
PRE-NAS: Predictor-assisted Evolutionary Neural Architecture
Search

Yameng Peng
RMIT University

Melbourne, Victoria, Australia
yameng.peng@student.rmit.edu.au

Andy Song
RMIT University

Melbourne, Victoria, Australia
andy.song@rmit.edu.au

Vic Ciesielski
RMIT University

Melbourne, Victoria, Australia
vic.ciesielski@rmit.edu.au

Haytham M. Fayek
RMIT University

Melbourne, Victoria, Australia
haytham.fayek@ieee.org

Xiaojun Chang
University of Technology Sydney

Sydney, New South Wales, Australia
xiaojun.chang@uts.edu.au

ABSTRACT
Neural architecture search (NAS) aims to automate architecture
engineering in neural networks. This often requires a high com-
putational overhead to evaluate a number of candidate networks
from the set of all possible networks in the search space during the
search. Prediction of the networks’ performance can alleviate this
high computational overhead by mitigating the need for evaluating
every candidate network. Developing such a predictor typically
requires a large number of evaluated architectures which may be
difficult to obtain. We address this challenge by proposing a novel
evolutionary-based NAS strategy, Predictor-assisted E-NAS (PRE-
NAS), which can performwell evenwith an extremely small number
of evaluated architectures. PRE-NAS leverages new evolutionary
search strategies and integrates high-fidelity weight inheritance
over generations. Unlike one-shot strategies, which may suffer from
bias in the evaluation due to weight sharing, offspring candidates
in PRE-NAS are topologically homogeneous, which circumvents
bias and leads to more accurate predictions. Extensive experiments
on NAS-Bench-201 and DARTS search spaces show that PRE-NAS
can outperform state-of-the-art NAS methods. With only a sin-
gle GPU searching for 0.6 days, competitive architecture can be
found by PRE-NAS which achieves 2.40% and 24% test error rates
on CIFAR-10 and ImageNet respectively.

CCS CONCEPTS
•Computingmethodologies→Artificial intelligence; Search
methodologies;Discrete space search; •Networks→Network
performance modeling.

KEYWORDS
Evolutionary algorithm, architecture search, performance predictor

1 INTRODUCTION
Despite the overwhelming success of deep learning, the high com-
putational cost associated with model development remains a chal-
lenge in the field, especially in real-world applications which of-
ten require carefully constructing complicated structures such as
ResNet [15], DenseNet [16] and manually tuning the hyperparam-
eters [8, 15, 19, 30, 35]. One approach to address this challenge is
NAS (neural architecture search). The aim is to automatically create
a competitive neural network for a given task. A fully-machine-
designed neural network [43] can achieve a test accuracy of 96.35%

on the CIFAR-10 dataset, in comparison with 96.54% from DenseNet
[16], a hand-designed neural network. However, in this task, NAS
requires 800 Tesla K40 GPUs parallel running for nearly one month.
This high computational cost compromises the saving on manual
architecture design. Hence, reducing of the computational costs is
one of the key targets in NAS.

One way to reduce the cost in NAS is to cut down evaluation, for
example, using fewer epochs or a small portion of data to train the
networks [26, 40, 44]. However, this approach may lead to inade-
quate training, and therefore inaccurate results. Another approach,
learning curve extrapolation methods [1, 18], predicts the tendency
of network optimisation based on early epochs in training. Simi-
larly, a surrogate model can be built to predict the performances
of candidate networks [21]. Predictor-based evaluation methods
require their own training, hence there is a need to sample net-
works from the search space with associated high computational
cost. Weights sharing provides a good alternative, in particular,
the one-shot model [4, 22, 25], which treats all candidate networks
as sub-networks of an over-parameterised super-network. Sub-
networks within the same search space can share weights, hence
computational costs can be reduced. However sharing weights be-
tween heterogeneous architectures is problematic, and can easily
lead to incorrect ranking of the candidate networks [2, 39].

Hence, this work addresses the balance between reducing com-
putational cost and improving network ranking by proposing a
predictor-assisted evolutionary architecture search algorithm (PRE-
NAS). It is driven by an evolutionary algorithm that is based on
a population of candidate networks rather than one network. We
introduce several new strategies to train predictors more effectively,
especially with extremely limited training samples. Firstly, elitist
evolution is introduced to maintain a good pool of candidates. Sec-
ondly, multi-mutation and a representative selection strategy are
introduced. These strategies can improve the training set for the
predictor by heuristically increasing the number of mutations and
sampling representative candidates from each generation. So the
predictor can evaluate multiple candidate networks with no signifi-
cant cost increase. In addition, a high-fidelity weight inheritance is
incorporated to reduce the computational cost further.

The contributions of this work are summarised as follows:

(1) We propose a predictor-assisted evolutionary search algo-
rithm (PRE-NAS) which outperforms several mainstream

ar
X

iv
:2

20
4.

12
72

6v
1 

 [
cs

.C
V

] 
 2

7 
A

pr
 2

02
2



GECCO’22, July 2022, Boston, MA, USA Peng, et al.

NAS algorithms on benchmark and real-world search spaces
in terms of efficiency and performance.

(2) We introduce a representative selection strategy that can
train a good performance predictor using an extremely lim-
ited number of training samples in the NAS context. More-
over, we apply a multi-mutation strategy to utilise the per-
formance predictor maximally in the evolutionary NAS.

(3) We report a 2.40% test error rate on CIFAR-10 and a 24%
top-1 test error rate on ImageNet (mobile setting), with only
0.6 GPU days to search.

2 RELATEDWORK
NAS is generally studied from three perspectives: search algorithm,
search space, and network evaluation strategy. Typical search algo-
rithms include reinforcement learning (RL), evolutionary algorithm
(EA), gradient-based and Bayesian optimisation (BO). Search space
is continuous in gradient-based methods like DARTS [22]. Thus,
the search space and evaluation strategy are tightly coupled. In con-
trast, search space in evolutionary-based [21, 23, 26, 27, 38, 42] and
reinforcement learning-based [34, 43] methods is usually discrete,
offering better flexibility and compatibility for network evaluation
strategies. RL is more costly in comparison. Hence we leverage the
advantages of EA as the search algorithm in this NAS study.

