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Abstract—In many real-world applications, data are represented by matrices or high-order tensors. Despite the promising
performance, the existing two-dimensional discriminant analysis algorithms employ a single projection model to exploit the

classification accuracy.

discriminant information for projection, making the model less flexible. In this paper, we propose a novel Compound Rank-k
Projection (CRP) algorithm for bilinear analysis. CRP deals with matrices directly without transforming them into vectors, and it,
therefore, preserves the correlations within the matrix and decreases the computation complexity. Different from the existing two-
dimensional discriminant analysis algorithms, objective function values of CRP increase monotonically. In addition, CRP utilizes
multiple rank-k projection models to enable a larger search space in which the optimal solution can be found. In this way, the
discriminant ability is enhanced. We have tested our approach on five datasets, including UUIm, CVL, Pointing’04, USPS and
Coil20. Experimental results show that the performance of our proposed CRP performs better than other algorithms in terms of

Index Terms—Discriminant Analysis, Feature Extraction, Rank-k Projection, High-order Representation
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1 INTRODUCTION

C;) LINEAR discriminant analysis (LDA), also known
— as Fisher’s Linear Discriminant (FLD), is a clas-
(Y) sical method for data representation and feature ex-
N traction. FLD is commonly utilized in the fields of
. computer vision and pattern recognition [1], [2], [3],
<1 [4]. For example, Peter N. Belhumeur et al. [5] use
1 LDA to represent facial expression images efficiently.
\Srl The classical LDA aims to find a set of vectors so as
- - to maximize the trace of between-class scatter matrix
.~ while minimizing the trace of within-class scatter
matrix in the transformed feature space. Recent works
have indicated that it is more natural and beneficial to
represent an image with a matrix since exploiting the
neighborhood information of a certain pixel is essen-
tial to the performance. The classical LDA, however,
requires that an image is represented by a vector. This
vectorization method has some inherent drawbacks.
Firstly, it will erase the correlations within the matrix.
Secondly, the data dimensionality increases when we
transform the matrix representation into the vector
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representation [6], [7]. Hence, the computational bur-
den is increased dramatically.

To address these problems, two-dimensional lin-
ear discriminant analysis and its variants have been
studied over the last decade. Instead of vectorizing
the matrices before dimension reduction, the two-
dimensional linear discriminant analysis works with
data in a matrix representation, which can preserve
the spatial correlation of the original data and reduce
the computation complexity. Liu et al. [8] propose
to use an optimal discriminant criterion to extract
algebraic features, calculating a set of optimal discrim-
inant projection vectors according to a generalized
Fisher criterion function. The classical 2DLDA, pro-
posed by Ye et al. [9], aims to learn a single set of pro-
jection matrices and introduces an iterative algorithm.
In their experimental results, performance is stable
when the number of iteration increases. Thus, only
one iteration step is required in their experiments.

Inoue et al. [10], however, have pointed out the
iterative algorithm proposed in [9] does not neces-
sarily guarantee the monotonicity of the objective
function value, which is mainly caused by the sin-
gularity of the between-class scatter matrix. In [10],
they present a simple method, namely Selective Al-
gorithm for 2DLDA, to select transformation matrices
with a higher discriminant ability. In addition to
the proposed algorithm, they also propose a non-
iteratively parallel algorithm, which transforms rows
and columns of the matrices independently. Although
this method seems promising from the theoretical
perspective, their experimental results show that its
recognition rate is a little worse than the classical
2DLDA.
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Another limitation of all the existing discriminant
analysis algorithms [1], [2], [3], [5], [11], [12], [9], [13],
[14] is that their performance suffer from the balance
between the degree of freedom and the avoidance of
the over-fitting problem. Specifically, LDA produces
multiple full rank bilinear projections, which has the
largest degree of freedom but induces the well-known
over-fitting problem. To overcome this problem, the
authors [15] has proposed multiple rank-1 projection
method based on the principal component. Its exper-
imental results demonstrate that this method is at its
best when the number of training samples is very
small. The classical 2DLDA produces multiple rank-
1 projections and has better performance in dealing
with the over-fitting problem, but has a much smaller
degree of freedom. Motivated by these observations,
we intend to increase the degree of freedom while
avoiding the over-fitting problem.

In this paper, we aim to solve the above lim-
itations of the existing discriminant analysis algo-
rithms for high-order data and propose a compound
rank-k projection algorithm for discriminant bilinear
analysis. Different from [9], the convergence of our
optimization approach is explicitly guaranteed. We
adopt multiple orthogonal projection models to obtain
more discriminant projection directions. In particular,
we use h sets of projection matrices to find a low-
dimensional representation of the original data. The
h projection matrices are orthogonal to each other. By
doing so, we can project the original data into dif-
ferent orthogonal basis and information from various
perspectives can be obtained. The key novelty of our
method is that it adopts multiple projection models,
which are integrated and work collaboratively. In this
way, a larger search space is provided to find the
optimal solution, which will yield better classification
performance.

We name the proposed algorithm as Compound
Rank-k Projection for Bilinear Analysis (CRP). It is
worthwhile noting that the algorithm can be readily
extended to high-order tensor discriminant analysis.
The main contributions of our work can be summa-
rized as follows:

1) CRP can deal with matrix representations di-
rectly without converting them into vectors.
Hence, spatial correlations within the original
data can be preserved. Compared with the con-
ventional algorithms, the computation complex-
ity is reduced.

2) Compared to the classical 2-dimensional linear
discriminant analysis methods [9], [13], [16],
CRP benefits from the trade-off between the
degree of freedom and the avoidance of the
over-fitting problem.

3) Although the classical 2DLDA gains good per-
formance, its iterative optimization algorithm
may not converge due to the singularity of
the between-class scatter matrix. Differently, the

convergence of our algorithm is explicitly guar-
anteed.

The rest of this paper is organized as follows:
Section 2 summarizes an overview of the classical
LDA as well as 2DLDA. A novel compound rank-k
projection for bilinear analysis is proposed in section
3. We present our experimental results on five differ-
ent datasets in section 4. The conclusion of our work
is discussed in section 5.

