombin, which is responsible for the 

conversion of fibrinogen to fibrin (stabilisation) [18, 32, 34]. Importantly, 

several steps in the coagulation cascade are dependent on platelet membrane 

phospholipids, which will be discussed further in section 2.1.4.2. 

2.1.3.1 Platelet microparticles and platelet microparticles formed 
during activation 

Microparticles arise from many different cell types, however, those derived 

from platelets are the most abundant in the bloodstream [35-37]. 

Microparticles can be classified based on size and the expression of markers 

on the surface [38]. Microparticles are defined as being between 0.1 – 1 m in 

diameter and typically have exposed PS, while other particles, such as 

exosomes, are smaller in size (less than 0.1 m) and express CD9 or CD63 

[38-40]. Additionally, platelet microparticles can be further discriminated from 

other microparticles due to their expression of receptors typically found on 

platelets, including integrin αIIb, integrin 3 and GPIbα [41]. Additionally, 

microparticles are known to contain protein, RNA, and lipids [28, 42-44].  

The formation of microparticles in the circulation arise due to processes such 

as apoptosis, shear forces and activation [35, 37]. The biological process 

leading to the formation of microparticles remains relatively unknown [41]. 

However, it is evident there is a rise in intracellular calcium, a loss in lipid 

membrane asymmetry of the parent cell and a degradation of cytoskeletal 

proteins [45, 46]. Increasingly, it is becoming apparent that microparticles play 

an important role in vivo, as they to transport molecules, participate in cell to 

cell communication and the inflammatory process, contribute to the restoration 

of haemostasis and play a part in disease processes [36, 47]. The function of 

microparticles is believed to be dependent on the mechanism of generation, 

which may influence the number, size, lipid profile, protein expression and 

molecules packaged within the microparticles [37, 48]. Further, the number of 

microparticles produced and the composition of the microparticles is also 

affected by the source of platelet activation [28, 49]. 
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2.1.4 Lipid classes and their role in platelets 

Platelets are composed of lipids from several categories, including 

phospholipids, sterols, sphingolipids, free fatty acyls and glycerolipids (Table 

2.1) [27, 50-52]. These categories are distinguished from one another by a 

functional group or structural motif, and are further classified by fatty acyl chain 

length and double bond number and position (Figure 2.4) [53]. In addition, 

platelets contain an extensive number of bioactive lipid mediators, which are 

produced from parent lipids via specific pathways and are important signalling 

molecules [54]. Platelet lipids have distinct functional roles, which are briefly 

outlined below.  
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Table 2.1. Distribution of lipids within resting platelets and an indication of changes 
occurring in response to platelet activation 

*Values reported as mean (range); adapted from references [55-57] 

†The described changes in response to thrombin activation (decreased, increased, 

unchanged) are compared to resting platelets; adapted from references [27, 50] 

Not determined (ND)  

  

 

 

Percentage distribution of lipids 

in resting platelets (%) * 

Changes following thrombin 

activation† 

Cholesterol 27.3 (24.9-30.0) ND 

Phosphatidylcholine (PC) 25.8 (24.6-28.0) Unchanged  

Phosphatidylethanolamine (PE) 13.8 (13.0-15.0) Unchanged  

Sphingomyelin (SM) 11.7 (11.3-12.0) Unchanged  

Phosphatidylserine (PS) 10.3 (10.0-11.0) Unchanged  

Phosphatidylinositol (PI) 2.4 (1.0-3.2) Decreased  

Cholesterol Ester (CE) 1.96 (1.9-2.0) ND 

Lysophosphatidylcholine (LPC) 1.2 (0.8-2.0) Increased  

Ceramide 0.76 (0.3-1.0) ND 

Phosphatidylglycerol (PG) 0.75 (0.5-1.0) Unchanged  

Phosphatidic Acid (PA) ND Increased  

Lysophosphatidylethanolamine 

(LPE) ND 

Increased  

Lysophosphatidic Acid (LPA) ND ND 
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Figure 2.4. General structure of lipids within platelets 

 (A) Phospholipids are comprised of a head group attached to two fatty acyl tails, shown 

phosphatidylserine. (B) Sphingolipids are formed from a sphingosine motif, to which the 

attachment of a fatty acyl tail forms the ceramide class and the addition of head groups forms 

more complex sphingolipids, such as sphingomyelin; shown sphingomyelin. (C) Sterol lipids; 

shown cholesterol. Cholesterol is constructed of four fused, planar rings attached to a hydroxyl 

group with a hydrocarbon chain at the opposing end. (D) Free fatty acyls form the most basic 

lipids; shown arachidonic acid. (E) Glycerolipids are formed from the attachment of one, two 

or three fatty acyls to a glycerol; shown triacylglyceride.  
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Phospholipids are the dominant category of lipids in platelets (Table 2.1), and 

include phosphatidylcholine (PC), phosphatidylethanolamine (PE), PS, 

phosphatidylinositol (PI), phosphatidylglycerol (PG) and phosphatidic acid 

(PA) classes [27, 43, 50, 51, 55, 58, 59]. These classes are defined by their 

polar-phosphate containing head group attached to two fatty acyls containing 

chains (Figure 2.4A) [53]. Phospholipids are the major structural lipid of the 

platelet membrane and provide the substrates for the formation of many 

bioactive lipid mediators [53, 60]. For example, phospholipids can be cleaved 

to produce biologically active lysophospholipids and free fatty acyls through 

the activity of phospholipases [61, 62]. Further, phospholipids can undergo a 

biochemical change which imparts a distinct structure and function [63], and 

as such have been assessed in this study. Ether linked phospholipids are a 

subclass in which an alkyl chain is attached by an ether bond to the glycerol 

backbone [63]. The moiety is most commonly found on PC and PE [63]. 

Platelet activating factor (PAF) is an ether linked PC species, in which the sn-

2 fatty acyl chain is very short (2:0) [64]. It is a potent bioactive lipid mediator, 

capable of inducing proinflammatory functions [64].  

The main classes of sphingolipids present in platelets are ceramide and 

sphingomyelin (SM; Table 2.1). Ceramides are formed by the addition of a 

fatty acyl chain to a sphingosine base chain [65]. To this, more complex 

sphingolipids, such as SM, are formed by the addition of a head group at the 

C1 position of the sphingosine (Figure 2.4B) [65]. Sphingolipids are a 

significant constituent of lipid membranes [65-67], where they function as key 

signalling molecules. Sphingosine 1-phosphate (S1P) and ceramide are well 

characterised signalling molecules, mediating an array of cellular functions via 

G protein-coupled signalling pathways and by acting as second messengers, 

respectively [65-69]. The importance of sphingolipids in cellular signalling is 

primarily due to their ability to modulate intracellular calcium stores [70, 71]. 

Sphingolipids are also enriched in lipid rafts [65, 66, 72], which provides a 

platform for mediating signal transduction, particularly for ceramide [65]. 
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The sterol lipids within platelets include cholesterol and cholesterol esters (CE) 

[73], which make up a significant proportion of the platelet lipidome (~30 %; 

Table 2.1) [55-57]. Sterols are composed of a hydrophobic, fused, planar ring 

structure with a polar hydroxyl group at one end and a short hydrocarbon chain 

at the opposing end (Figure 2.4C) [74]. The presence of cholesterol within the 

platelet membrane provides structure and fluidity [74, 75]. Functionally, an 

alteration in the cholesterol content of platelets results in a proportional 

alteration to agonist induced aggregation [76]. Further, cholesterol is a 

necessary component of lipid rafts, which are specialised micro-domains of 

lipids and proteins within the platelet membrane. The assembly of lipid rafts is 

thought to localise and/or compartmentalise components required for 

signalling through certain pathways, including G protein-coupled receptors 

and tyrosine kinase receptors [72, 77]. As such, the biological consequences 

are far reaching, but include immune cell signalling via T-cell and B-cell 

receptors, platelet activation via the thromboxane A2 receptor and GPVI, and 

they may also play a role in microparticle formation [78-81].  

The free fatty acyls present within platelets include arachidonic acid (Figure 

2.4D), linoleic acid, eicosapentaenoic acid, docosapentaenoic acid, 

docosahexaenoic acid, dihomo-γ-linolenic acid, palmitic acid, stearic acid and 

oleic acid [82, 83]. Free fatty acyls can be formed by enzymatic cleavage from 

phospholipids [82, 84, 85]. Fatty acyls are for the most part inactive, however, 

they are converted to important lipid-derived signalling molecules, 

eicosanoids, via the cyclooxygenase (COX), lipoxygenase (LOX) and 

cytochrome P450 pathways [82, 84, 85]. The term eicosanoids collectively 

refers to the fatty acyl derived bioactive lipid mediators such as prostaglandins, 

leukotrienes, and the lesser investigated lipoxins, resolvins and protectins [82, 

84, 85]. These bioactive lipid mediators are potent regulators of platelet 

function, mainly through the binding of G protein-coupled receptors [82, 84, 

85]. As an example, the oxidation of arachidonic acid by the COX and LOX 

pathways yields biologically important lipid mediators, such as thromboxane, 

5-hydroxyeicosatetraenoic acid (HETE), 12-HETE and 15-HETE [84]. 
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Glycerolipids are formed by the condensation of one, two, or three fatty acyl 

molecules with glycerol (Figure 2.4E). Triacylglyceride (TAG) and 

diacylglyceride (DAG) constitute only a small proportion of the platelet lipidome 

[73]. However, DAGs represent an important and potent group of bioactive 

lipid mediators [86]. DAGs are generated by several enzymatic pathways, the 

most important being from phospholipids by phospholipase enzyme activity. 

This is due to the concurrent formation of other bioactive lipid mediators and 

subsequent activation of downstream signalling pathways [86, 87].  
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2.1.4.1 Lipid profile of resting platelets 

In line with other circulating blood cells, the platelet membrane is composed 

mainly of PC, PE, PS, SM and cholesterol (Table 2.1). Compared to other 

hematopoietic cells, the platelet membrane contains more cholesterol, which 

assists in the maintenance of the membrane in a more rigid state, thought to 

prevent early clot formation [55]. Under resting conditions, the choline 

containing phospholipids, SM and PC, are contained on the outer leaflet of the 

membrane, and the aminophospholipids, PS and PE, are present on the inner 

leaflet (Figure 2.5A) [88]. This conformation is thought to keep the surface of 

the platelet in an anti-coagulant state, as the bulky configurations and tight 

packing ability of SM and PC block hydrophobic interactions of coagulation 

factors [89, 90]. The choline head group of PC and SM sterically hinders the 

binding of the gamma-carboxyglutamic acid-rich (GLA) domains of 

coagulation proteins to the phosphate group of these phospholipids [90]. The 

other minor lipid species, such as PI and PA, are predominantly contained on 

the inner leaflet, which positions them to readily form bioactive lipid mediators 

involved in downstream signalling [91, 92]. 

The integrity of the platelet lipid membrane is maintained in this conformation 

by adenosine triphosphate (ATP)-dependent translocase, which transports PE 

and PS from the outer leaflet to the inner leaflet, and the activity of ATP-

dependent floppase, which supports the movement of PC and SM from the 

inner leaflet to the outer leaflet [89, 93, 94]. The action of these transporters is 

to correct disruptions in membrane asymmetry that may occur during 

membrane fusion, such as exocytosis and endocytosis, or during the transport 

of phospholipids synthesised de novo (Figure 2.5A) [89, 94]. However, this 

conformation of the platelet lipid membrane is highly dynamic and very 

receptive to activation, allowing platelets to respond quickly to activation 

signals. 
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Figure 2.5. Lipid dynamics of resting, activated and stored platelets  

The platelet lipidome is highly dynamic. This is exemplified by the ability of platelets to synthesise phospholipids and fatty acyls de novo, and freely exchange 

lipids with the plasma. (A) Under resting conditions, the choline containing phospholipids, SM and PC, are contained on the outer leaflet, and the 

aminophospholipids (PS and PE) are present on the inner leaflet of the platelet membrane. (B) During activation and storage, the lipidome of the platelets 

undergo greater change, characterised by externalisation of aminophospholipids as well as microparticle release, and the formation of bioactive lipid 

mediators, such as lysophosphatidic acid (LPA), lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE) and thromboxane (TX) (Image by 

author, generated using Motifolio Biology Toolkit Suite)
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2.1.4.2 Changes to platelet lipids as a result of activation  

Platelet activation results in significant alterations to the platelet membrane 

lipids (Figure 2.5B) [27, 50], which are essential to support coagulation and 

thrombus growth [33, 95]. Calcium-dependent scramblase activity rapidly 

moves PE and PS to the outer leaflet and PC and SM to the inner leaflet 

(Figure 2.5B), negating the activity of the ATP-dependent translocase and the 

ATP-dependent floppase [89, 93]. Once externalised, PS localises the tenase 

(Factor IXa and Factor VIIIa) and prothrombinase (Factor Xa and Factor Va) 

complexes of the coagulation cascade to the platelet membrane through 

electrostatic and hydrophobic interactions, which is necessary for the 

formation of thrombin [33, 95]. PE also modulates pro-coagulant activity, 

where the fatty acyl chain length impacts the ability for PE to support 

coagulation [96]. For example, long chain fatty acyls, specifically arachidonic 

acid, provide better support for tissue factor dependent thrombin generation 

compared to short chain species [96]. Despite the extensive rearrangement of 

the platelet lipid membrane, stimulation of platelets by thrombin does not 

significantly alter the proportion of the majority of the lipids in the platelet 

membrane (PC, SM, PE, PS; Table 2.1) [27, 50]. 

Following thrombin activation, phospholipids are also converted to 

lysophospholipids through the action of phospholipases. The formation of 

lysophospholipid species is primarily through the action of phospholipase A2 

[61, 62], which acts upon the sn-2 position of phospholipids releasing fatty 

acyls, such as arachidonic acid [61, 62]. Platelet activation has been shown to 

result in an increase in the content of lysophospholipid species, including 

lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE; Table 

2.1) [50] and lysophosphatidic acid (LPA) [97]. Despite increases in LPE and 

LPC, no decrease in the phospholipids PE or PC has been observed, 

suggesting the involvement of aspects other than simple enzymatic 

conversion. The content of PC and PE in platelets may be maintained through 

exchange with plasma lipoproteins, as it has been shown that platelets are 

capable of incorporating PC and PE from low density lipoproteins (LDLs) and 
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high density lipoproteins (HDLs), and this process is increased during 

activation of platelets with thrombin [98, 99].  

2.1.4.3 Changes to the lipid profile of platelet microparticles as a 
result of activation 

During activation platelets release microparticles (Figure 2.5B). The lipid 

composition of platelet microparticles varies depending on the source of 

platelet activation [28, 43]. Further, the lipid composition of the parent platelets 

may be affected by the release of microparticles. Biro et al. have shown the 

percentage of SM, PC and PE present in microparticles is dependent on the 

mechanism of generation [43]. The lipid composition of platelet microparticles 

most closely resembles platelet plasma membranes and platelet granule 

membranes, and it has been suggested platelet microparticles may be an 

amalgamation of plasma and granule membranes [43]. Despite an initial 

investigation into the membrane phospholipid content of platelet microparticles 

[43], little is known regarding the packaging of other lipid species or bioactive 

lipid mediators into microparticles.   
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2.2 Platelet components for transfusion 

2.2.1 Platelet collection and preparation  

Within a clinical setting, platelet components are collected and stored for 

transfusion purposes. Patients with platelet function disorders or low platelet 

counts may receive platelet transfusions prophylactically [100, 101]. 

Alternatively, patients who are actively bleeding, such as during surgery or 

massive trauma, may receive platelet transfusions to stop bleeding [102-105]. 

The transfusion of platelets for prophylactic reasons requires platelets to 

remain in circulation for an appropriate amount of time; however for patients 

who are actively bleeding, transfused platelets are likely consumed almost 

immediately in the haemostatic process. Therefore, the requirement for an 

extended circulation time differs depending on the clinical indication. 

Australian Red Cross Lifeblood collects and manufactures platelet 

components from whole blood donations and apheresis donations (Figure 

2.6). Whole blood (470 mL) from a healthy donor is collected into bags 

containing citrate-phosphate-dextrose (CPD) to prevent coagulation (Figure 

2.6A) [106-109]. The whole blood component is centrifuged and separated by 

an automated press (MacoPress Smart, Macopharma, Tourcoing, France)  

into individual components: red blood cells, buffy coat (containing white cells 

and platelets) and plasma [109]. To produce buffy coat derived platelet 

components (Figure 2.6B), four buffy coats from blood type matched donors 

are pooled with platelet additive solution (SSP+), centrifuged and the platelet 

rich upper layer is collected using a MacoPress Smart [108, 109]. The platelet 

component is filtered through an in-line filter to remove white cells 

(leukoreduction) and is composed of approximately 70 % SSP+ and 30 % 

plasma [108-110]. Collecting platelets by apheresis involves removing blood 

from a donor into a Trima apheresis machine (Figure 2.6C). The donor is 

connected to the Trima machine, and blood is drawn and centrifuged, where 

the red blood cells, and a portion of the plasma are returned to the donor. 

Additionally, the white blood cells are removed by a filter within the collection 



26 

 

consumable [108, 109]. Apheresis platelets are collected into bags containing 

an anticoagulant (Acid Citrate Dextrose (ACD-A)) [111]. Once collected, a low 

volume of plasma and platelet additive solution is added to achieve a final ratio 

of 60 % SSP+ and 40 % plasma [111]. The collection of platelets by apheresis 

yields sufficient platelets for multiple transfusion doses from a single donation.  

As transfusion practices have evolved, there has been interest in 

supplementing plasma with platelet additive solution as the storage medium. 

Platelet additive solutions are saline based, with the addition of other 

constituents (acetate, phosphate, magnesium and potassium) to optimise 

aerobic metabolism and/or decrease platelet activation. Much of the benefit of 

reducing the plasma content in the storage medium has been associated with 

the reduced incidence of adverse transfusion reactions such as transfusion-

related acute lung injury (TRALI), the reduced risk of prion protein disease 

transmission and the increased availability of plasma for fractionation [112-

115]. While the composition varies depending on institutional practices, most 

agree a plasma composition of at least 30 % results in acceptable in vitro 

quality parameters, including a comparable metabolic rate and level of platelet 

activation to platelets stored in 100 % plasma over 7 days of storage [116-

121].  

The platelet component is comprised of several “fractions”: the platelets 

themselves, microparticles and the storage solution. Microparticles are shed 

from platelets during the preparation and storage of the platelet component 

[122, 123]. The platelet storage solution generally contains between 30-100 % 

plasma together with 0-70 % platelet additive solution, depending on the 

manufacturing institute [110, 124]. Regardless, over the storage period the 

composition of the storage solution is altered as platelets release their granule 

contents, release microparticles and are degraded [110, 122, 125].  

Buffy coat derived and apheresis platelet components have advantages and 

disadvantages [106, 126]. Following the preparation of red blood cell and 

plasma components from a whole blood donation the remaining donation can 
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be maximised through the preparation of buffy coat derived platelet 

components [127]. While buffy coat derived platelet components are derived 

from multiple donors, apheresis platelets are derived from a single donor, 

which is advantageous for the safety of the recipient [106, 108]. For apheresis 

components the risk of exposure to the causative agents of transfusion 

transmitted infection and transfusion associated sepsis is reduced [128]. 

Further, the use of apheresis platelet components allows for human leukocyte 

antigens (HLA) cross matching when recipients may be at risk of developing 

platelet refractoriness (a platelet count following transfusion that is lower than 

expected due to alloimmunisation to HLA and/or platelet‐specific antigens as 

a result of prior exposure) [129]. Importantly, buffy coat derived platelet 

components and apheresis platelet components appear to be comparable in 

terms of quality [106, 109, 126]. As such, in our organisation, despite the 

difference in plasma carryover, buffy coat derived and apheresis platelet 

components are treated interchangeably. For this reason and based on 

component availability both component types were examined in this study.  
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Figure 2.6. Methods of platelet component preparation 

(A) Whole blood donations are centrifuged and separated into three individual components: plasma, buffy coat and red blood cells. Plasma and red blood 

cells are pressed into new storage bags for storage as components. Plasma is frozen and stored at -30C. Red blood cells are stored between 2-6C. Buffy 

coats are further processed into platelet components. (B) Platelet components are prepared by the buffy coat method by pooling four ABO-matched buffy 

coats with platelet additive solution (SSP+). The pooled component is centrifuged, separated and leukodepleted by filtration. The final component has a 

composition of 70 % SSP+/30 % plasma. (C) Platelet components can be collected by the apheresis method. This method uses an apheresis machine which 

separates cells, collecting the plasma and platelets and returning the red blood cells to the donor. A donation from a single donor can yield sufficient platelets 

for up to three transfusion doses. During the donation process, the component is leukoreduced by filtration and the component is suspended in plasma and 

platelet additive solution at a final composition of 60 % SSP+/40 % plasma. (Image by author)
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2.2.2 Conventional platelet storage  

Conventionally, platelets are stored at room temperature with constant 

agitation. The shelf life of platelets in Australia is currently seven days [108, 

130]. Constant agitation and use of gas permeable storage bags facilitate the 

exchange of oxygen and carbon dioxide, which is required to support platelet 

metabolism [131]. Further, constant agitation prevents aggregation of platelets 

while in storage bags [131]. The shelf life limitation has been implemented to 

minimise the risk of bacterial proliferation, which could potentially be 

introduced into the platelet component during the donation process [132]. Any 

potential contamination can be exacerbated by the conditions at which 

platelets are stored [132]. Further the short shelf life and strict storage 

requirements aim to lessen the effects of the compounding storage related 

changes, known as the platelet storage lesion (PSL) [133, 134].  

The PSL is best defined as the progressive decline in quality of stored platelet 

components [134]. The storage related defects are similar to the changes 

associated with platelet activation, characterised by shape change, 

degranulation, alteration to surface glycoproteins, release of microparticles, a 

reduced aggregation response and weaker clot formation in vitro (Figure 2.7A) 

[133-135]. While the process is not entirely understood, all facets of the 

donation process and ex vivo storage of platelets play a role in the 

accumulation of declining platelet quality [134, 136]. The decline in in vitro 

quality indicators seen over storage is associated with faster clearance in vivo 

[137], suggesting platelet components become less effective in maintaining 

haemostasis the longer they are stored [134, 137, 138]. Further, the changes 

that occur as a result of the PSL are associated with adverse transfusion 

reactions [135, 139, 140].  

2.2.2.1 Challenges to conventional platelet storage 

The storage requirements of conventional platelets limit their availability. 

Lengthy transport times are required when supplying rural and remote 

locations [141]. As such, the supply of platelets in these locations is limited 
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and the quality of platelet components may be impacted [131, 141]. In addition 

to the short shelf life, the demand for platelets in these locations can be 

unpredictable resulting in a high potential for wastage [141]. These issues are 

further exacerbated when supplying remote military locations [142-144]. An 

inability to readily provide platelets in these environments results in a failure to 

meet current standards of resuscitative care [141, 144]. The issues 

surrounding conventionally stored platelets could be resolved through the use 

of alternative storage techniques, such as cold storage and cryopreservation. 
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Figure 2.7. Conventional and alternate storage results in changes to the platelet structure  

(A) Conventionally stored platelets, undergo a number of changes, including shape change and membrane rearrangement, through the externalisation of 

phosphatidylserine. Throughout the storage period, platelets respire, consuming glucose and producing lactate which can decrease the pH of the storage 

medium. There is release of microparticles and alpha granule secretion, which exposes P-selectin on the surface of the platelet, and release soluble 

P-selectin (sP-selectin) into the surrounding environment. Glycoprotein expression is altered, including increased expression of glycoproteins associated 

with activation. (B) Cold storage of platelets results in a number of changes, which differ to those seen during conventional storage. Cold storage results in 

shape change, loss of membrane asymmetry and release of microparticles. While to a lesser extent than conventional storage, cold-stored platelets still 

respire, consuming glucose and producing lactate, which can decrease the pH of the storage medium during extended storage. Compared to conventional 

storage, alpha granules are retained, while several glycoproteins are lost, including GPVI and GPIb-IX-V. Further, glycoproteins, such as integrin αIIbβ3, are 

altered to their more active conformation. (C) Platelet cryopreservation results in a number of changes compared to conventionally stored and cold-stored 

platelets. Cryopreservation results in shape change, a significant loss of membrane asymmetry resulting in PS externalisation and a significant increase in 

microparticles released, much of this is driven by the significant increase in cytosolic calcium. Upon thawing, platelets have significantly increased 

metabolism. In comparison to conventionally stored platelets, alpha granule secretion is greater, while several surface glycoproteins, including GPIb-IX-V 

and GPVI are lost. Further, the activated conformation of integrin αIIbβ3 is not present. (Image by author, generated using Motifolio Biology Toolkit Suite). 
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2.2.3 Cold-stored platelets 

Cold storage of platelets is a viable alternative to conventional platelet storage. 

The cold storage of platelets involves storing platelets in a refrigerator between 

2-6 °C, and does not require agitation. This method is purported to extend the 

platelet shelf life up to two weeks [145-148]. Historically platelet components 

were stored in the cold, but in the 1970s it was found that cold-stored platelets 

were cleared more quickly from circulation than platelets stored at room 

temperature [146, 149]. However, cold-stored platelets provide other benefits 

that may compensate for the reduced circulation time.  

Interest in cold-stored platelets has resurfaced due to the extended shelf life, 

less burdensome storage and transport logistics, lower risk of bacterial 

proliferation and enhanced haemostatic capabilities. The in vivo efficacy of 

cold-stored platelets has been assessed [146, 149-152]. The results from 

these studies suggest the use of cold-stored platelets is feasible for the 

treatment of active bleeding [150]. Further, cold-stored platelets stored for 14 

days remain functionally active once transfused [150].  