There are many successful evolutionary or predictor-assisted
NAS work [21, 23, 26, 27, 33, 37, 38, 42]. AmoebaNet [26] adopts a
regularised evolutionary algorithm called Aging Evolution. It uses
one mutation operation to generate a new architecture and discards
the oldest architecture from the population in each search cycle.
However, it is not efficient. Duplicate offspring are not checked so
it is possible to see identical architectures in two different search
cycles. The oldest individual could be the best-performing one in the
population, so adding more unnecessary cost onto the search. PNAS
[21] adopts a sequential model-based optimisation (SMBO) search
algorithm and a multi-layer perceptron (MLP) ensemble predictor.
PNAS search starts from shallow cell networks and progresses
to complex ones. During the architecture search, a predictor is
trained to predict the performance of candidate networks without
needing to train all of the candidate networks. After evaluation,
top-𝑘 candidates are selected for further training [21]. This strategy
needs to define a suitable 𝑘 which may change for different tasks.

Besides, in order to calibrate the performance predictor during
architecture search, we adopt weight inheritance training for a
few representative candidate networks. Unlike other work [27, 36]
inheriting weights between variable-size of generation, our work
adopts fixed-size weight inheritance. The topology of parent and off-
spring networks are similar, hence helpful for function preservation
during weight inheritance. In PRE-NAS, we propose a percentile
representative selection strategy that is more generalizable than the
top-𝑘 strategy. PRE-NAS incorporates the flexibility of the EA, effi-
ciency of performance prediction and weight inheritance to address
the aforementioned issues in NAS.

Figure 1: Illustration of a cell-based network. Left-hand side
demonstrates the complete stacking-constructed network.
Themicro-structure in the orange dash line represents a cell
network. An inside circle represents an intermediate node.

3 PREDICTOR-ASSISTED EVOLUTIONARY
NAS

The details of PRE-NAS are described here, including the search
space, search algorithm, multi-mutation, representative selection,
performance predictor, and weight inheritance training.

3.1 Search Space of Cell-based Networks
The search space is defined by the specific task and the chosen repre-
sentation. Two search spaces, NAS-Bench-201 [11] and DARTS [22]
are studied here. They are both cell-based search spaces, as many
well-performing networks have been manually designed based on
this representation. Fig. 1 is an illustration of the construction of a
cell-based network by stacking repeated modules together [15, 16].
The shallow network in the oval callout on the right is called a
Cell Network. Each cell network consists of several pre-defined
operations. A complete network can be constructed by stacking
these cells (Fig. 1 left). The number in a stack, e.g. the depth of
the network, depends on the difficulty of the target task. Thus, the
search algorithm only needs to focus on the microstructure of a
cell network.

The search space of NAS-Bench-201 [11] is relatively simple
as it aims to provide a fair environment for comparison between
NAS algorithms. The elements are four nodes (one input node,
two intermediate nodes and one output node) and five pre-defined
network operations (none, skip-connection, 1x1 convolution, 3x3
convolution, 3x3 average pooling) connecting these nodes. So the
search space consists of 56 = 15625 architectures. Thus, it is possi-
ble to exhaustively train all 15625 architectures for 200 epochs on
three different image datasets and record their individual perfor-
mance. Then the accuracy of a candidate network can be obtained
by querying the records instead of training from scratch.



PRE-NAS: Predictor-assisted Evolutionary Neural Architecture Search GECCO’22, July 2022, Boston, MA, USA

Figure 2: Illustration of upper triangular adjacency matrix representation for architecture encoding. The corresponding ar-
chitecture is visualised on the top right demonstrating a cell network (b). The list (c) on the bottom right shows the available
network operations and their indices, which are the cell values of the matrix (a) on the left.

DARTS space appears much more recently [5, 17, 28, 29, 38].
It has a much larger and more complex search space than NAS-
Bench-201. There are eight different operations available in the
search space of DARTS: 3 × 3 and 5 × 5 separable convolutions,
3 × 3 and 5 × 5 dilated convolutions, 3 × 3 max pooling, 3 × 3
average pooling, skip connection and none. Each cell network has
2 input nodes, 4 intermediate nodes and 1 output node, leading to∏4

𝑖=1
(𝑖+1)𝑖
2 × 72 ≈ 109 possible architectures. Thus, more complex

and powerful neural architectures can be found in this search space.
This study adopts a similar setup as DARTS, except that DARTS
searches for a Reduction Cell with a different structure from the
Normal Cell. Our Reduction Cell and Normal Cell have the same
structure, similar to the strategy in PNAS [21] and BONAS [28].

The encoding of the above two search spaces both use upper
triangular adjacency matrices, as demonstrated in Fig. 2. A cell
network is represented as an upper triangular matrix where the
number in a cell indicates the network operation connecting the
two nodes represented in the row and in the column, similar to the
encoding schemes in [11, 28]. This matrix is also the input to our
performance predictor. Note that the output (No. 9) in the operation
list is to demonstrate the encoding scheme, but it is not involved in
the actual architecture search, e.g, mutations or predictor training.

3.2 Evolutionary Search Algorithm
As the evolutionary search algorithms [12, 23, 26, 27, 31, 33, 38]
have shown competitiveness in flexibility and performance perspec-
tives over RL, BO, and gradient-based methods [18, 22, 28, 43], it is
the basis of our PRE-NAS. But unlike other works such as Amoe-
baNet [26] which uses aging evolution, PRE-NAS adopts an elitism
strategy. Note that, EA algorithms in NAS usually manipulate and
update only a few networks in a population as the cost of operating
on all networks can be prohibitive [7].

