
Differentiable Architecture Search Meets Network Pruning at Initialization: A
More Reliable, Efficient, and Flexible Framework

Miao Zhang1 Wei Huang2 Steven Su2 Shirui Pan3 Xiaojun Chang4 Bin Yang1 Gholamreza Haffari2
1Aalborg University 2UTS 3Monash University 4RMIT University

Abstract

Although Differentiable ARchiTecture Search (DARTS)
has become the mainstream paradigm in Neural Architecture
Search (NAS) due to its simplicity and efficiency, more recent
works found that the performance of the searched architec-
ture barely increases with the optimization proceeding in
DARTS, and the final magnitudes obtained by DARTS could
hardly indicate the importance of operations. The above ob-
servation reveal that the supervision signal in DARTS may be
a poor or unreliable indicator for the architecture search, in-
spiring an interesting and promising direction: can we mea-
sure the operation importance without any training under
the differentiable paradigm? We provide an affirmative an-
swer by customizing the NAS as a network pruning at initial-
ization problem. With leveraging recently-proposed synaptic
saliency criteria in the network pruning at initialization, we
seek to score the importance of candidate operations in dif-
ferentiable NAS without any training, and proposed a novel
framework called training free differentiable architecture
search (FreeDARTS) accordingly. We show that, without
any training, FreeDARTS with different proxy metrics can
outperform most NAS baselines in different search spaces.
More importantly, FreeDARTS is extremely memory-efficient
and computational-efficient as it abandons the training in the
architecture search phase, enabling FreeDARTS to perform
architecture search on a more flexible space and eliminate
the depth gap between architecture search and evaluation.
We hope our work inspires more attempts in solving NAS
from the perspective of pruning at initialization.

1. Introduction
Neural Architecture Search (NAS) [9, 20, 31, 46] auto-

mates the neural network design process and has, therefore,
received broad attention. The downside is that it comes with
an extremely high demand for computation power, where
the early NAS methods cost more than thousands of GPU
days to search for a promising architecture [30, 50]. To im-
prove the efficiency, many recent studies have been shifted
to reducing the search costs [3, 17, 45], and one of the most

popular paradigms is termed as Differentiable ARchiTecture
Search (DARTS) [25] framework. DARTS adopts the con-
tinuous relaxation to convert the operation selection problem
into the continuous magnitude optimization for a set of can-
didate operations, which is then formulated as a bi-level
optimization problem with alternatively optimizing the archi-
tecture parameters and model weights by gradient descent in
a weight-sharing supernet.

Although DARTS provides a concise and efficient frame-
work for NAS, more recent works find it is still unreli-
able [6, 32, 37] as DARTS usually observes a performance
collapses with search progresses. A recent work by Wang et
al. [37] showed that the magnitude of architecture parameter
obtained by DARTS after supernet training is fundamentally
wrong, which could hardly indicate the importance of op-
erations. More interesting, several several works [23, 43]
utilized simple early-stopping strategies to interrupt the su-
pernet training during the search, while which could signifi-
cantly improve the performance of DARTS. These empirical
observations show that the supernet training seems to de-
teriorate the performance with search progresses. On the
other hand, although most NAS alternatively optimize the
architecture parameters and model weights by the super-
vision signal, (e.g., training and validation accuracy), the
recent emerged unsupervised NAS without label informa-
tion [21, 24, 41, 47] has been validated to achieve compara-
ble performance to supervised NAS methods. Furthermore,
DARTS is memory-unfriendly as it requires to train the
whole supernet in each step of architecture search. Due to
the memory limitation, DARTS is only able to search on a
shallow network to get a cell structure, and then evaluate in
a deeper network through stacking more cells. This brings
an issue named the depth gap [8]. The above observations
inspire us to discard the supernet training and abandon the
supervision signal in DARTS, with raising the question:

• Can we measure the operation importance without
any training under the differentiable paradigm?