Extensive in vitro studies have been conducted to examine metabolism, 

surface receptor expression and the proteome [122, 148, 153-156]. Cold-

stored platelets possess altered platelet quality parameters compared to room 

temperature stored platelets [122, 146, 147]. Cold-stored platelets have a 

higher abundance of activation markers, including activated integrin αIIbβ3 

and P-selectin compared to conventionally stored platelets (Figure 2.7B) [153, 

154, 157, 158]. Further, storage of platelets at cold temperatures results in 

increased PS externalisation, increased release of microparticles and a less 

discoid appearance than conventionally stored platelets [145, 147, 154, 158, 

159]. However, compared to conventionally stored platelets the release of 

granule contents is reduced [122, 147]. Cold storage also reduces the rate of 

glycolysis, such that the pH is maintained and the glucose in the storage 

solution remains for at least 2 weeks, thus allowing for the 14 day shelf life 

[122, 145, 147, 154-156, 159, 160]. Further, the ability for platelets to 
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aggregate is retained during cold storage, and it has been suggested that cold-

stored platelets may be able to form clots more quickly than conventionally 

stored platelets [145, 147, 154, 158, 159]. The increased haemostatic 

capability of cold-stored platelets has been partly attributed to the increased 

externalisation of PS and increased formation of microparticles with 

externalised PS [154, 161]. However, these changes vary based on storage 

duration and the composition of the storage solution [153, 154, 162].  

The re-introduction of cold-stored platelets for transfusion has begun. In the 

United States, the Food and Drug Administration (FDA) has authorised limited 

use of cold-stored platelets in civilian hospitals and the component has been 

used within military settings [163-165].  

2.2.4 Cryopreserved platelets 

Platelet cryopreservation presents an attractive alternative to room 

temperature storage for supplying austere environments, as it can extend the 

shelf life to at least two years [141, 142, 166]. The cryopreservation of platelet 

components requires the addition of the cryoprotectant, DMSO, to a final 

concentration of 5-6 % volume/volume (v/v) and freezing at -80 °C [142]. For 

transfusion, cryopreserved platelet components are rapidly thawed and 

reconstituted in an appropriate solution [142, 167-169]. The thawed platelet 

component can be stored at room temperature for up to 6 hours [166, 169, 

170]. Cryopreservation is a more labour intensive and expensive technique 

than cold storage [167], and has not been routinely used in a civilian context. 

Cryopreservation has been used in a military setting for 20 years [142, 171], 

and several clinical trials have been performed to assess the feasibility of use 

in a civilian setting [170, 172, 173]. The results from military usage and clinical 

trials have concluded that cryopreserved platelets are at least as comparable 

to conventionally stored platelets in their haemostatic effectiveness [141, 142, 

170-173]. Further, there is no evidence of serious adverse reactions arising 

from the transfusion of cryopreserved platelets [142, 170-173]. However, 

cryopreservation of platelets is not routine and clinical trials are still underway, 
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including the Cryopreserved vs Liquid Platelet-II (CLIP-II) study being 

conducted in Australia. CLIP-II is a Phase III randomised clinical trial, aimed 

at demonstrating the non-inferiority of cryopreserved platelets in comparison 

to conventionally stored platelets to treat bleeding in cardiac patients [174]. 

It has been well documented that cryopreservation results in platelet loss and 

considerably alters the platelet surface receptor phenotype [167, 175-177]. 

Specifically, cryopreserved platelets appear more activated, expressing higher 

levels of P-selectin, increased granule secretion, externalisation of PS and 

increased formation of PS-expressing microparticles (Figure 2.7C). 

Cryopreserved platelets lose surface receptors that are important for adhesion 

and aggregation, including GPVI, GPIb and integrin IIb [167, 168, 175, 176, 

178, 179]. Further, following cryopreservation platelets exhibit increased 

metabolism, as shown through a significantly higher glucose consumption and 

lactate production compared to conventionally stored platelets [145, 167]. 

Despite these changes which are traditionally viewed as being characteristic 

of poor in vitro quality, cryopreserved platelets have been shown to be more 

haemostatically active [145, 170, 175, 178]. It has been suggested that this is 

due to the significant PS externalisation and release of PS-expressing 

microparticles that contribute to clot formation [178]. 

2.2.4.1 Microparticle formation in cryopreserved platelets  

Cryopreserved platelet components contain up to 100-fold more PS-

expressing microparticles compared to conventionally stored platelets [122, 

180]. Further, the microparticles formed following cryopreservation have an 

altered surface receptor phenotype compared to the microparticles present 

prior to freezing [180]. Microparticles formed following cryopreservation have 

a higher abundance of platelet specific markers compared to microparticles in 

freshly collected platelet components [180], thus eluding to the potential for 

differential packaging of contents taking place during the formation of 

microparticles occurring as a result of the cryopreservation process.   
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2.3 Changes to the lipidome during platelet storage  

2.3.1 Lipidome of conventionally stored platelets 

Ex vivo storage alters the lipidome of platelet components. Overall, when 

stored in 100 % plasma, the platelets undergo a reduction in total lipid content, 

which is suggested to be due to the selective loss of lipids to the plasma [51, 

52, 57]. Specifically, following five days of storage, cholesterol in platelets 

decreases, which is proposed to be due to the transfer of cholesterol to 

microparticles shed during storage [43, 56, 161]. Additionally, PC decreases 

and LPC increases in the plasma of platelet components over storage [56, 57]. 

SM and ceramide have been shown to increase in platelets, microparticles 

and plasma after five days of storage [56, 57]. The increases in SM and 

ceramide within stored platelets is thought to be the result of the incorporation 

of SM from LDLs and HDLs [98], as platelets lack the enzymes required for de 

novo sphingolipid synthesis [181]. However, other phospholipids, including 

PE, LPE, PG, PI, PA and LPA, remain unchanged or have not been detected 

in global lipidomic studies assessing platelet components stored at room 

temperature [51, 56, 57]. 

The body of research that has been undertaken on the lipidome of room 

temperature stored platelet components provides a valuable understanding of 

the changes occurring over the five day shelf life. However, scope exists to 

achieve a greater understanding of the lipidome of stored platelet components. 

Platelet components can be stored at room temperature for seven days, and 

are increasingly being prepared with platelet additive solution rather than 

plasma as the storage medium. To date, no lipidomic investigations have been 

undertaken on platelets stored in platelet additive solution. 

2.3.2 Lipidome of cold-stored platelets 

A limited number of studies have assessed the lipidome of cold-stored 

platelets. Hamid et al., reported that the total lipid content of platelets stored 

at 4 °C did not significantly change after three days [51]. However, Okuma et 
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al., reported significant decreases in the total lipid content of platelets stored 

for 3 and 6 days at cold temperatures [52]. Differences in the method of sample 

collection from the platelet component are highlighted as a possible 

explanation for these discrepancies. The early time points examined also limit 

the applicability of the data to the current situation, as it has been proposed 

that the feasible shelf life of cold-stored platelet components could be at least 

14 days [164]. Further, recent evidence demonstrates that cold storage results 

in increased PS externalisation, but the timing is variable [153, 154, 162]. From 

this literature, it is difficult to interpret the overall impact that cold storage may 

have on the platelet lipidome. However, given that PS externalisation is 

increased, it is hypothesised that additional changes in specific lipid classes 

could be expected. 

Historic studies of the lipidome of cold-stored platelet components were 

focused on the platelet fraction of the component, thus overlooking their 

interaction with the storage solution and its contribution to the overall lipid 

profile of the platelet component. Due to the dynamics of the lipid profile, it is 

important to fully characterise the lipidome of the entire platelet component 

over the shelf life of the component, as has been undertaken in room 

temperature stored platelet components by Pienimaeki-Roemer and 

colleagues [56]. The recent renewed interest in cold-stored platelet 

components and advances in lipidomic technologies present an opportunity to 

expand our knowledge of the lipidomic changes occurring within these platelet 

components. 

2.3.3 Lipidome of cryopreserved platelets 

To date the lipidome of cryopreserved platelets has not been assessed. It is 

known that the cryopreservation process increases the proportion of platelets 

with externalised PS to approximately 70 %, as well as generating a large 

number of PS-expressing microparticles [178]. Despite this extensive 

remodelling of the platelet membrane, no studies have been conducted to 

determine the impact of the cryopreservation process on the global lipidome 
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of platelets, platelet microparticles, storage solution or downstream lipid-

mediated signalling pathways. As the use of cryopreserved platelets has 

expanded, the impact of the cryopreservation process on the lipidome should 

be determined. 

2.3.4 Clinical importance of understanding the lipid profile of 
platelet components 

Storage related changes decrease in vitro quality and lead to faster clearance 

in vivo and reduce the efficacy of the component once it is transfused [137]. 

Changes in the global lipidome of platelets have been observed during storage 

at room temperature [56, 57, 182], and these changes, although small and 

subtle, may affect the clinical outcomes of the platelet components once 

transfused. Specifically, bioactive lipids, including 5-HETE, 12-HETE, 15-

HETE and LPCs, have been shown to accumulate in stored red blood cell and 

platelet components which have been implicated in TRALI [183-185]. While 

the role of 5-HETE, 12-HETE and 15-HETE in mediating TRALI remains 

unclear [186], it is hypothesised that LPC facilitates TRALI through the 

activation of pro-inflammatory pathways in endothelial cells and the priming of 

neutrophils, which allows for them to be readily activated following an 

additional insult [187, 188]. This is particularly interesting as LPC has been 

shown to increase in platelets, microparticles and plasma during conventional 

storage of platelet components [51, 56, 57].  
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2.4 Definition of research question 

The platelet component is comprised of three parts: the platelets, 

microparticles and the storage solution. The lipid profile of these parts are in 

constant flux, through de novo synthesis, free exchange, and biochemical 

processes, resulting in changes that could affect component function or safety, 

favourably or adversely, once the platelet component is transfused. Given the 

essential role of lipids and bioactive lipid mediators in platelet function and the 

potential clinical impact of these molecules, and the growing interest in 

alternatively stored platelet components, there is an impetus to more fully 

understand the impact of storage on the lipid profile of platelets. While 

significant efforts have been made to advance the understanding of the 

lipidome of platelet components in a transfusion setting, an understanding of 

the impact of developing transfusion practices is still required. 

As such the aim of this study was to comprehensively characterise the 

lipidome of alternatively stored platelet components. 

Aim 1: To characterise the lipidome of cold-stored platelets and compare it to 

the lipidome of room temperature stored platelets.  

Cold storage may extend the platelet shelf life to 14 days and is known to alter 

some in vitro characteristics of the platelet component, particularly at later time 

points. It was hypothesised that cold storage would alter the lipidome of the 

platelets and the storage solution.  

Aim 2: To characterise the lipidome of cryopreserved platelets and compare it 

to the lipidome of platelets prior to cryopreservation. 

Cryopreservation is known to alter many in vitro characteristics of the platelet 

component. However these changes may be beneficial for treating active 

bleeding. It was hypothesised cryopreservation would alter the lipidome of the 

platelets, microparticles and storage solution.  
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Chapter 3   Materials and Methods  

This chapter describes the materials used and the methods performed in order 

to complete the aims of this dissertation. It includes platelet component 

production, analysis of the platelet component, lipidomic assessments and the 

statistical analysis performed. 

  



41 

 

3.1 Ethics 

Ethics approval was obtained for this study from Australian Red Cross 

Lifeblood Ethics Committee and was ratified by the University of Technology 

Sydney Human Research Ethics Committee (ETH18-2795).  

All donations were collected from eligible, voluntary, non-remunerated donors 

in accordance with the guidelines established by Australian Red Cross 

Lifeblood.  

3.2 Materials 

All chemicals were purchased from Sigma-Aldrich (St Louis, MO, USA) except 

where otherwise stated. 

3.3 Platelet collection and preparation 

3.3.1 Apheresis platelet components 

Apheresis platelet components were collected using an apheresis system 

(Trima Accel, TerumoBCT, Lakewood, CO, USA) with the anticoagulant Acid 

Citrate Dextrose (ACD-A), according to standard Australian Red Cross 

Lifeblood procedures. The platelet component was leukoreduced and stored 

in 40 % plasma and 60 % SSP+ (Macopharma, Tourcoing, France) The 

platelet components were stored at 20-24 °C with agitation (Helmer Inc., 

Noblesville, IN, USA) for 24 hours until day 1 of the study. 

3.3.2 Buffy coat derived platelet components  

Whole blood was collected in accordance with Australian Red Cross Lifeblood 

guidelines. Buffy coat derived platelet components were prepared by standard 

methodologies [189]. Briefly, whole blood donations were collected into bags 

containing CPD. The buffy coat was separated from red bloods cells and 

plasma by centrifugation (Beckman J6-MI, Beckman Coulter, Brea, CA, USA) 

at 5 000 x g for 10 minutes and an automated blood press (MacoPress Smart, 

Macopharma). ABO-matched buffy coats from four donors were pooled with 
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300 mL of SSP+ (Macopharma). Platelets were further separated by 

centrifugation at 500 x g for 6 minutes and platelets were extracted with an 

automated blood press. The platelet component leukoreduced by in-line 

filtration and stored in a polyvinylchloride (PVC) bag (ELX, Haemonetics 

Corporation, Braintree, MA, USA) at 20-24 °C with agitation (Helmer Inc.) for 

24 hours until frozen. 

3.4 Experimental design 

The lipidomic characterisation of transfusible platelet components was 

conducted as two discrete studies.  

3.4.1 Lipidomic characterisation of cold-stored platelets 

The cold storage study was performed using double-dose apheresis platelet 

components from 8 donors. The component was split into single dose 

equivalents and the matched components were randomly assigned and stored 

at either room temperature (RT; 20-24C) with constant agitation (Helmer Inc.) 

or under refrigerated conditions (2-6C) without agitation. Cold-stored platelet 

components were directly compared to conventionally stored platelet 

components from the same donor (Figure 3.1). 

Double-dose apheresis platelet components were sampled (10 mL) on day 1 

post collection. Double-dose apheresis platelet components are routinely 

pooled for quality control testing and bacterial contamination sampling, and 

from this pooled component a sample (10 mL) was taken on day 1 before 

splitting into matched pairs. Platelet components were sampled on day 5 and 

14 of storage. The cold-stored component was placed on an agitator at room 

temperature for 10 minutes prior to sampling to ensure homogeneous 

sampling [190]. Days 5 and 14 were selected as time points as they 

represented the maximum shelf life of room temperature stored platelets (at 

the time of conducting the study) and the current feasible shelf life of cold-

stored platelets, respectively [164].  
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Figure 3.1. Study design for the lipidomic characterisation of cold-stored platelet 
components 

Double-dose apheresis platelet components (n=8 donors) were sampled (10 mL) on day 1 

post collection. The pooled component was split into two equal components (n=8 in each 

group) which were stored at either room temperature (RT; 20-24C with constant agitation) or 

under refrigerated conditions (2-6C without agitation). Platelet components were sampled on 

days 5 and 14 of storage. (Image by author) 
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3.4.2 Lipidomic characterisation of cryopreserved platelets  

The cryopreservation study was conducted using buffy coat derived platelet 

components from six donors. The lipidomic characterisation of cryopreserved 

platelets was conducted as a paired study (Figure 3.2); whereby the same 

platelet component was sampled before freezing, after thawing and after 24 

hours of post-thaw storage at room temperature with agitation.  
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Figure 3.2. Study design for the lipidomic characterisation of cryopreserved platelet 
components 

Buffy coat derived platelet components (n=6; derived from 24 donors) were sampled on day 

1 after collection (pre-freeze; PF). Components were cryopreserved and thawed using well 

established methodologies. Thawed and reconstituted components were sampled 

immediately (post-thaw 0; PT0) and after 24 hours of post-thaw storage at room temperature 

(20-24 C) with agitation (post-thaw 24; PT24). (Image by author) 
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3.4.2.1 Cryopreservation process  

On day 1 following collection, buffy coat derived platelet components (n=6) 

were cryopreserved using previously published methodologies [189], as 

depicted in Figure 3.3. Prior to cryopreservation, a pre-freeze (PF) sample was 

taken (10 mL). A fistula set with a 17G needle (Asahi Kasei Kurraray Medical 

Co., Ltd, Tokyo, Japan) was sterile welded (TSCD-II, Terumo BCT, Lakewood, 

CO, USA) to the platelet component. Within a biosafety cabinet, approximately 

100 mL 27 % (w/v) DMSO/0.9 % saline (Sypharma Pty. Ltd., Danenong, VIC, 

Australia) was added to achieve a final concentration of 5-6 % DMSO. The 

DMSO was added by gravity at a constant flow by spiking the bottle with the 

needle of the fistula set, while the platelet component was under constant 

agitation (rocking platform mixer; Ratek Instruments, Boronia, VIC, Australia). 

The DMSO containing platelet component was transferred to a 450 mL PVC 

freezing bag (Macopharma) and the platelets were pelleted by centrifugation 

(Beckman J6-MI, Beckman Coulter, Brea, CA, USA) at 1350 x g for 10 minutes 

with no brake. The supernatant was removed using a manual plasma press 

(Baxter Healthcare, Fenwal Division, Deerfield, IL, USA), resulting in a final 

volume of 20-30 mL. The pelleted platelets were resuspended in the residual 

supernatant by gentle rubbing. The platelet hyperconcentrate was vacuum 

sealed (Magic Vac, Brescia, Italy) and placed in a rigid box. The platelet 

component was frozen and stored in a -80C freezer for an average of 23 days 

(range 20-34 days). 
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Figure 3.3. Overview of the platelet cryopreservation process 

(A) Buffy coat derived platelet components were cryopreserved by (B) adding dimethyl 

sulfoxide (DMSO) to the component to achieve a final concentration of 5-6 %. The (C) platelets 

were pelleted by centrifugation and (D) the DMSO containing supernatant was removed using 

a manual press. The platelets were (E) resuspended in the residual supernatant by gentle 

rubbing, (F) vacuum sealed and placed in a rigid box. The (G) hyperconcentrated platelet 

component was frozen and stored at -80C.  
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3.4.2.2 Thawing process 

Following thawing, the platelet hyperconcentrate must be reconstituted in a 

solution appropriate for platelet storage and transfusion [167]. For this study, 

30 % plasma/70 % SSP+ was chosen as it is the standard storage solution for 

buffy coat derived platelets, thus matching the PF and PT composition.  

In order to reduce donor variation in the reconstitution solution and allow any 

differences to be attributed to the cryopreservation process, the same plasma 

was used to reconstitute all platelets. To facilitate this, fresh frozen plasma 

(plasma frozen and stored at -30 C) from six donors was rapidly thawed in a 

37 C water bath (Thermoline Scientific, Sydney, NSW, Australia). Thawed 

plasma components were pooled into a single bag and split into aliquots 

(containing approximately 80 mL) in PVC freezing bags (Macopharma) by 

sterile welding. Pooled plasma aliquots were frozen and stored at -30 C until 

the platelet components were thawed for analysis. 

The platelet components were thawed using previously published methods 

(Figure 3.4) [189]. An aliquot of fresh frozen plasma was rapidly thawed in a 

37 C water bath (Thermoline Scientific) until the component reached 

approximately 30 C. The thawed plasma component was combined with 

SSP+ (Macopharma) to reach a final volume of 250 mL, producing a 

reconstitution solution of 30 % plasma/70 % SSP+. The reconstitution solution 

(reconstitution solution; RS) was sampled as a control. The cryopreserved 

platelet hyperconcentrate was rapidly thawed in a 37 C water bath 

(Thermoline Scientific) until the component reached approximately 30 C. The 

thawed platelet component was rested on a platelet agitator for 10 minutes 

before reconstitution. The reconstitution solution and the platelet component 

were sterilely docked (TSCD-II) together, and the reconstitution solution was 

added to the platelet component by gravity and reconstituted by gentle mixing. 

The component was sampled immediately (post-thaw 0; PT0). The component 

was stored on a platelet agitator at 20-24 C (Helmer Inc.) for 24 hours before 

sampling (post-thaw 24; PT24).  
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Figure 3.4. Overview of the platelet thawing process. 

An aliquot of fresh frozen plasma was thawed in a 37C water bath, until the component 

reached a temperature of 30C (not shown). The plasma was combined with platelet additive 

solution to produce the reconstitution solution (not shown). The cryopreserved platelet 

component was (A) removed from the freezer and (B) thawed in a 37C water bath, until the 

component reached a temperature of 30C. The (C) reconstitution solution and platelet 

component were sterile welded together and the (D) reconstitution solution was added to the 

platelet by gravity. The (E) final reconstituted platelet component was stored on an agitator at 

room temperature for 24 hours.   
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3.5 Analysis of platelet component 

The platelet count and mean platelet volume (MPV) were determined using a 

haematology analyser (CELL DYN Ruby, Abbott Laboratories, Chicago, IL, 

USA). All platelet components were assessed for presence of swirl and 

macroaggregates by visual inspection [122, 191].  

3.5.1 Platelet recovery of cryopreserved platelets 

The platelet count was used to determine platelet recovery after 

cryopreservation, according to the calculation below: 

 

3.6  Flow cytometric analysis 

The number of microparticles released was assessed by flow cytometry 

(FACSCanto II, Becton Dickinson, Franklin Lakes, NJ, USA). The absolute 

number of microparticles was determined using TruCount tubes (BD 

Biosciences, San Jose, CA, USA). TruCount tubes contain a lyophilised pellet 

with a known number of beads, which can be used to calculate the absolute 

number (cells/ L) of platelets or microparticles in a sample. A sample of the 

platelet concentrate (5 L) was diluted in 95 L of annexin V Binding Buffer 

(BioLegend, San Diego, CA, USA) in a TruCount tube. For all assays, annexin 

binding buffer was filtered through a 0.1 m polyvinylidene fluoride (PVDF) 

membrane syringe filter (Merck Millipore, Merck KGaA, Darmstadt, Germany). 

The sample was stained with 5 L annexin V-FITC (BioLegend) and 5 L 

CD61-APC (Dako, Glostrup, Denmark) for 15 minutes, protected from the light 

at room temperature. The stained samples were diluted in 1 000 L of filtered 

annexin V Binding Buffer and measured by flow cytometry, by collecting 

10 000 bead events. The microparticle population was distinguished from the 

platelet population using forward and side scatter parameters, determined 
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using beads of known sizes (0.6 m, 1.0 m and 3.0 m; Sigma-Aldrich), with 

microparticles defined as being less than 1.0 m (Figure 3.5). The absolute 

number of platelets or microparticles was determined according to the 

calculation below:  

 

 

 

 

Figure 3.5. Gating strategy for discrimination of microparticles and platelets by flow 
cytometry 

Platelets (PLTs) and microparticles (MPs) were discerned from one another using forward 

(FSC-A) and side scatter (SSC-A). Beads of known size (0.6 m, 1.0 m and 3.0 m), were 

used to set gates. Microparticles were defined as less than 1.0 m. 
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The externalisation of PS was assessed by flow cytometry. Platelets (5 L) 

were diluted in 95 L of annexin V Binding Buffer in a FACS tube. The sample 

was stained with 5 L annexin V-FITC (BioLegend) for 15 minutes, protected 

from the light, at room temperature. The stained samples were diluted in 

1 000 L of filtered annexin V Binding Buffer and measured by flow cytometry, 

by collecting 10 000 events.  

The externalisation of PE was assessed by flow cytometry. Platelets (5 L) 

were diluted in 95 L of 1 x Tyrode’s Buffer (Table 3.1) in a FACS tube. For all 

assays, Tyrode’s buffer was filtered through a 0.1 m PVDF membrane 

syringe filter (Merck Millipore, Merck KGaA). The sample was stained with 

500 nM Duramycin-Cy5 (Molecular Targeting Technologies, Inc., West 

Chester, PA, USA) for 15 minutes, protected from the light at room 

temperature. The stained samples were diluted in 1 000 L of filtered Tyrode’s 

Buffer and measured by flow cytometry, by collecting 10 000 events. 

Table 3.1. Solutions used in flow cytometric analysis 

 

  

Solution Preparation 

10 x Tyrode’s 

Buffer 

10.08 g Sodium Bicarbonate, 100 mL HEPES (1M), 80.06 g Sodium 

Chloride, 2.013 g Potassium Chloride, 9.008 g D-glucose. Made up to 

1 L of ddH2O and adjusted to pH 7.2-7.3 
 

10 x Tyrode’s buffer diluted to 1 x Tyrode’s in ddH2O  
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3.7 Isolation of component fractions 

Platelets, microparticles and the supernatant were separated by differential 

centrifugation (Figure 3.6). A standard number of platelets (500 x 106 platelets) 

were transferred to a 1.5 mL tube and centrifuged (Eppendorf 5415D; 

Eppendorf, Germany) at 1 500 x g for 15 minutes at room temperature to pellet 

platelets. The supernatant was transferred to a new tube and the platelet pellet 

was stored at -80C until analysis. The supernatant was then cleared of 

residual platelets and microparticles by multiple rounds of centrifugation at 

1 500 x g for 15 minutes at room temperature, followed by 14 000 x g for 2 

minutes at 4C. The supernatant was then transferred to a new 1.5 mL tube 

between spins. Lastly to isolate microparticles, the supernatant was 

centrifuged at 16 000 x g for 30 minutes at 4C. The cleared supernatant was 

transferred to a new 1.5 mL tube and both the supernatant and microparticle 

pellet were frozen and stored at - 80C until analysis.  