The details are shown in Algorithm 1. Steps 4-8 comprise the
initialisation phase which prepares the population by randomly
generating 𝑃 architectures (Step 5) and using conventional train-
ing to obtain validation accuracy on the target task (Step 6). A

Algorithm 1 PRE-NAS
Require: Population size P, Search cycle C, Sample size S
1: population← ∅
2: history ← ∅
3: Children← ∅
4: while 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 < 𝑃 do
5: model.arch← 𝑅𝑎𝑛𝑑𝑜𝑚𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒𝑠 ()
6: model.valid_accuracy ← 𝑇𝑟𝑎𝑖𝑛(𝑚𝑜𝑑𝑒𝑙 .𝑎𝑟𝑐ℎ)
7: Add𝑚𝑜𝑑𝑒𝑙 to the 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
8: Add𝑚𝑜𝑑𝑒𝑙 to ℎ𝑖𝑠𝑡𝑜𝑟𝑦
9: end while
10: while 𝐶 not fulfilled do
11: Predictor ← training the predictor
12: candidates ← randomly sample 𝑆 architectures from the

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

13: parent ← best-performing one in the 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠
14: while𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑠 not fulfilled do
15: child .arch←𝑀𝑢𝑡𝑎𝑡𝑒 (𝑝𝑎𝑟𝑒𝑛𝑡 .𝑎𝑟𝑐ℎ)
16: child .valid_accuracy ← 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 (𝑐ℎ𝑖𝑙𝑑.𝑎𝑟𝑐ℎ)
17: Add 𝑐ℎ𝑖𝑙𝑑 to 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛
18: end while
19: Representatives← select few representatives from𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛

20: for all 𝑐ℎ𝑖𝑙𝑑 ∈ 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠 do
21: child .valid_accuracy ← 𝐼𝑛ℎ𝑒𝑟𝑖𝑡𝑎𝑛𝑐𝑒_𝑇𝑟𝑎𝑖𝑛(𝑐ℎ𝑖𝑙𝑑.𝑎𝑟𝑐ℎ)
22: Add 𝑐ℎ𝑖𝑙𝑑 to ℎ𝑖𝑠𝑡𝑜𝑟𝑦
23: end for
24: Calculate Spearman coefficient between predicted and

trained accuracy of Representatives;
25: Enlarge 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑠 if Spearman coefficient higher

than previous
26: Add the best-performing 𝑐ℎ𝑖𝑙𝑑 to the 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
27: Remove the worst 𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒 from the 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
28: end while
29: end



GECCO’22, July 2022, Boston, MA, USA Peng, et al.

𝑚𝑜𝑑𝑒𝑙 contains architecture and its accuracy will be added into the
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 and ℎ𝑖𝑠𝑡𝑜𝑟𝑦 (Steps 7&8). The training samples for the
performance predictor are stored in the ℎ𝑖𝑠𝑡𝑜𝑟𝑦. After the initiali-
sation, the search begins. The key differences compared to other
EAs are: (1) multi-mutation is used to generate a group of child
networks (Step 14); (2) the performance predictor is used to pre-
dict the accuracy of child networks (Step 16) which allows us to
evaluate many architectures with a much lower cost; (3) a represen-
tative selection strategy is adopted to pick distinctive architectures
(Step 19); (4) weight inheritance is used in offspring training (Step
21). The Spearman coefficient is calculated between predicted and
trained accuracy (Step 24). A high Spearman coefficient indicates
the predictor can better predict the tendency of the child networks.

Figure 3: Illustration of the two mutation strategies of PRE-
NAS. Grey circles represent nodes of the cell network and
coloured lines represent different network operations. (a)
An offspring network generated by operation mutation, the
red dashed circle indicates that the network operation at
this position has been mutated. (b) An offspring network
generated by connection mutation, the red dash line circle
indicates the connection between two nodes has been mu-
tated.

3.3 Multi-mutation
Fig. 3 shows two mutation operators in PRE-NAS. Each graph is
a cell network and a grey circle is a network node. Coloured lines
represent different network operations, e.g. convolution or pooling.
An arrow represents the direction of the tensor flow. The operation
mutation (Fig. 3a) generates an offspring network from a parent
network by randomly choosing a network operation and replacing it
with another randomly picked operation. The connection mutation
(Fig. 3b) is similar but changes the destination node of an operation.
Theoretically, it is possible to explore the entire space by alternating
these two mutation operators. The AmoebaNet [26] suffers from
high computational overhead, as it only generates one offspring
by mutating the parent in each search cycle. In PRE-NAS, a multi-
mutation strategy is used to take advantage of the predictor so all
possible offspring networks of a given parent can be generated and
evaluated in each search cycle to better cover the search space. The
total number of possible offsprings from a parent network can be
calculated by 2𝑁 (𝑂 − 1) + 2𝑁 !, where N represents the number
of intermediate nodes and O represents the number of network
operations. As discussed in Section 3.1, the DARTS space consists

of 4 intermediate nodes and 8 operations, which means a parent
network can generate up to 76 different offsprings.

3.4 Representative Selection
After mutation, the performances of offspring networks will be pre-
dicted by our performance predictor. Good candidate networks can
be picked by the top-𝑘 strategy [21, 28, 37]. However, this strategy
is not adequate to cover the entire distribution of different scenar-
ios, thus, it is hard to train a predictor with good generalisation.
Besides, it needs a way to determine the optimal 𝐾 . To better main-
tain diversity and coverage, we propose a representative selection
strategy that selects representative architectures from the 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛,
not just the best ones. More specifically, the architectures are se-
lected based on the statistical percentile of predicted validation
accuracy: the architectures at the maximum percentile, 75% point,
50% point, 25% point, and the minimum percentile. After the selec-
tion, the ground-truth accuracy of these representative candidates
can be obtained by training them on the target dataset. The Spear-
man Ranking Correlation Coefficients (a monotonic relationship
between two groups) are calculated between their predicted accu-
racy and ground-truth accuracy of the representative architectures.
The higher the Spearman value, the better ranking of the predictor.
Further, the representative architectures and their accuracy values
will be added to the ℎ𝑖𝑠𝑡𝑜𝑟𝑦 to be the samples for further training
of the performance predictor. More exhibitions and discussions
on the advantages of our representative selection strategy will be
introduced in Section 4.1.