We provide an affirmative answer by customizing the
NAS as a network pruning problem, corresponding to a
promising yet underexplored direction of neural architec-

ar
X

iv
:2

10
6.

11
54

2v
2

 [
cs

.L
G

]
 2

5
N

ov
 2

02
1

ture search at initialization [1, 5, 27], which we formalize
in Section 3. This work is inspired by recent research on
network pruning-at-initialization [19, 35, 36], which utilizes
a class of score metrics, called as synaptic saliency [35] or
connection sensitivity [18], to measure the importance of
weights in neural networks at initialization. Instead of using
the weight magnitude after training to measure the impor-
tance for network pruning, these works argue to preserve the
synaptic flow [35] or information flow [36] through the net-
work at initialization. Accordingly, rather than calculating
the magnitudes of operations after training as DARTS, we
intend to utilize the saliency criteria to measure the operation
importance at initialization, where we propose a novel frame-
work called training free differentiable architecture search
(FreeDARTS) with leveraging these techniques. Built on
synaptic saliency metrics in network pruning at initialization,
we adapt these metrics to score operations in differentiable
NAS in a training-free manner, called operation saliency
metrics. Integrating with the proposed metrics, FreeDARTS
can perform architecture search extremely efficiently by dis-
carding the memory and computation-consuming supernet
training part, and achieve competitive or even better re-
sults against SOTA. More importantly, with the efficiency of
FreeDARTS, we can perform architecture search on a more
complicated space, and eliminate the depth gap between ar-
chitecture search and evaluation. Rather than emphasizing
the effectiveness of the proposed framework, we hope our
work opens up a promising direction for differentiable NAS,
resolving the architecture search from the perspective of
network pruning at initialization, as which provides a more
reliable, efficient, and flexible framework. A summary of
our main contributions follows.

• Firstly, this paper formulates the differentiable archi-
tecture search as network pruning at initialization and
builds a generalized framework called training free
differentiable architecture search (FreeDARTS). We
adapt several existing metrics on network pruning at
initialization into the proposed FreeDARTS framework,
called operation saliency metrics. We empirically ver-
ified the effectiveness of the proposed metrics for dif-
ferentiable NAS, and the experimental results demon-
strate that the proposed framework is a promising and
reliable solution to differentiable neural architecture
search, which achieves competitive performance on
different benchmark datasets and DARTS search space.

• Secondly, our FreeDARTS is extremely efficient,
which completes the architecture search in seconds.
On the NAS-Bench-201, our FreeDARTS completes
the architecture search with only 0.6s, achieving 93.66,
70.78%, 46.53% test accuracy on three datasets, re-
spectively. On the more complicated DARTS space,
FreeDARTS completes the search with 1.5s, and the

best searched architecture returns competitive results
on CIFAR-10, CIFAR-100, and the ImageNet datasets,
with test error 2.45%, 16.85%, and 24.4%, respectively.

• Thirdly, due to the memory and computation efficiency,
we are able to apply FreeDARTS on a more flexible
search space, where the depth of network in the ar-
chitecture search and evaluation can be the same. In
addition, rather than searching on a small dataset and
then transferring to a large dataset for evaluation, our
FreeDARTS can be directly applied on the large dataset
for architecture search. The above advantages all show
the flexibility of the proposed framework.

2. Preliminary
2.1. A Review of NAS

Neural Architecture Search (NAS) focuses on automating
the process of neural network design, which has attracted in-
creasing attention recently as it relieves human experts from
the labor-intensive neural network design process. However,
the early NAS methods suffer from heavy computational de-
mand. To relieve the computational burden, more recent stud-
ies shift to reducing the search cost [2, 45], and the weight-
sharing is one of the most well-known paradigm [13, 22, 29].

Differentiable ARchiTecture Search (DARTS) [25] is
built on weight-sharing NAS, with further adopting the con-
tinuous relaxation to convert the operation selection into the
continuous magnitude optimization, thus enable gradient de-
scent for architecture search. The DARTS can be formulated
as a bi-level optimization problem:

min
α
Lval(W ∗(α), α)

s.t. W ∗(α) = argminW Ltrain(W,α),
(1)

where α is the continuous architecture parameter representa-
tion and W is the supernet weights.