The cleared supernatant was assessed by flow cytometry to determine if 

platelet and microparticle removal was successful (Figure 3.7). Flow cytometry 

was conducted as outlined in section 3.6. 
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Figure 3.6. Summary of sample preparation be differential centrifugation 

Samples were taken from platelet components at each testing point. The volume of the sample was normalised to 500x106 platelets and transferred to a 

1.5 mL tube. Platelets were pelleted by multiple rounds of centrifugation and stored at -80C. The supernatant was cleared of residual platelets by further 

centrifugation and pellets discarded. The microparticle pellet and cleared supernatant were isolated by multiple rounds of centrifugation and stored at -80C.
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Figure 3.7. Differential centrifugation clears supernatant of most platelets and 
microparticles 

Samples were subjected to multiple rounds of centrifugation. The absolute number of (A) 

platelets and (B) annexin-V positive and CD61 positive microparticles were determined in the 

sample prior to centrifugation (neat) and in the supernatant following centrifugation by flow 

cytometry. The data represents mean + SD (error bars); n=3 from post-thaw 0 samples.  
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3.8 Lipidomic analysis  

3.8.1 Lipid extraction 

Lipidomic investigations were performed using liquid chromatography with 

tandem mass spectrometry (LC-MS/MS). Lipids were extracted by methods 

adapted from Matyash et al. [192]. Lipids were extracted from platelets 

(500 x 106), microparticles (100 x 106) and 50 L supernatant by resuspension 

in 300 L of methanol. The samples were transferred to a clean glass auto 

sampler vial and 5 L of EquiSPLASH LIPIDOMIX Quantitative Mass 

Spectrometry Internal Standard (Avanti Polar Lipids, Alabaster, AL, USA) was 

added. Samples were vortexed and incubated on ice for 10 minutes. Following 

incubation, 1 000 L of the organic solvent, methyl tert-butyl ether (MTBE) was 

added. Samples were vortexed and incubated on a rotisserie shaker at 4 °C 

for 1 hour. Phase separation was induced by the addition of 250 L of ddH2O. 

Samples were incubated for 10 minutes, before centrifugation at 1 000 x g for 

10 minutes at room temperature. The upper organic phase, containing lipids, 

was transferred to a clean glass auto sampler vial and dried by nitrogen 

evaporation, before being resuspended in 100 L of 2:1 isopropanol: methanol 

and transferred to a clean glass auto sampler vial fitted with a bottom-spring 

insert. 

3.8.2 Lipid mass spectrometry 

Global lipidomic analysis was conducted using an ACQUITY™ ultra-pressure 

liquid chromatography™(UPLC) I-Class system (Waters Corporation, Milford, 

MA, USA) coupled to a Vion Ion Mobility Spectrometry (IMS) Quadrupole 

Time-of-Flight (QToF) Mass Spectrometry (MS) (Waters Corporation, Milford, 

MA, USA) in an untargeted data-independent acquisition (DIA) manner. Data 

was collected in DIA method as only a limited understanding of the lipidome 

of alternatively stored platelet products exists, and thus could be collected in 

an unbiased manner. Samples were run as biological replicates (n=8 for cold 
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storage study and n=6 for cryopreservation study) and as technical replicates 

(n=3). 

Each sample (1 L) was loaded at 400 L/min onto a C18 Acquity UPLC 

column (2.1 x 100 mm), packed with 1.7 m particles (Waters Corporation). 

Lipids were then eluted from the column and into the source of a Vion IMS 

Q-ToF using the following gradient formed by mixing solvent A (60 % 

acetonitrile/40 % water (v/v) buffered with 0.01 % formic acid and 10 mM 

ammonium formate) and solvent B (90 % isopropanol/10 % acetonitrile (v/v) 

buffered with 0.01 % formic acid and 10 mM ammonium formate): 40 % 

solvent B for 2.0 min, 43 % solvent B for 0.1 min, 50 % solvent B for 9.9 min, 

70 % solvent B for 0.1 min, 99 % solvent B for 5.9 min, 40 % solvent B for 

0.1 min, 40 % solvent B for 1.9 min. The eluted lipids were ionised at 

2 000 Volts for positive mode and 1 000 Volts for negative mode. A MSE 

acquisition was performed in both positive and negative mode, with alternating 

low and high energy scans performed and a precursor mass-to-charge ratio 

(m/z) range of 100-2 000 m/z continuously scanned for lipids with an intensity 

of more than 30 counts/second. Ions were separated by ion mobility and then 

subjected to sequential low collision energy (6 electron volts (eV); containing 

all precursor ions) and high collision energy (20-50 eV sliding ramp) scans, 

with ions fragmented through Collision Induced Dissociation (CID) with argon 

gas. As mobility separation occurs before CID, Collisional Cross Section 

(CCS) was measured for all precursor ions and assigned to resulting product 

ions, using standard t-wave IMS settings and nitrogen gas. An example of 

mass chromatograph generated by LC-MS/MS is depicted in Figure 3.8. 

Additional representative chromatograms from other fractions and time points 

are presented as supplemental data, S.1-S.6. 
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Figure 3.8. Representative total ion chromatograms from platelet samples 

Total ion chromatograms (TIC) from LC-MS/MS acquisition in (A) positive and (B) negative

mode. The chromatograms were obtained from the mass spectrometer. Representative 

chromatograms from pre freeze platelets are shown.
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3.8.3 Mass spectral data processing 

Mass chromatograms were deconvoluted and data was normalised using 

Progenesis QI software version 2.3 (Nonlinear Dynamics, a Waters Company, 

Newcastle upon Tyne, UK), according to manufacturer’s workflow. Sample ion 

alignment was performed automatically. Standard peak picking settings were 

used, with sensitivity set to automatic, default. Chromatographic peak width 

was not activated and the entire chromatogram was processed. High energy 

limits were set to 1 % of the base precursor peak. Adducts selected for 

deconvolution included M+H, M+Na, M+K and 2M+H for positive mode and 

M-H and M+Cl for negative mode. Lipids were searched for within the software 

against the LipidMaps database with search parameters of 8 parts per million 

(ppm) for precursor mass error tolerance and 10 ppm for fragmentation mass 

error tolerance [193]. Lipids were reported as normalised relative abundance, 

as determined by the comparison of ion intensities of the internal standard with 

a known concentration of lipid (g/mL), or normalised to sum of ion content 

within a respective class (percentage %). 

3.8.4 Nomenclature 

Data is presented at the lipid species level as described by Liebisch et al [194]. 

Lipid species level represents the glycerophospholipid class followed by the 

total number of carbon atoms and total number of double bonds in the fatty 

acyl moieties e.g. PS(38:4). For sphingolipids, it has been assumed that 18:1 

was the major sphingoid base. Data visualisation is representative of the lipid 

species that exceeded a value of 1 % across all biological replicates [195]. 

3.8.5 Bioinformatics methodology for pathway analysis 

Lipid pathway analysis was performed using the open access web-based tool, 

Bioinformatics Methodology For Pathway Analysis (BioPAN) [196]. LC-MS/MS 

data was loaded into the platform and analysed according to the developer’s 

workflow. BioPAN calculates a Z-score, and determines if a given reaction is 

significant (p<0.05). Further, a reaction is determined to be activated 
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(Z>1.645) or suppressed (Z<-1.645) depending on the direction of the change. 

The following options selected; type: lipid, status: active, level: lipid subclass, 

subset of lipid data: reactions, p-value: 0.05, paired data: yes.  

3.9 Enzyme linked immunosorbent assay 

Lipids analysed in plate-based assays were chosen based on their presence 

or association with lipids present in mass spectrometry based lipidomic 

analysis. The concentration of arachidonic acid (LSBio, Seattle, WA, USA), 5- 

HETE (LSBio), 12(S)-HETE (Abcam, Cambridge, UK), 15(S)-HETE (Abcam) 

and S1P (Echelon Bioscience, Inc., Salt Lake City, UT, USA) in the 

supernatant was determined using commercially available enzyme linked 

immunosorbent assay (ELISA) kits. Briefly, the standard (provided with ELISA 

kit and diluted to manufacturer’s specifications to generate a standard curve) 

and sample (diluted to optimal concentrations as determined previously; Table 

3.2) were pipetted in duplicate into a coated 96-well plate. The presence of 

arachidonic acid, 5-HETE, 12(S)-HETE, 15(S)-HETE or S1P were detected by 

competitive ELISA through the binding of the detection antibody and their 

presence was measured by an enzymatic reaction resulting in a colour 

change. The absorbance of each plate (450 nm for arachidonic acid and 5-

HETE and 405 nm for 12(S)-HETE, 15(S)-HETE and S1P) was read on a plate 

reader (MultiSkan Spectrum; Thermo Electron Corporation, Waltham, MA, 

USA). The concentration of each lipid was calculated from the relevant 

standard curve.  
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Table 3.2. Dilutions used for enzyme linked immunosorbent assays 

 
RT: room temperature, Cold: cold-stored, PF: pre-freeze, PT0: post-thaw 0, PT24: post-thaw 

24, RS: reconstitution solution, ND: not determined 

3.10 Statistical analysis 

Results are expressed as mean  standard deviation (SD). Data were 

analysed using GraphPad Prism (GraphPad Software Inc., Version 9, La Jolla, 

CA, USA).  

3.10.1 Cold-stored platelets 

The effect of storage was assessed using a two-way repeated measures 

analysis of variance (ANOVA). Post hoc Bonferroni’s multiple comparisons 

test was performed to determine the differences between storage temperature 

(room temperature vs cold-stored at day 5 and day 14) and time (day 1 vs day 

5 and day 1 vs day 14). A p-value of less than 0.05 was considered statistically 

significant. 

3.10.2 Cryopreserved platelets 

The effect of cryopreservation was assessed using a one-way repeated 

measures ANOVA. Post hoc Bonferroni’s multiple comparisons test was 

performed to determine differences between pre-freeze, post-thaw 0 and post-

thaw 24. A p-value of less than 0.05 was considered statistically significant.  

 

Storage 
Arachidonic 

acid 
5-HETE 12(S)-HETE 15(S)-HETE S1P 

Day 1 Neat  1/5 1/10 1/5 ND 

Day 5 RT 1/5 1/10 1/10 1/5 ND 

Day 5 Cold 1/5 1/10 1/10 1/5 ND 

Day 14 RT 1/5 1/10 1/10 1/5 ND 

Day 14 Cold 1/5 1/10 1/10 1/5 ND 

PF Neat 1/5 1/10 1/5 1/10 

PT0 1/10 1/10 1/500 1/50 1/10 

PT24 1/10 1/10 1/500 1/50 1/10 

RS Neat Neat 1/10 1/5 1/10 
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Chapter 4   Results of the lipidomic characterisation of 
cold-stored platelet components  

While historic studies have been conducted assessing the lipidome of cold-

stored platelets, there have been advances in transfusion practices and 

improved lipidomic technologies, which justify a reassessment of the lipid 

profile of cold-stored platelets. In this chapter, the lipidome of the platelets and 

supernatant of cold-stored platelet components are described. Cold-stored 

platelet components were compared to room temperature stored platelet 

components for 14 days. The lipid profile of platelets was relatively unchanged 

at day 5 of storage at both temperatures, however, changes were evident at 

day 14, and these were exacerbated by cold storage. Further, the lipid profile 

of the supernatant was changed at day 5 of storage at both temperatures, and 

the changes stabilised at day 14 of storage. 
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Cold storage offers a solution to the short shelf life of conventionally stored 

platelets, as it can extend the storage time to somewhere in the range of 14-

21 days [147, 148, 163, 197]. In vitro examination has shown cold-stored 

platelets have an increased haemostatic capability, which may be beneficial in 

treating active bleeding [122, 145, 147, 148, 154, 157]. While extensive efforts 

have been made to characterise cold-stored platelets [122, 145, 148, 154, 190, 

198], only a few historic studies have examined the lipidome [51, 52]. As 

certain lipids have been associated with an increased haemostatic potential 

and adverse transfusion outcomes, a study of lipid changes over cold storage, 

inclusive of platelets and the supernatant, would provide a greater 

understanding of platelet component function and safety.  

A paired study design was used, whereby room temperature and cold-stored 

platelet components from 8 donors were compared over a 14 day period. 

Australia recently transitioned from a 5 day to a 7 day platelet component shelf 

life. However at the time of conducting this study the shelf life was 5 days. As 

such, 5 days was chosen as the time point to represent the shelf life of room 

temperature stored platelet components. This study primarily used mass 

spectrometry based methods to evaluate the lipidome, although other in vitro 

testing was also carried out to complement or confirm the data provided by 

mass spectrometry.  
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4.1 Assessment of platelet number and morphology over room 
temperature and cold storage 

The platelet components were sampled on day 1, 5 and 14 of storage, and the 

platelet count and MPV were obtained using an automated haematology 

analyser. The platelet count was significantly increased at day 5 of cold 

storage compared to day 1 (Figure 4.1A). While this increase was significant, 

the change was small, and therefore was unlikely to be clinically important. 

The MPV was significantly increased by day 5 of cold storage (Figure 4.1B). 

While no longer significant, the MPV remained higher in the cold-stored group 

compared to room temperature platelets at day 14. Platelet swirl was apparent 

in all room temperature stored components but was absent in cold-stored 

components. Macroscopic aggregates were not observed in any component. 

Additionally, the higher cell count, MPV and lack of swirl likely reflect the 

known cold induced morphological changes in cold-stored platelets [145].  
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Figure 4.1. The effect of cold storage on platelet count and mean platelet volume 

Platelet components were stored at room temperature (RT; 20-24 °C) or cold-stored (cold; 

2-6 °C) and sampled on days 1, 5 and 14 post-collection. The (A) platelet count and (B) mean 

platelet volume (MPV) were assessed using an automated haematology analyser. The data 

represents individual data points and mean (bars) + SD (error bars); n=8. The effect of storage 

temperature and time was assessed using a two-way ANOVA. Post hoc Bonferroni’s multiple 

comparisons test were performed to determine the differences between storage temperature 

(room temperature vs cold-stored at day 5 and day 14) and time (day 1 vs day 5 and day 1 vs 

day 14). ‡ indicates p<0.05 when compared to day 1. No statistical differences were observed 

between cold and room temperature at the same time point (p>0.05). 
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The externalisation of PS was assessed by flow cytometry using annexin-V. 

On day 1, a low proportion of platelets bound annexin-V (Figure 4.2A). By day 

5, a significant increase (~4-fold) in the percentage of platelets positive for 

annexin-V was observed in the cold-stored platelets. However, by day 14 

approximately 20 % of platelets were annexin-V positive in both the cold and 

room temperature groups. A similar pattern was observed for the MFI of 

annexin-V (Figure 4.2B). The trend towards increased externalisation of PS 

on cold-stored platelets at day 5 may be suggestive of increased lipid 

membrane changes.  
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Figure 4.2. The effect of cold storage on phosphatidylserine externalisation  

Platelet components were stored at room temperature (RT; 20-24 °C) or cold-stored (cold; 

2-6 °C) and sampled on days 1, 5 and 14 post-collection. Platelets were stained with annexin-

V (FITC) and (A) the percentage of annexin-V positive platelets and (B) the median 

fluorescence intensity (MFI) of annexin-V binding was measured by flow cytometry. The data 

represents individual data points and mean (bars) + SD (error bars); n=8. The effect of storage 

temperature and time was assessed using a two-way ANOVA. Post hoc Bonferroni’s multiple 

comparisons test were performed to determine the differences between storage temperature 

(room temperature vs cold-stored at day 5 and day 14) and time (day 1 vs day 5 and day 1 vs 

day 14). ‡ indicates p<0.05 when compared to day 1. No statistical differences were observed 

between cold and room temperature at the same time point (p>0.05). 
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4.2 Assessment of global lipidomic changes over room 
temperature and cold storage 

The effect of storage time and temperature on the lipid profile of platelets and 

supernatant was assessed by LC-MS/MS. The relative abundance of lipids 

was determined using an internal standard. The phospholipid and sphingolipid 

content of the platelet and supernatant fractions was similar over 14 days, 

regardless of whether the platelet components were stored at room 

temperature or in the cold (Figure 4.3A and B).  
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Figure 4.3. The effect of cold storage on the lipid content of platelets and supernatant 

Platelet components were stored at room temperature (RT; 20-24 °C) or cold-stored (cold; 

2-6 °C) and sampled on days 1, 5 and 14 post-collection. The platelet and supernatant 

fractions were separated by differential centrifugation. The relative abundance of 

phospholipids and sphingolipids in the (A) platelets and (B) supernatant were determined by 

LC-MS/MS and compared to a known standard. The data represents individual data points 

and mean (bars) + SD (error bars); n=8. The effect of storage temperature and time was 

assessed using a two-way ANOVA. Post hoc Bonferroni’s multiple comparisons test were 

performed to determine the differences between storage temperature (room temperature vs 

cold-stored at day 5 and day 14) and time (day 1 vs day 5 and day 1 vs day 14). No statistical 

differences were observed between storage time or temperature (p>0.05). 
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The composition of the phospholipid and sphingolipid classes was 

interrogated in the platelet and supernatant fractions. The most predominant 

lipid in platelets was PC (PCO was included in the PC class as it represented 

less than 5 % of the lipid profile), representing approximately 55% of the lipid 

profile (Figure 4.4A), followed by PE and PEP. Several changes were apparent 

in the platelet fraction, but these changes were mainly observed during 

extended storage (day 14). Specifically, PA, PE, PI, PS and SM were 

significantly increased by day 14 of cold storage, compared to day 1. Further, 

the increase at day 14 of cold storage for PA, PI and SM were significantly 

higher than room temperature stored platelets at the same time point. On the 

other hand, PC, LPE, PEP and ceramide were significantly decreased in 

platelets by day 14 of cold storage. Further, ceramide was the only lipid that 

was significantly increased in platelets when stored at room temperature for 

14 days. Additionally, as a result of these changes ceramide and PEP were 

significantly different between room temperature and cold-stored platelets at 

day 14.  

Similar to the platelet fraction, in the supernatant fraction PC was the dominant 

lipid (~60%, Figure 4.4B). PE and PEP represented approximately 20% and 

10%, respectively. Numerous changes were apparent in the supernatant, and 

they were observed during the normal room temperature shelf life (5 days). 

There was a decrease in ceramide, PC and PEP in both room temperature 

and cold during storage, compared to day 1, with a trend for a larger decrease 

in the room temperature group at day 5. Conversely, LPA, LPE, PE, PI and 

PS were significantly increased in the supernatant during room temperature 

storage, compared to day 1. For LPE, PE and PI this increase resulted in a 

significant difference between the room temperature and cold stored 

components at day 5, that was still apparent at day 14 for LPE and PI.   
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Figure 4.4. The effect of cold storage on phospholipids and sphingolipids  

Platelet components were stored at room temperature (RT; 20-24 °C) or cold-stored (cold; 

2-6 °C) and sampled on days 1, 5 and 14 post-collection. The platelets and supernatant were 

separated by differential centrifugation. The percentage composition of lipids displayed in (A) 

platelets and the (B) supernatant were determined by LC-MS/MS. The data represents mean 

(bars) + SD (error bars); n=8. The effect of storage temperature and time on each lipid class 

was assessed using a two-way ANOVA. Post hoc Bonferroni’s multiple comparisons test were 

performed to identify specific differences between storage temperature (room temperature vs 

cold-stored at day 5 and day 14) and time (day 1 vs day 5 and day 1 vs day 14). ‡ p[ p<0.05 

when compared to day 1. # indicates p<0.05 when compared to RT at the same time point. 
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Phosphatidylcholine was the predominant lipid class in the platelet and 

supernatant fractions, and it was found to be altered by storage time (Figure 

4.4). As such, the shifts in the PC species resulting from room temperature 

and cold storage were assessed. In the platelet fraction the predominant PC 

species was PC(36:4) (Figure 4.5A). In general, the PC species profile was 

relatively stable. However, several significant differences were observed, 

mainly at day 14 of cold storage. There was a trend for increasing PC(34:2) 

and PC(36:3) in cold-stored components which was significant at day 14 

compared to day 1, and when compared to room temperature storage at the 

same time point. Similarly, there was a trend for increasing PC(38:3) in room 

temperature stored components which was significant at day 14 compared to 

day 1, and when compared to cold storage at the same time point. Conversely, 

after initially remaining stable, PC(36:1) and PC(38:1) were significantly 

decreased at day 14 of cold storage, compared to day 1. A similar trend was 

seen for PC(40:5), which resulted in a significant difference between storage 

temperatures at day 14. 

Numerous statistical differences were observed in the PC species of the 

supernatant fraction. As such, only significant trends and differences between 

storage conditions will be highlighted (Figure 4.5B). In room temperature 

platelets stored for 5 days, PC(34:1) and PC(36:2) were significantly increased 

compared to day 1 and compared to cold-stored platelets at day 5. Further, 

the high proportion of PC(34:1) and PC(36:2) resulted in a trend for most other 

PC species to be significantly lower than the day 1 and the cold-stored 

platelets at day 5. By day 14, the room temperature stored species were 

similar to day 1. In contrast, the cold-stored samples at day 14 displayed 

significantly increased PC(34:1) and PC(34:2) compared to day 1, and for 

PC(34:1) this was significantly higher than the room temperature stored group 

at the same time point. PC(36:1), PC(38:2) and PC(38:4) were significantly 

decreased at day 14 of cold storage, compared to day 1. Further, at day 14 of 

room temperature storage PC(38:4) was also significantly decreased 

compared to day 1, however the decrease was greater in cold-stored platelets. 
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PC(40:4) and PC(40:5) were the only species to be significantly increased at 

day 14 of room temperature storage, compared to day 1.   
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Figure 4.5. The effect of cold storage on phosphatidylcholine species  

Platelet components were stored at room temperature (RT; 20-24 °C) or cold-stored (cold; 

2-6 °C) and sampled on days 1, 5 and 14 post-collection. The platelets and supernatant were 

separated by differential centrifugation. The percentage composition of phosphatidylcholine 

(PC) displayed in (A) platelets and the (B) supernatant were determined by LC-MS/MS. The 

data represents lipid species that exceed 1 %. The data represents mean (bars) + SD (error 

bars); n=8. The effect of storage temperature and time was assessed using a two-way 

ANOVA. Post hoc Bonferroni’s multiple comparisons test were performed to determine the 

differences between storage temperature (room temperature vs cold-stored at day 5 and day 

14) and time (day 1 vs day 5 and day 1 vs day 14). ‡ indicates p<0.05 when compared to day 

1. # indicates p<0.05 when compared to RT at the same time point. 
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Lysophosphatidylcholine is a bioactive lipid mediator, which has been 

associated with adverse transfusion reactions [200, 201]. Thus, shifts in the 

LPC species displayed during room temperature and cold storage were 

assessed. In the platelet fraction, LPC(18:1) represented approximately 50 % 

of the LPC species (Figure 4.6A). In general, the LPC species profile was 

stable over cold storage. In contrast, storage at room temperature resulted in 

a decrease in LPC(18:0) and LPC(18:2) at day 5 and day 14, compared to day 

1. For LPC(18:2), this resulted in a significant difference between the room 

temperature and cold-stored platelets at both day 5 and day 14. Similarly, 

room temperature storage resulted in a significant decrease in LPC(20:4) at 

day 14, compared to day 1 and cold storage at the same time point. 

Conversely, LPC(20:0) and LPC(O-20:0) increased across room temperature 

storage, compared to day 1. Further, the increase in room temperature storage 

at day 14 resulted in a significant difference compared to cold storage. In 

summary, the LPC species profile was relatively unchanged by cold storage, 

however, the LPC species profile was altered by room temperature storage. 

In the supernatant fraction LPC(18:1) and LPC(18:2) were the most prominent 

LPC species, jointly accounting for approximately 80% (Figure 4.6B). Similar 

to the platelet fraction, the proportion of species remained relatively stable 

during cold storage. Further, LPC species that contributed a low proportion 

were unchanged until extended storage (day 14). LPC(18:1) was significantly 

increased at day 5 and day 14 regardless of temperature, compared to day 1, 

and the increase was greater in room temperature storage. On the other hand, 

LPC(18:2) decreased over storage at room temperature. Further, the 

proportion of LPC(18:2) at room temperature was significantly lower at day 14 

than the cold-stored group. LPC(20:4) was significantly decreased by 

extended storage (day 14) regardless of temperature, compared to day 1. In 

summary, with the exception of LPC(18:1), the LPC species profile was 

relatively unchanged by cold storage until day 14, but was changed by room 

temperature storage by day 5.  
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Figure 4.6. The effect of cold storage on lysophosphatidylcholine species  

Platelet components were stored at room temperature (RT; 20-24 °C) or cold-stored (cold; 

2-6 °C) and sampled on days 1, 5 and 14 post-collection. The platelets and supernatant were 

separated by differential centrifugation. The percentage composition of 

Lysophosphatidylcholine (LPC) displayed in (A) platelets and the (B) supernatant were 

determined by LC-MS/MS. The data represents lipid species that exceed 1 %. The data 

represents mean (bars) + SD (error bars); n=8. The effect of storage temperature and time 

was assessed using a two-way ANOVA. Post hoc Bonferroni’s multiple comparisons test were 

performed to determine the differences between storage temperature (room temperature vs 

cold-stored at day 5 and day 14) and time (day 1 vs day 5 and day 1 vs day 14). ‡ indicates 

p<0.05 when compared to day 1. # indicates p<0.05 when compared to RT at the same time 

point.  
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Phosphatidylethanolamine is known to support coagulation [90], and the 

proportion was shown to be altered by storage time and temperature (Figure 

4.4). Therefore, the species profile of PE was examined. In the platelet 

fraction, multiple differences were found as a result of storage time and 

temperature, particularly at day 14 of storage. However, only key trends and 

differences will be highlighted (Figure 4.7A). PE(34:2), PE(36:1), PE(36:2) and 

PE(40:4) were present at a higher proportion at day 14 in the cold-stored 

components. Similarly, the proportion of PE(38:4) was significantly increased 

at day 14 compared to day 1 in both temperature groups. PE(38:1) and 

PE(40:2) showed the opposite trend, with a significant decrease observed at 

day 14, compared to day 1.  