3.5 Performance Predictor
The desired characteristics of a PRE-NAS predictor are: (1) it can
learn from limited training samples, as the cost of obtaining the
target value (validation accuracy) is expensive; (2) it contains only
a few model parameters, as training a big model will slow down
the overall search process. The encoding scheme described in the
Section 3.1, architectures are encoded as upper triangular adjacency
matrices. Multi-mutations are applied to this encoding, which will
also be the input to the performance predictor. Note that architec-
tures from different search spaces would have matrices of different
sizes. For instance, architectures from the search space of NAS-
Bench-201 will be encoded as a 4 × 4 matrix, architectures from
DARTS will be encoded as an 11 × 11 matrix (Fig. 2).

The performance predictors we considered are Random Forest
Regressor, Support Vector Regressor, Bayesian Ridge Regressor,
Kernel Ridge, Linear Regressor, and Multi-Layer Perceptron, due to
their computational efficiency. These predictors are tested on the
NAS-Bench-201. To simulate the evaluation process during the ar-
chitecture search, we randomly sample 100 architectures and their
accuracy as the training data (less than 1% of the total amounts of
the search space) and randomly sample another 100 pairs from the
rest of 15525 architectures as the test data. We record the Spear-
man coefficient between predicted and ground-truth accuracy. 500
independent experiments show that Random Forrest is the best
performing and most consistent predictor when facing extremely
limited training samples. The results are shown in Table 1.



PRE-NAS: Predictor-assisted Evolutionary Neural Architecture Search GECCO’22, July 2022, Boston, MA, USA

Predictor Spearman Coefficient
Random Forest 0.65±0.08
Support Vector 0.39±0.11
Bayesian Ridge 0.04±0.11
Kernel Ridge 0.06±0.10
Linear Regressor 0.04±0.11
Multi-Layer Perceptron 0.06±0.10

Table 1: Results of 6 regressors trained with 100 samples.
Each regressor is trained with the same data in each ex-
periment. We record the Spearman coefficient between pre-
dicted and ground-truth accuracy, and report the mean and
standard deviation based on 500 independent experiments.

3.6 High-Fidelity Weight Inheritance
Similar to the well known one-shot model [22, 27], weight inher-
itance is also based on the weight sharing technique. One-shot
allows sharing the weights across the entire search space, even
for heterogeneous architectures. Weight inheritance however only
shares weights between topologically homogeneous networks, e.g.,
parent and offspring networks. Thus, evolutionary search is natu-
rally suitable for the weight inheritance training, because offspring
networks are highly similar in terms of topology as they are gen-
erated from parent networks by mutating particular operations or
connections (Fig. 4). Unlike previous work on the variable size of
networks [27, 36], we adopt a fixed size weight inheritance strategy
to best preserve the network function. Moreover, we use Kaim-
ing Norm [14] to initialise the mutated connection or operation
weights.

Figure 4: Illustration of weight inheritance, grey circles rep-
resent nodes of the cell network, and colour lines represent
different network operations. (a) and (b) demonstrate two
offspring networks generated by operation and connection
mutations. Solid lines indicate that these operations will in-
herit the weights from the parent network. Dash lines indi-
cate that the weights of these operations will reset.

To investigate the effectiveness of our weight inheritance, we
generated 350 candidate networks by implementing multi-mutation
on randomly generated parent networks from the search space of
DARTS. Both conventional (from scratch) and weight inheritance
training were employed on the CIFAR-10 dataset. Both training
runs were optimised with momentum SGD, and a batch size of 128.
The hyper-parameters for the former strategy were set as follows:

Figure 5: Results of weight inheritance and conventional
training on 350 candidate networks. The network order is
sorted by the CIFAR-10 validation accuracy. The Spearman
Correlation Coefficient between these two groups is 0.83.

learning rate was 0.025 (annealed via cosine strategy), momentum
was 0.9, weight decay was 0.0001, and number of training epochs
was 100. For weight inheritance training, as offsprings will partially
inherit trained weights from parent networks, both learning rate
and training epochs were reduced as follow: the learning rate was
set to 0.01 and the number of training epochs was set to 50.

Fig. 5 shows the CIFAR-10 validation accuracy of these 350 net-
works obtained by (1) weight inheritance and (2) conventional
training. The Spearman Coefficient between these two groups is
0.83, which indicates the high fidelity of inherited weights. This
is significantly better than the one-shot model that shows poor
correlation with the ground-truth accuracy [39]. The weight inheri-
tance strategy can obtain both training efficiency and high ranking
correlation, as it required much fewer training epochs to reach a
similar performance when compared with conventional training.

4 EXPERIMENTS AND RESULTS
We have implemented our experiments on two search spaces which
are NAS-Bench-201 [11] and DARTS [22]. We use NAS-Bench-201
space to implement a large scale of experiments, it aims to prove the
stability of search performance of PRE-NAS. We use DARTS space
to implement real-world architecture search, which can generate
high-performance neural networks.

4.1 Search on NAS-Bench-201
As the search space of NAS-Bench-201 has been exhaustively evalu-
ated and the performance of every network within the search space
is known, there is no need for training the initial population or
offspring candidates, but query the record. On this benchmark, PRE-
NASwas repeated 500 times in order to reduce the variance between



GECCO’22, July 2022, Boston, MA, USA Peng, et al.