Failure of DARTS. Despite notable benefits on computa-
tional efficiency from DARTS, more recent works find it is
still unreliable [6, 43] that directly optimizing the architec-
ture magnitudes. For example, a recent work by Wang et
al. [37] showed that the magnitude of architecture parameter
obtained by DARTS after supernet training is fundamentally
wrong, where the optimized magnitude could hardly indi-
cate the importance of operations. Rather than utilizing the
optimized magnitudes by DARTS to indicate the operation
strength, the authors find the perturbation-based operation
influence on supernet can more consistently extract signifi-
cance of operation than magnitude-based counterparts. In ad-
dition, DARTS is unable to stably obtain excellent solutions
as which yields deteriorative architectures with the search
proceeding, performing even worse than random search in
some cases [32]. Zela et al. [43] interrupt the search based

on the dominant eigenvalue of the Hessian matrix, and Liang
et al. [23] introduce another simple “early stopping” criteria,
where the search procedure ends as one cell has two or more
skip-connection operations. They both show the supervised
learning paradigm maybe harmful for finding a promising
architecture, especially with the search proceeding.

Unsupervised NAS conducts architecture search with the
absence of labels. Liu et al. [24] utilize unsupervised ob-
jectives to estimate the performance of architectures during
the architecture search, where they found that the architec-
tures searched by unsupervised objectives are comparable
in performance to those architectures searched by super-
vised objectives. To avoid using the human-annotated labels,
RLNAS [47] randomly generates labels for the architecture
search, where a customized angle metric [15] is introduced to
measure the distance between trained and initialized weights,
to estimate the convergence speed of the corresponding ar-
chitecture. On the other hand, Yan et al. [41] utilize unsuper-
vised pretraining for a better architecture representation to
assist the subsequent supervised search. The above works
all show that the supervised signal maybe not the key to find
the promising architectures.

Train free NAS tries to identify promising architectures at
initialization without incurring training. Mellor et al. [27]
empirically find that the correlation between sample-wise
input-output Jacobian can indicate the architecture’s test per-
formance, and propose using the Jacobian to score a set of
randomly sampled models with randomly initialized weights,
which greedily chooses the model with the highest score. TE-
NAS [5] utilizes the spectrum of NTKs and the number of
linear regions to analyzing the trainability and expressivity
of architectures, and leverage the perturbation-based archi-
tecture selection as [37] for the supernet prune. Since the
calculation of NTK is not easy, TE-NAS can only improve
efficiency to a limited extent. Zero-cost NAS [1] partially
shares the same motivation as us, which both utilize saliency
metrics in the network pruning at initialization for architec-
ture search. A concurrent work zero-cost-pt NAS [38] further
extends the zero-cost NAS for differentiable NAS, through
leveraging perturbation as [5, 37] for the supernet prune.
Different from zero-cost NAS or zero-cost-pt NAS that mea-
sures the whole network through summing saliency scores
of all parameters θ in the architecture, our FreeDARTS is
designed to directly measure the importance of candidate
operations without perturbation-based selection.

2.2. Connecting NAS with Network Pruning

Network pruning is an effective way to compress over-
parametered neural networks by removing parameters with
minimal performance degradation. The final discretization
phase of DARTS, selecting a discrete architecture from an
overparametered supernet based on the magnitudes of op-

erations, can be considered as an operation-level network
pruning [37]. The network pruning can happen after training,
during the training, and before the training (a.k.a, at initial-
ization) [35]. In this subsection, we will review existing
NAS literature that conduct pruning in different phases.