In the supernatant fraction, although several differences were observed, most 

appeared in minor species and thus only key trends and differences will be 

highlighted (Figure 4.7B). PE(34:1) and PE(40:1) represented the 

predominant species in the supernatant fraction, collectively comprising 80% 

of all PE species. At day 5 of storage, the proportion of PE(34:1) was 

significantly increased when stored in the cold, compared to day 1. By day 14 

both room temperature and cold storage were higher than day 1, but no 

difference between the groups were observed. The proportion of PE(40:1) 

fluctuated, variably, over storage but remained lower than day 1. The 

proportion of PE(26:1) and PE(38:1) was significantly increased at day 5 when 

cold-stored, when compared to day 1 and day 5 samples stored at room 

temperature.  
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Figure 4.7. The effect of cold storage on phosphatidylethanolamine species  

Platelet components were stored at room temperature (RT; 20-24 °C) or cold-stored (cold; 

2-6 °C) and sampled on days 1, 5 and 14 post-collection. The platelets and supernatant were 

separated by differential centrifugation. The percentage composition of 

phosphatidylethanolamine (PE) displayed in (A) platelets and the (B) supernatant were 

determined by LC-MS/MS. The data represents lipid species that exceed 1 %. The data 

represents mean (bars) + SD (error bars); n=8. The effect of storage temperature and time 

was assessed using a two-way ANOVA. Post hoc Bonferroni’s multiple comparisons test were 

performed to determine the differences between storage temperature (room temperature vs 

cold-stored at day 5 and day 14) and time (day 1 vs day 5 and day 1 vs day 14). ‡ indicates 

p<0.05 when compared to day 1. # indicates p<0.05 when compared to RT at the same time 

point.  
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Ether linked phospholipids occur mostly in the PC and PE lipid classes [63]. 

Ether linked phospholipids are formed through the attachment of the alkyl 

chain by an ether bond to the sn-1 acyl chain (denoted by the abbreviation O) 

[63]. More commonly the alkyl chain is attached adjacent to a double bond, 

termed plasmalogen (denoted by the abbreviation P) [63]. Due to the altered 

structure, and thus altered function, interest in ether linked lipids has grown. 

Further, the PEP class was changed in the platelet and supernatant fraction 

(Figure 4.4). Thus, shifts in the PCO and PEP species were examined.  

In the platelet fraction, the PCO species profile was relatively stable across 

room temperature and cold storage. PC(O-38:6) was the most prevalent PCO 

species, representing 30% (Figure 4.8A). There was a trend for decreasing 

PC(O-38:6) during cold storage, which was significant at day 14. Initially (day 

5) PC(O-38:6) was significantly increased at room temperature, but at day 14 

had returned to baseline. As such, at both time points PC(O-38:6) was 

significantly lower in the cold-stored group compared to room temperature 

stored platelets.  

In the supernatant fraction, the most prominent PCO lipid species was 

PC(O-36:5) (~40%; Figure 4.8B). PC(O-36:5) was significantly higher in the 

cold-stored platelets at both time points, compared to day 1. There was a trend 

for PC(O-34:4) to increase over storage at both temperatures, and was 

significantly higher at day 14, compared to day 1. On the other hand, PC(O-

36:1) was significantly decreased at day 5 of room temperature and cold 

storage compared to day 1, but this did not continue to day 14. A higher 

proportion of several long chain PCO species (PC(O-40:1), PC(O-40:4) and 

PC(O-40:5)) were detectable at day 5 during room temperature storage, but 

present in very low proportions at other time points. 

The most prevalent PEP species in the platelet fraction was PE(P-40:1), 

representing approximately 80% (Figure 4.9A). The PEP profile was relatively 

unchanged by storage temperature, and only a few differences occurred as a 

result of storage time. At day 5, PE(P-40:1) was significantly increased 
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compared to day 1, however returned to baseline by day 14. There was a trend 

for PE(P-38:1) to decrease over time regardless of storage temperature, which 

was significant at day 5 of room temperature storage and day 14 of cold 

storage, compared to day 1. Similarly, PE(P-40:4) trended downward across 

all samples and was significantly lower at day 5 of room temperature and cold 

storage, compared to day 1.  

The most prevalent PEP species in the supernatant fraction was PE(P-40:4), 

which represented approximately 60% (Figure 4.9B). Similar to the platelet 

fraction, PEP was relatively unchanged and differences occurred in species 

that represented a low proportion of the PEP profile (less than 5 %). For 

example, PE(P-40:6) and PE(P-40:7) were significantly increased at day 5 of 

room temperature storage, compared to both day 1 and cold storage at the 

same time point.   
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Figure 4.8. The effect of cold storage on ether linked phosphatidylcholine species  

Platelet components were stored at room temperature (RT; 20-24 °C) or cold-stored (cold; 

2-6 °C) and sampled on days 1, 5 and 14 post-collection. The platelets and supernatant were 

separated by differential centrifugation. The percentage composition of ether linked 

phosphatidylcholine (PCO) displayed in (A) platelets and the (B) supernatant were determined 

by LC-MS/MS. The data represents lipid species that exceed 1 %. The data represents mean 

(bars) + SD (error bars); n=8. The effect of storage temperature and time was assessed using 

a two-way ANOVA. Post hoc Bonferroni’s multiple comparisons test were performed to 

determine the differences between storage temperature (room temperature vs cold-stored at 

day 5 and day 14) and time (day 1 vs day 5 and day 1 vs day 14). ‡ indicates p<0.05 when 

compared to day 1. # indicates p<0.05 when compared to RT at the same time point.  
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Figure 4.9. The effect of cold storage on ether linked phosphatidylethanolamine species  

Platelet components were stored at room temperature (RT; 20-24 °C) or cold-stored (cold; 

2-6 °C) and sampled on days 1, 5 and 14 post-collection. The platelets and supernatant were 

separated by differential centrifugation. The percentage composition of ether linked 

phosphatidylethanolamine (PEP) displayed in (A) platelets and the (B) supernatant were 

determined by LC-MS/MS. The data represents lipid species that exceed 1 %. The data 

represents mean (bars) + SD (error bars); n=8. The effect of storage temperature and time 

was assessed using a two-way ANOVA. Post hoc Bonferroni’s multiple comparisons test were 

performed to determine the differences between storage temperature (room temperature vs 

cold-stored at day 5 and day 14) and time (day 1 vs day 5 and day 1 vs day 14). ‡ indicates 

p<0.05 when compared to day 1. # indicates p<0.05 when compared to RT at the same time 

point.  
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Phosphatidylserine is known to facilitate coagulation [88, 90]. Further, there 

was an increase in the proportion of PS in platelets during cold-storage (Figure 

4.4). As such, the species of PS in the platelets and supernatant were 

examined. In the platelet fraction, PS(36:1), PS(38:1), PS(40:1) and PS(40:3) 

were the most prominent species, collectively accounting for approximately 

80% of the total PS (Figure 4.10A). There was a trend for increasing PS(38:1) 

over storage. At day 14, the proportion of PS(38:1) was significantly higher 

than at day 1, and the increase was greater during room temperature storage. 

PS(38:3) increased over cold storage and the increase was significant at day 

14, compared to day 1, and was significantly higher than the room temperature 

group at both time points. Conversely, the proportion of PS(40:1) and PS(40:3) 

were significantly lower at day 14, compared to day 1. The lipids that 

represented < 10% of the total PS species profile were relatively constant, with 

only a few shifts occurring. 

In the supernatant fraction (Figure 4.10B), PS(38:1) was the prominent lipid 

(~ 40%). When comparing changes to day 1, the majority were transient and 

small in magnitude. Of note, at day 5, the proportion of PS(36:1) was 

significantly increased and PS(40:1) was significantly decreased over room 

temperature storage compared cold storage.  
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Figure 4.10. The effect of cold storage on phosphatidylserine species  

Platelet components were stored at room temperature (RT; 20-24 °C) or cold-stored (cold; 

2-6 °C) and sampled on days 1, 5 and 14 post-collection. The platelets and supernatant were 

separated by differential centrifugation. The percentage composition of phosphatidylserine 

(PS) displayed in (A) platelets and the (B) supernatant were determined by LC-MS/MS. The 

data represents lipid species that exceed 1 %. The data represents mean (bars) + SD (error 

bars); n=8. The effect of storage temperature and time was assessed using a two-way 

ANOVA. Post hoc Bonferroni’s multiple comparisons test were performed to determine the 

differences between storage temperature (room temperature vs cold-stored at day 5 and day 

14) and time (day 1 vs day 5 and day 1 vs day 14). ‡ indicates p<0.05 when compared to day 

1. # indicates p<0.05 when compared to RT at the same time point.  
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Sphingomyelin is a precursor to the bioactive lipids, ceramide, sphingosine 

and sphingosine 1-phosphate [202]. Further, the percentage of SM displayed 

in platelets and supernatant was altered (Figure 4.4). In the platelet fraction, 

SM(23:0), SM(25:0) and SM(26:0) were the most prominent SM species at 

day 1, accounting for 80% of the SM species profile (Figure 4.11A). SM(16:0), 

SM(18:1) and SM(24:0) increased after cold storage and extended storage 

(day 14), being significantly higher at day 5 of cold storage and day 14 in both 

room temperature and cold-stored groups, compared to day 1. Further, cold 

storage induced a greater change than room temperature storage. 

Conversely, SM(23:0), SM(25:0) and SM(26:0) decreased over storage at 

both temperatures, and cold storage resulted in a greater loss of these 

species.  

In the supernatant, SM(25:0) was the most prominent SM species (~ 50%; 

Figure 4.11B). The SM species profile was relatively stable when comparing 

storage temperatures, where only SM(20:0) and SM(25:0) were different. 

SM(20:0) was significantly increased at day 5 of room temperature storage, 

but remained similar to day 1 at other time points. SM(25:0) was significantly 

increased at day 5 of cold storage, compared to day 1, but was not significantly 

increased in room temperature samples until day 14. On the other hand, 

SM(18:0) was significantly decreased at day 5 and day 14 of room temperature 

and cold storage, compared to day 1. SM(26:0) was significantly decreased at 

day 14 in both room temperature and cold-stored groups, compared to day 1. 
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Figure 4.11. The effect of cold storage on sphingomyelin species  

Platelet components were stored at room temperature (RT; 20-24 °C) or cold-stored (cold; 

2-6 °C) and sampled on days 1, 5 and 14 post-collection. The percentage composition of 

sphingomyelin (SM) species displayed in (A) platelets and the (B) supernatant were 

determined by LC-MS/MS. The data represents lipid species that exceed 1 %. The data 

represents mean (bars) + SD (error bars); n=8. The effect of storage temperature and time 

was assessed using a two-way ANOVA. Post hoc Bonferroni’s multiple comparisons test were 

performed to determine the differences between storage temperature (room temperature vs 

cold-stored at day 5 and day 14) and time (day 1 vs day 5 and day 1 vs day 14). ‡ indicates 

p<0.05 when compared to day 1. # indicates p<0.05 when compared to RT at the same time 

point.  
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Ceramide is a known second messenger and bioactive lipid mediator, and is 

closely associated with oxidative stress and apoptosis [202, 203]. The 

percentage of total ceramide displayed was altered in the platelets and 

supernatant (Figure 4.4). Cer(22:0), Cer(24:0) and Cer(26:0) were the most 

prominent ceramide species, accounting for 70% of the ceramide profile in 

platelets (Figure 4.12A). In general, there was a trend for short chain ceramide 

species to increase over storage regardless of temperature, while long chain 

ceramide species tended to decrease over storage time regardless of 

temperature. More specifically, Cer(18:0) increased in cold-stored samples, 

while decreasing in room temperature stored platelets. As a result, there was 

a significant difference between room temperature and cold storage at day 5 

and 14. Cer(22:0) was significantly increased at day 5 and day 14 of both room 

temperature and cold storage compared to day 1, which was more pronounced 

in room temperature stored samples. Cer(24:0) remained stable over cold 

storage, but decreased significantly during room temperature storage at day 5 

and day 14, compared to day 1. Cer(26:0), Cer(32:0) and Cer(33:0) displayed 

a similar trend, whereby the species remained stable over the conventional 

storage period (day 5), but was significantly decreased after extended storage 

(day 14) for both room temperature and cold-stored samples, compared to day 

1. Cer(30:0) and Cer(31:0) also displayed a similar trend where there was a 

decrease across all storage times and temperatures.  

In the supernatant, Cer(30:0), Cer(31:0), Cer(32:0), Cer(33:0) and Cer(34:0) 

were the most prominent Cer species, totalling 85% of ceramide species 

(Figure 4.12B). The ceramide species that represent the highest proportion 

were relatively unchanged. Cer(16:0) was significantly increased at day 5 and 

14 of room temperature storage compared to day 1, but remained constant 

over cold storage. Cer(24:0) remained stable over early time points (day 5) but 

was increased at day 14 of room temperature and cold storage, compared to 

day 1.   
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Figure 4.12. The effect of cold storage on ceramide species  

Platelet components were stored at room temperature (RT; 20-24 °C) or cold-stored (cold; 

2-6 °C) and sampled on days 1, 5 and 14 post-collection. The percentage composition of 

ceramide (Cer) species displayed in (A) platelets and the (B) supernatant were determined by 

LC-MS/MS. The data represents lipid species that exceed 1 %. The data represents mean 

(bars) + SD (error bars); n=8. The effect of storage temperature and time was assessed using 

a two-way ANOVA. Post hoc Bonferroni’s multiple comparisons test were performed to 

determine the differences between storage temperature (room temperature vs cold-stored at 

day 5 and day 14) and time (day 1 vs day 5 and day 1 vs day 14). ‡ indicates p<0.05 when 

compared to day 1. # indicates p<0.05 when compared to RT at the same time point.  
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4.3 Assessment of bioactive lipid mediators over room 
temperature and cold storage 

Generally, bioactive lipid mediators are defined by their ability to elicit a 

functional consequence [202]. In particular, several have been found to be 

intimately associated with platelet function [82, 202, 204]. Further, changes 

seen in the lipid class profile (Figure 5.4) may be the result of lipid metabolism. 

Lipid metabolism is known to occur in room temperature stored platelets and 

is known to result in the formation of bioactive lipid mediators [56, 195]. 

Several of these lipids were found in the supernatant by LC-MS/MS. 

Although the proportion of LPA was shown to be very low and only affected by 

room temperature storage in the supernatant (Figure 4.4), the relative 

abundance was determined, as LPA is a known bioactive lipid mediator 

capable of producing functional changes in platelets at low concentrations 

[68]. The abundance of LPA was low on day 1, and remained at a similar 

concentration during cold storage (Figure 4.13A). In contrast, LPA was 

significantly higher in the room temperature samples, compared to day 1. PAF 

was relatively constant over storage, regardless of temperature (Figure 

4.13B). 12-HETE and 15-HETE were significantly increased by room 

temperature storage when compared to day 1 (Figure 4.13C and D). Further, 

for 12-HETE there was a significant difference between room temperature 

stored and cold-stored samples at day 14.  

The concentration of several of the bioactive lipid mediators found to be altered 

by LC-MS/MS and lipids within a common pathway were validated by ELISA. 

While LC-MS/MS was able to determine the relative abundance of bioactive 

lipid mediators, ELISA was used to determine the specific concentration. The 

concentration of arachidonic acid and 5-HETE remained relatively constant 

over storage, regardless of storage temperature (Figure 4.14A and B). The 

abundance of 12(S)-HETE and 15(S)-HETE followed the same trend, whereby 

the concentration was increased over storage time regardless of storage 

temperature, but to a greater degree during room temperature storage (Figure 
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4.14C and D). These results suggest cold storage suppresses either the 

formation or release of specific bioactive mediators.  
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Figure 4.13. The effect of cold storage on concentration of bioactive lipid mediators in 
the storage solution as determined by LC-MS/MS 

Platelet components were stored at room temperature (RT; 20-24 °C) or cold-stored (cold; 

2-6 °C) and sampled on days 1, 5 and 14 post-collection. The supernatant was isolated using 

multiple rounds of centrifugation and the relative abundance of (A) LPA, (B) platelet activating 

factor (PAF), (C) 12-HETE and (D) 15-HETE were determined by LC-MS/MS. The data 

represents individual data points, and mean (bars) + SD (error bars); n=8. The effect of storage 

temperature and time was assessed using a two-way ANOVA. Post hoc Bonferroni’s multiple 

comparisons test were performed to determine the differences between storage temperature 

(room temperature vs cold-stored at day 5 and day 14) and time (day 1 vs day 5 and day 1 vs 

day 14). ‡ indicates p<0.05 when compared to day 1. # indicates p<0.05 when compared to 

RT at the same time point.  
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Figure 4.14. The effect of cold storage on the formation of certain bioactive lipid 
mediators in the storage solution as determined by ELISA 

Platelet components were stored at room temperature (RT; 20-24 °C) or cold-stored (cold; 

2-6 °C) and sampled on days 1, 5 and 14 post-collection. The supernatant was isolated using 

multiple rounds of centrifugation and the concentration of (A) arachidonic acid, (B) 5-HETE, 

(C) 12(S)-HETE and (D) 15(S)-HETE were determined by ELISA. The data represents 

individual data points, and mean (bars) + SD (error bars); n=8. The effect of storage 

temperature and time was assessed using a two-way ANOVA. Post hoc Bonferroni’s multiple 

comparisons test were performed to determine the differences between storage temperature 

(room temperature vs cold-stored at day 5 and day 14) and time (day 1 vs day 5 and day 1 vs 

day 14). ‡ indicates p<0.05 when compared to day 1. # indicates p<0.05 when compared to 

RT at the same time point  
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4.4 Assessment of lipid dynamics and lipid pathways over room 
temperature and cold storage 

The lipidome of platelets and the platelet component is dynamic and constantly 

changing, as lipids are necessary for cellular function and structure [205]. 

Further, lipids are able to be released or transformed by enzymatic reactions 

[205]. The changes observed between the platelet and supernatant fraction 

(Figure 4.4) may be indicative of the dynamics between elements of the 

platelet component. As such, an examination of the lipid ratios and lipid 

networks may provide a more detailed understanding of the interactions taking 

place within the fractions. Lipid classes were selected for comparison as ratios 

based on reactions and pathways that are known to occur from the literature. 

Further, the ratios of certain lipids were assessed where they have been 

suggested to impact cellular function and disease process if altered [206, 207]. 

In the platelet faction, the ratio of LPE/PE, PEP/PE, Cer/SM and PC/PE ratios 

were increased at day 5 of room temperature storage (Table 4.1), compared 

to day 1, which resulted in a difference between storage temperatures for 

LPE/PE. In contrast, the LPE/PE ratio was decreased at day 14 at both 

temperatures, compared to day 1. The PS/PC ratio was increased at day 5 of 

cold storage, compared to day 1, and continued to increase through 14 days 

of storage. The PS/PE and PS/PA ratios were increased at day 5, compared 

to day 1 regardless of storage temperature. The PA/PC ratios was increased 

at day 14 of cold storage, compared to day 1, which resulted in a difference 

between storage temperatures for PA/PC at this time point. The PEP/PE, 

Cer/SM and PC/PE ratios were decreased at day 14 of cold storage, compared 

to day 1, which resulted in a difference between storage temperatures for 

PEP/PE and Cer/SM at this time point.  

In the supernatant fraction, the LPE/PE ratio was increased by room 

temperature storage, and was decreased by cold storage at day 14, compared 

to day 1. As such, there was a difference between storage temperatures at 

both day 5 and day 14. Compared to day 1, the PS/PC and LPA/PA ratios 
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were increased at all time points, regardless of temperature. Similarly, the ratio 

of PS/PE and PS/PA were increased at day 5 regardless of temperature. The 

Cer/SM ratio was decreased at day 5 of room temperature storage and day 14 

of cold storage. 
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Table 4.1. Lipid class ratios of platelets and supernatant in room temperature and cold-stored platelet components 
 

 Platelet  Supernatant 

 D1 D5 RT D5 Cold D14 RT D14 Cold  D1 D5 RT D5 Cold D14 RT D14 Cold 

LPC/PC 0.012 0.010 0.013 0.009 0.013  0.044 0.074 0.050 0.036 0.040 

LPE/PE 0.097 0.125‡ 0.086# 0.072‡ 0.048‡  0.055 0.116‡ 0.068# 0.099‡ 0.034‡# 

PEP/PE 1.215 1.584‡ 1.268 1.001 0.301‡#  0.247 0.161 0.243 0.196 0.137‡ 

PS/PC 0.051 0.064 0.081‡ 0.106 0.124‡  0.030 0.075‡ 0.065‡ 0.040‡ 0.042‡ 

PA/PC 0.040 0.032 0.039 0.047 0.087‡#  0.026 0.063 0.028 0.025 0.038 

LPA/PA 0.003 0.004 0.003 0.003 0.002  0.009 0.036‡ 0.023‡ 0.023‡ 0.015 

Cer/SM 1.225 1.469‡ 1.164 1.399 0.527‡#  0.706 0.225‡ 0.594 0.587 0.623‡ 

PC/PE 3.099 3.731‡ 3.050 2.414 1.554‡  1.982 1.945 2.003 1.712 1.210‡ 

PS/PE 0.148 0.233‡ 0.238‡ 0.219 0.175  0.058 0.130‡ 0.130‡ 0.066 0.049 

PS/PA 1.217 1.992‡ 2.175‡ 2.265 1.411  1.209 2.240‡ 2.315‡ 1.587‡ 1.514 

 

RT = room temperature (20-24 °C); Cold = cold-stored (2-6 °C) 

Values shown as mean of the ratio of the given lipid classes, n=8 in each group. 

The effect of storage temperature and time was assessed using a two-way ANOVA. Post hoc Bonferroni’s multiple comparisons test were performed to 

determine the differences between storage temperature (room temperature vs cold-stored at day 5 and day 14) and time (day 1 vs day 5 and day 1 vs day 

14). ‡ indicates p<0.05 when compared to day 1. # indicates p<0.05 when compared to RT at the same time point. 
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BioPAN is an open access web-based tool that provides a statistical score for 

possible lipid metabolism pathways [196]. This is done by using inputted mass 

spectrometry data to determine relationships between lipids, that represent 

possible lipid substrates and lipid products capable of being catalysed by 

enzymes, as determined from current literature [196]. The possible reactions 

are scored and found to be active or suppressed [196]. A BioPAN lipid network 

was computed for the platelet and supernatant fractions comparing each time 

point to day 1 and comparing the storage temperatures at day 5 and 14. 

Representative examples of selected time points and storage treatments are 

presented in Figure 4.15A-D, and the remaining data is presented in 

supplementary data S.7 – S.8. The data for all days and treatments are 

summarised in Figure 4.16.  
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Figure 4.15. BioPAN lipid networks depicting active reactions over cold storage  

The lipid networks of (A,B) platelets and the (B,C) supernatant comparing day 1 (D1) and day 

14 (D14) timepoints. The networks were produced from the open access web-based tool, 

BioPAN [196], by inputting data obtained from mass spectrometry analysis. Networks were 

obtained comparing each time point, with a representative network being shown (see 

supplemental data, S.7-S.8).   
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In the platelet fraction, the conversion of PC to PA was inferred to be 

significantly suppressed when comparing day 1 to day 5 room temperature 

(Figure 4.16A). The conversion of PS to PE was inferred to be significantly 

suppressed when comparing day 1 to early timepoints (day 5) and to extended 

cold storage. The conversion of SM to Cer was inferred to be significantly 

suppressed when comparing day 1 to day 14 of cold storage. On the other 

hand, the conversion of PC to PA, PE to PC and Cer to SM were inferred to 

be significantly active when comparing day 1 to day 14 of cold storage. The 

conversion of PC to PS and PA to PS were inferred to be significantly active 

when comparing day 1 to early time points (day 5) and to extended room 

temperature storage. Between the storage conditions several reactions were 

significant, the conversion of PC to PA, PE to PC and Cer to SM were inferred 

to be significantly active between storage conditions at both time points. In 

contrast, the conversion of SM to Cer was inferred to be significantly 

suppressed between storage conditions at both time points. The PS to PE 

reaction was significantly suppressed between storage conditions at day 5, 

and the PC to PS and PA to PS reactions were inferred to be significantly 

suppressed between storage conditions at day 14. Reactions in the platelet 

fraction were differentially affected by storage time and temperature.  

In the supernatant fraction, reactions differed to those observed in the platelet 

fraction. The conversion of LPC to LPA, PC to PS, PE to PS and PA to PS 

were inferred to be significantly active when comparing day 1 to all time points 

and temperatures (Figure 4.16B). The conversion of PE to PC was inferred to 

be significantly active when comparing day 1 to room temperature storage at 

day 5. Conversely, the conversion of PS to PE was inferred to be significantly 

suppressed when comparing day 1 to all time points and temperatures. The 

conversion of PC to PA was inferred to be significantly suppressed at day 14 

of room temperature storage compared to day 1, while the conversion of SM 

to Cer was inferred to be significantly supressed at day 14 of cold storage 

compared to day 1. Between the storage conditions conversions were 

relatively similar, with the exception of PE to PC, which was inferred to be 
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significantly suppressed between room temperature and cold storage at day 5 

taken together, these results suggest that reactions in the supernatant were 

more greatly affected by storage time, rather than temperature.   
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Figure 4.16. Summary of Z-scores for given reactions over room temperature and cold 
storage from BioPAN 

Lipid networks were generated from BioPAN using data acquired by LC-MS/MS. Z-scores 

from the (A) platelet and (B) supernatant lipid network were summarised and are depicted as 

heat maps. Values shown as Z-score of the given reaction, whereby a Z-score>0 represents 

an active reaction and a Z-score<0 represents a suppressed reaction. A paired t-test was 

performed by BioPAN to determine differences between indicated groups. ‡ indicates p<0.05 

a significant reaction (corresponding to a Z-score > 1.645 or < -1.645).  
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BioPAN suggests genes known to be involved in the reactions depicted in the 

lipid networks. After generating networks from each fraction, a list of genes 

was consolidated as being potentially involved in the indicated reaction (Table 

4.2). The list of genes generated by the web-based tool encode proteins that 

facilitate the depicted reactions. Thus, this information may assist in 

understanding the complex interactions that are occurring, and additionally 

provide avenues for future research.   