2 RELATED WORK
2.1 Classical LDA

The conventional LDA aims to project the original
high-dimensional data to a lower dimensional sub-
space for better classification performance [17], [18],
[19], [20]. The original dataset is denoted as X € R!*",
which is grouped into ¢ classes m = {m, T2, ..., T }. 7
contains n; data points from the i-th class. The trans-
formation of the classical LDA to a lower dimensional
subspace is y; = WTg,;, where W € R¥*¢ and z; is a
vector representation of the original data. By finding
the best transformation matrix W, data points from
different classes become more separated while data
points from the same class become more compact after
the transformation [21], [22], [23], [24], [25]. In this
way, better classification performance is achieved.

More specifically, two scatter matrices in LDA,
namely between-class matrix S, and within-class ma-
trix S,,, are defined as follows:

Sy =Y _ni(M; — M)(M; — M)"
i=1

and

S0 =30 30 (X = M~ M)

1=1 Xj €y

where n; is the number of data samples in the i-th
class and X is the j-th sample in the i-th class. M; =
n% >_x,en; X; is the mean of the i-th class, and M =
& i1 2ox,en; Xj 18 the global mean.

In a lower dimensional subspace, the between-class
scatter matrix and the within-class scatter matrix are
transformed to S, = WTS,W and S, = WTS,W,
respectively, according to [26]. The objective function
is defined as follows:

max Tr(WES, W)t (WTs,W)), ¢))

where T'r(-) denotes the matrix trace operation. The
objective function aims to find the best W to maxi-
mize the trace of the transformed between-class scat-
ter matrix S, and minimize the trace of the trans-
formed within-class scatter matrices S,,. This objective
function can be solved by eigen-decomposition of
(Sw)~ 1Sy in [27], [28], [29]. However, as we men-
tioned in section 1, the classical LDA has some in-
herent drawbacks. To tackle these problems, two-
dimensional LDA has been proposed.
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2.2 Classical 2DLDA

Different from the classical LDA, 2DLDA uses the
matrix representation instead of the vector rep-
resentation. We denote a set of data as X =
{X1,Xo,..., X}, X; € R'*l2 which are grouped into
c different classes 7, ..., m.. The goal of 2DLDA is to
seek a single set of transformation matrices, U and V,
projecting the original data into a lower dimensional
subspace [30]. In this subspace, the two newly trans-
formed matrices can be computed as follows:

Sw=3_ 3 UT(X; - M)VVT(X; - M)"U

=1 XjETH,

Zm

The objective function is defined as follows:

(M; — MYVVT(M; — M)TU

maxf I{]laxTr((S ) (2)

UV

As mentioned before, the key idea of the classical
2DLDA is to find the optimal U and V' which max-
imize the objective function value f in (). Since it
is difficult to compute the optimal U and V' simulta-
neously, Ye et al. [9] propose an iterative algorithm.
However, Inoue et al. [10] have pointed out that this
iterative algorithm cannot guarantee the monotonicity
of the objective function value f and it is hard to de-
termine appropriate termination criteria. To promise
the monotonicity, the authors adopt trace ratio and
trace difference in [31].

3 COMPOUND RANK-k PROJECTION

In this section, we describe in detail our proposed
algorithm. We define a set of data points as X =
{X1,Xo,..., X}, X; € Rixl2 which is grouped into
¢ different classes {1, ...,m.}. In contrast to the clas-
sical 2DLDA, our proposed approach aims to seek h
optimal sets of U = {Uy,Us,...,Uy},U; € Ri** and
V = {V1,Va,..,Vi,}, Vi € R2XF to project the original
data points into h-dimensional subspaces:

X; = {Tr(UTXiVh), Tr(UT XiVa), ..., Tr(UL X; Vi) }

The primary goal of our approach is that it employs
multiple models to provide a larger space to find the
optimal solution. In this way, the degree of freedom
is increased. To put it from another way, we enhance
the discriminant ability.

It is worth noticing that there is a trade-off between
the degree of freedom and the avoidance of the over-
fitting problem. To be more specific, when we allow
the rank of bilinear projection UV” to be full-rank,
the proposed algorithm can be reduced to the clas-
sical LDA, which has the largest degree of freedom
but induces the well-known over-fitting problem. The
classical 2DLDA has better performance in dealing

with the over-fitting problem but has a much smaller
degree of freedom. Compared with these algorithms,
our proposed algorithm can benefit from this trade-
off.

Suppose we have extracted the first p — 1 dimen-
sional features, now we begin to extract the p-th
dimension and make it orthogonal to the first p — 1
dimensions. First we perform an orthogonal transfor-
mation on the data:
vee(X) + vee(X ) —vec(Up_1V,"

) (wee(Up—1V,= 1)) T vee(X)

The key point of this orthogonal transformation is
that we can project the original data into different
orthogonal basis so as to get various information from

differing perspectives.
According to Lemma [Il in Appendix, we obtain:

vee(X) < vee(X) — Tr(Up_1 X Vy—1)vec(Up—1V,—1)  (3)
Then we compute the optimal solution of the follow-
ing objective function for the transformed data.

> Ir(Uf (K- K))?

)

r(UF (X5 — Xi)Vp)?

mazc
= & e

s.t. vec(UprT)Tvec(UprT) =1

In order to avoid over-fitting and singularity of the
within-class scatter matrix, a regularization term is
added to the objective function. We can rewrite the
objective function as follows.

Tr(Uy (Xi = X)Vp)?

Mo

1

h
7
max E

Z Z r(UF (X5 = Xi)Vp)2 + ATr(Up VIV, UR)

)

s.t. vec(UpV,)) Tvec(U, V) = 1

According to Lemma [ in the appendix, the equa-
tion can be transformed to

> TrHUT (X - XV,)?
1=1

3

Tr(UT (X, — Xi)Vp)? + ATr(UpVIV,UT)
(5)

>

i=1 X €m;

st. Tr(UUV,'V,) =

The optimal U, and V,, would maximize the ob-
jective function. Since it is difficult to compute the
optimal U, and V, simultaneously, we present an iter-
ative algorithm. To be more specific, for a fixed V,,, we
can obtain the optimal U, by solving the optimization
problem that is quite similar to Eq. ). Afterwards, V,,
is similarly updated by using the obtained U,. Note
that our algorithm can promise a monotonic increase
of the objective function.