Algorithm CIFAR-10 CIFAR-100 ImageNet-16-120
Validation Test Validation Test Validation Test

RSPS [20] 84.16±1.69 87.16±1.69 59.00±4.60 58.33±4.34 31.56±3.28 31.14±3.88
DARTS-V1 [22] 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
DARTS-V2 [22] 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
GDAS [10] 90.00±0.21 93.51±0.13 71.14±0.27 70.61±0.26 41.70±1.26 41.84±0.90
SETN [9] 82.25±5.17 86.19±4.63 56.86±7.59 56.87±7.77 32.54±3.63 31.90±4.07
ENAS [25] 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
AmoebaNet [26] 91.19±0.31 93.92±0.30 71.81±1.12 71.84±0.99 45.15±0.89 45.54±1.03
Random Search [3] 90.93±0.36 93.70±0.36 70.93±1.09 71.04±1.07 44.45±1.10 44.57±1.25
REINFORCE [43] 91.09±0.37 93.85±0.37 71.61±1.12 71.71±1.09 45.05±1.02 45.24±1.18
BOHB [13] 90.82±0.53 93.61±0.52 70.74±1.29 70.85±1.25 44.26±1.36 44.42±1.49
PRE-NAS (ours) 91.37±0.28 94.04±0.34 71.95±1.21 72.02±1.22 45.16±1.00 45.34±1.03
*Optimal 91.61 94.37 73.49 73.51 46.77 47.31

Table 2: Search results of our proposed PRE-NAS and other search algorithms on the NAS-Bench-201 search space. Each al-
gorithm is searching under a similar computational budget and repeated 500 times. We recorded the CIFAR-10 validation
accuracy of the best-performing architecture which found in each experiment and reported the mean and standard deviation
over 500 independent experiments. *Optimal indicates the accuracy of best-performing architecture recorded in the bench-
mark.

runs. The computational budget was set according to the experi-
ments in [11]. We set the search 𝐶𝑦𝑐𝑙𝑒 𝐶 to 20, 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒 𝑃
to 20, 𝑆𝑎𝑚𝑝𝑙𝑒_𝑠𝑖𝑧𝑒 𝑆 to 10, and initial𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑠 equal to the
𝑆𝑎𝑚𝑝𝑙𝑒_𝑠𝑖𝑧𝑒 𝑆 . This means that the algorithm runs mutation oper-
ations 10 times to generate 10 offspring networks. Once the child
networks are evaluated by the performance predictor, then the per-
centile selection will apply. There is one additional hyper-parameter
called𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑓 𝑎𝑐𝑡𝑜𝑟 , which is used to increase𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑠 .
For instance, if the predictor performed well in the current search
cycle,𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑠 will be increased by𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑓 𝑎𝑐𝑡𝑜𝑟 . Thus,
the predictor could gradually evaluate more architectures if it per-
forms well. This parameter was set to 1.2. This setup ensures a
similar computational budget which is the total number of archi-
tectures that have been queried by using the benchmark. Note that
the total number of training samples for the performance predictor
is around 100 under this setup (approx. 10−4 of the search space),
which is similar to our simulation experiment shown in Section 3.5.

4.1.1 NAS-Bench-201 Results. Table 2 shows the results from PRE-
NAS and respective SOTA algorithms over 500 independent exper-
iments. The columns under CIFAR-10, CIFAR-100 and ImageNet-
16-120 indicate the average validation and test accuracy with the
standard deviation of the best architecture by each algorithm. The
last row shows the best accuracy that the architecture in this search
space could possibly reach. The large scale of independent architec-
ture search experiments clearly show that the overall performance
of PRE-NAS dominates all other algorithms, given a similar com-
putational budget.

We also recorded the Spearman coefficient between predicted
and ground-truth CIFAR-10 validation accuracy at each search cy-
cle. Fig. 6 shows the average value of the Spearman coefficient over
500 independent experiments. Even with extremely limited training
samples, the performance predictor was still continuously improv-
ing, taking advantage of multi-mutation and representatives selec-
tion. Moreover, we have investigated two extra candidate selection

Figure 6: Result of Spearman coefficient between predicted
and ground-truth accuracy. The line indicates the average
value of the Spearman coefficient at each search cycle based
on 500 independent experiments.

strategies, top-𝑘 (e.g. top-5) and random. The experimental setups
are the same as for our percentile strategy. Fig. 7 demonstrate that
our percentile-based representative selection strategy is superior
on both predictor training and architecture search. Based on these
results, we think that percentile or even random-based representa-
tive selection strategies are more likely to cover the distribution of
the search space than the top-𝑘 strategy. Thus, it constructed richer
training samples for the performance predictor.

4.2 Search on DARTS
DARTS search space contains approximately 109 possible archi-
tectures, much larger than NAS-Bench-201. We follow a similar
procedure to the experiments on NAS-Bench-201 that use the



PRE-NAS: Predictor-assisted Evolutionary Neural Architecture Search GECCO’22, July 2022, Boston, MA, USA

(a)

(b)

Figure 7: (a) Spearman coefficient between predicted and
ground-truth accuracy under three candidates selection
strategies. (b) Ground-truth accuracy under three candidates
selection strategies. Each line indicates the average value at
each search cycle based on 500 independent experiments.