Table 4.2. BioPAN predicted genes to be activated or supressed in the given reaction 
in room temperature and cold-stored components  

 

  

 
 

 Gene symbol Gene name 

LPC to LPA - - 

PC to PA PLD1 phospholipase D1 

PLD2 phospholipase D2 

PC to PS PTDSS1  phosphatidylserine synthase 1 

PE to PC PEMT  phosphatidylethanolamine N-methyltransferase 

PE to PS PTDSS2  phosphatidylserine synthase 2 

PS to PE PISD  phosphatidylserine decarboxylase 

PA to PS PTDSS1  phosphatidylserine synthase 1 

CDS1 CDP-diglyceride synthase 1 

Cer to SM SGMS1  sphingomyelin synthase 1 

SGMS2  sphingomyelin synthase 2 

CERT1 ceramide transfer protein 1 

SM to Cer SMPD1  sphingomyelin phosphodiesterase 1 

SMPD2 sphingomyelin phosphodiesterase 2 

SMPD3 sphingomyelin phosphodiesterase 3 
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Chapter 5   Results of the lipidomic characterisation of 
cryopreserved platelet components 

To date, no studies have been conducted which assess the lipidome of 

cryopreserved platelets. In this chapter, the lipidome of the platelets, 

microparticle and supernatant fractions of cryopreserved platelets are 

described. Thawed platelet components were compared to paired platelet 

components prior to freezing. While the lipidome of the platelet fraction was 

not extensively altered by the cryopreservation process, post-thaw storage for 

24 hours at room temperature resulted in significant changes. Further, the 

microparticles formed after thawing had a distinct lipid profile compared to 

those present prior to freezing. The lipid profile of the supernatant was 

primarily defined by the resuspension solution. 
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Cryopreservation offers an attractive alternative to conventional platelet 

storage, as components may be stored for at least two years [141, 142, 166]. 

Numerous studies have been conducted to assess both the in vitro and in vivo 

impact of cryopreserving platelet components [122, 145, 169, 172-174, 208]. 

However, the lipidome of cryopreserved platelet components has not yet been 

assessed. Lipids and bioactive lipid molecules have an important role in 

mediating haemostatic function and are associated with adverse transfusion 

outcomes [69, 90, 183, 186, 209-211]. Further, given that 70 % of 

cryopreserved platelets have externalised PS [167], it would be surprising if 

other lipids were not changed. As such, this study assessed the lipid profile of 

the platelets, microparticles and the supernatant occurring as a result of the 

cryopreservation process.  

Data acquired in this study was assessed in a pair-wise manner, whereby the 

same component was tested before freezing, after thawing and after 24 hours 

of post-thaw storage at room temperature. This study evaluated lipidomic 

changes predominantly using mass spectrometry-based methodologies, 

however other in vitro testing was also performed to supplement the data 

provided by mass spectrometry. 
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5.1 Assessment of platelet number and morphology following 
cryopreservation  

Platelets were cryopreserved, thawed, and reconstituted in a solution of 70 % 

SSP+/30 % plasma to match the pre-freeze composition. The platelet 

components were sampled prior to freezing, after thawing and after 24 hours 

of post-thaw storage at room temperature. The platelet count and MPV were 

obtained using an automated haematology analyser, and the recovery was 

calculated from the pre-freeze and post-thaw counts. The platelet count was 

significantly decreased after thawing, and continued to decrease during post-

thaw storage (Figure 5.1A). As such, the average recovery was 60.4 %, which 

was above the minimum acceptable standard of 40 % according to the Council 

of Europe guidelines (Figure 5.1B) [212]. The MPV was significantly increased 

after thawing and remained unchanged over the post-thaw storage period 

(Figure 5.1C). Immediately following thawing, swirl was not observed in 

platelet components. However, within 1 hour of post-thaw storage at room 

temperature, the platelets regained the capacity to swirl. Macroaggregates 

were not visible in any components.  

The changes to the MPV and loss of swirl seen immediately following thawing 

and reconstitution are indicative of morphological changes.  
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Figure 5.1. The effect of cryopreservation on the platelet count and mean platelet 
volume 

Platelet components were sampled before freezing (PF), immediately after thawing (PT0) and 

24 hours after thawing (PT24). The (A) platelet count was assessed using an automated 

haematology analyser. The (B) recovery (%) was calculated from the platelet count before 

and after cryopreservation. The dotted line represents the minimum acceptable standard 

(40 %) according to the Council of Europe guidelines [212]. The (C) mean platelet volume was 

assessed using an automated haematology analyser. The data represents individual data 

points and mean (bars) + SD (error bars); n=6. The effect of cryopreservation was assessed 

using a one-way repeated measures ANOVA. Post hoc Bonferroni’s multiple comparisons test 

was performed to determine differences between all groups. ‡ indicates p<0.05 when 

compared to PF. # indicates p<0.05 when comparing PT0 to PT24. 
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The externalisation of aminophospholipids (PS and PE) and the release of 

microparticles with PS externalised was assessed by flow cytometry. These 

processes are important in mediating the coagulation process [93, 213], and 

are known to increase as a result of cryopreservation [178].  

Annexin-V is a protein known to bind PS [214]. The percentage of platelets 

with PS externalised was significantly increased immediately after thawing 

(~63-fold, p<0.0001) and remained increased after the post-thaw storage 

period of 24 hours (~46-fold, p=0.0005) (Figure 5.2A).  

Duramycin is a peptide known to bind PE [215, 216] and its externalisation has 

not previously been assessed in cryopreserved platelets. After thawing, the 

MFI of duramycin was significantly increased (~4.8-fold, p=0.0005) and was 

similarly maintained after 24 hours of storage (~3.9-fold, p=0.0008) (Figure 

5.2B).  

The number of annexin-V positive platelet microparticles was found to be 

significantly increased following cryopreservation (Figure 5.2C). Although still 

high, the number of microparticles decreased during the 24 hours of post-thaw 

storage when compared to post-thaw 0. 

The increase in the percentage of platelets with PS externalised and the 

increase in PE externalisation indicates a change to the platelet membrane. 

Further, the increase in microparticles with externalised PS demonstrated the 

composition of the platelet component is altered by cryopreservation. 
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Figure 5.2. The effect of cryopreservation on the externalisation of phosphatidylserine, 
phosphatidylethanolamine and release of microparticles 

Platelet components were sampled before freezing (PF), immediately after thawing (PT0) and 

24 hours after thawing (PT24). (A) Samples were stained with annexin-V (FITC) and the 

percentage of annexin-V positive platelets was determined by flow cytometry after collecting 

10 000 events. (B) Samples were stained with duramycin (Cy5) and the mean fluorescence 

intensity (MFI) of the platelet population was measured by flow cytometry after collecting 

10 000 events. (C) Samples were stained with CD61 (APC) and annexin-V (FITC). The 

absolute number of microparticles was enumerated by flow cytometry and collecting 10 000 

bead events. The data represents individual data points and mean (bars) + SD (error bars); 

n=6. The effect of cryopreservation was assessed using a one-way repeated measures 

ANOVA. Post hoc Bonferroni’s multiple comparisons test was performed to determine 

differences between all groups. ‡ indicates p<0.05 when compared to PF. # indicates p<0.05 

when comparing PT0 to PT24. 
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5.2 Assessment of the global lipidomic changes following 
cryopreservation 

The lipid abundance has not previously been assessed in cryopreserved 

platelet components; however, it is known to be altered by conventional 

platelet storage at room temperature [56, 57]. The effect of the 

cryopreservation process on the lipid profile of platelets, microparticles and 

supernatant was assessed by LC-MS/MS. The relative abundance of 

phospholipids and sphingolipids was determined using an internal standard. 

Immediately after thawing, the abundance of lipids in platelets and 

microparticles did not significantly change (Figure 5.3A and B). However, 

during post-thaw storage at room temperature the abundance of lipids in 

platelets significantly increased (~1.8-fold), whereas the lipid abundance of 

microparticles significantly decreased (~1.4-fold) when compared to pre-

freeze and post-thaw 0. The lipid content of the resuspension solution was 

significantly lower than the pre-freeze supernatant (Figure 5.3C). Immediately 

after thawing, the lipid content of supernatant was aligned with the 

resuspension solution, rather than the pre-freeze composition. However, while 

still decreased after the post-thaw storage period, the lipid content of the 

supernatant was no longer significant. As no difference was observed between 

the reconstitution solution and the post-thaw time points, it could be inferred 

that the differences between the pre-freeze and post-thaw samples were due 

to the composition of the reconstitution solution. 

These results suggest that the lipid content of the platelets and microparticles 

was not affected by the cryopreservation process, however, were affected by 

the post-thaw storage period. Further, the lipid content of the supernatant was 

not impacted by the cryopreservation process itself, but by the composition of 

the reconstitution solution.  
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Figure 5.3. The effect of cryopreservation on the relative abundance of phospholipids 
and sphingolipids  

Platelet components were sampled before freezing (PF), immediately after thawing (PT0) and 

24 hours after thawing (PT24). In addition, the reconstitution solution (RS) was sampled as a 

control. The platelets, microparticles and supernatant were separated by differential 

centrifugation. The relative abundance of phospholipids and sphingolipids in the (A) platelets, 

(B) microparticles and (C) supernatant were determined by LC-MS/MS. The data represents 

individual data points and mean (bars) + SD (error bars); n=6. The effect of cryopreservation 

was assessed using a one-way repeated measures ANOVA. Post hoc Bonferroni’s multiple 

comparisons test was performed to determine differences between all groups. ‡ indicates 

p<0.05 when compared to PF. # indicates p<0.05 when comparing PT0 to PT24. 

  



118 

 

The lipid class composition of cryopreserved platelets was assessed by LC-

MS/MS. The predominant lipid classes in the platelet fraction were PC (ether 

linked PC, PCO, was included with PC as it represented < 5 % of the total lipid 

content) and ceramide representing approximately 50% of all displayed lipids 

(Figure 5.4A). In contrast, the predominant lipid classes in the microparticle 

and supernatant fractions were PC and PE representing approximately 65% 

and 50% of displayed lipids, respectively (Figure 5.4B and C).  

Immediately following thawing, the lipid profile of platelets was not significantly 

different to that prior to freezing, with the exception of PE. PE was significantly 

decreased immediately after thawing, compared to pre-freeze. However, after 

the 24 hour post-thaw storage period, PA and LPC were significantly lower 

than the pre-freeze and post-thaw 0 groups. Conversely, the post-thaw 

storage period resulted in a significant increase in PC, when compared to post-

thaw 0. 

The lipid profile of the microparticle fraction was affected by the 

cryopreservation process. After thawing, the microparticles had an altered 

proportion of LPA, PA LPC, LPE and PG compared to pre-freeze, and the 

difference was maintained through the post-thaw storage period. LPA, LPC 

and LPE were significantly decreased, while PA and PG were significantly 

increased in microparticles formed after thawing. Further, a significant 

increase in ceramide was observed during the 24 hour post-thaw storage 

period. These results suggest that microparticles formed as a result of the 

cryopreservation process have a different lipid profile to those present prior to 

freezing.  
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Figure 5.4. The effect of cryopreservation on the phospholipids and sphingolipids  

Platelet components were sampled before freezing (PF), immediately after thawing (PT0) and 

24 hours after thawing (PT24). In addition, the reconstitution solution (RS) was sampled as a 

control. The platelets, microparticles and supernatant were separated by differential 

centrifugation. The percentage composition of phospholipids and sphingolipids displayed in 

the (A) platelets, (B) microparticles and (C) supernatant were determined by LC-MS/MS. The 

data represents mean (bars) + SD (error bars); n=6. The effect of cryopreservation was 

assessed using a one-way repeated measures ANOVA. Post hoc Bonferroni’s multiple 

comparisons test was performed to determine differences between all groups. ‡ indicates 

p<0.05 when compared to PF. # indicates p<0.05 when comparing PT0 to PT24 or RS and 

PT24 to RS. 
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The cryopreservation process and post-thaw storage altered the lipid profile of 

the supernatant. The resuspension solution was tested prior to the addition of 

the thawed platelets to determine a baseline for samples taken after thawing. 

It was found that the resuspension solution contained less LPC than the pre-

freeze supernatant. Once thawed, the proportion of LPC and LPE increased 

compared to the resuspension solution, indicating release from the platelets 

or microparticles, or liberation of lysophospholipid species may have occurred 

during thawing. Conversely, the resuspension solution contained significantly 

more PE and PS than the pre-freeze supernatant, such that the PE after 

thawing was higher than pre-freeze. While not significant compared to pre-

freeze, there was a decreased proportion of PA and SM immediately after 

thawing compared to the resuspension solution, indicating an uptake by the 

platelet or microparticle, or catabolism of these lipid classes. The proportion of 

SM continued to decrease over the post-thaw storage period, compared to 

immediately after thawing. These changes suggest that the composition of the 

resuspension solution is affecting the lipid composition of the supernatant after 

thawing.  

The trends seen in each fraction may be suggestive of the mutability of the 

lipid profile of platelet components. For example, in the platelet fraction PA 

was decreased in thawed samples, but was increased in the microparticle 

fraction after thawing. Similarly, in the supernatant fraction LPC was increased 

after thawing, compared to the resuspension solution, but was decreased in 

the platelet and microparticle fractions after thawing.  
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PC is the major constituent of platelet lipid membranes [55, 57]. Given that a 

change in total PC was seen after post-thaw storage, shifts in the PC species 

profile that may be occurring as a result of cryopreservation were further 

examined. In platelets, PC(36:1) was the dominant species (Figure 5.5A), 

representing 80% of the PC species. Immediately after thawing, the profile of 

PC species were relatively stable. After the post-thaw storage period, PC(32:4) 

and PC(40:6) were significantly decreased compared to pre-freeze and post-

thaw 0. 

In the microparticles, a greater amount of diversity in the number of PC species 

displayed was observed compared to the platelet fraction (Figure 5.5B). 

PC(36:1), PC(38:2), PC(38:4) and PC(40:4) were significantly decreased 

immediately after thawing, however, the decrease was transient and returned 

to a similar level similar to pre-freeze over the post-thaw storage period. In 

contrast, initially after thawing, PC(36:5) and PC(38:3) were unchanged, but 

post-thaw storage resulted in a significant increase compared to pre-freeze. 

PC(40:5) was the only PC species in the microparticle fraction to be 

significantly increased in post-thaw samples compared to pre-freeze, with a 

dramatic increase observed immediately after thawing.  

In the supernatant fraction, the PC species profile was relatively unchanged 

by cryopreservation or storage. PC(36:3), PC(38:3) and PC(38:4) were the 

most prominent, cumulatively accounting for approximately 85% of PC species 

(Figure 5.5C). PC(36:1) was the only species to be significantly changed, 

although the magnitude was small. The proportion of PC(36:1) in the 

resuspension solution was significantly less than the pre-freeze supernatant, 

resulting in a lower proportion of PC(36:1) immediately at post-thaw.  

Subtle shifts were seen in the PC species profile of platelets and the 

supernatant. It was apparent that the profile of PC species in microparticles 

was more diverse than their parent platelets, and that the microparticles 

present after thawing had a different PC profile to the microparticles present 

prior the freezing.  
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Figure 5.5. The effect of cryopreservation on the phosphatidylcholine species  

Platelet components were sampled before freezing (PF), immediately after thawing (PT0) and 

24 hours after thawing (PT24). In addition, the reconstitution solution (RS) was sampled as a 

control. The platelets, microparticles and supernatant were separated by differential 

centrifugation. The percentage composition of phosphatidylcholine (PC) species in the (A) 

platelets, (B) microparticles (MP) and (C) supernatant were determined by LC-MS/MS. The 

data represents lipid species that exceed 1 % for any time point. The data represents mean 

(bars) + SD (error bars); n=6. The effect of cryopreservation was assessed using a one-way 

repeated measures ANOVA. Post hoc Bonferroni’s multiple comparisons test was performed 

to determine differences between all groups. ‡ indicates p<0.05 when compared to PF. # 

indicates p<0.05 when comparing PT0 to PT24 or RS and PT24 to RS.  
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Lysophosphatidylcholine is a potent mediator of platelet function, known to 

activate platelets and mediate pro-inflammatory pathways [217-219]. Further, 

LPC has been associated with adverse transfusion reactions [220, 221]. The 

LPC class was altered in each fraction (Figure 5.4) and as such, the LPC 

species were interrogated further.  

LPC(18:0) represented 50 % of LPC species in the platelet fraction, but was 

not significantly altered by the cryopreservation process (Figure 5.6A). 

Immediately after thawing, LPC(18:2) was significantly increased, however it 

decreased during post-thaw storage period and was significantly different 

compared to post-thaw 0. LPC(20:0) and LPC(O-18:0) did not change 

immediately after thawing, but were significantly increased at post-thaw 24 

compared to pre-freeze and post-thaw 0.  

The microparticles present following the cryopreservation process displayed 

several shifts in the LPC species (Figure 5.6B). There was a trend for a gradual 

increase in the saturated species, LPC(18:0) and LPC(20:0), after thawing and 

after post-thaw storage. Conversely, there was a trend for unsaturated 

species, LPC(18:1), LPC(18:2), LPC(20:4) and LPC(22:6), to decrease after 

thawing, with a greater decrease observed in the microparticles at post-thaw 

24.  

LPC(16:0) was the most prominent LPC species in the supernatant, 

representing approximately 50 % of the LPC species (Figure 5.6C). In most 

cases, the resuspension solution was significantly different to the supernatant 

prior to freezing, with LPC(18:0) being higher and LPC(18:1), LPC(18:2), 

LPC(20:4) and LPC(22:6) being lower in the resuspension solution compared 

to pre-freeze. Despite LPC(18:0) being higher in the resuspension solution, 

LPC(18:0) was significantly decreased after thawing compared to pre-freeze 

and the resuspension solution. Conversely, there was a trend for LPC(18:1), 

LPC(18:2) and LPC(20:4) to increase in post-thaw samples compared to the 

resuspension solution. These results suggest the LPC species profile changes 

after thawing as it no longer similar to the resuspension solution. After thawing, 
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processes are occurring that make the LPC profile of the resuspension 

solution more similar to the supernatant pre-freeze.    
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Figure 5.6. The effect of cryopreservation on the lysophosphatidylcholine species  

Platelet components were sampled before freezing (PF), immediately after thawing (PT0) and 

24 hours after thawing (PT24). In addition, the reconstitution solution (RS) was sampled as a 

control. The platelets, microparticles and supernatant were separated by differential 

centrifugation. The percentage composition of lysophosphatidylcholine (LPC) species in the 

(A) platelets, (B) microparticles (MP) and (C) supernatant were determined by LC-MS/MS. 

The data represents lipid species that exceed 1 % for any time point. The data represents 

mean (bars) + SD (error bars); n=6. The effect of cryopreservation was assessed using a 

one-way repeated measures ANOVA. Post hoc Bonferroni’s multiple comparisons test was 

performed to determine differences between all groups. ‡ indicates p<0.05 when compared to 

PF. # indicates p<0.05 when comparing PT0 to PT24 or RS and PT24 to RS.  
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Phosphatidylethanolamine is known to support coagulation [90]. Further, PE 

was shown to be externalised (Figure 5.2) and there were alterations to the 

PE class (Figure 5.4). As such, the profile of PE species was further 

interrogated. 

For the PE species profile of platelets, PE(36:1) represented the most 

abundant lipid (Figure 5.7A). PE(38:5) was unchanged immediately after 

thawing but was decreased significantly after the 24 hour storage period. 

Conversely, PE(40:2) was significantly increased in post-thaw samples, with 

a greater increase observed at post-thaw 24. 

PE(40:1) was the most abundant lipid of the PE species in the microparticle 

fraction, representing approximately 80% of PE species (Figure 5.7B). The 

displayed PE species in the microparticle fraction were relatively unchanged 

by cryopreservation.  

The PE species profile of the supernatant was more diverse in the number of 

species displayed than the platelet and microparticle fractions (Figure 5.7C). 

However, no significant changes were observed after thawing or after the post-

thaw storage period and the resuspension solution was similar to the pre-

freeze supernatant. 

The PE profile of the supernatant was more diverse than the platelet and 

microparticle fractions. Further, despite the externalisation of PE and the 

changes in the PE class, the species profiles were relatively stable, particularly 

in the microparticle and supernatant fractions. 
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Figure 5.7. The effect of cryopreservation on the phosphatidylethanolamine species  

Platelet components were sampled before freezing (PF), immediately after thawing (PT0) and 

24 hours after thawing (PT24). In addition, the reconstitution solution (RS) was sampled as a 

control. The platelets, microparticles and supernatant were separated by differential 

centrifugation. The percentage composition of phosphatidylethanolamine (PE) species in the 

(B) platelets, (C) microparticles and (D) supernatant were determined by LC-MS/MS. The data 

represents lipid species that exceed 1 % for any time point. The data represents mean (bars) 

+ SD (error bars); n=6. The effect of cryopreservation was assessed using a one-way repeated 

measures ANOVA. Post hoc Bonferroni’s multiple comparisons test was performed to 

determine differences between all groups. ‡ indicates p<0.05 when compared to PF. # 

indicates p<0.05 when comparing PT0 to PT24 or RS and PT24 to RS. 
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The role of LPE remains relatively unknown in platelets, however, in other cell 

types it has been shown that LPE may elicit a chemotactic response and 

promote calcium signalling [222, 223]. Further, LPE was altered by the 

cryopreservation process in the microparticle and supernatant fraction (Figure 

5.4), and therefore the LPE species displayed were examined further. In the 

platelet fraction, the LPE species profile was not significantly altered by the 

cryopreservation process or by the post-thaw storage period (Figure 5.8A).  

The number of LPE species present in the microparticles and the supernatant 

was far more diverse than the platelet fraction (Figure 5.8B and C). LPE(18:0) 

and LPE(P-18:0) were the most prominent LPE species in the microparticle 

fraction, cumulatively accounting for approximately 80 % of the LPE species. 

In general, LPE species, including LPE(18:0), LPE(20:3), LPE(20:4) and 

LPE(22:1) were significantly decreased immediately after thawing and 

continued to decrease over the post-thaw storage period. In contrast, the ether 

linked LPE species, LPE(P-16:0) and LPE(P-18:0), were significantly 

increased in post-thaw samples, and the increase over the 24 hour storage 

period was greater for LPE(P-18:0).  
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Figure 5.8. The effect of cryopreservation on the lysophosphatidylethanolamine 
species 

Platelet components were sampled before freezing (PF), immediately after thawing (PT0) and 

24 hours after thawing (PT24). In addition, the reconstitution solution (RS) was sampled as a 

control. The platelets, microparticles and supernatant were separated by differential 

centrifugation. The percentage composition of lysophosphatidylethanolamine (LPE) species 

in the (B) platelets, (C) microparticles and (D) supernatant were determined by LC-MS/MS. 

The data represents lipid species that exceed 1 % for any time point. The data represents 

individual data points, and mean (bars) + SD (error bars); n=6. The effect of cryopreservation 

was assessed using a one-way repeated measures ANOVA. Post hoc Bonferroni’s multiple 

comparisons test was performed to determine differences between all groups. ‡ indicates 

p<0.05 when compared to PF. # indicates p<0.05 when comparing PT0 to PT24 or RS and 

PT24 to RS. 
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In the supernatant fraction, LPE(18:0) was the most prominent LPE species, 

accounting for approximately 70 % of PE species. Several significant changes 

were observed in the LPE profile of the supernatant, however, only the key 

trends will be discussed. Overall, the resuspension solution contained 

significantly less LPE species (LPE(18:0), LPE(20:3), LPE(20:4), LPE(22:1) 

and LPE(22:4)) than the pre-freeze supernatant. Immediately following 

thawing, several of the LPE species had increased (LPE(18:0), LPE(20:3), 

LPE(20:4) and LPE(22:4)) in the supernatant and continued to increase over 

the post-thaw storage period, compared to the resuspension solution. On the 

other hand, a greater proportion of ether linked LPE species (LPE(P-16:0) and 

LPE(P-18:0)) was present in the resuspension solution compared to pre-

freeze. Immediately after thawing, the proportion of ether linked LPE species 

declined compared to the resuspension solution, and continued to decline 

after the storage period. 

Interestingly, significant changes in the microparticle fraction appear to be 

related to the significant changes occurring in the supernatant fraction, 

particularly at the post-thaw 24 hour time point. For instance, microparticles 

present after the 24 hour storage period had significantly reduced LPE(20:4), 

while in the supernatant fraction LPE(20:4) was significantly increased at this 

time point.  