)
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4 OPTIMIZATION

In this section, we propose an iterative approach to
optimizing the objective function in (5). Specifically,
for a fixed V,, the objective function equals to:

Z;l Tr(UL (Xi — X)V,)?
max =

“

Zé‘ Tr(UF(X; — Xi)Vp)2 + ATr(Up VEVLUL)

1X,em;

i j i

st. Tr(ULUpV, Vy) =1

Since there is no straightforward solution to this
function, we aim to rewrite the objective function to a
generalized eigen-decomposition problem. According
to Lemma [ and Lemma [@ in the appendix, we can
rewrite the objective function as follows:

Sy (e (X =Ty’

max

Py

S U@ (X = XD)u)? + ATr U VIV,UL)

T v _
st ou, Dyup =1

TM’U

& max w, (6)

upy Njup

s.t. ungup =1

where

up = vec(Uy) @)
vp = vee(Vy) ®)
Dy =(V,/V,)®1 )

MY = ZC:(I ® (X — X))oy I @ (X, = X)")  (10)

i=1

X)) vpvp (I (X; —X)") +AD}

ZZI@

i=1 X;€em;
(11)

It is noticed that the rewritten objective function in
(6) has become similar to the optimization problem
in (). Therefore, we can compute the optimal U, by
solving the optimization problem in (6) as follows:

—7 (12)
q"'D3q

'pr:

where ¢ is the largest eigenvector of (N)~' M}
Next, we compute the optimal V,, for'a fixed | Up.

> TrUL (X - X)V,)?
i=1

max

it

Ze Tr(UT (X; — Xi)Vp)? + ATr(Up VI V,UT)

st. Tr(UL UpV,l Vy) =1

With similar procedures, we rewrite the objective

functlon to an eigen-decomposition problem. Accord-

g to Lemma E] and Lemma [@ in Appendix, the
ob]ectlve function can be transformed into:

S g (K =X)T)u,)?
b (OF 18 (% = X)Tun)? + XUV VU )
i=1X;€Em
s.t. ng;jvp =1
oL Mty
< max 1;721), (13)
vy Nifvp
s.t. U;;FD;fvp =1
where
=UlU,)®1 (14)

MY = ch(.r ® (Xi = X)Nupu, (I © (X; - X)) (15)
i=1

up (I® (X; —Xi)) + ADj

=3 3 e -X)

i=1 X €m;

(16)

Similarly, we can compute the optimal V,, by solving
the optimization problem in Eq. (I3). The solution is

Up = e, (17)

q"'Dyq

where g is the largest eigenvector of (N?)~*M}.

The optimizations of Up|"_, and V,|/'_, are iterated
until convergence. Pseudo-code for our proposed CRP
is given in Algorithm 1. We set k = 2 empirically. The
most time-consuming steps are eigenvalue decompo-
sition operations (line 10 and line 16 in Algorithm 1)
and the total time complexity is O((kmax(l1,12))?).
For example, we use Coil20 dataset, in which the
dimensionality of the original data is 32 x 32. The
time complexity of CRP is O((2 x 32)3), which is
significantly small compared to that of the classical
LDA [9] O((1024)?).

5 CONVERGENCE ANALYSIS

In this section, we show that Algorithm 1 converges
monotonically and thus we can obtain the local op-
tima of U;|}_, and Vj|’_,. We prove that Algorithm 1
converges by the following theorem.

Theorem 1: The value of objective function f of our
proposed algorithm promises to increase monotoni-
cally until convergence.
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Algorithm 1: Optimization Algorithm for CRP

Data: X = {Xl, Xo, ...,Xn}, X; € R xl2
Result: U,|l_, and V,|h_,
1 for p<+ 1to h do
Compute the mean X; of the ith class for each i;
Compute the global mean X;
Initialise V,, as 1(c,k);
repeat
Update v, using Eq. @8);
Update D, using Eq. ©);
Update M) using Eq. (10);
Update N, using Eq. (II);
p=the largest eigenvector of (NY)~'MpY;
Update u, using Eq. (12);
U, = reshape(up,r, k);
Update D} using Eq. (I4);
Update M} using Eq. (A5);
Update N} using Eq. (16);
p=the largest eigenvector of (N*)~ " MY;
Update v, using Eq. (A7);
V, = reshape(vy, ¢, k);
until Convergence;
Update the training data according to Eq. (3)
end

O© ® NN S Ul R W N

A e <
N o Uk W N R O

=
©° ®

N N
- o

Proof: Suppose we have finished the first r-th it-
eration, we have got U7|"_, and V/|"_,. Now we con-
tinue the next iteration. For a fixed V;|"_, as V;"|"_,
we solve the optimization problem for U} + 4. For
a fixed Vj|j_,, the objective function in Eq. (@) is
converted to the optimization problem in Eq. (€). We
can easily tell that it is a convex optimization problem
w.r.t Uj|}_,. Hence, the optimal solution for Uj|"_,
can be obtained by setting the derivative of Eq.(6)
w.r.t Uj|h_, to zero respectively. Thus, we have:

> ULt (X - X)V)?
i=1
Y TrUpttT(X; - X))V + AT (U VTV Up T

X Em;

C PR [
> TrUp (X = X)V))?
i=1
>

S Y TrUIT(X; — X)Vi)? 4 AT UV TVIUST)
i=1X;€Emn;

’ 18)
Similarly, we can obtain the following inequality for

3 h r|h
fixed Uj|j_, as UJ[1_;.