Pruning after training. Most conventional network prun-
ing methods operate on a trained network to identify the
redundant weights based on different criteria, where those
redundant weights are removed with least degrading the per-
formance. Magnitude based pruning [14,16] is the most com-
mon paradigm, which directly measures the importance of
each weight based on its value. The well-known DARTS [25]
also adopts this pruning paradigm in the final discretiza-
tion phase, which measures the magnitude of candidate
operations after supernet training to prune the supernet at
once. However, more recent work [37] found that the magni-
tude of architecture parameters does not necessarily indicate
how much the operation contributes to the supernet’s per-
formance, and the pruning many weak connections at once
can hardly find the promising architecture. Alternatively,
Wang et al. [37] proposed a perturbation-based architecture
selection to measure each operation’s influence on the super-
net after training, and only prune one edge at once before
fine-tuning the supernet.

Pruning during training. Rather than pruning all redun-
dant weights at once after training, some works try to incor-
porate pruning into the training procedure [26, 34]. Based
on this motivation, ASAP [28] proposes a differentiable an-
nealable search space, enabling gradually pruning inferior
operations during the search. Since it reduced the number
of candidate operations during the search, ASAP could also
accelerate the search. Similarly, PDARTS [8] also prunes
the cell candidate operations during the search, while it pro-
gressively increases the network depth, to alleviate the depth
gap during the architecture search and evaluation.

Pruning at initialization. Recent works on network prun-
ing shows that the randomly initialized neural network can be
pruned without incurring any training [18], where SNIP [19],
GraSP [36], and SynFlow [35] are three well-known metrics
for the network pruning at initialization. These scores are de-
signed to measure the importance of weights θ in a networks.
Zero-cost NAS [1] extend the above three saliency metrics as
a series zero-cost proxies to assist existing NAS algorithms,
which utilizes the zero-cost proxies to warmup different
search algorithms, e.g., initializing population or controller
for aging evolution NAS and RL based NAS, respectively.
Similar to [1], our FreeDARTS also leverages these saliency
metrics for NAS, while one strength of FreeDARTS over [1]
is that FreeDARTS could obtain a valid architecture along,
instead of assisting NAS methods.

3. Methodology
Rather than alternatively training supernet weights and

architecture parameters before pruning the supernet based
on the operation magnitude as DARTS, this paper tries to
investigate searching a promising architecture at initializa-
tion. More specifically, our goal is to explore to score the
importance of operations for the supernet pruning, without
any training nor even labels, thus significantly improve the
efficiency. In this section, we first introduce a class synaptic
saliency based score metrics [1, 19, 35, 36], which are used
in the network pruning at initialization. Instead of utilizing
the saliency metrics to score the supernet weights W (θ) as
zero-cost NAS [1], we focus on the importance of α for the
architecture pruning, where we then accordingly design a
class of saliency metrics to score the operations in the super-
net. Those saliency metrics are training-free, which enables
us to prune the supernet without training.

3.1. Revisit Synaptic Saliency Metrics

The synaptic saliency criteria [35] are designed to mea-
sure the change of loss functions when a specific parameter θ
is removed from the neural network, to imply the importance
of parameters. The synaptic saliency based score metrics are
generally described as the form of Hadamard product:

S(θ) = ∂R
∂θ
� θ, (2)

where R is a class of loss functions. SNIP [19] is the first
work based on this saliency criteria to perform network prun-
ing at initialization. Utilizing the common training loss L,
SNIP defines a notion of connection sensitivity to measure
how removing each parameter affects the loss at initializa-
tion:

Ssnip(θ) =
∣∣∣∣∂L∂θ � θ

∣∣∣∣ . (3)

Rather than minimizing the effects on the loss function after
pruning, GraSP [36] proposes to preserve the gradient flow,
a.k.a. the change in the gradient norm:

Sgrasp(−θ) = −(H
∂L
∂θ

)� θ, (4)

where H is the Hessian matrix. As described, SNIP and
GraSP are data-dependent as they need to calculate the train-
ing loss based on the labels. Different from them, Syn-
Flow [35] proposes to identify important weights without
any labels at initialization. Instead of using the normal label-
dependent training loss function L, SynFlow introduces a
new loss function with setting the input as the all-ones vector
1, and the loss function is described as:

RSF = 1T

(
L∏
l=1

∣∣∣θ[l]∣∣∣)1, (5)

where SynFlow utilizes the element-wise absolute
∣∣θ[l]∣∣ to

make the corresponding synaptic saliency score positive to
avoid the layer-collapse [35]:

SSF(θ) =
∂RSF

∂θ
� θ. (6)

Zero-cost NAS [1] extends the above saliency metrics
as zero-cost proxies to score an architecture, through sum-
ming scores of all parameters θ in the architecture. Since
these scores can be obtained without any training, zero-cost
proxies [1] could assist NAS by warmup different search al-
gorithms, e.g., initializing population or controller for aging
evolution NAS and RL based NAS, respectively. However,
we could not follow the paradigm of zero-cost NAS to mea-
sure the importance of operations, since there are several
candidate parameter-free operations without affiliated param-
eters, e.g., zero, skip-connection, pooling.

3.2. Adapt Saliency Metrics for Differentiable NAS

Different from zero-cost NAS [1] assisting existing NAS
algorithms, we try to design a saliency metric to prune the su-
pernet and obtain the promising architecture at initialization
without any training. Rather than score the importance of
weights, we should design a metric to score the importance
of operations α. As described in Eq.(1), there are two parts
of parameters needed to be optimized in DARTS, supernet
weightsW (θ) and architecture parameters α. The final stage
of DARTS can be seen as an operation level pruning [37],
where DARTS calculates the magnitude of operations af-
ter training to prune the supernet. The intuitive purpose of
this paper is to measure the importance of each operation,
where we try to utilize the training-free saliency scores to
directly measure the importance of α at initialization in our
FreeDARTS, which we call as operation saliency metrics.
Accordingly, the SNIP based operation saliency metric to
score the importance of α in our FreeDARTS is defined as:

Fsnip(α) =
∣∣∣∣∂L∂α � α

∣∣∣∣ . (7)

where L is the Lval in Eq.1 while based on an initialized su-
pernet W . Similarly, GraSP based operation saliency metric
is defined as:

Fgrasp(−α) = −(H
∂L
∂α

)� α. (8)

To further make our method label-agnostic, we also lever-
age SynFlow to design a label-agnostic loss function:

RSF(α) = 1T

(
L∏
l=1

∣∣∣W (θ, α)[l]
∣∣∣)1, (9)

where we need apply the element-wise absolute on weights
W (θ, α) as SynFlw to make FSF positive. The correspond-
ing SynFlow based operation saliency metric for α is then

Table 1. Comparison results with NAS baselines on NAS-Bench-201.

Method CIFAR-10 CIFAR-100 ImageNet-16-120 Search Cost
Valid(%) Test(%) Valid(%) Test(%) Valid(%) Test(%) (GPU sec.)

SETN [10] 84.04±0.28 87.64±0.00 58.86±0.06 59.05±0.24 33.06±0.02 32.52±0.21 31010
GDAS [11] 89.88±0.33 93.40±0.49 70.95±0.78 70.33±0.87 41.28±0.46 41.47±0.21 28925.91
DARTS (1st) [25] 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00 10889.87
DARTS (2nd) [25] 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00 29901.67
PC-DARTS [40] 89.96±0.15 93.41±0.30 67.12±0.39 67.48±0.89 40.83±0.08 41.31±0.22 10023.
SNAS [39] 90.10±1.04 92.77±0.83 69.69±2.39 69.34±1.98 42.84±1.79 43.16±2.64 32345