CIFAR-10 as the proxy task dataset, except that it requires train-
ing the networks (shown in Algorithm 1). Specifically, we ran-
domly generate architectures to form the initial population and
use conventional training to obtain their accuracy. Then the off-
spring networks can inherit weights from them. Therefore we
can use weight inheritance training to train the following off-
spring networks with a much less computational cost. We set the
search 𝐶𝑦𝑐𝑙𝑒 𝐶 to 100, 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒 𝑃 to 64, 𝑆𝑎𝑚𝑝𝑙𝑒_𝑠𝑖𝑧𝑒 𝑆
to 32, initial 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑠 equals the 𝑆𝑎𝑚𝑝𝑙𝑒_𝑠𝑖𝑧𝑒 𝑆 , and the
𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑓 𝑎𝑐𝑡𝑜𝑟 to 1.2. For the initial population, we use conven-
tional training and set the epoch number to 100, momentum to 0.9,
learning rate to 0.025 (anneal cosine strategy) and weight decay to
0.0001. We use weight inheritance training for the offspring candi-
date networks and set the learning rate to 0.01, epoch number to
50 which is the same as the setup in Section 3.6. Both conventional
and weight inheritance training are optimised by momentum SGD
and batch size to 128. We set the network layer to 1 (single cell) and
the initial channel to 16 during the architecture search, as training

the shallow networks would significantly reduce the computational
cost. Under this setup, there are 64 networks (initial population)
trained by the conventional way and approximately 500 networks
(offspring networks) trained by weight inheritance. Thus, the theo-
retical number of training samples for the performance predictor is
564 (approx. 10−8 of the search space). PRE-NAS would evaluate
around 7000 architectures by implementing the multi-mutation.
Each network would take approximately 10 minutes on a single
Tesla V100 GPU if training from scratch. This leads to approxi-
mate 48 days to complete the search. By utilising the performance
predictor and weight inheritance training, PRE-NAS reduces the
computational cost to 0.6 GPU days.

4.2.1 Result on CIFAR-10. After PRE-NAS found the promising
architecture, we use it to construct a full-size network as discussed
in Section 3.1. For the training of our full-size network, we apply a
similar setup with DARTS [22], i.e., stacked the cell network with
20 layers. Table 3 shows the results of the comparison between our
full-size network and the networks from other methods. As the
CIFAR-10 results have high variance between different runs, we
trained our full-size model 10 times and reported the mean and
standard deviation. From the results, the architecture found by PRE-
NAS is significantly better than most state-of-the-art which also
searched on DARTS space. PRE-NAS only took 0.6 GPU days for
the search. From the perspective of search cost, our method is still
not inferior to the mainstream one-shot NAS. In evolution-based
search algorithms, PRE-NAS also shows a huge advantage in both
search efficiency and performance.

4.2.2 Result on ImageNet. As the ImageNet dataset contains ap-
proximate 13k large size images with 1000 classes, directly search-
ing on ImageNet will cause gigantic computational overhead. The
performance transferability of cell networks have been proved in
most of the previous work [6, 22, 39, 44]. Our full-size network for
ImageNet is also constructed from the architecture found on CIFAR-
10, we apply a similar setup with DARTS [22] to build a slightly
larger model. Table 4 shows the results of comparison between our
model and the networks from other work, which is consistent with
the results shown in Table 3.

5 CONCLUSION
In this paper, we proposed a predictor-assisted evolutionary search
algorithm called PRE-NAS. We demonstrated that the predictor-
based evolutionary NAS is highly competitive with mainstream
methods. By adopting the multi-mutation and representative se-
lection strategies, we can train a good performance predictor with
extremely limited data (e.g. approx. 10−8 to 10−4 of the total size of
the search space). The predicted accuracy shows a strong correla-
tion with the ground-truth accuracy. By utilising the high-fidelity
weight inheritance strategy, we can further reduce the cost of can-
didate network training. On DARTS search space, the search cost
is reduced from 48 GPU days to 0.6 GPU days. Extensive experi-
ments show that the network found by PRE-NAS can outperform
several state-of-the-art search algorithms on the search spaces of
NAS-Bench-201 and DARTS.

In this work, we only used network accuracy as the search ob-
jective. Introducing multi-objectives could be a promising direction



GECCO’22, July 2022, Boston, MA, USA Peng, et al.

Algorithm Test Error
(%)

Params
(M) GPU Search Cost

(GPU Days) Search Method Evaluation Year

ENAS [25] 2.89★ 4.6 - 0.45 Reinforce One-shot ICML2018
PNAS [21] 3.34±0.09 3.2 - 225 SMBO Predictor ECCV2018
RandomNAS [20]† 2.85±0.08 4.3 P100&V100 2.7 Random One-shot UAI2020
DARTS [22]† 3.00±0.14 3.3 4 1080Ti 4 Gradient One-shot ICLR2019
P-DARTS [5]† 2.50★ 3.4 - 0.3 Gradient One-shot ICCV2019
FairDARTS [6]† 2.54★ 2.8 1 V100 0.42 Gradient One-shot ECCV2020
CGP-ResSet [32] 5.01★ 1.7 2 1080Ti 4 Evolution Conventional IJCAI2018
AmoebaNet-A [26] 3.34±0.06 3.2 450 K40 3150 Evolution Conventional AAAI2019
Lemonade [12] 3.05★ 4.7 16 Titan X 56 Evolution Conventional ICLR2019
EENA [42] 2.56★ 8.47 1 Titan X 0.65 Evolution Weight Inheritance ICCV2019
NSGA-Net [24] 2.75★ 3.3 1 1080Ti 4 Evolution Predictor GECCO2019
NSGANetV1-A4 [24] 2.02★ 4.0 8 2080Ti 27 Evolution Predictor TEC2020
EcoNAS [41]† 2.62±0.02 2.9 1 1080Ti 8 Evolution Conventional CVPR2020
CARS [38]† 2.62★ 3.6 - 0.4 Evolution One-shot CVPR2020
EvNAS [31]† 2.47±0.06 3.6 1 2080 Ti 3.83 Evolution One-shot GECCO2021
PRE-NAS (ours)† 2.49±0.09 4.5 1 V100 0.6 Evolution Predictor+w/i

Table 3: Performance comparison between the networks found by PRE-NAS and other search algorithms on CIFAR-10, the
lower test error rate is better. † means the method has also been used on DARTS search space. ★ indicates the original paper
only provided their best performance. Dash means the original paper has not provided the information. ‘w/i’ is short for the
weight inheritance training.