These results suggest the profile of LPE species in the microparticles present 

after thawing was different to the profile of the LPE species in the 

microparticles present prior to freezing, and there may be a relationship 

between the resuspension solution and supernatant, and the microparticles.  
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Ether linked phospholipids occur mostly in the PC and PE class [63]. The 

moiety is typified by the attachment of the alkyl chain by an ether bond to the 

sn-1 acyl chain (denoted by the abbreviation O) [63]. More commonly the alkyl 

chain is attached adjacent to a double bond, termed plasmalogen (denoted by 

the abbreviation P) [63]. Ether linked phospholipids were not significantly 

altered (Figure 5.4), however, there is growing interest in these lipid classes. 

The most prominent PCO species in the platelet fraction were PC(O-38:4) and 

PC(O-40:3), cumulatively accounting for approximately 80 % of PCO species 

(Figure 5.9A). PC(O-40:3) was the only species to be altered by 

cryopreservation in the platelet fraction, which increased significantly in post-

thaw samples.  

The PCO species profile of microparticles was more diverse in the number of 

PCO species displayed than the platelet fraction (Figure 5.9B). PC(O-18:1) 

and PC(O-38:5) were significantly decreased in post-thaw samples. 

Immediately after thawing, PC(O-20:1) was significantly decreased, however, 

it increased after the 24 hour storage period. Conversely, PC(O-40:3) was 

significantly increased in post-thaw samples.  

PC(O-36:2) was the most abundant PCO species in the supernatant fraction, 

representing 55 % of the PCO species (Figure 5.9C). The species profile was 

relatively stable, with no changes observed between pre-freeze and post-thaw 

conditions. However, PC(O-20:1) was higher in the resuspension solution than 

in the pre-freeze supernatant and a loss of this species was observed after 

thawing.  
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Figure 5.9. The effect of cryopreservation on the ether linked phosphatidylcholine 
species  

Platelet components were sampled before freezing (PF), immediately after thawing (PT0) and 

24 hours after thawing (PT24). In addition, the reconstitution solution (RS) was sampled as a 

control. The platelets, microparticles and supernatant were separated by differential 

centrifugation. The percentage composition of ether linked phosphatidylcholine (PCO) species 

in the (A) platelets, (B) microparticles (MP) and (C) supernatant were determined by LC-

MS/MS. The data represents mean (bars) + SD (error bars); n=6. The effect of 

cryopreservation was assessed using a one-way repeated measures ANOVA. Post hoc 

Bonferroni’s multiple comparisons test was performed to determine differences between all 

groups. ‡ indicates p<0.05 when compared to PF. # indicates p<0.05 when comparing PT0 to 

PT24 or RS and PT24 to RS.  
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The PEP species profile was stable in the platelets following cryopreservation 

and over the storage period (Figure 5.10A). In the microparticle fraction, PE(P-

40:2) was the most prominent PEP species, accounting for approximately 

75 % of the PEP species (Figure 5.10B). The PEP species that accounted for 

majority of the microparticle profile (~95 %; PE(P-40:2) and PE(P-40:4)) were 

unchanged by the cryopreservation process. However, a significant increase 

in PE(P-36:4) was observed after thawing. 

In the supernatant fraction, PE(P-40:6) was the most abundant, accounting for 

approximately 60 % of the PEP species (Figure 5.10C). PE(P-40:6) was 

significantly lower in the resuspension solution compared to the supernatant 

prior to freezing, and immediately after thawing remained significantly 

decreased. Conversely, there was a greater amount of PE(P-38:4) in the 

resuspension solution compared to the pre-freeze supernatant. After post-

thaw storage, PE(P-38:4) decreased significantly compared to the 

resuspension solution.  

The profile of ether linked PC and PE of platelets, microparticles and the 

supernatant fraction were relatively stable. These results suggest the ether 

linked phospholipid profile was not significantly altered by cryopreservation or 

post-thaw storage 
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Figure 5.10. The effect of cryopreservation on the ether linked 
phosphatidylethanolamine species  

Platelet components were sampled before freezing (PF), immediately after thawing (PT0) and 

24 hours after thawing (PT24). In addition, the reconstitution solution (RS) was sampled as a 

control. The platelets, microparticles and supernatant were separated by differential 

centrifugation. The percentage composition of ether linked phosphatidylethanolamine (PEP) 

species in the (A) platelets, (B) microparticles (MP) and (C) supernatant were determined by 

LC-MS/MS. The data represents individual data points, and mean (bars) + SD (error bars); 

n=6. The effect of cryopreservation was assessed using a one-way repeated measures 

ANOVA. Post hoc Bonferroni’s multiple comparisons test was performed to determine 

differences between all groups. ‡ indicates p<0.05 when compared to PF. # indicates p<0.05 

when comparing PT0 to PT24 or RS and PT24 to RS.  
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The cryopreservation process is known to increase the number of platelets 

and microparticles with externalised PS (Figure 5.2) [178]. Despite the PS 

class being relatively stable (Figure 5.4), the PS species profile was examined 

due to the importance of PS in the coagulation process [88, 90].  

PS(34:1) and PS(36:1) represented the most prominent PS species in the 

platelet fraction, together accounting for approximately 80 % (Figure 5.11A). 

The PS species did not change immediately after thawing, however, significant 

alterations were observed at post-thaw 24. PS(34:1) was significantly 

increased, and PS(36:1) and PS(38:4) were significantly decreased, 

compared to pre-freeze.  

There was a greater number of PS species displayed in the microparticles, 

than the platelet fraction, and changes in the proportion of species were seen 

immediately after thawing (Figure 5.11B). More specifically, short chain PS 

species, PS(34:1) and PS(36:1), were significantly increased in thawed 

samples compared to pre-freeze. On the other hand, the long chain PS 

species, PS(40:3) and PS(40:4), were significantly decreased after thawing 

compared to pre-freeze.  

In the supernatant fraction, PS(38:1) represented the most abundant PS 

species (Figure 5.11C). The PS species remained relatively stable in the 

supernatant in all conditions tested. 

The PS profile of platelets and the supernatant were relatively stable. Further, 

a greater number of PS species were observed in the microparticle and 

supernatant fractions compared to the platelet fraction.  
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Figure 5.11. The effect of cryopreservation on the phosphatidylserine species  

Platelet components were sampled before freezing (PF), immediately after thawing (PT0) and 

24 hours after thawing (PT24). In addition, the reconstitution solution (RS) was sampled as a 

control. The platelets, microparticles and supernatant were separated by differential 

centrifugation. The percentage composition of phosphatidylserine (PS) species in the (A) 

platelets, (B) microparticles (MP) and (C) supernatant were determined by LC-MS/MS. The 

data represents lipid species that exceed 1 % for any time point. The data represents mean 

(bars) + SD (error bars); n=6. The effect of cryopreservation was assessed using a one-way 

repeated measures ANOVA. Post hoc Bonferroni’s multiple comparisons test was performed 

to determine differences between all groups. ‡ indicates p<0.05 when compared to PF. # 

indicates p<0.05 when comparing PT0 to PT24 or RS and PT24 to RS. 
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Phosphatidic acid is metabolised during platelet activation, resulting in the 

formation of LPA [97, 224]. LPA is a potent bioactive lipid mediator, known to 

activate platelets and induce shape change even at low concentrations [68]. 

Significant changes were seen in PA and LPA of the platelet, microparticle and 

supernatant fractions (Figure 5.4), leading to the investigation of PA species 

and LPA species.  

PA(32:1) was the most prominent PA species in the platelet fraction, 

accounting for approximately 35% (Figure 5.12A). PA(32:1) was significantly 

decreased after the post-thaw storage period compared to pre-freeze. 

Similarly, PA(38:4) was significantly decreased in post-thaw samples 

compared to pre-freeze. Conversely, PA(34:4) and PA(40:1) were significantly 

increased in post-thaw samples.  

In the microparticle fraction, PA(40:2) was the most abundant PA species, 

representing approximately 65% of PA species (Figure 5.12B). The PA 

species in the microparticles remained relatively similar prior to freezing, after 

thawing and after post-thaw storage.  

PA(38:1) and PA(38:4) comprised the majority of the PA species in the 

supernatant fraction, totalling 90% (Figure 5.12C). The PA species profile of 

the supernatant and resuspension solution was relatively stable, with only a 

few changes being observed after thawing. PA(38:7) was significantly 

increased immediately after thawing, when compared to the resuspension 

solution. Conversely, PA(40:1) was significantly decreased after the 24 hour 

storage period, compared to pre-freeze.  
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Figure 5.12. The effect of cryopreservation on the phosphatidic acid species  

Platelet components were sampled before freezing (PF), immediately after thawing (PT0) and 

24 hours after thawing (PT24). In addition, the reconstitution solution (RS) was sampled as a 

control. The platelets, microparticles and supernatant were separated by differential 

centrifugation. The percentage composition of phosphatidic acid (PA) species in the (A) 

platelets, (B) microparticles (MP) and (C) supernatant were determined by LC-MS/MS. The 

data represents mean (bars) + SD (error bars); n=6. The effect of cryopreservation was 

assessed using a one-way repeated measures ANOVA. Post hoc Bonferroni’s multiple 

comparisons test was performed to determine differences between all groups. ‡ indicates 

p<0.05 when compared to PF. # indicates p<0.05 when comparing PT0 to PT24 or RS and 

PT24 to RS. 
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In the platelet fraction, LPA(22:1) was the most prominent LPA species 

representing approximately 50% of LPA species (Figure 5.13A). LPA(22:1) 

was significantly decreased immediately after thawing and continued to 

decrease over the post-thaw storage period. Conversely, LPA 20:0 was 

significantly increased after the post-thaw storage period when compared to 

pre-freeze.  

LPA(16:1) and LPA(22:1) were the most abundant LPA species in the 

microparticle fraction, together accounting for 90 % of LPA species (Figure 

5.13B). LPA(16:1) and LPA(18:3) were significantly increased in post-thaw 

samples. In contrast, LPA(22:1) significantly decreased in post-thaw samples.  

LPA(22:1) was the most abundant LPA species in the supernatant fraction 

(Figure 5.13C). There was significantly less LPA(22:1) in the resuspension 

solution than in the pre-freeze supernatant and, immediately after thawing 

LPA(22:1) remained significantly lower compared to pre-freeze. On the other 

hand, there was significantly more LPA(20:0) in the resuspension solution 

compared to the pre-freeze supernatant. Further, immediately after thawing 

LPA(20:0) remained higher compared to pre-freeze. 

To summarise the PA and LPA species profiles, only a limited number of LPA 

species were identified in each fraction. Further, despite the changes in the 

PA and LPA class, the species profiles were relatively stable, particularly in 

the microparticle and supernatant fractions.  
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Figure 5.13. The effect of cryopreservation on the lysophosphatidic acid species  

Platelet components were sampled before freezing (PF), immediately after thawing (PT0) and 

24 hours after thawing (PT24). In addition, the reconstitution solution (RS) was sampled as a 

control. The platelets, microparticles and supernatant were separated by differential 

centrifugation. The percentage composition of lysophosphatidic acid (LPA) species in the (A) 

platelets, (B) microparticles (MP) and (C) supernatant were determined by LC-MS/MS. The 

data represents mean (bars) + SD (error bars); n=6. The effect of cryopreservation was 

assessed using a one-way repeated measures ANOVA. Post hoc Bonferroni’s multiple 

comparisons test was performed to determine differences between all groups. ‡ indicates 

p<0.05 when compared to PF. # indicates p<0.05 when comparing PT0 to PT24 or RS and 

PT24 to RS. 
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Sphingomyelin is a precursor to the bioactive lipids, ceramide, sphingosine 

and sphingosine 1-phosphate [202]. Ceramide is a bioactive lipid mediator and 

second messenger, and is closely associated with oxidative stress and 

apoptosis [202, 203]. As such, although sphingomyelin and ceramide were not 

significantly altered following cryopreservation, an investigation into the 

species displayed was justified.  

In the platelet fraction, SM(24:1) was the most prominent sphingomyelin 

species, representing 50 % of the sphingomyelin species (Figure 5.14A). 

SM(24:1) was unchanged immediately after cryopreservation but was 

significantly decreased after post-thaw storage, when compared to pre-freeze 

and post-thaw 0. In contrast, SM(14:0) and SM(15:0) were significantly 

increased immediately after thawing.  

SM(22:0) and SM(24:0) were the most abundant sphingomyelin species of the 

microparticle fraction, together accounting for 40 % of sphingomyelin species 

(Figure 5.14B). The sphingomyelin species profile of microparticles was 

relatively stable, with the exception of SM(16:1). SM(16:1) was significantly 

decreased after post-thaw storage for 24 hours compared to pre-freeze. 

SM(22:0) and SM(24:1) were the most prominent sphingomyelin species in 

the supernatant fraction, cumulatively accounting for 60% of sphingomyelin 

species (Figure 5.14C). The profile of sphingomyelin species present in the 

pre-freeze supernatant was similar to the resuspension solution and was 

unchanged after thawing or post-thaw storage for 24 hours.  

The sphingomyelin profile of platelets, microparticles and the supernatant 

were stable after thawing. These results suggest the sphingomyelin profile was 

not significantly altered by cryopreservation or post-thaw storage.  

  



152 

 

 

 

 

 



153 

 

Figure 5.14. The effect of cryopreservation on the sphingomyelin species  

Platelet components were sampled before freezing (PF), immediately after thawing (PT0) and 

24 hours after thawing (PT24). In addition, the reconstitution solution (RS) was sampled as a 

control. The platelets, microparticles and supernatant were separated by differential 

centrifugation. The percentage composition of sphingomyelin (SM) species in the (A) platelets, 

(B) microparticles (MP) and (C) supernatant were determined by LC-MS/MS. The data 

represents mean (bars) + SD (error bars); n=6. The effect of cryopreservation was assessed 

using a one-way repeated measures ANOVA. Post hoc Bonferroni’s multiple comparisons test 

was performed to determine differences between all groups. ‡ indicates p<0.05 when 

compared to PF. # indicates p<0.05 when comparing PT0 to PT24 or RS and PT24 to RS. 
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Cer(22:0) was the most abundant ceramide species in the platelet fraction 

(Figure 5.15A). The ceramide species profile remained relatively stable 

following cryopreservation. Cer(18:0) was the only species to be altered, which 

was significantly increased after post-thaw storage compared to post-thaw 0. 

The ceramide species profile of microparticles was extensively altered by the 

cryopreservation process (Figure 5.15B). Microparticles that formed after 

thawing contained a significantly increased proportion of shorter chain 

ceramide species (Cer(20:0), Cer(22:0), Cer(24:0), Cer(26:0) and Cer(26:1)). 

In contrast, the longer chain ceramide species (Cer(28:0), Cer(30:0), 

Cer(31:0) and Cer(33:0)) were decreased in the post-thaw microparticles, 

compared to pre-freeze. With the exception of Cer(24:0), the ceramide profile 

of microparticles immediately following thawing was maintained through the 

storage period.  

Cer(24:1) was the most prominent ceramide in the supernatant fraction, 

representing 30% of the ceramide species (Figure 5.15C). The ceramide 

species profile of the resuspension solution was similar to the supernatant 

prior to freezing, and did not change after thawing or after the post-thaw 

storage period of 24 hours. 

The ceramide profile of platelets and the supernatant was relatively stable. 

However, these results suggest the microparticles formed after thawing have 

a different ceramide profile than microparticles formed prior to freezing.  
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Figure 5.15. The effect of cryopreservation on the ceramide species  

Platelet components were sampled before freezing (PF), immediately after thawing (PT0) and 

24 hours after thawing (PT24). In addition, the reconstitution solution (RS) was sampled as a 

control. The platelets, microparticles and supernatant were separated by differential 

centrifugation. The percentage composition of ceramide (Cer) species in the (A) platelets, (B) 

microparticles (MP) and (C) supernatant were determined by LC-MS/MS. The data represents 

mean (bars) + SD (error bars); n=6. The effect of cryopreservation was assessed using a 

one-way repeated measures ANOVA. Post hoc Bonferroni’s multiple comparisons test was 

performed to determine differences between all groups. ‡ indicates p<0.05 when compared 

to PF. # indicates p<0.05 when comparing PT0 to PT24 or RS and PT24 to RS. 
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5.3 Assessment of bioactive lipid mediators following 
cryopreservation  

Bioactive lipid mediators have been shown to effect transfusion outcomes 

[186, 209, 225]. Further, several of the mechanisms that could provide an 

explanation for the changes seen in the lipid classes (Figure 5.4), are known 

to result in the formation of bioactive lipid mediators [61, 83]. As such, the 

abundance of several of these bioactive lipid mediators were assessed by 

ELISA in the supernatant before freezing, after thawing, after 24 hours of 

storage, as well as in the solution used to reconstitute thawed platelets. The 

concentration of arachidonic acid and 5-HETE were low in the reconstitution 

solution (Figure 5.16A and B). After thawing and after the post-thaw storage 

period, arachidonic acid and 5-HETE were significantly increased compared 

to the resuspension solution. The concentration of 12(S)-HETE was low in 

both the reconstitution solution and pre-freeze, but was significantly increased 

after thawing and after the post-thaw storage period (Figure 5.16C). The 

concentration of 15(S)-HETE and S1P was low in the reconstitution solution 

compared to the supernatant prior to freezing (Figure 5.16 D and E). After 

thawing and after the post-thaw storage period, 15(S)-HETE and S1P were 

significantly increased compared to the resuspension solution. However, only 

the concentration of 15(S)-HETE was significantly different to the pre-freeze 

concentration.  

In all cases, the reconstitution solution contained very low concentrations of 

these bioactive lipids, indicating the reconstitution solution did not substantially 

contribute to the observed post-thaw changes. However, after thawing the 

concentration of these bioactive lipid mediators increased, suggesting the 

cryopreservation process may increase the formation or release of certain 

bioactive lipid mediators.  

  



158 

 

 

Figure 5.16. Th effect of cryopreservation on the presence of certain bioactive lipid 
mediators in the supernatant of platelet components  

Platelet components were sampled before freezing (PF), immediately after thawing (PT0) and 

24 hours after thawing (PT24). In addition, the reconstitution solution (RS) was sampled as a 

control. The supernatant was isolated using multiple rounds of centrifugation and the 

concentration of (A) arachidonic acid, (B) 5-HETE, (C) 12(S)-HETE, (D) 15(S)-HETE and (E) 

S1P were determined by ELISA. The data represents individual data points, and mean (bars) 

+ SD (error bars); n=6. The effect of cryopreservation was assessed using a one-way repeated 

measures ANOVA. Post hoc Bonferroni’s multiple comparisons test was performed to 

determine differences between all groups. ‡ indicates p<0.05 when compared to PF. # 

indicates p<0.05 when comparing PT0 to PT24 and PT0 or PT24 to RS. 

  



159 

 

5.4 Assessment of lipid dynamics and lipid pathways following 
cryopreservation  

The lipid profile of any cell is inherently dynamic. As lipids act as both structural 

and signalling molecules, and can be transformed by enzymatic reactions 

[205], assessing the lipid class ratios and performing pathway analysis may 

give a more nuanced insight into the lipid dynamics taking place. Lipid classes 

were selected for comparison as ratios based on known metabolic pathways 

and based on literature, where it has been suggested an altered lipid ratio may 

impact cellular function and disease process [206, 207].  

In the platelet fraction, the LPC/PC and PA/PC ratios were decreased after 

post-thaw storage compared to pre-freeze and post-thaw 0 (Table 5.1). On the 

other hand, the PC/PE ratio was increased after post-thaw storage compared 

to pre-freeze. In the microparticle fraction, the LPC/PC, LPE/PE and LPA/PA 

ratios were decreased after thawing and after the post-thaw storage period. 

Conversely, the PA/PC and PC/PE ratios increased after thawing and post-

thaw storage. In the supernatant fraction, LPC/PC and LPE/PE ratios were 

lower in the resuspension solution. Similarly, the Cer/SM ratio was decreased 

after post-thaw storage compared to pre-freeze.  
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Table 5.1. Lipid class ratios of platelets, microparticles and supernatant from 
cryopreserved platelet components  

 

PF = pre-freeze; PT0 = post-thaw 0; PT24 = post-thaw 24; RS = resuspension solution 

Values shown as mean of the ratio of the given lipid classes, n=6 in each group. 

The effect of cryopreservation was assessed using a one-way repeated measures ANOVA. 

Post hoc Bonferroni’s multiple comparisons test was performed to determine differences 

between all groups. ‡ indicates p<0.05 when compared to PF. # indicates p<0.05 when 

compared to PT0. * indicates p<0.05 when compared PT24. 

 

BioPAN, as mentioned in the previous chapter, is an open access web-based 

tool that provides a statistical score for possible lipid metabolism pathways 

[196, 226]. This is achieved by establishing relationships between lipid 

substrates and lipid products, present in a user’s data, and the enzymes 

involved the reaction, and determining if the reaction is active or suppressed 

[196]. The information used to assess these relationships is sourced from 

current literature [196]. BioPAN lipid networks were generated to assess the 

changes in each fraction following cryopreservation and storage. 

Representative lipid networks depicting active reactions between pre-freeze 

to post-thaw samples are shown in Figure 5.17A, B, C and D, and the 

remaining data is presented in supplementary data S.9 – S.10. The data for 

all sample points and fractions has been summarised in Figure 5.18. 

    

 
 

 Platelet  Microparticle  Supernatant 

 PF PT0 PT24  PF PT0 PT24  PF PT0 PT24 RS 

LPC/PC 1.073 0.677 0.428‡#  0.203 0.093‡ 0.070‡  0.653 0.538 0.523 0.292‡#* 

LPE/PE 0.070 0.088 0.083  0.012 0.006 0.005‡  0.018 0.017 0.012 0.010‡# 

PEP/PE 1.737 2.683 2.902  0.362 0.383 0.488  0.020 0.020 0.025 0.020 

PS/PC 0.325 0.220 0.175  0.053 0.053 0.052  0.192 0.227 0.352 0.222 

PA/PC 0.118 0.097 0.067#  0.118 0.170‡ 0.167‡  0.228 0.235 0.242 0.242 

LPA/PA 0.135 0.132 0.135  0.040 0.017‡ 0.018‡  0.057 0.035 0.093 0.028 

Cer/SM 1.715 1.725 1.675  1.658 1.348 1.842  0.135 0.142 0.170‡ 0.140 

PC/PE 3.743 5.342 6.380‡  2.367 2.534 3.431‡  1.071 0.989 0.957 1.011 

PS/PE 1.086 1.184 1.098  0.123 0.127 0.173  0.205 0.222 0.306 0.222 

PS/PA 2.703 2.320 2.603  0.443 0.313 0.304  0.852 0.954 1.415 0.912 
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Figure 5.17. BioPAN lipid networks depicting active reactions following 
cryopreservation 

The lipid networks of (A) platelets, (B) microparticles, (C) supernatant and the (D) 

resuspension solution comparing pre-freeze (PF) and post-thaw 0 (PT0) time points. The 

networks were produced using BioPAN, an open access web-based tool 

(https://www.lipidmaps.org/biopan/) [196], by inputting data obtained from mass spectrometry 

analysis. Representative lipid are shown, networks were obtained comparing each time point 

(see supplemental data, S.9-S.10).  
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In the platelet fraction, the conversion of LPC to LPA, PS to PE and Cer to SM 

were inferred to be significantly active when comparing pre-freeze to either 

time point post-thaw (Figure 5.18A). On the other hand, the conversion of PC 

to PS, PE to PC, PE to PS and SM to Cer were inferred to be significantly 

suppressed when comparing pre-freeze to post-thaw time points. 

In the microparticle fraction, the majority of the significant changes were 

observed when comparing to post-thaw 24 (Figure 5.18B). Specifically, the 

conversion of LPC to LPA was inferred to be significantly active when 

comparing pre-freeze to the post-thaw 24. The conversion of PC to PA and 

PC to PS were inferred to be significantly active when comparing pre-freeze 

and post-thaw 0 to post-thaw 24. Conversely, the conversion of PA to PS and 

PE to PC were inferred to be significantly suppressed when making post-thaw 

24 comparisons.  

In the supernatant fraction, the conversion of LPC to LPA was inferred to be 

significantly active in the pre-freeze sample compared to the resuspension 

solution (Figure 5.18C). Conversely, the conversion of PC to PS and PE to PC 

were inferred to be significantly suppressed pre-freeze compared to the 

resuspension solution. After thawing, the conversion of PC to PS, PE to PC, 

PE to PS and SM to Cer were inferred to be significantly active when 

comparing pre-freeze to post-thaw time points, and PS to PE and Cer to SM 

were inferred to be significantly suppressed when comparing pre-freeze to 

post-thaw time points. The conversion of Cer to SM was inferred to be 

significantly suppressed and the conversion of SM to Cer was inferred to be 

significantly active after post-thaw storage compared to post-thaw 0. Further, 

the conversion of LPC to LPA, PE to PC, PA to PS and SM to Cer were inferred 

to be significantly active in post-thaw samples compared to the resuspension 

solution. Conversely, Cer to SM was inferred to be significantly suppressed 

post-thaw compared to the resuspension solution.  

Several reactions were found to be significantly activated or supressed when 

comparing each time point of the cryopreservation process. Further, the use 
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of lipid network pathways allows for visualisation of relationships between 

different lipids classes.  
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Figure 5.18. Summary of Z-scores for given reactions from cryopreserved platelet components obtained from BioPAN 

Lipid networks were generated from BioPAN using data acquired by LC-MS/MS. Z-scores from the (A) platelet, (B) microparticle and (C) supernatant lipid 

networks were summarised and are depicted as heat maps. Values shown as Z-score of the given reaction, whereby a Z-score>0 represents an active 

reaction and a Z-score<0 represents a suppressed reaction. A paired t-test was performed by BioPAN to determine differences between indicated groups. 