Random baseline 83.20±13.28 86.61±13.46 60.70±12.55 60.83±12.58 33.34±9.39 33.13±9.66 -
NASWOT [27] 89.16±1.13 92.45±1.12 68.53±2.01 68.66±2.02 41.13±3.94 41.35±4.08 30.01
Zero-Cost NAS [1] 90.19±0.66 93.45±0.28 70.55±1.61 70.73±1.36 43.24±2.52 43.64±2.42 115.2
Zero-Cost-PT NAS [38] - 93.75±0.00 - 71.11±0.00 - 41.43±0.00 647.5
TE-NAS* [5] 89.99±0.40 93.28±0.25 69.19±0.63 69.62±0.71 43.72±2.06 44.29±1.97 1558
FreeDARTS 90.39±0.30 93.52±0.11 70.96±0.51 70.70±0.08 44.68±1.67 45.28±1.73 0.6

optimal 91.61 94.37 74.49 73.51 46.77 47.31 -
“*” indicates the results reproduced with the same seeds. We use the Synflow metric in this experiment. Our best single run
achieves 93.66%, 70.78%, and 46.53% test accuracy on three datasets, respectively.

defined as:
FSF(α) =

∂RSF

∂α
� α. (10)

Given a simple example, we consider a se-
quential structure of supernet (i.e. f(x) =∑|O|
o=1 αL,oW

L,o...
∑|O|
o=1 α1,oW

1,ox), and we can
find that FSF(α) also yields the positive scores as SynFlow:

FSF(α) =

1T
 L∏
l=i+1

|O|∑
o=1

∣∣∣αi,o ∗W [l,o]
∣∣∣
 |αi,j |

i−1∏
l=1

|O|∑
o=1

∣∣∣αi,o ∗W [l,o]
∣∣∣
1

 .
(11)

As described, the scores FSF(α) are all positive, showing
that FSF(α) will exclude the zero operation in the search
space since its gradient is always 0, which is also in line with
the final discretization stage in DARTS [25].

After defining the score metrics, we directly operate the
architecture pruning on the DARTS’s initialized supernet W
and architecture α without any training. The importance of
all available operations can be calculated by one-shot with
only a batch of data based on Eq.(7)(8)(10), and the final
architecture is obtained through argmax. As a result, our
approach, which we call training free differentiable architec-
ture search (FreeDARTS), can be implemented easily.

4. Experiments
In the above, we reformulate the differentiable architec-

ture search from a pruning-at-initialization perspective, and
propose a simple framework FreeDARTS for the architec-
ture search without any training. In this section, we conduct
a series of experiments to verify the foundational question:
can we find high-quality architectures without any train-
ing through our FreeDARTS? We consider two cases to

analyze the proposed framework, including on the bench-
mark datasets [12, 33, 44] and DARTS search space [25].

4.1. Experiments on benchmark datasets

Reproducible comparison with existing works on NAS-
Bench-201. The results for FreeDARTS and the weight-
sharing NAS baselines on the NAS-Bench-201 set are pro-
vided in Table 1. FreeDARTS produced competitive results
on all three datasets, significantly outperforming the DARTS
and other elaborately designed methods. Moreover, the best
single-run of FreeDARTS achieves a performance of 93.66%
on CIFAR-10, 70.78% on CIFAR-100, and 46.53% on Im-
ageNet, which are very close to the optimal test accuracies
in the NAS-Bench-201 dataset. The second block in Table 1
contains the comparison results of FreeDARTS with three
existing train-free NAS methods. The Random baseline is
to randomly generate architectures without training. NAS-
WOT uses the Jacobian to score architectures, and TE-NAS
uses the spectrum of NTKs and the number of linear re-
gions to rank the architectures. Zero-cost NAS, zero-cots-pt
NAS, and our FreeDARTS all consider Synflow metric in
this experiment, where our FreeDARTS obtains competitive
results, especially on the large ImageNet dataset. As shown,
FreeDARTS outperforms the random baseline with a large
margin, showing the effectiveness of FreeDARTS. Moreover,
compared with the two elaborately designed train-free NAS,
NASWOT and TE-NAS, FreeDARTS also achieves more
competitive results, further showing the reliability of the
proposed operation saliency metric. Table 1 also summa-
rizes the search cost of several weight-sharing NAS baselines
and training-free NAS methods. As shown, a significant ad-
vantage of our FreeDARTS is the efficiency, which only

Table 2. Zero-cost NAS and FreeDARTS with different saliency metrics on NAS-Bench-201.