S Tr(UT (X = X)Vrth)?

i R
:;:1 .Zl TT(U;T(mj _ Xi)vpr+1)2 +)\TT(UF7’~VPT+1TVPT+1U;T)
j=

C
T~ ~ "\ 2
=TT G =XV

v

-

% Tr(UpT(X; — X)) V)2 + ATr(Us vy TVrUsT)

i 1X] L

19)
We have the following inequality by integrating Eq.
(18) and Eq. (19).

zl TrU T (X - X))V T2
=

>

PIEDY
=1 Xj em;

_21 Tr(U; T (Xi = X)Vy)?
=

= ‘., ZE:,,, TrUpT(X; — Xi)V)2 + ATr(Us VTV U T)
s 0)
From Eq. (20) we can see that the objective function
value increases monotonically. Theorem [I] has been
proved.

OJ

6 EXPERIMENT

In this section, we test the proposed CRP algorithm.
We compare CRP with seven algorithms, including
LDA [5], 2DPCA [32], 2DLDA [9], BilinearSVM [33],
two non-iterative 2DLDA algorithms (S2DLDA and
P2DLDA) [10] and Tensor LPP [34].

There are five parts in our experiments. We first
validate how fast our algorithm converges over the
five different datasets. Secondly, we evaluate how
the classification performance varies w.r.t different ks.
Thirdly, we conduct several different initializations
and report the performance variance with different
initialization manners. Then, we compare the results
of classification in a variety of multimedia analysis,
including face recognition, object recognition, facial
expression recognition, head pose recognition and
handwritten digit recognition. Accuracy is used as the
evaluation metric for classification. Finally, compar-
isons have been also made under a two-class setting,
in which gender recognition is performed over three
different face datasets.

Following [9], [16], [6], we use the gray pixel values
of the images as the features. In all of our exper-
iments, we randomly sample 3, 5, 10, and 20 data
per class as the training data for all the experiments.
The remaining samples are used as testing data. To
evaluate the performance with sufficient number of
training data, we further use 80% data as training data
and the remaining as testing data. The regularization
parameter, ), in the proposed algorithm is tuned in a
range of {1076,107%,...,10%,10°} and the best result
is reported. We independently repeat the experiments
five times and report the results of average accuracy
with the stand deviations. Following the work in [5],
[35], we project the original data into a (¢ — 1) di-
mensional subspace for all the compared algorithms.
LIBSVM is applied as the implementation of SVM.
We learn the optimal regularization parameter of SVM
through a tenfold cross-validation.

6.1 Datasets Description

UUIm: The UUIm Head Pose and Gaze database [36]
is used to evaluate the performance of head pose and

TrUt T (X; — X)) Vith2 4 arrupttvy i Ty rtiyr T
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TABLE 1: Dataset details

Dataset || Matrix Size | Dataset Size | Class # |
UUIm 24 x 32 2,220 10
CVL 32 x 32 21,780 10
Pointing’04(Tilt) 40 x 30 2,790 9
Pointing’04(Pan) 40 x 30 2,790 13
USPS 16 x 16 9,298 10
COIL-20 32 x 32 1,440 20

gaze. This database comprises 2,220 images from ten
different people. In our experiment, we resize each
image to 24 x 32. In this database, all horizontal head
poses are with a vertical orientation of 0 degree.
CVL: The CVL dataset [37] is used to evaluate the
performance of handwritten digit recognition. There
are 21,780 handwritten digit images in this dataset. In
our experiment, we resize each image to 32 x 32.
Pointing’04: The Pointing’04 dataset [38] is used
for head pose estimation. Pointing’04 comprises 2,790
images from 15 people. In our experiment, we resize
each image to 40 x 30. Both the tilt and pan angles are
used to determine the head pose. For tilt, there are
nine poses. Whereas for pan, there are 13 poses.
USPS: We use the USPS database to test the perfor-
mance of our algorithm on handwritten digit recogni-
tion. There are 9,298 handwritten digit images in this
database. We resize all the images to 16 x 16.
Coil20: Coil20 comprises 1,440 images of 20 objects.
In our experiment, we resize each image to 32 x 32.
The detailed information of the dataset is summa-
rized in Tab. 1, including the number of samples, the
feature dimensions and the total number of classes.

6.2 Experimental Results
6.2.1 Convergence Demonstration

We first conduct experiments to validate the conver-
gence of our algorithm. Note that our algorithm learns
multiple (i.e., k) projection models one by one via
the same approach. We therefore randomly select one
projection model and plot its objective function val-
ues. The convergence demonstration on five different
datasets is shown in Fig. [, where the vertical axis
stands for the objective function value and the hori-
zontal axis denotes the number of iterations. From Fig.
[l we observe that our proposed algorithm converges
fast on all datasets. In most of the cases, the algo-
rithm converges within ten iterations, demonstrating
that the proposed optimization algorithm efficiently
converges. For other projection models, we observe
similar results.

6.2.2 Performance Variance w.r.t &

In this section, experiments are conducted to study
how £ affects the performance of the proposed algo-
rithm. UUIm dataset is utilized in this experiment.
Three data per class are utilized as training data.

Fig. 2l shows classification accuracy varies when
changing different ks. Taking UUIm as an example,
we have the following observations: 1) When £k is set
to 1, the classification accuracy is relatively low, at
only 29.6%. 2) When we increase k to 2, the classi-
fication accuracy rises to about 32.5%. 3) When £ is
further increased, the classification accuracy is stable.

Based on the above observations, we empirically
set k to 2 in the remaining experiments, which can
decrease computation complexity and obtain decent
results as well.

6.2.3 Performance with Different Initializations

In this section, experiments are conducted to evaluate
how performance varies with different initializations.
We select three samples per class for training and the
rest as testing data. We conduct different initializa-
tions, including setting all the diagonal elements of
V to 0.5, 1, 2 respectively and random values. The
experimental results are shown in Tab.

From the experiment results, we can observe that
the proposed algorithm can always get good local
optima with different initializations.