Algorithm Test Error(%)
Top-1 / Top-5

Params
(M) GPU Search Cost

(GPU Days) Search Method Evaluation Year

PNAS [21] 25.8 / 8.1 5.1 - 225 SMBO Predictor ECCV2018
DARTS [22]† 26.7 / 8.7 4.7 4 1080Ti 4 Gradient One-shot ICLR2019
P-DARTS [5]† 24.4 / 7.4 4.9 - 0.3 Gradient One-shot ICCV2019
FairDARTS [6]† 26.3 / 8.3 5.3 1 V100 0.42 Gradient One-shot ECCV2020
AmoebaNet-A [26] 25.5 / 8 5.1 450 K40 3150 Evolution Conventional AAAI2019
EcoNAS [41]† 25.2 / - 4.3 1 1080Ti 8 Evolution Conventional CVPR2020
CARS [38]† 24.8 / 7.5 5.1 - 0.4 Evolution One-shot CVPR2020
NSGANetV1-A3 [24] 23.8 / 7 5.0 8 2080Ti 27 Evolution Predictor TEC2020
EvNAS [31]† 24.4 / 7.4 5.1 1 2080 Ti 3.83 Evolution One-shot GECCO2021
PRE-NAS (ours)† 24 / 7.8 6.2 1 V100 0.6 Evolution Predictor+w/i

Table 4: Performance comparison between the networks found by PRE-NAS and other search algorithms on the ImageNet
(mobile setting), the lower test error rate is better. † means the method has also been used on DARTS search space. Dash
means the original paper has not provided the information. ‘w/i’ is short for the weight inheritance training.

for future work as multiple requirements, e.g. accuracy and model
size, then can be considered simultaneously during architecture
search. Furthermore, it can be observed that the performance of
evolutionary algorithms depends on the quality of the initial popu-
lation. A high-quality initial population is more likely to generate
good offspring networks. In near future, we will investigate ways
to better initialize the initial populations.

REFERENCES
[1] Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. 2017. Practical

Neural Network Performance Prediction for Early Stopping. CoRR abs/1705.10823
(2017).

[2] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc
Le. 2018. Understanding and Simplifying One-Shot Architecture Search. In
Proceedings of the 35th International Conference on Machine Learning (Proceedings
of Machine Learning Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.).

PMLR, 550–559.
[3] James Bergstra and Yoshua Bengio. 2012. Random Search for Hyper-Parameter

Optimization. J. Mach. Learn. Res. 13 (2012), 281–305.
[4] Han Cai, Ligeng Zhu, and Song Han. 2018. ProxylessNAS: Direct Neural Ar-

chitecture Search on Target Task and Hardware. CoRR abs/1812.00332 (2018).
arXiv:1812.00332

[5] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. 2019. Progressive Differentiable
Architecture Search: Bridging the Depth Gap Between Search and Evaluation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).

[6] Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang Li. 2020. Fair DARTS:
Eliminating Unfair Advantages in Differentiable Architecture Search. InComputer
Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020,
Proceedings, Part XV, Vol. 12360. Springer, 465–480.

[7] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. 2002. A fast
and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput.
6, 2 (2002), 182–197.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and

https://arxiv.org/abs/1812.00332


PRE-NAS: Predictor-assisted Evolutionary Neural Architecture Search GECCO’22, July 2022, Boston, MA, USA

Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,
4171–4186.

[9] Xuanyi Dong and Yi Yang. 2019. One-Shot Neural Architecture Search via
Self-Evaluated Template Network. In 2019 IEEE/CVF International Conference on
Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019.
IEEE, 3680–3689.

[10] Xuanyi Dong and Yi Yang. 2019. Searching for a Robust Neural Architecture in
Four GPU Hours. In IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2019, Long Beach, CA, USA, June 16-20, 2019. Computer Vision Foundation
/ IEEE, 1761–1770.

[11] Xuanyi Dong and Yi Yang. 2020. NAS-Bench-201: Extending the Scope of Repro-
ducible Neural Architecture Search. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.

[12] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Efficient Multi-
Objective Neural Architecture Search via Lamarckian Evolution. In 7th Interna-
tional Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019.

[13] Stefan Falkner, Aaron Klein, and Frank Hutter. 2018. BOHB: Robust and Efficient
Hyperparameter Optimization at Scale. In Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Swe-
den, July 10-15, 2018 (Proceedings of Machine Learning Research, Vol. 80), Jennifer G.
Dy and Andreas Krause (Eds.). PMLR, 1436–1445.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving Deep
into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
CoRR abs/1502.01852 (2015). arXiv:1502.01852

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[16] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger.
2017. Densely Connected Convolutional Networks. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July
21-26, 2017. IEEE Computer Society, 2261–2269.

[17] Andrew Hundt, Varun Jain, and Gregory D. Hager. 2019. sharpDARTS: Faster
and More Accurate Differentiable Architecture Search. CoRR abs/1903.09900
(2019).

[18] Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. 2017.
Learning curve prediction with Bayesian neural networks. International Confer-
ence on Learning Representations (2017).

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Clas-
sification with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems 25. 1097–1105.

[20] Liam Li and Ameet Talwalkar. 2020. Random Search and Reproducibility for
Neural Architecture Search. In Proceedings of The 35th Uncertainty in Artificial
Intelligence Conference (Proceedings of Machine Learning Research, Vol. 115). 367–
377.

[21] Chenxi Liu, Barret Zoph, MaximNeumann, Jonathon Shlens,Wei Hua, Li-Jia Li, Li
Fei-Fei, Alan Yuille, JonathanHuang, and KevinMurphy. 2018. Progressive Neural
Architecture Search. In Proceedings of the European Conference on Computer Vision
(ECCV).

[22] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2019. DARTS: Differentiable
Architecture Search. In International Conference on Learning Representations
(ICLR).