‡ indicates p<0.05 a significant reaction (corresponding to a Z-score > 1.645 or < -1.645) 
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Genes known to be involved in the reactions depicted in the lipid networks are 

suggested by BioPAN. After generating networks from each fraction 

comparing cryopreservation and storage, a list of genes was consolidated as 

being potentially involved in the indicated reaction (Table 5.2). The list of 

genes generated by the web-based tool encode proteins that facilitate the 

depicted reactions. Thus, this information may assist in understanding 

complex interactions occurring between fractions, and additionally provide 

avenues for future research.   

Table 5.2. BioPAN predicted genes to be activated or supressed in the given reaction 
in cryopreserved platelet components 

 

  

 

 Gene symbol Gene name 

LPC to LPA - - 

PC to PA - - 

PC to PS PTDSS1  phosphatidylserine synthase 1 

PE to PC PEMT  phosphatidylethanolamine N-methyltransferase 

PE to PS PTDSS2  phosphatidylserine synthase 2 

PS to PE PISD  phosphatidylserine decarboxylase 

PA to PS - - 

Cer to SM SGMS1  sphingomyelin synthase 1 

SGMS2  sphingomyelin synthase 2 

CERT1 ceramide transfer protein 1 

SM to Cer SMPD1  sphingomyelin phosphodiesterase 1 

SMPD2 sphingomyelin phosphodiesterase 2 

SMPD3 sphingomyelin phosphodiesterase 3 
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Chapter 6 Discussion of the lipidome of alternatively 
stored platelets 

The results from this study outlined changes to the phospholipid and 

sphingolipid profile during cold storage and following cryopreservation, which 

are further discussed in this chapter. The changes observed in the cold-stored 

platelet components lipid profile may have arisen due to exchanges of lipids 

between fractions and altered lipid metabolism; whereas the changes 

occurring in the lipid profile following cryopreservation are likely the result of 

lipid uptake from lipoproteins, microparticle formation and platelet or 

microparticle degradation. Functionally, the observed changes are associated 

with coagulation, apoptosis, inflammation and signalling. The changes 

occurring in both cold-stored and cryopreserved platelet components may 

affect platelet function once these components are transfused. As such, 

further avenues of study which are required to more comprehensively 

understand the functional implications of these changes have been outlined.  
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6.1 Addressing challenges of platelet storage  

The current requirement for platelet storage in Australia is at room temperature 

in gas permeable bags, with constant agitation for a maximum of seven days 

[108, 130, 131]. These conditions limit the shelf life to 7 days, in order to 

minimise the risk of bacterial proliferation and to lessen the effects of the PSL 

[132].  

The storage requirements of platelets limit their availability and can result in 

supply difficulties. When supplying rural, remote and military locations the 

lengthy transport times impact product quality and unpredictable demand can 

result in product wastage [131, 141-144]. The inability to readily supply 

platelets in these locations can result in a failure to meet current standards of 

resuscitative care [141, 144]. Alternative storage techniques, such as cold 

storage and cryopreservation, could resolve some issues surrounding 

conventionally stored platelets. 

Cold storage of platelets involves storing platelets in a refrigerator (2-6 °C), 

without agitation, and is purported to extend the shelf life up to 2-3 weeks [145-

148]. Cold storage is an attractive solution due to the extended shelf life, less 

burdensome storage and transport logistics, lower risk of bacterial proliferation 

and enhanced haemostatic capabilities [163-165]. Internationally, cold-stored 

platelets are currently being used in civilian hospitals on a limited basis and 

have been used within military settings [163-165]. However, cold-stored 

platelets are not yet approved for use in Australia.  

The effect of cold storage has previously been assessed in the context of 

changes to platelet metabolism, surface receptor expression and the 

proteome [122, 148, 153-156]. While the lipidome of room temperature stored 

platelets has previously been reported [51, 52], only historic studies of the 

lipidome of cold-stored platelets have been conducted [56, 57]. A 

reassessment of the lipidome of cold-stored and room temperature stored 

platelets was justified as advances in transfusion medicine and in mass 
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spectrometry technology have occurred since the com3pletion of these 

studies.  

Platelet cryopreservation is an appealing alternative to room temperature 

storage, especially for supplying austere locations as it can extend the shelf 

life to at least two years [141, 142, 166]. Platelet cryopreservation involves the 

addition of DMSO and freezing at -80 °C [142]. Cryopreserved platelets have 

been extensively used in military settings [166, 171]. Further, several clinical 

trials are underway to extend their use to support surgical bleeding in a civilian 

context [142, 170-174]. 

Extensive in vitro assessments of cryopreserved platelets have been 

conducted to assess changes to metabolism, surface receptor expression and 

the proteome. Central to this project, cryopreserved platelets externalise PS 

and result in the formation of a high number of PS-expressing microparticles 

[167, 168, 175-179]. Despite this knowledge, no lipidomic investigations have 

been performed.  

Understanding changes to the lipid profile of alternatively stored platelet 

components is important as even subtle lipid changes are known to be 

associated with altered platelet function, platelet clearance and component 

safety and efficacy [56, 57, 137, 182]. 

6.2 Assessment of the lipid profile of cold-stored platelets  

This study assessed the lipidomic changes occurring in platelets that were 

stored at either room temperature or cold-stored. Storage at room temperature 

limits the shelf life to between 5 and 7 days, depending on the institutional 

regulations, with Australia recently transitioning from a 5 day to a 7 day shelf 

life. However, at the time of conducting this study the shelf life was 5 days, 

which is why this time point was assessed. Similarly, day 14 represents the 

feasible shelf life for cold-stored platelet components, and thus was chosen as 

the later time point.  
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It has previously been noted that differences in the method of production, 

storage containers, storage solutions and temperature of platelet components 

differentially affects their in vitro quality [118, 145, 159, 227-229]. The lipidome 

of room temperature stored platelet components collected by apheresis in 

100 % plasma has previously been assessed [56, 57]. Similarly, studies have 

been performed examining the lipidome of cold-stored platelet components 

produced from whole blood in 100 % plasma [51, 52]. In contrast, this study 

examined the effect of cold storage on platelet components collected by 

apheresis and stored in 40 % plasma/60 % SSP+, as is standard practice in 

our institute. As the contribution of plasma lipids and plasma lipoproteins is 

known to impact the platelet lipidome [57, 98, 230], it was anticipated that the 

lower proportion of plasma may result in lipid changes over storage. However, 

this study demonstrated that the total lipid content of the platelet and 

supernatant fractions remained unchanged over storage (Figure 4.3), 

regardless of storage temperature. From the literature, there is conflicting 

evidence regarding the effect of storage on the lipid content, which is likely 

due to the differences in study design mentioned above [118, 145, 159, 227-

229]. Specifically, some studies have demonstrated a decrease in the lipid 

content of platelets [51, 52, 57], while others demonstrate no change [56].  

While the total lipid content was not altered, changes were observed in the 

composition of the phospholipid and sphingolipid profile. The lipid profile of the 

platelet fraction was stable during early storage (5 days), but by day 14, 

alterations to the lipid profile were observed, and these changes were 

exacerbated by cold storage. In contrast, the proportion of many lipid classes 

were altered in the supernatant at day 5 at both storage temperatures. 

However, by day 14, the proportions were more similar to those seen at day 

1, particularly in the cold-stored samples.  

6.2.1 Changes to the lipid profile of platelets following cold 
storage  
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The phospholipid and sphingolipid profile of platelets stored in additive solution 

was similar to previously reported data of platelets in plasma [55-57], and this 

was relatively unaffected by cold storage during early time points (5 days). 

However, alterations in the proportion of specific lipid classes were evident 

during extended cold storage, specifically in the PA, PC, PE, PEP, PI, PS, 

ceramide and SM lipid classes (Figure 4.4). The increases in PE and SM may 

be the result of incorporation from plasma lipoproteins into the platelets [98, 

230], as plasma lipoproteins are rich in PC, PE and SM [231]. This is purported 

to take place via selective endocytosis or facilitated by protein interaction 

[232]. Further, the regulation and mechanism facilitating lipid uptake is variable 

and dependant on lipoprotein type [232]. Specifically, GPIV (CD36) supports 

the transfer of PC and SM [232-234], and cytosolic phospholipase A2 supports 

the transfer of PE [235]. Cold-stored platelets have been shown to have lower 

expression of GPIV, and over storage (at both room temperature and cold) the 

abundance of GPIV (CD36) is reduced [153]. Further, the transfer of lipids from 

lipoproteins is temperature dependent [98, 99, 236]. Thus, the cold and 

storage related reduction of GPIV may alter lipoprotein incorporation, resulting 

in the reduced proportion of PC in cold-stored platelets at later time points.  

In addition to the decreased transfer of PC from lipoproteins [232-235], the 

results from this study (Table 4.1 and Figure 4.16) suggest PC lipid 

metabolism was altered at day 14 of cold storage. Specifically, the conversion 

of PC to PA was significantly activated over extended cold storage, and the 

ratio of PA/PC was significantly increased. Phospholipase D1 and 

phospholipase D2 are the enzymes responsible for this conversion [237]. In 

platelets, phospholipase D activity is typically increased by agonists 

responsible for activating platelets, such as thrombin, ADP and collagen, 

which act through signal transduction pathways, such as G coupled protein 

receptors [237]. During cold storage platelets are known to have increased 

markers of platelet activation, including activated integrin αIIbβ3, P-selectin, 

externalised PS [153, 157] and increased intracellular calcium levels [238]. 

Therefore, these data suggest cold induced platelet activation may increase 
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the activity of phospholipase D, however, additional studies are required to 

confirm this.  

The proportion of PA was increased during extended cold storage. This may 

be due to the altered PA and PC metabolism (Table 4.1 and Figure 4.16), as 

mentioned above. While PA has limited cellular functions, PA can be 

catabolised to the bioactive lipid mediator LPA [68, 239]. Activated platelets 

are known to release LPA, and LPA has been shown to induce platelet 

activation, aggregation and induce immune responses [68, 239-241]. 

Interestingly, the concentration of LPA in the supernatant was significantly 

increased by room temperature storage but not cold storage (Figure 4.4 and 

4.13). Platelets do not store LPA within their granules, as they do with other 

bioactive mediators; rather it is produced de novo from PA and 

lysophospholipids, and released to the surrounding plasma during activation 

[241, 242]. Therefore, the increased PA, seen in the cold-stored platelets, may 

represent a reservoir to be catabolised to LPA and released once platelets are 

activated during haemostasis.  

The externalisation of aminophospholipids, PS and PE, is essential to support 

normal haemostatic function [33]. The externalisation of PS mediates the 

interactions with the tenase and prothrombinase complexes of the coagulation 

system [33], while the externalisation of PE improves the catalytic ability of PS 

by increasing the affinity of the membrane for hydrophobic coagulation factors 

[33]. As demonstrated in this study, PS externalisation was increased in cold-

stored platelets in a time dependent manner (Figure 4.2), which is in line with 

results from other studies [153, 154]. Further, subtle changes in arachidonic 

acid (20:4) containing PE, PEP and PS species may contribute to improved 

haemostatic function [96]. The proportion of PS and PE was significantly 

increased by extended (14 days) cold storage (Figure 4.4). Further,an 

increase in PE and PEP species in which one of their fatty acyl tails could be 

arachiodonic acid (20:4), such as PE(38:4), PE(40:4) and PE(P-38:4) was 

seen (Figure 4.7 and 4.9). However, somewhat surprisingly, there was no 
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change to the arachidonic acid containing PS species (Figure 4.10). These 

subtle shifts, particularly in the PE species, may contribute to the increased 

haemostatic profile typified by cold-stored platelets [122, 154].  

In addition to the increased proportion of PS in cold-stored platelets, lipid 

metabolism of PS was also altered. An explanation for the increase in PS may 

be related to a dysfunction in the base exchange process. PS synthesis occurs 

in the endoplasmic reticulum, in a specialised area known as the mitochondria-

associated membranes (MAM) [243, 244]. PS is synthesised from PC and PE 

by the action of PS synthase 1 and PS synthase 2, respectively [245]. From 

here PS is transported to the mitochondria for PE synthesis by PS 

decarboxylation; this process is ATP dependent and limited by its availability 

[246]. From the lipid metabolism analysis (Table 4.1 and Figure 4.16), it can 

be seen that the reactions converting PC to PS and PE to PS were significantly 

active in cold-stored samples, suggesting PS synthase 1 and PS synthase 2 

activity were increased. In contrast, the PS to PE reaction was significantly 

suppressed, suggesting PS decarboxylase activity was decreased. It would 

then be anticipated that this would result in a decrease in the proportion of PE 

in platelets, however, this was not observed. It is likely that the transfer of PE 

from lipoproteins is sufficient to negate this.  

The function of a LPC species is dependent on the fatty acyls tail [247-253]. 

Although the proportion of LPC in platelets was only decreased by extended 

room temperature storage (Figure 4.4), the LPC species profile within platelets 

was mainly altered by room temperature storage (Figure 4.6). LPC(18:0), a 

pro-inflammatory LPC species [247-251], was decreased by room 

temperature storage and extended cold storage. Further, LPC(20:4), an anti-

inflammatory LPC species [252, 253], was decreased by extended room 

temperature storage. Although other changes were observed, the role of those 

LPC species in modulating platelet function has not been specifically 

evaluated. Regardless, this data suggests that extended room temperature 
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storage alters the LPC species profile of platelets, and the immunoregulatory 

role of platelets requires further investigation.  

Sphingolipids, such as ceramide and S1P, are potent bioactive lipid mediators 

[65, 66, 69, 71]. The catabolism of SM is considered to be an essential route 

by which these bioactive lipid mediators are formed [66]. Sphingolipid 

metabolism is unique in platelets as they lack the enzymes necessary for de 

novo synthesis and S1P catabolism (Figure 6.1) [66, 254]. Pienimaeki-Roemer 

et al. hypothesised that during conventional room temperature storage 

ceramide is generated by the transmembrane cycling and salvage pathway 

[56, 255]. In this pathway, S1P is catabolised to sphingosine by S1P 

phosphatase and sphingosine is catabolised to ceramide by ceramide 

synthase [56, 255]. Similarly, data presented in this study showed ceramide 

was significantly increased in platelets stored for 14 days at room temperature, 

and SM remained constant (Figure 4.4). Further, work previously done in our 

laboratory has shown S1P to be significantly decreased in the supernatant of 

platelet components stored at room temperature [256]. Taken together it could 

be hypothesised that S1P was consumed during extended storage to form 

ceramide. In contrast, extended cold storage of platelets resulted in a 

significant decrease in ceramide, while SM was significantly increased. These 

results suggest sphingolipid metabolism differs in room temperature and cold-

stored platelets.  
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Figure 6.1. Simplified pictogram of the hypothesised sphingolipid metabolism in room 
temperature and cold-stored platelets 

During room temperature storage (highlighted in red) it is hypothesised sphingosine 1-

phosphate (S1P) is catabolised to sphingosine by S1P phosphatase (S1PP), and sphingosine 

is then catabolised to ceramide by ceramide synthase (CerS). On the other hand, during cold 

storage (highlighted in blue) it is hypothesised ceramide is catabolised by sphingomyelin 

synthase (SMS) to form sphingomyelin. Notably platelets lack the ability to synthesise 

ceramide de novo and lack the enzyme S1P lyase. SK = sphingosine kinase, CDase = 

ceramidase, SMase = sphingomyelinase SM D = SM deaclyase, CerK = ceramide kinase, 

C1PP = ceramide 1-phosphate phosphatase (Image by author). 
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Ceramide is proposed to mediate apoptosis and has been associated with the 

Bcl-2 pathway [207]. Conversely, S1P promotes cell survival [207]. This 

balance between ceramide and S1P, termed the “sphingolipid rheostat”, is 

thought to be a determining factor of cell fate [207]. Given the difference in the 

proportion of ceramide at day 14 in room temperature and cold-stored platelets 

(Figure 4.4), the sphingolipid rheostat and cell fate may be altered in platelets 

under different storage temperatures. During extended room temperature 

storage, disruption in the balance of the sphingolipid rheostat may result in the 

increase in apoptotic signalling seen in room temperature platelets [257]. 

Conversely, the reduction in ceramide in cold-stored platelets may have a role 

in delaying the progression of apoptosis seen in cold-stored platelets [257]. 

These results present interesting avenues for future investigation, particularly 

given the stark differences observed between storage temperatures.  

While the ceramide-S1P ratio is proposed to determine cell fate [207], certain 

ceramide species have identified roles in apoptosis [258-261]. Specifically, 

Cer(16:0) and Cer(18:0) increase during the early stages of apoptosis, while 

Cer(22:0) and Cer(24:0) are generated during later stages of apoptosis [260]. 

These lipid species are involved in the formation of channels in the 

mitochondrial membrane and release of apoptotic proteins [258-261]. Further, 

Cer(16:0) and Cer(18:0) have been shown to have an affinity for the anti-

apoptotic protein, Bcl-xL [260]. By interacting with Bcl-xL it is thought that 

mitochondrial permeabilisation by Cer(16:0) and Cer(18:0) is prevented, and 

additional apoptotic signalling is arrested [260]. Interestingly, Cer(16:0) and 

Cer(18:0) were increased by extended and cold storage (Figure 4.12), while 

Cer(22:0) was increased to a greater extent by room temperature storage. It 

has previously been shown that room temperature storage results in 

decreased Bcl-xL, increased Bax and the accumulation of apoptotic proteins, 

however, these processes are limited in cold-stored components [257, 262]. 

Therefore, changes in the ceramides species profile supports the concept that 

cold storage of platelets may delay apoptosis.  
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6.2.2 Changes to the lipid profile of the supernatant following 
cold storage  

The phospholipid and sphingolipid profile of the supernatant of platelet 

components stored in additive solution was similar to previously reported data 

from platelets in plasma [55-57]. Changes to the profile of these supernatant 

lipids occurred during early time points (5 days) regardless of storage 

temperature, and changes stabilised at day 14 of storage (Figure 4.4). More 

specifically changes occurred in the LPA, PC, LPE, PE, PEP, PI, PS, ceramide 

and SM lipid classes. Similar to the platelet fraction, changes to the lipid 

classes of the supernatant are likely the result of a multitude of factors, 

including uptake of lipoproteins, release of microparticles and enzymatic 

conversion of lipid classes. Additionally, the changes observed to occur during 

5 days of storage in this study are in agreement with changes observed in 

other studies occurring over 5 days of room temperature storage [56, 57].  

The plasma is known to contain PC and LPC, and the proportions of these 

lipids may be changed by conventional platelet storage [57]. In this study, the 

proportion of PC in the supernatant was decreased by room temperature 

storage and by cold storage for 5 days (Figure 4.4). However, there was no 

change in proportion of LPC (Figure 4.4). Further, in terms of lipid metabolism 

analysis (Table 4.1 and Figure 4.16), there was no change in the ratio of 

LPC/PC, and the computed BioPAN lipid network could not determine the 

conversion of PC to LPC, as free fatty acids were not assessed as a part of 

the lipid profile. However, the enzyme responsible for converting PC to LPC, 

lectin-cholesterol acyltransferase (LCAT), is present in plasma [263]. 

Functionally, an accumulation of LPC in the plasma of platelet components 

has been associated with TRALI [184, 187, 225, 264]. This study examined 

platelet components stored in additive solution, which is standard practice in 

Australia. The use of additive solution may reduce the presence of enzymes 

such as LCAT which is responsible for the formation LPC. Assessing the 

presence of enzymes responsible for the formation of bioactive mediators, 

particularly those associated with adverse transfusion reactions, may be of 
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interest in understanding the risk of transfusion reactions in room-temperature 

and cold-stored platelet products and the impact of using additive solutions.   

Although the overall proportion of LPC in the supernatant remained similar 

throughout storage, specific LPC species were altered (Figure 4.6). As 

mentioned in the context of the platelets, the function of different LPC species 

is associated with the fatty acyl tail length [247-253]. In the supernatant 

fraction, differences in pro-inflammatory LPC species, such as LPC(18:1), 

were increased by storage and the increase was greater in room temperature 

stored components [247-251]. Additionally, anti-inflammatory LPC species 

(LPC(20:4)) were decreased by extended storage (day 14) [252, 253]. Thus, 

this data would suggest that the supernatant of platelet components stored for 

an extended period may have an impact on the inflammatory status of the 

platelet component. 

In addition to LPC, the lysophospholipids LPA and LPE are known constituents 

of human plasma [247]. The proportion of LPA and LPE were significantly 

increased by room temperature storage (Figure 4.4). While LPA has previously 

been shown to increase in the supernatant of room temperature stored platelet 

components [56], LPE has not been assessed in stored platelets. LPA and 

LPE are both capable of interacting with numerous receptors and, thus, 

eliciting a variety of cellular responses [222, 239, 247, 265, 266]. LPA 

mediates cell migration, cytoskeletal reorganisation, cytokine release and cell 

survival [239, 242]. Further, LPE is proposed to affect cell migration, 

differentiation, proliferation and mobilisation of calcium stores [222, 247, 265, 

266]. The functional impact of the increases in LPA and LPE once transfused 

is unknown, and these results suggest that further investigations are 

warranted.  

Transfusion of components containing a high concentration of polar (LPC and 

PAF) and non-polar (12-HETE and 15-HETE) bioactive lipid mediators has 

been associated with TRALI [184, 187, 225, 264]. The abundance of PAF 

remained constant in the supernatant fraction during extended storage (Figure 
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4.13). While supernatant PAF has been shown to be increased during storage 

of platelets in plasma [187, 201, 267, 268], as previously mentioned the use 

of additive solution may reduce the presence of enzymes, such as 

phospholipase A2, which are responsible for the formation of PAF [61, 64, 

263]. Non-polar bioactive lipids have been shown to accumulate in stored 

blood products, including red blood cells and room-temperature stored 

platelets [186, 209]. This study demonstrates that 12-HETE and 15-HETE 

accumulate in platelets stored in additive solution regardless of storage 

temperature (Figure 4.14). However, there was a trend towards reduced 

accumulation of these lipids during cold storage, which again, may reflect the 

requirement for enzymatic processes which are inhibited at colder 

temperatures [186].  

In summary, the sphingolipid and phospholipid profile of platelets and the 

supernatant was differentially altered by storage time and temperature. It is 

apparent that room temperature and cold storage results in differences to lipid 

classes and species associated with coagulation, apoptosis and inflammation. 

It is likely these changes may have functional effects once the components 

are transfused.  
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6.3 Assessment of the lipid profile of cryopreserved platelet 
components  

This study assessed the lipidomic changes occurring in platelets immediately 

following cryopreservation and after 24 hours of storage at room temperature. 

Numerous studies have determined the in vitro characteristics of 

cryopreserved platelets components [167, 175, 179]. The platelet count, mean 

platelet volume and post-thaw recovery of the components used in this study 

were similar to previously published data (Figure 5.1) [167, 175, 179].  

Cryopreservation of platelets significantly increases PS externalisation and the 

release of PS-expressing microparticles that contribute to clot formation [178]. 

The processes resulting in PS externalisation also result in the externalisation 

of PE [33, 88, 89], although this has not previously been examined in the 

context of cryopreserved platelets. This study confirmed that cryopreservation 

induced the externalisation of PS and PE and the formation of microparticles 

with externalised PS (Figure 5.2). Interestingly, the proportion of PS was not 

different in the platelets and microparticles after thawing, despite the 

externalisation. In line with previous reports [122, 178], the number of 

microparticles with externalised PS was reduced following post-thaw storage 

at room temperature (Figure 5.2).  

The effect of cryopreservation on the lipid profile of the platelet, microparticle 

and supernatant fractions of buffy coat derived platelet components was 

assessed. The fractions were assessed discretely as it is known that transfer 

of lipids occurs between platelets, microparticles, plasma lipids and 

lipoproteins [56, 57, 98, 269]. This study demonstrated that the lipid content of 

the platelets and microparticles remained unchanged immediately following 

thawing (Figure 5.3). However, after post-thaw storage at room temperature 

for 24 hours, the total lipid content of platelets increased two-fold, which 

coincided with a decrease in the lipid content of microparticles. The differences 

occurring after post-thaw storage in the platelets and microparticles, may be 

due an interaction between the fractions. Platelets are capable of re-
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internalising microparticles [270-272], and it has been suggested that this 

process is partially mediated by Toll Like Receptor 4 [270]. Work previously 

performed in our laboratory has shown Toll Like Receptor 4 is increased after 

post-thaw storage at room temperature [273]. The decrease in lipid content of 

microparticles following post-thaw storage was consistent with the reduction 

in microparticles with exposed PS, as observed by flow cytometry (Figure 5.2). 

Given that platelet microparticles play a key role in haemostasis [178], 

understanding how long that microparticles persist during post-thaw storage 

and the processes by which microparticles are internalised may be of interest.  

To prepare cryopreserved platelets for transfusion, the thawed platelet 

hyperconcentrate is resuspended in a volume of an appropriate solution, 

usually 100% plasma, saline or SSP+ [167, 172]. In this study, a volume of 

30 % plasma/70 % SSP+ was used as the resuspension solution, as this is 

the standard storage solution for platelet components produced from whole 

blood in our institution. This was done to ensure the plasma content was 

similar between pre-freeze and post-thaw samples, and that differences in lipid 

profile could be attributed to thawing and/or post-thaw storage. The lipid 

content of the supernatant of the thawed and resuspended platelets 

(post-thaw 0 and post-thaw 24) was the same as the resuspension solution, 

indicating the lipid content was not impacted by the thawing process but by the 

addition of the resuspension solution (Figure 5.3). However, the lipid content 

of post-thaw supernatant was lower than the lipid content of the pre-freeze 

supernatant. An explanation for the higher lipid content of the supernatant prior 

to freezing may be due to the activation associated changes occurring during 

collection and manufacturing of the buffy coat derived platelet component 

[133, 134, 274].  