TABLE 2: Performance w.r.t Different Initializations

| Dataset | | 0.5 | 1 | 2 | random
UUIm 32.3+1.4 33.1+1.1 32.8+1.2 32.4+1.4
CVL 52.1+1.8 | 52.8+1.5 | 51.9+1.6 | 51.9+1.5
Pointing’04(Tilt) 209+1.5 | 21.7+1.7 | 21.0+1.4 | 21.4+1.2
Pointing’04(Pan) 15.1 + 0.8 15.8 +1.1 16.1 +1.3 156 +1.4
USPS 70.1+1.1 709+ 1.5 70.5+1.4 | 70.7+1.3
Coil20 73.1+1.4 73.6 £ 1.7 73.8+1.2 73.6 1.4

6.2.4 Classification Performance Comparison

In this experiment, we compare classification perfor-
mance of our algorithm with other methods, includ-
ing 2DPCA [32], 2DLDA [9], S2DLDA [10], P2DLDA
[10], T-LPP [34], Bilinear SVM [33]. Accuracy is used
as an evaluation metric. Note that once we obtain a
new lower dimensional representation using CRP, any
classification algorithm can be used for data classifi-
cation. In order to show the discriminant capability
of our algorithm, we use two classifiers in this exper-
iment. The first one is SVM, which has been widely
used. The second one is 1-Nearest-Neighbor (1INN),
which is used in [9], [16] to evaluate the effectiveness
of the classical 2DLDA and other related algorithms.
Since bilinear SVM is a classifier, we directly com-
pare the classification results obtained from bilinear
SVM with other methods. The results of classification
performance using SVM are reported from Tab. ] to
Tab. [l and the results of classification performance
using 1NN are presented from Tab.[8to Tab.[12l When
we use SVM as the classifier, we have the following
observations.
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Fig. 1: Convergence demonstration on different datasets. (a) UUIm, (b) CVL, (c) Pointing’04(tilt), (d)
Pointing’04(pan), (e) USPS, (f) Coil20.
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Fig. 2: Performance Variance w.r.t £ on different datasets. (a) UUIm, (b) CVL, (c) Pointing’04(tilt), (d)
Pointing’04(pan), (e) USPS, (f) Coil20.

CRP outperforms the other seven algorithms, which
demonstrates that the utilization of multiple projec-
tion models is useful to improve the classification
performance. We also observe that when there are
insufficient training data, CRP has more advantages
over the other compared algorithms. For example,
when we use three training data per class for CVL, the
classification accuracy of CRP outperforms 2DLDA
by 107%, relatively. It further indicates that CRP is
more capable of capturing discriminant information
when the training samples are quite limited. S2DLDA
gets slightly better performance results than 2DLDA,
on the whole, demonstrating that selecting a projec-
tion model with a higher discriminant capability can
improve the classification performance. Nevertheless,
CRP still outperforms S2DLDA.

With the increase of training samples, the classi-
fication results of all the compared algorithms are
improved. CRP consistently performs better than the
other compared algorithms. Take UUIm for an exam-
ple. When we increase the number of training data
from 3 x ¢ to 20 x ¢, the classification accuracy of
Bilinear SVM, the second best algorithm, and CRP
are improved from 28.2 to 61.2 and from 32.5 to
64.2 respectively. This observation indicates that the
proposed algorithm adopts multiple projection mod-
els to enable more discriminant lower dimensional
embeddings.

We can get similar trends when using 1-NN as
the classifier, again demonstrating the effectiveness of
CRP.

To step further, we also evaluate the performance
when the training samples are sufficient. 80% samples
are utilized for training. The experimental results are
reported in Tab. [7l and Tab. I2l From the result, we
can observe that when training samples are sufficient,
the proposed algorithm still has the best performance
with a relative improvement.

6.2.5 Performance Comparison in Two-class Setting

In this section, we compare the proposed algorithm
with the other related algorithms in a two-class set-
ting. Three face datasets, including UMIST, yaleB,
and ORL, are utilized to evaluate the performance of
gender recognition, which is a binary class problem.
Note that there are only two classes in this case.
We project the original data into a 5? dimensional
subspace to exploit enough discriminant information
for all the compared algorithms empirically. In this
experiment, we randomly sample 3 data per class as
the training data. The experimental results are shown
in Tab. [[3 From the experimental results, we can
observe that the proposed CRP can perform better
than all the compared algorithms in the two-class
setting.

7 CONCLUSION

It is more natural to represent the real world applica-
tion data as matrices since we can preserve the spatial
correlations while avoiding the curse of dimension-
ality. In this paper, we propose a novel compound
rank-k projection algorithm for bilinear analysis. Our
approach directly deal with the matrices. In this
way, the spatial correlations can be preserved, and
computation complexity can be decreased. Our ap-
proach achieves better performance than the classical
two-dimensional linear discriminant analysis because
our method exploits the multiple projection models
and promises a monotonic increase of the objective
function value. Hence, the optimum can be obtained.
The major novelty of our approach is that multiple
projection models are used to provide a larger space
in which the local optimal is obtained. Consequently,
CRP can get better performances.

In machine learning and statistics, ensemble meth-
ods use multiple learning algorithms to obtain better
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TABLE 3: Performance Comparison (Classification Accuracy + std%) of LDA, 2DPCA, 2DLDA, S2DLDA, P2DLDA,
T-LPP, Bilinear SVM and CRP with three training data per class for each dataset. SVM is used as a classifier.

| Dataset || LDA [ 2DPCA [32] | 2DLDA [9] | S2DLDA [10] | P2DLDA [10] | T-LPP [34] | B-SVM [33] CRP
UUIm 16.7 £ 2.1 20.1+£1.8 19.3+£1.5 26.4£1.2 223+£1.6 26.5+1.4 282+ 1.7 325+1.3
CVL 21.8+1.2 22.0£1.8 243 £1.5 29.8+1.9 22.8+1.4 41.3+1.8 471+ 1.6 51.8+1.5
Pointing04(Til) || 6.9+£08 | 85+1.1 | 103+14 | 11812 93+16 | 151+12 | 18117 | 214+1.2
Pointing04(Pan) || 64+1.3 | 82+15 | 99+1.6 | 102+14 81+10 | 105+17 | 131£15 | 156+14
USPS 421417 | 431+15 | 458+18 | 553+15 419+13 | 572+16 | 634+18 | 70.7+13
Coil20 569418 | 583415 | 604+13 | 67.6+14 62217 | 663+16 | 686+17 | 73.6+14