[23] Zhichao Lu, Kalyanmoy Deb, Erik D. Goodman, Wolfgang Banzhaf, and
Vishnu Naresh Boddeti. 2020. NSGANetV2: Evolutionary Multi-objective
Surrogate-Assisted Neural Architecture Search. In Proceedings of the European
Conference on Computer Vision (ECCV), Vol. 12346. Springer, 35–51.

[24] Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh D. Dhebar, Kalyanmoy Deb,
Erik D. Goodman, and Wolfgang Banzhaf. 2019. NSGA-Net: neural architecture
search using multi-objective genetic algorithm. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO 2019, Prague, Czech Republic, July
13-17, 2019, Anne Auger and Thomas Stützle (Eds.). ACM, 419–427.

[25] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. 2018. Efficient
Neural Architecture Search via Parameters Sharing. In Proceedings of the 35th
International Conference on Machine Learning (ICML). 4095–4104.

[26] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. 2019. Regular-
ized Evolution for Image Classifier Architecture Search. In AAAI Conference on
Artificial Intelligence, Vol. 33. 4780–4789.

[27] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Sue-
matsu, Jie Tan, Quoc V. Le, and Alexey Kurakin. 2017. Large-Scale Evolution
of Image Classifiers. In Proceedings of the 34th International Conference on Ma-
chine Learning (Proceedings of Machine Learning Research, Vol. 70). International
Convention Centre, Sydney, Australia, 2902–2911.

[28] Han Shi, Renjie Pi, Hang Xu, Zhenguo Li, James T. Kwok, and Tong Zhang.
2020. Bridging the Gap between Sample-based and One-shot Neural Architec-
ture Search with BONAS. In Advances in Neural Information Processing Systems,
Vol. 33.

[29] Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik, Margret Keuper, and
Frank Hutter. 2020. NAS-Bench-301 and the Case for Surrogate Benchmarks for

Neural Architecture Search. CoRR abs/2008.09777 (2020).
[30] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-

works for Large-Scale Image Recognition. In International Conference on Learning
Representations (ICLR).

[31] Nilotpal Sinha and Kuan-Wen Chen. 2021. Evolving neural architecture using
one shot model. In GECCO ’21: Genetic and Evolutionary Computation Conference,
Lille, France, July 10-14, 2021, Francisco Chicano and Krzysztof Krawiec (Eds.).
ACM, 910–918.

[32] Masanori Suganuma, Shinichi Shirakawa, and Tomoharu Nagao. 2018. A Genetic
Programming Approach to Designing Convolutional Neural Network Archi-
tectures. In Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI-18. International Joint Conferences on Artificial In-
telligence Organization, 5369–5373.

[33] Yanan Sun, Handing Wang, Bing Xue, Yaochu Jin, Gary G. Yen, and Mengjie
Zhang. 2020. Surrogate-Assisted Evolutionary Deep Learning Using an End-to-
End Random Forest-Based Performance Predictor. IEEE Trans. Evol. Comput. 24,
2 (2020), 350–364.

[34] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew
Howard, and Quoc V. Le. 2019. MnasNet: Platform-Aware Neural Architecture
Search for Mobile. In IEEE Conference on Computer Vision and Pattern Recognition,
(CVPR). 2820–2828.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you
Need. In Advances in Neural Information Processing Systems, Vol. 30. 5998–6008.

[36] Tao Wei, Changhu Wang, Yong Rui, and Chang Wen Chen. 2016. Network Mor-
phism. In Proceedings of the 33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016 (JMLR Workshop and Confer-
ence Proceedings, Vol. 48), Maria-Florina Balcan and Kilian Q. Weinberger (Eds.).
564–572.

[37] Wei Wen, Hanxiao Liu, Yiran Chen, Hai Helen Li, Gabriel Bender, and Pieter-Jan
Kindermans. 2020. Neural Predictor for Neural Architecture Search. In Computer
Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020,
Proceedings, Part XXIX, Vol. 12374. Springer, 660–676.

[38] Zhaohui Yang, Yunhe Wang, Xinghao Chen, Boxin Shi, Chao Xu, Chunjing Xu,
Qi Tian, and Chang Xu. 2020. CARS: Continuous Evolution for Efficient Neural
Architecture Search. In 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020. IEEE, 1826–1835.

[39] Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat, and Mathieu Salz-
mann. 2020. Evaluating The Search Phase of Neural Architecture Search. In 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020.

[40] Arber Zela, Aaron Klein, Stefan Falkner, and Frank Hutter. 2018. Towards Auto-
mated Deep Learning: Efficient Joint Neural Architecture and Hyperparameter
Search. In ICML 2018 AutoML Workshop.

[41] Dongzhan Zhou, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi,
Xuesen Zhang, andWanli Ouyang. 2020. EcoNAS: Finding Proxies for Economical
Neural Architecture Search. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020. IEEE,
11393–11401.

[42] Hui Zhu, Zhulin An, Chuanguang Yang, Kaiqiang Xu, Erhu Zhao, and Yongjun
Xu. 2019. EENA: Efficient Evolution of Neural Architecture. In 2019 IEEE/CVF
International Conference on Computer Vision Workshops, ICCV Workshops 2019,
Seoul, Korea (South), October 27-28, 2019. IEEE, 1891–1899.

[43] Barret Zoph andQuoc V. Le. 2017. Neural Architecture Searchwith Reinforcement
Learning. In International Conference on Learning Representations (ICLR).

[44] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. 2018. Learning
Transferable Architectures for Scalable Image Recognition. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

https://arxiv.org/abs/1502.01852

	Abstract
	1 Introduction
	2 Related Work
	3 Predictor-assisted Evolutionary NAS
	3.1 Search Space of Cell-based Networks
	3.2 Evolutionary Search Algorithm
	3.3 Multi-mutation
	3.4 Representative Selection
	3.5 Performance Predictor
	3.6 High-Fidelity Weight Inheritance

	4 Experiments and Results
	4.1 Search on NAS-Bench-201
	4.2 Search on DARTS

	5 Conclusion
	References