Method CIFAR-10 CIFAR-100 ImageNet-16-120
Valid(%) Test(%) Valid(%) Test(%) Valid(%) Test(%)

Zero-cost with SNIP 89.08±0.96 91.82±1.56 68.00±2.16 68.08±2.01 37.29±5.91 37.12±5.88
Zero-cost with Grasp 88.10±0.65 90.92±0.81 66.26±1.40 66.35±1.17 34.66±4.83 33.88±4.43
Zero-cost with SynFlow 90.19±0.66 93.45±0.28 70.55±1.61 70.73±1.36 43.24±2.52 43.64±2.42

FreeDARTS with SNIP 89.57±0.57 92.96±0.52 69.77±0.76 69.90±0.80 42.66±1.51 43.79±1.54
FreeDARTS with Grasp 90.02±0.31 93.22±0.30 70.54±0.67 70.52±0.58 44.41±1.08 44.80±1.37
FreeDARTS with SynFlow 90.39±0.30 93.52±0.11 70.96±0.51 70.78±0.08 44.68±1.67 45.28±1.73

0 1 2 3 4 5 6 7 8
-log(a)

30

40

50

60

70

80

90

100

Te
st

 a
cc

ur
ac

y

2 3 4 5 6
92.5

93

93.5

94

(a) CIFAR-10

0 1 2 3 4 5 6 7 8
-log(a)

-20

0

20

40

60

80

Te
st

 a
cc

ur
ac

y

2 3 4 5 6
68

69

70

71

72

73

(b) CIFAR-100

0 1 2 3 4 5 6 7 8
-log(a)

0

10

20

30

40

50

Te
st

 a
cc

ur
ac

y

2 3 4 5 6
36

38

40

42

44

46

(c) ImageNet

Figure 1. Hyperparameter analysis of FreeDARTS on the NAS-Bench-201 benchmark dataset.

Table 3. Statistic search results (test error) on NAS-Bench-1shot1.

Method CIFAR-10 Average (%) CIFAR-10 Best (%) Search
Valid Test Valid Test Cost

GDAS 6.8±0.1 6.1±0.2 6.7 5.9 11425s
PC-DARTS 6.7±0.1 6.2±0.2 6.6 5.9 14760s
DARTS (1st) 6.8±0.05 6.1±0.2 6.6 5.9 8280s
DARTS (2nd) 6.8±0.05 6.2±0.05 6.6 6.2 19800s

Random 24.4±32.8 24.1±33.2 7.8 7.5 N/A
FreeDARTS 7.8±2.4 7.3±2.4 6.0 5.3 1.1s

costs 0.6s to find competitive architectures. More interest-
ing, we can see train-free methods all cost much less time
while achieved more competitive results, suggesting that the
supernet training may be unnecessarily required in NAS.

Comparison with different saliency metrics. In our
FreeDARTS, we consider two label-dependent saliency met-
rics, SNIP and GraSP, and a label-agnostic metric, Synflow,
to measure the operation importance. Similarly, rather than
calculating the saliency scores for α, zero-cost NAS [1]
also uses the three proxies to score an architecture, through
summing scores of all weights θ in the architecture. We
compared the three saliency metrics for NAS, from α level
to θ level. In Table 2, zero-cost NAS follows NASWOT [27]
to randomly sample 100 architectures, and selects the best
one based on the three saliency metrics. As shown in Table
2, without any training, the zero-cost NAS and FreeDARTS
with different saliency metrics all achieved competitive re-
sults on NAS-Bench-201, outperforming most baselines in