TABLE 4: Performance Comparison (Classification Accuracy =+ std%) of LDA, 2DPCA, 2DLDA, S2DLDA, P2DLDA,
T-LPP, Bilinear SVM and CRP with five training data per class for each dataset. SVM is used as a classifier.

| Dataset | LDA [ 2DPCA [32] | 2DLDA [9] | S2DLDA [10] | P2DLDA [10] | T-LPP [34] | B-SVM [33] [ CRP
UUIm 282414 | 277412 | 302+16 284+ 1.9 301+15 | 31.841.6 | 31.2+1.8 | 33.5+1.2
CVL 37.6+14 | 364+£1.7 | 408+1.9 409+ 1.5 31.7+1.8 | 47.3+1.6 | 493+1.3 | 582+1.5
Pointing04(tilt) || 13.2+1.8 | 13.9+14 | 146+17 154+16 147+14 | 164+18 | 198+19 | 241+1.3
Pointing04(pan) || 8.8+18 | 108+15 | 103+13 92+14 8.8+1.2 109+17 | 124+18 | 15.8+1.2
USPS 64.2+17 | 720+14 | 668+1.6 67.8+ 1.2 56.8+15 | 653+12 | 720+14 | 75.8+1.3
COIL-20 66.2+12 | 681+£1.9 | 71.6+1.8 80.2+ 1.5 67.3+14 | 763+11 | 785+16 | 82.4+1.4

TABLE 5: Performance Comparison (Classification Accuracy =+ std%) of LDA, 2DPCA, 2DLDA, S2DLDA, P2DLDA,
T-LPP, Bilinear SVM and CRP with ten training data per class for each dataset. SVM is used as a classifier.

[ Dataset [[ LDA [ 2DPCA [32] [ 2DLDA [9] | S2DLDA [i0] [ P2DLDA [10] | T-LPP [34] | B-SVM [33] | CRP
UUIm 36.1+£16 [ 37.2+14 [ 305+£17 | 341+18 412+£12 [ 439+16 | 482+14 | 523+13
CVL 56.8+15 | 571+16 | 57.9+£19 | 51.9+14 484+13 | 669+16 | 642+19 | 68315
Pointing04(tilt) 23.9+1.7 25.6+1.9 25.8+1.4 21.8+1.2 21.8+1.2 26.1+1.4 28.8+1.3 33.1+14
Pointing04(pan) 10.1£1.3 10.5+1.6 11.44+1.8 10.5+1.6 9.8 £ 1.7 13.6 = 1.5 159+ 1.8 194+16
USPS T34+17 | 744%19 | T713£13 | 79218 739414 | 782+15 | 794+19 [843%13
COIL-20 902+16 | 936+14 | 91.9£13 | 91.7+18 794+14 | 008+18 | 928+15 | 98.8+1.1

TABLE 6: Performance Comparison (Classification Accuracy =+ std%) of LDA, 2DPCA, 2DLDA, S2DLDA, P2DLDA,
T-LPP, Bilinear SVM and CRP with 20 training data per class for each dataset. SVM is used as a classifier.

| Dataset [ LDA [ 2DPCA [321 [ 2DLDA [ [ S2DLDA [10] | P2DLDA [0l | T-LPP [34] | B-SVM [33] CRP
UUIm 464+17 | 461+1.4 | 47.3+18 458+ 1.4 595+17 | 563+13 | 61.2+18 | 642+1.3
CVL 67.0+17 | 683+1.4 | 69.2+1.6 68.6 + 1.7 583+17 | 691+14 | 709+16 | 792+1.5
Pointing04(tilt) 28.6 + 1.6 29.1+1.5 31.8+ 1.8 2794+ 1.3 25.7+ 1.8 35.1+1.3 35.6 = 1.8 38.3+1.6
Pointing04(pan) 12.0+ 1.6 11.8 1.5 125 +£1.7 13.8 £1.2 11.2+1.3 14.4+1.4 16.9 £ 1.7 20.3+1.4
USPS 83.8+18 | 842+19 | 858415 86.8 £ 1.9 80.8+13 | 81.8+16 | 86.6+18 | 88.4+1.4
COIL-20 935+18 | 948+17 | 959+1.4 975+ 18 895+13 | 96.6+18 | 967+15 | 99.2+1.3

TABLE 7: Performance Comparison (Classification Accuracy =+ std%) of LDA, 2DPCA, 2DLDA, S2DLDA, P2DLDA,
T-LPP, Bilinear SVM and CRP with 80% training data for each dataset. SVM is used as a classifier.

| Dataset || LDA [ 2DPCA [32] | 2DLDA [9] | S2DLDA [10] | P2DLDA [10] | T-LPP [34] | B-SVM [33] CRP
UUIm 882+14 [ 884+17 [ 886+16 | 89.1+15 80417 [ 89.7+15 | 902+14 | 90.6+16
CVL 873+15 | 87.7+17 | 882+14 | 893+15 809+11 | 903+15 | 90.7+14 |[91.5+13
Pointing04(tilt) || 50412 | 51.1+13 [ 51.3+£14 | 516£16 521+14 | 525+13 | 533+15 | 53.9+13
Pointing04(pan) 37.9£1.7 38313 38.6 £1.5 39.1+14 385£1.1 39.8 £1.6 40.5£1.4 426+1.2
USPS 93.1+£18 | 935+15 | 938+11 | 941+12 94318 | 047+14 | 951+11 | 95613
COIL-20 965+14 | 95.0+15 | 964+17 | 975+18 80.9+13 | 983+15 | 99.1+13 [ 99.4+0.9

predictive performance than could be obtained from semble learning in the following two aspects: First,
any of the constituent learning algorithms. In some in a typical ensemble learning scenario, the multiple
sense, the proposed algorithm has a close relationship learning algorithms usually adopt different criteria,
to ensemble learning. Our algorithm differs from en- e.g., to combine the SVM classifier and the least
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TABLE 8: Performance Comparison (Classification Accuracy + std%) of LDA, 2DPCA, 2DLDA, S2DLDA, P2DLDA,
T-LPP, Bilinear SVM and CRP with three training data per class for each dataset. 1-NN is used as a classifier.