The phospholipid and sphingolipid profile of the platelets, microparticles and 

supernatant (Figure 5.4) showed similarities to previously reported profiles of 

fresh and conventionally stored platelets [56, 57]. In general, the phospholipid 

and sphingolipid profile of platelets was not extensively altered immediately 

after thawing. However, the 24 hour post-thaw storage period resulted in 
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significant changes. In contrast, the phospholipid and sphingolipid profile of 

microparticles formed after thawing were distinct from those present prior to 

freezing. Further, the resuspension solution impacted the lipidome of the 

supernatant. The changes observed after thawing and post-thaw storage may 

be the result of several mechanisms occurring in concert. 

6.3.1 Changes to the lipid profile of platelets following 
cryopreservation 

The phospholipid and sphingolipid profile of platelets was unchanged 

immediately after thawing (Figure 5.4A). This result was somewhat surprising, 

as changes to the platelet shape, phenotype and metabolism are observable 

immediately after thawing [122, 178, 275]. However, several changes were 

observed after the 24 hour post-thaw storage period, including to the PA, LPC 

and PC classes. An explanation for the delay in observable lipid changes may 

be the time and temperature dependence of the reactions thought to alter lipid 

profiles of platelets [56, 57], including the transfer of plasma lipids and 

lipoproteins [98, 99, 236]. When used clinically, the post-thaw shelf life of 

cryopreserved platelets is between 4 and 6 hours [173], this data suggests 

that an extension of the post-thaw shelf life may be undesirable as changes to 

the platelet lipid profile were only observed after 24 hours of storage.  

The proportion of PC was significantly increased in the platelet fraction after 

post-thaw storage (Figure 5.4A). Additionally, although not significant, there 

was a trend for decreased PC in the supernatant fractions after the post-thaw 

storage period. Similarly, the proportion of PE was decreased in the platelet 

fraction immediately after thawing, but was increased in the supernatant at the 

same time point. PC, PE and SM can be rapidly transferred from plasma 

lipoproteins to platelets [98, 236]. This is purported to take place via selective 

endocytosis or facilitated by protein interaction [232]. Further, the regulation 

and process by which lipid uptake occurs is variable and dependant on 

lipoprotein type [232], with the mechanisms facilitating endocytosis of PC 

differing to those supporting PE. More specifically, GPIV (CD36) supports the 
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transfer of PC from plasma lipoproteins to platelets [232-234], while cytosolic 

phospholipase A2 facilitates the transfer of PE from plasma lipoproteins to 

platelets [235]. Given this, the selective uptake of PC could be reasonable. 

Further, the transfer of lipids is temperature dependent, and known to increase 

when platelets are activated [98, 99, 236]. Following thawing, platelets were 

stored at room temperature for 24 hours during which markers for platelet 

activation have been shown to increase [167]. Thus, it may be likely that the 

transfer of lipids from lipoproteins is increased during the 24 hour storage 

period, resulting in an increase in the proportion of certain lipid classes. 

The proportion of LPC was decreased following post-thaw storage and the 

LPC species profile of platelets was altered following thawing and post-thaw 

storage (Figure 5.6A). LPC has different functions, and LPC species may be 

pro-inflammatory or anti-inflammatory depending on the fatty acyl tail [247-

253]. LPC(18:2), LPC(20:0) and LPC(O-18:0) were altered during post-thaw 

storage at room-temperature, however, the role of these particular species in 

immune modulation have not been assessed.  

The proportion of PE was decreased and there was no change in the 

proportion of PS in platelets following thawing, despite the increase in PE and 

PS externalisation (Figure 5.4A). Externalisation of PE and PS is essential to 

support normal haemostatic function [33, 89]. PS localises the tenase and 

prothrombinase complexes of the coagulation cascade for thrombin formation 

[33, 95], and PE increases the affinity of coagulation proteins to the membrane 

[33]. Further, pro-coagulant activity can also be modulated by PE, PEP and 

PS species, whereby long chain fatty acyls, specifically arachidonic acid 

(20:4), provide better support for tissue factor dependent thrombin generation 

compared to short chain fatty acyls [96]. The species profile of PE, PEP and 

PS were relatively stable following cryopreservation, compared to pre-freeze 

(Figure 5.7A, 5.10A and 5.11A). Given the increased externalisation of PE and 

PS and the increased haemostatic activity of cryopreserved platelets [122, 

175], the stability of the PE, PEP and PS species was somewhat surprising.  
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Ceramide and ceramide species are known to regulate apoptotic processes 

[203, 207]. More specifically, an increase in ceramide is thought to promote 

apoptosis [203, 207]. Additionally, several ceramide species (Cer(16:0), 

Cer(18:0), Cer(22:0) and Cer(24:0)) are known to induce apoptosis by 

disrupting the mitochondria [258-261]. In this study, the proportion of ceramide 

was not altered and no change was seen in the ceramide species profile of 

platelets immediately after thawing (Figure 5.4A and 5.15A). This was 

somewhat surprising, as the mitochondrial membrane potential is depolarised 

following cryopreservation [168]. However, it has been suggested that 

changes to cryopreserved platelets such as externalisation of PS, typically 

viewed as apoptotic, are actually associated with pro-coagulant function rather 

than apoptosis [210, 276]. Similarly, this data would suggest the ceramide 

profile of cryopreserved platelet does not promote apoptosis. However, the 

only change observed after the 24 hour storage period was an increase in 

Cer(18:0), which is thought to induce apoptosis. This change towards 

apoptosis could provide further support that an extension of the post-thaw 

shelf life beyond 4-6 hours may not be advantageous.  

6.3.2 Changes to the lipid profile of microparticles following 
cryopreservation 

Microparticle function is understood to depend on the mechanism of 

generation, which determines the microparticle number, size, lipid and protein 

profile, and packaging of other molecules [37, 48]. The phospholipid and 

sphingolipid profile of microparticles present after thawing was significantly 

different to the microparticles present prior to freezing (Figure 5.4B). Given the 

role microparticles play in vivo in the transport of molecules, cell to cell 

communication, inflammation, haemostasis and in disease processes [36, 47], 

a significant change in the phospholipid and sphingolipid profile may indicate 

a change in the function of these microparticles in vivo. In particular, the 

proportion of LPA, PA, LPC, LPE and PG was altered in the microparticles 

generated after cryopreservation. This aligns with previous data which 

demonstrates that microparticles formed following cryopreservation have a 
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different membrane and cytoskeletal protein profile to those present prior to 

freezing [180]. In addition, microparticles formed following cryopreservation 

have a different phospholipid and sphingolipid profile to their parent platelets 

(Figure 5.4B). This would support the hypothesis that microparticles formed 

following cryopreservation are the result of selective packaging, and are not 

just smaller platelets [28, 180, 277]. Further, the number of microparticles is 

greatly increased following cryopreservation, thus the functional outcome of 

even minor changes in the lipid profile is likely exaggerated.  

Lipids and lipid metabolism, specifically sphingolipids and PA, are associated 

with the formation of microparticles [81, 278-281]. It has been shown that 

inhibition of sphingomyelinase, the enzyme responsible for conversion of SM 

to ceramide, significantly reduces the formation of microparticles in various cell 

types, and during storage of red blood cells [81, 280, 282]. However, it has 

also been shown that inhibition of sphingomyelinase increases the formation 

of microparticles [278]. Data presented in this thesis, shows that 

sphingomyelinase activity was significantly suppressed in platelets (Figure 

5.18), and the proportion of ceramide and SM did not change (Figure 5.4A). 

Regardless of the differences, these previous studies and the results of this 

study suggest sphingolipids and sphingomyelinase may have a role in 

regulating microparticle formation. Similarly, it is hypothesised that the activity 

of phospholipase D may regulate the formation of microparticles, and PA, the 

main product of phospholipase D activity, may also have a function in 

microparticle formation [283, 284]. PA is thought to alter the membrane 

curvature, making it more likely to undergo fusion or fission events [285]. 

Further, it is proposed that PA could co-localise the proteins thought to be 

associated with microparticle formation [283]. Interestingly, in this study PA 

was increased in microparticles formed after thawing (Figure 5.4B). These 

data provide interesting avenues into the biogenesis of platelet microparticles, 

and potentially propose different mechanisms by which formation occurs 

depending on storage condition.  
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Lysophospholipids are known to be a constituent of microparticles [56, 286-

288]. In vivo, unbound LPC and LPE remains in circulation temporarily, as they 

are readily degraded by lysophospholipases. Therefore, microparticles are 

proposed to be essential transporters of LPC, LPE, and LPA [247, 289-292]. 

In this study the proportion of LPA, LPC and LPE was reduced in the 

microparticles after thawing (Figure 5.4B). However, this decrease may be 

offset by the substantial increase in microparticle number. Further, the 

microparticles released following thawing had a different profile of LPA, LPC 

and LPE species compared to those present before freezing and, as they are 

bioactive lipid mediators, this may alter their functional potential [247].  

LPC species have been shown to have both pro-inflammatory and anti-

inflammatory functions, depending on the fatty acyl chain length [247-253]. 

Microparticles formed during post-thaw storage contain increased LPC(18:0), 

which is pro-inflammatory; while a decrease in anti-inflammatory LPC species 

(LPC(20:4) and LPC(22:6)) was observed (Figure 5.6B) [247-253]. Similarly, 

the LPC species profile of the supernatant after thawing was quite different to 

the resuspension solution and was more similar to the pre-freeze LPC profile 

(Figure 5.6C). However, the only differences between pre-freeze and post-

thaw supernatant was an alteration in the pro-inflammatory LPC species, 

LPC(18:0) [247-253], which was decreased. It may be that processes, such as 

enzymatic conversion or lipid exchange, were occurring between platelets, 

microparticles and the supernatant that resulted in shifts to the LPC species 

profile of microparticles and the supernatant. Further, the LPC species profile 

of microparticles appears to have an association with the LPC species profile 

of the supernatant, for example with LPC(18:0), LPC(18:1), LPC(18:2) and 

LPC(20:4), a decrease in one fraction was paralleled by an accompanying 

increase in the other fraction (Figure 5.6B and C). The enzymes responsible 

for the formation of LPC (phospholipase A2) has previously been found in 

platelets and microparticles from room temperature stored platelet 

components [195]. Further, lipoproteins are known to contain LPC [231]. 

Taken together, these results suggest that microparticles formed after thawing 



186 

 

and the post-thaw supernatant may differentially promote inflammation. 

Further, LPC is closely associated with TRALI [184, 185, 225] and, given the 

high number of microparticles present in cryopreserved platelets and the ability 

of microparticles to transfer lipid species to other cell types [288], the 

immunomodulatory capacity of cryopreserved platelet components is another 

area of active investigation in our group [273]. 

Specific LPE species are proposed to differentially affect cell migration, 

differentiation, proliferation and mobilisation of calcium stores [222, 247, 265, 

266]. In this study, the LPE species profile of microparticles and the 

supernatant was considerably altered after thawing and after storage (Figure 

5.8B and C). Specifically, LPE species, LPE(18:0) and LPE(P-18:0), 

associated with calcium mobilisation [265, 266], were differentially altered in 

the microparticle and supernatant fractions by cryopreservation (Figure 5.8). 

Immediately after thawing, LPE(18:0) was decreased and LPE(P-18:0) was 

increased. Calcium mobilisation is necessary for the activation associated 

changes occurring in platelets [19, 21]. Additionally, a relationship between the 

LPE species profile of microparticles and LPE species profile of the 

supernatant is evident, where for example LPE(18:0) and LPE(20:4) increased 

in the supernatant fraction, while concomitantly decreasing in the microparticle 

fraction (Figure 5.8B and C). The physiological functions of LPE and LPE 

species have only recently begun to be discerned [222, 247, 265, 266] and as 

such the presence of LPE within platelet components is relatively novel. Given 

this, further investigations into the functional effects of LPE species, 

particularly those altered by cryopreservation, are warranted.  

The ceramide species profile of microparticles has been associated with 

mediating TRALI [281]. Platelet components containing microparticles with 

increased long chain ceramides (Cer(16:0), Cer(18:0) and Cer(20:0)) induced 

TRALI in animal models and resulted in characteristics of TRALI in pulmonary 

cell models [281]. Other studies have shown that long chain ceramides are 

more injurious than very long chain ceramides [261, 281, 293]. In this study, 

the ceramide species within the microparticles before freezing and after 
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thawing were distinct (Figure 5.15B). Specifically, some long chain ceramides, 

including Cer(20:0), were increased and other ceramide species (Cer(28:0), 

Cer(30:0), Cer(31:0), Cer(33:0)) were decreased in post-thaw microparticles. 

Given the significant increase in the number of microparticles and a ceramide 

profile that may be considered more injurious after thawing, further work is 

required to determine if a relationship between the ceramide species profile of 

microparticles and transfusion reactions exists.  

6.3.3 Changes to the lipid profile of the supernatant following 
cryopreservation 

The lipid profile of the post-thaw supernatant was primarily altered by the 

addition of the resuspension solution. More specifically, changes were seen in 

the proportion of PA, LPC, LPE and SM post-thaw compared to the 

resuspension solution (Figure 5.4C). In addition, to the resuspension solution 

altering the proportion of several lipid classes, the lipid species of these 

classes were also affected. Plasma contains lipids and lipoproteins, which are 

known to interact with the platelet lipidome [57, 98, 230]. As previously 

mentioned, the observed changes are likely the result of endocytosis and the 

exocytotic process [98, 99, 235, 236]. Similar processes have been shown to 

alter the cytokine composition of the storage solution of cryopreserved 

components as platelets release their granule contents and as platelet 

degradation occurs [122, 273, 294].  

Transfusion of blood components containing high concentrations of bioactive 

lipid mediators, including 5-HETE, 12-HETE and 15-HETE, have been 

associated with TRALI [82, 186, 209, 295]. While the abundance of 5-HETE 

did not change following thawing, 12-HETE and 15-HETE were dramatically 

increased (Figure 5.16). These bioactive lipid mediators have been shown to 

accumulate in blood products during conventional storage [183, 185, 264], 

however, this is the first instance in which they have been assessed following 

cryopreservation. Further, the increase of 12-HETE and 15-HETE occurs 

rapidly after thawing and resuspension and continues to accumulate during 
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storage at room temperature. It is important to note that 12-HETE and 15-

HETE were essentially undetectable in the resuspension solution, and 

therefore this was not a contributing factor to the observed increase after 

thawing. As such, further investigations of these bioactive lipid mediators in 

the context of platelet cryopreservation, inclusive of their role in the transfusion 

reactions, should be pursued.  

Reduced levels of S1P have been shown to be associated with increased 

sepsis induced organ failure [211]. The concentration of S1P was similar 

before freezing and after thawing, however, S1P was lower in the 

resuspension solution (Figure 5.16). This increase following thawing and 

resuspension was likely due to release from granules, as S1P is known to be 

stored within the granules of platelets and released during activation [296]. 

Given that transfusion of cryopreserved platelets are indicated for the 

treatment of trauma-associated bleeding [171, 297], it is likely beneficial that 

the S1P concentration is not different between fresh and cryopreserved 

platelets. Further, S1P is known to have a counter-regulatory affect to 

ceramide and has been shown to reduce TRALI associated lung injury [207, 

281]. Taking into consideration the changes to the ceramide species profile of 

microparticles and the increased concentration of 12-HETE and 15-HETE, a 

better understanding of the role of S1P in cryopreserved platelet components 

may be of interest.  

In summary, the sphingolipid and phospholipid profile of platelets, 

microparticles and the supernatant was differentially altered by the 

cryopreservation process. Surprisingly, the phospholipid and sphingolipid 

profile of platelets was relatively unchanged immediately after thawing, but the 

proportion of several lipid classes was altered by post-thaw storage at room 

temperature. The lipid profile of microparticles formed following thawing was 

different to that present prior to freezing. Further, the lipid profile of the 

resuspension solution is the primary factor responsible for differences in the 

lipid profile of the post-thaw supernatant. Changes to the lipid profile of 

platelets, microparticles and supernatant occurred in lipids associated with 
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coagulation, inflammation and signalling. These changes may have functional 

effects once the components are transfused, and more in-depth studies should 

be conducted.  

6.4 Limitations  

While novel findings regarding the phospholipid, sphingolipid and downstream 

bioactive lipid mediator profile of conventionally and alternatively stored 

platelet components have been presented, some limitations should be 

considered. 

This study examined cryopreserved platelets before freezing and after 

thawing, with an average frozen storage time of 23 days. However, in a clinical 

setting cryopreserved platelets can be stored for up to 2 years [141, 142, 166], 

as such there is a discrepancy in the length of time cryopreserved platelets 

were frozen in this study compared to what might be used in a clinical setting. 

The effect of frozen storage time on the lipid profile of platelet components 

remains unknown. Understanding the effect of frozen storage time on the lipid 

profile of platelet components may be of interest.  

In order to understand the changes occurring as a result of cryopreservation, 

once thawed, the thawed platelets were resuspended in a unit of 30 % 

plasma/70 % SSP+. However, when used clinically, as in the CLIP-II clinical 

trial [173], cryopreserved platelet components are resuspended in a unit of 

freshly thawed plasma. Therefore, the lipid profile of platelets used in the 

clinical situation may differ. However, it is important to note that the majority of 

lipid changes were only observed after post-thaw storage at room temperature 

(PT24) and the CLIP-II platelets are transfused within 4 hours of thawing.  

This study focused on changes to the sphingolipid and phospholipid profile of 

platelets, as these lipids represent the majority of lipids that make up the profile 

of platelets, microparticles and plasma. However, this study did not examine 

cholesterol or cholesterol ester. Cholesterol and cholesterol ester are 

important for platelet structure and function [59, 72, 74, 75, 77], and the 
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contribution of these lipid classes to the lipid profile of platelets stored at room 

temperature for 5 days is known [56, 57]. Understanding the changes to 

cholesterol and cholesterol ester following alternative storage would be of 

interest.  

6.5 Future directions 

The results generated provide a greater understanding of the cold-stored and 

cryopreserved platelet product. However, more research is required to 

develop a comprehensive understanding of the changes occurring and the 

processes mediating these changes, and to understand how the alterations 

observed impact the function of the platelet component once transfused.  

Microparticles were not investigated in the cold study, however, their 

contribution to the overall efficacy of room temperature and cold-stored platelet 

component is well known [122, 148, 198, 298]. As was seen in this study, 

cryopreservation yielded microparticles with a distinct lipid profile and 

interactions between the microparticle fraction and other fractions were 

observed. Therefore, studies investigating the impact of room temperature and 

cold storage on the lipidome of microparticles would be of interest, particularly 

given that cold storage has been shown to release a greater number of 

annexin-V positive microparticles [122].  

There is evidence that the formation of lipid rafts may be temperature 

dependent [299, 300], but this has not yet been investigated in the context of 

cold-stored or cryopreserved platelet components. Further, lipid rafts appear 

to have functional roles [72]. As was seen in this study, several lipid classes 

enriched in lipid rafts were altered by alternative platelet storage, including SM. 

SM is highly enriched in lipid rafts, and known to coalesce when exposed to 

the cold [80, 300]. As such, studies investigating the impact of storage on lipid 

rafts may be of interest [78].  

Ceramides are thought to have specific roles in mediating apoptosis [207, 258-

261]. Results from this study indicate the ceramide species profile of cold-
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stored platelets were altered and may be reflective of early or suspended 

apoptosis. Work previously performed in our laboratory, and by others, has 

indicated a difference in the accumulation of apoptotic proteins, which 

suggests that cold-storage of platelets may delay apoptosis [257, 262]. Given 

this, the association between ceramide and apoptosis in cold-stored platelets 

presents an area for future research to improve our understanding of the 

progression of apoptosis.  

Bioactive lipid mediators are important modulators of cellular function, immune 

responses and are associated with TRALI [69, 82, 223]. During this study, 

several bioactive lipid mediators were examined (LPA, LPC, LPE, ceramide, 

12-HETE, 15-HETE, S1P) and found to be altered during alternative platelet 

storage. Given the role of bioactive lipid mediators in the modulation of 

immune responses [69, 82, 223], expanding the profile of bioactive lipid 

mediators examined to include, for example ceramide 1-phosphate, 

leukotrienes, resolvins and lipoxins [82, 301] may be beneficial. In this study, 

an internal standard was used which contains deuterium labelled lipids from 

all of the major lipid classes and data was searched against lipid libraries. A 

more targeted approach could be employed where standards for bioactive 

lipids of interest are used and LC-MS/MS data can then be more accurately 

searched for and matched [195]. Further, many bioactive lipids, although they 

have not been directly examined in the context of platelet components, are 

capable of controlling cellular activity, including apoptosis, release of 

chemokines and cytokines, mobilisation of calcium and cytoskeletal 

reorganisation [201, 207, 247, 248, 250, 260, 261]. As such, it would be of 

interest to further investigate bioactive lipid mediators derived from 

alternatively stored platelet components. 

Lipids are known to have specific functions and mediate cellular function [96, 

222, 249, 260]. As was shown in this study, the lipid profile of cold-stored and 

cryopreserved components was different to conventionally stored platelet 

components. Initially, it was planned that the functional effect of the lipids that 

were altered would be assessed in this study. It was anticipated that platelet 
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component fractions and isolated lipids would be co-cultured with primary 

endothelial and immune cells to model an in vitro transfusion [302]. Changes 

to cytokines, chemokines and surface receptor profile of the endothelial cells 

and leukocytes could be assessed by plate-based assay and flow cytometry 

[303]. Although such a study was unable to be completed as a part of this 

thesis (due to the reasons outlined in the COVID impact statement), assessing 

the function of changed lipids would provide valuable information to better 

understand alternatively stored platelet components. 

6.6 Concluding remarks 

The research presented in this thesis aimed to characterise the lipidome of 

stored platelet components. Lipids and bioactive lipid mediators have an 

essential role in platelet function and the ability to impact the clinical role of 

platelet components. As was shown in this study, alternative storage resulted 

in changes to lipids associated with coagulation, apoptosis, signalling and 

inflammation. This research has furthered the characterisation of alternatively 

stored platelet components and has provided a greater understanding of the 

processes occurring during storage. In doing so, this work has recognised 

areas for future research, including information relevant for understanding 

adverse transfusion reactions. By broadening the understanding of 

alternatively stored platelet components this work may be beneficial in 

supporting their utility. The use of alternatively stored platelet components 

would resolve the issues surrounding conventionally stored platelets, and 

allow appropriate resuscitative care to be provided in rural, remote and military 

locations.   
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Supplemental data

Figure S.1. Representative total ion chromatograms from platelet samples

Total ion chromatograms (TIC) from LC-MS/MS acquisition in (A) positive and (B) negative

mode. The chromatograms were obtained from the mass spectrometer. Representative 

chromatograms from post thaw 0 platelets are shown. 
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Figure S.2. Representative total ion chromatograms from platelet samples

Total ion chromatograms (TIC) from LC-MS/MS acquisition in (A) positive and (B) negative

mode. The chromatograms were obtained from the mass spectrometer. Representative 

chromatograms from post thaw 24 platelets are shown. 
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Figure S.3. Representative total ion chromatograms from platelet samples

Total ion chromatograms (TIC) from LC-MS/MS acquisition in (A) positive and (B) negative

mode. The chromatograms were obtained from the mass spectrometer. Representative 

chromatograms from platelets following 5 days of cold storage are shown. 
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Figure S.4. Representative total ion chromatograms from supernatant samples

Total ion chromatograms (TIC) from LC-MS/MS acquisition in (A) positive and (B) negative

mode. The chromatograms were obtained from the mass spectrometer. Representative 

chromatograms from the day 1 supernatant are shown. 
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Figure S.5. Representative total ion chromatograms from supernatant samples

Total ion chromatograms (TIC) from LC-MS/MS acquisition in (A) positive and (B) negative

mode. The chromatograms were obtained from the mass spectrometer. Representative 

chromatograms from the supernatant following 14 days of cold storage are shown. 
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Figure S.6. Representative total ion chromatograms from supernatant samples 

Total ion chromatograms (TIC) from LC-MS/MS acquisition in (A) positive and (B) negative 

mode. The chromatograms were obtained from the mass spectrometer. Representative 

chromatograms from the supernatant following 14 days of room temperature storage are 

shown.  
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Figure S.7. BioPAN lipid networks depicting active reactions over storage  

The lipid networks of (A) platelets and the (B) supernatant comparing day 1 (D1) and day 5 

(D5) timepoints. The networks were produced from the open access web-based tool, BioPAN 

[196], by inputting data obtained from mass spectrometry analysis. 
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Figure S.8. BioPAN lipid networks depicting active reactions over storage 

The lipid networks of (A) platelets and the (B) supernatant comparing day 1 (D1) and day 5 

(D5) timepoints. The networks were produced from the open access web-based tool, BioPAN 

[196], by inputting data obtained from mass spectrometry analysis. 

 

 



201 

 

 

Figure S.9. BioPAN lipid networks depicting active reactions following post-thaw 
storage  

The lipid networks of (A) platelets, (B) microparticles, (C) supernatant and the (D) 

resuspension solution comparing the pre-freeze (PF) and post-thaw storage (PT24) time 

points. The networks were produced from the open access web-based tool, BioPAN [196], by 

inputting data obtained from mass spectrometry analysis. 
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Figure S.10. BioPAN lipid networks depicting active reactions following thawing and 
post-thaw storage 

The lipid networks of (A) platelets, (B) microparticles, (C) supernatant and the (D) 

resuspension solution comparing the post-thaw 0 (PT0) and post-thaw storage (PT24) time 

points. The networks were produced from the open access web-based tool, BioPAN [196], by 

inputting data obtained from mass spectrometry analysis. 
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