| Dataset || LDA | 2DPCA [32] | 2DLDA [9] | S2DLDA [10] | P2DLDA [10] | T-LPP [34] | B-SVM [33] CRP
UUIm 24.3+1.8 25.8+1.6 27.4+1.9 288+ 1.5 24.2+1.2 249+1.38 282+ 1.7 321+1.5
CVL 21.2+1.2 23.4+19 24.7+1.4 29.2+1.8 19.8 +1.4 35.2+1.1 471+ 1.6 52.1+1.3
Pointing’04(Tilt) 92+1.3 9.5£1.0 81+£1.3 12.9+0.8 10.4+£0.9 15.8+1.4 18.1+£1.7 23.6+0.9
Pointing’04(Pan) 88+1.1 9.7£0.9 10.2+£1.5 99+£1.2 88+1.3 11.1+1.4 13.1+£1.5 15.1+1.1
USPS 44.0+1.8 44.3+14 45.9+1.2 54.2+1.6 46.5+ 1.2 52.8+ 1.5 63.4+1.8 723+14
Coil20 57.1+1.4 582+ 1.8 61.2£1.1 67.6 +1.8 52.4+1.5 60.3+1.7 68.6 + 1.7 749+1.1

TABLE 9: Performance Comparison (Classification Accuracy =+ std%) of LDA, 2DPCA, 2DLDA, S2DLDA, P2DLDA,
T-LPP, Bilinear SVM and CRP with five training data per class for each dataset. INN is used as a classifier.

| Dataset | LDA [ 2DPCA [32] | 2DLDA [9] | S2DLDA [10] | P2DLDA [10] | T-LPP [34] | B-SVM [33] [ CRP
UUIm 302+1.6 | 31.6+13 | 345+1.7 | 354+1.5 332412 | 31.0+£1.7 | 31.2+1.8 | 348+13
CVL 328+13 | 333+£16 | 35.1+1.8 36.6+ 1.4 308+1.2 | 442416 | 493+1.3 | 52.9+1.5
Pointing04(tilt) || 121+1.8 | 12.8+14 | 144+16 152+ 1.7 102+14 | 198+19 | 198+19 | 27.9+1.1
Pointing04(pan) || 9.24+1.3 | 142+18 9.8+15 88+17 79+1.4 104+17 | 124+18 | 162+1.4
USPS 612+18 | 638+1.4 | 642+1.9 66.1+ 1.7 453+13 | 685+1.1 | 720+14 | 781+1.6
COIL-20 69.6+22 | 71.3+£18 | 729+1.4 76.2+1.9 59.2+13 | 765+21 | 785+16 | 83.2+1.3

TABLE 10: Performance Comparison (Classification Accuracy + std%) of LDA, 2DPCA, 2DLDA, S2DLDA, P2DLDA,
T-LPP, Bilinear SVM and CRP with ten training data per class for each dataset. 1NN is used as a classifier.

[ Dataset [[ LDA [ 2DPCA [32] [ 2DLDA [9] | S2DLDA [i0] [ P2DLDA [10] | T-LPP [34] | B-SVM [33] | CRP
UUIm 438+17 [ 442+13 [ 461£18 | 473%16 403+18 [ 449+14 | 482+16 | 532+14
CVL 473114 479 £ 1.5 50.3£1.8 51.9+£1.5 46.9 £1.4 55.1£1.6 64.2£1.9 67.31+1.3
Pointing04(tilt) 229+1.7 22.7+1.5 24.8+1.3 256.3+£1.8 14.2+ 1.5 20.5£1.2 28.8 £1.3 324+13
Pointing04(pan) 9.6 £1.5 9.3+£1.2 10.7+1.4 109+ 1.8 8.8+1.4 11.3+£ 1.7 159+ 1.8 19.2+1.5
USPS 68517 | 692+15 | 718+14 | 712%16 648+19 | 76.7+1.6 | 794+19 |[844%13
COIL-20 85616 | 861+18 | 888+14 | 921+L7 805+£16 | 894+18 | 928+15 | 95.1£15

TABLE 11: Performance Comparison (Classification Accuracy + std%) of LDA, 2DPCA, 2DLDA, S2DLDA, P2DLDA,
T-LPP, Bilinear SVM and CRP with 20 training data per class for each dataset. 1NN is used as a classifier.

| Dataset || LDA | 2DPCA [32] | 2DLDA [9] | S2DLDA [10] | P2DLDA [10] | T-LPP [34] | B-SVM [33] CRP
UUIm 58.0 1.3 58.2+ 1.5 61.4+1.8 61.9+1.2 58.3 1.8 60.9 £ 1.3 61.2+1.8 68.4+1.3
CVL 63.7+ 1.3 64.1 £1.8 66.7 £ 1.2 67.3+1.3 60.2+1.7 65.2+1.9 709+£1.6 74.2+1.6
Pointing04(tilt) 32.7+1.8 302+1.3 37.8+1.5 38.6+1.3 26.7+ 1.7 33.6+1.9 35.6+1.8 42.3+1.4
Pointing04(pan) 114£1.8 11.8+1.4 14.7+1.7 15.2+1.4 10.0£1.6 134£1.8 16.9 £ 1.7 22.3+1.8
USPS 83.1+1.3 83.6+1.4 84.5+1.8 85.6 + 1.2 747+ 1.5 79.5+1.4 86.6 + 1.8 89.2+1.4
COIL-20 94.0+1.4 94.8 £ 1.8 95.9+1.6 95.6 1.2 7T7T9+£1.8 92.1+14 96.7 £ 1.5 98.8+£1.2

TABLE 12: Performance Comparison (Classification Accuracy + std%) of LDA, 2DPCA, 2DLDA, S2DLDA, P2DLDA,
T-LPP, Bilinear SVM and CRP with 80% training data for each dataset. 1NN is used as a classifier.

| Dataset || LDA | 2DPCA [32] | 2DLDA [9] | S2DLDA [10] | P2DLDA [10] | T-LPP [34] | B-SVM [33] CRP
UUIm 89.7+ 1.5 90.1+1.8 90.6 £ 1.5 91.2+14 91.8+1.2 923+ 14 93.0+1.6 93.5+1.5
CVL 90.2+1.6 90.6 £ 1.5 91.1+14 924+1.5 92.8£1.3 93.1+1.3 93.4+1.5 94.7+1.3
Pointing04(tilt) 47.5+1.6 48.1+1.6 485+ 1.2 48.8 £ 1.7 50.2 £ 1.5 51.3+14 52.1+1.7 56.4+ 1.6
Pointing04(pan) 36.9+1.5 374+1.6 37.8+14 38.1+1.6 385+14 40.8+1.2 41.4+1.3 45.1+1.5
USPS 94.8+1.3 95.2+1.1 95.6 +1.2 96.4+ 1.4 94.5+1.2 95.1+£1.1 96.2+ 1.4 96.8 £ 0.9
COIL-20 96.1 £ 1.1 96.4 +0.8 96.7 £ 1.1 97.1+£0.7 89.3+0.9 97.5+0.8 98.9+ 0.6 99.6 £ 0.3

regression classifier for classification. Differently, the ond, in ensemble learning, the output of a single con-
proposed algorithm is a single algorithm (as opposed stituent learning algorithm can be directly regarded
multiple algorithms) designed in a single framework, as the final results. For example, the output of an
i.e., the Linear Discriminant Analysis framework. Sec- SVM classifier can be used as the classification result,
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TABLE 13: Performance Comparison w.r.t two-class setting (Classification Accuracy+ std%) of LDA, 2DPCA,
2DLDA, S2DLDA, P2DLDA, T-LPP, Bilinear SVM and CRP with 80% training data for each dataset.

| Dataset || LDA | 2DPCA [32] | 2DLDA [9] | S2DLDA [0l | P2DLDA [10] | T-LPP [34] | B-SVM [33] | CRP |
ORL [[898+15] 905+1.2 | 911+14 [ 91.7+13 923+11 [ 929+14 | 933+13 | 93.9+1.2
UMIST || 831414 | 842416 | 847+15 | 85.7+14 86.2+18 | 865+1.3 | 87.2+16 | 89.4+1.1
yaleB || 74614 | 751416 | 75.6+17 | 762+13 765+1.6 | 769+13 | 774+18 | 78.6+14
even though the performance could be improved if Lemma 3:

we combine SVM with least square regression. In
contrast, the output of each projection model of our
algorithm corresponds to only one dimension of the
subspace, and thus we cannot use the output of a sin-
gle model to represent the original data. We must use
all the models to obtain a -dimensional representation.

Our experimental results validate that our proposed
algorithm outperform the other compared algorithms
in terms of classification accuracy using two different
classifiers.

APPENDIX
LEMMAS USED IN THIS PAPER

Lemma 1:
vec(UVT) (vec(UVI ) Tvee(X) = Tr(UT XV )vec(UVT),

where vec(-) represents the vectorization of a matrix.
Proof: By substituting Lemma 2] we can obtain

vec(UVT) (vec(UVT)T = Z vy ® ul(z v; @)

7 7

= (v @u)(v; @ uy)"

ij

vec(UVT) Tvec(UVT) = Tr(UTUVTV)

Proof: Substituting Lemma [2) we can obtain

(vec(UVI) Tvec(UVT) = (Z v; @ ug) T Z(vZ ® u;)

= (v @uy)" (0 @ u)
i

For any two vectors, v and v, we have properties
of Kronecker product as follows:

Z(Uj ® )" (v; @ u;) = Z(U;‘-FUZ- ® u;‘rui)
B3 ij
=D (v viuj wi)
]
According to properties of dot product, we have

Z T _Z T,
uj U; = ui u_]
.7 i3

Hence we can obtain

> (fviu] uy) = Z(UiT(Ujva)vi)

According to the properties of Kronecker product, & "I
we can obtain = Z(%T Z(Ujva)vi)
i J
_ TrryT
Z(Ui ®u;i)(v; ® Uj)T = Z(Uiva ® uluJT) =Tr(UUV'V)
i 0.J The result follows. O

By multiplying vec(X), we can get
Z(vivf ® ugu) Jvec(X) = ’UGC(Z uj Tv; Z uivl)
i j i
= UGC(Z ujrxvj Z uvl)
j i

Lemma 4: Suppose A, B, X are matrices, we have
vec(AX B) = (BT ® A)vec(X).
Proof: As proved in [39], the one vector of order
n obeys the relation e = > e;.
Similarly,

(AXB)r =Y (BjrA)X;

J

=Tr(UTXV)vec(UVT) X
1
The result follows. O X,

Lemma 2: = [BlkA BQkA...BnkA]
vec(UVT) = Zvi ® ug, X,

‘ = [BF ® AJvec(X)
where ® is the Kronecker product.
The result follows. O

Proof: Referring to Page 26, Chapter 2 of "Matrix
Calculus and the Kronecker Product with Applica-
tions and C++ Programs” [39]. OJ

Lemma 5:

Tr(AT BC) = vec(A)T (I @ B)vec(C)



JOURNAL OF BTEX CLASS FILES, VOL. X, NO. X, XXXXXXX 20XX

Proof:
By the trace definition, we have

Tr(AT B) = vec(A) vec(B)

According to Lemma [} we can obtain

vec(BC) = vec(BCI)

= (I ® B)vec(C)

By incorporating the above two equations, we can

get

Tr(ATBC) = vec(A)Tvec(BC)

vec(A)T (I @ B)vec(C)

The result follows.
Lemma 6:

Tr(ATBC) = vec(A)T (CT @ Ivec(B)

Proof: Similarly, according to the trace definition,

we have

SO

R
(1]

(2]

(3]

(4]

(5]

6]

(71

(8]

Bl

(10]

(11]

(12]

Tr(AT B) = vec(A)Tvec(B),

Tr(ATBC) = vec(A)Tvec(BC)

vec(A)T(CT @ Ivec(B)
The result follows.
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