Table 1. These results suggest that pruning at initialization is
a promising direction for neural architecture search, which
extremely improves the efficiency for NAS with obtaining
competitive results. As shown in Table 2, our FreeDARTS
framework generally outperforms zero-cost NAS under dif-
ferent saliency metrics, suggesting that evaluating architec-
tures based on saliency metrics from operation level α is
more reliable than from supernet weights level θ. Moreover,
we can see from Table 2 that, the label-agnostic SynFlow
based metric outperforms the remaining two label-dependent
metrics both for zero-cost NAS and our FreeDARTS, show-
ing labels maybe not necessarily required in the pruning at
initialization based NAS. In the following experiments, we
only consider the SynFlow based FreeDARTS to conduct hy-
perparameter studies and architecture search on the DARTS
search space. Overall, the experiments in NAS-Bench-201
answered the foundational question, showing it is possible to
find promising architectures without any training nor labels.

Hyperparameter study. As described in Sec.3.2,
FreeDARTS is train-free, making our method is simple and
concise to implement without tuning too many hyperparam-
eters. As described in Sec. 3.2, the operation saliency score
is the product of the value of α and the gradient of α, while
α is transformed by softmax before conduct the forward to
calculate the gradient. Generally, the α is initialized with
a∗randn, where a is weighted scale which is the only hyper-
parameter in our FreeDARTS denoting the trade-off between
∂RFF
∂α (or ∂L∂α) and α. Figure 1 analyzes the hyperparameter a

Table 4. Comparison results with state-of-the-art NAS approaches on DARTS search space.

Method Test Error (%) Param +× Train Label Search Cost
CIFAR-10 CIFAR-100 ImageNet (M) (M) Free Agnostic (GPU day or sec.)

PARSEC [4] 2.86±0.06 - 26.3 3.6 509 × × 0.6d
SNAS [39] 2.85±0.02 20.09 27.3 / 9.2 2.8 474 × × 1.5d
BayesNAS [49] 2.81±0.04 - 26.5 / 8.9 3.4 - × × 0.2d
MdeNAS [48] 2.55 17.61 25.5 / 7.9 3.6 506 × × 0.16d
GDAS [11] 2.93 18.38 26.0 / 8.5 3.4 545 × × 0.2d
PDARTS [8] 2.50 16.63 24.4 / 7.4 3.4 557 × × 0.3d
PC-DARTS [40] 2.57±0.07 17.11 25.1 / 7.8 3.6 586 × × 0.3d
DrNAS [7] 2.54±0.03 16.30 24.2 / 7.3 4.0 644 × × 0.4d
DARTS (1st) [25] 2.94 17.76 - 2.9 513 × × 1.5d
DARTS (2nd) [25] 2.76±0.09 17.54 26.9 / 8.7 3.4 574 × × 4d

TE-NAS [5] 2.63 17.83 26.2 / 8.3 3.8 610 X × 0.17d
Zero-Cost-PT [38] 2.68±0.17 17.53 24.4 / 7.5 4.7 817 X X 0.018d
FreeDARTS 2.78±0.06 18.03 26.1 / 8.2 3.6 634 X X 1.5s
FreeDARTS† 2.50±0.05 17.08 25.4 / 7.8 3.6 577 X X 1.5s
FreeDARTS‡ 2.67±0.04 16.35 24.4 / 7.3 4.1 655 X X 1.5s

“Param” is the model size on CIFAR-10, while “+×” is calculated on ImageNet dataset. “d” is the GPU days and “s” is the
GPU seconds. We only consider the Synflow based metric, which is label agnostic, for our FreeDARTS in this search space.

with summarizing the performance of FreeDARTS with dif-
ferent a on the NAS-Bench-201. In general, our FreeDARTS
is robust to this hyperparameter, which with different a in a
lager range (1e−5 ∼ 1e−2) all achieve competitive results.

Experimental results on NAS-Bench-1shot1. We also
conduct the experiments on the NAS-Bench-1shot1 space,
where the comparison results for FreeDARTS and the weight-
sharing NAS baselines are provided in Table 3. We report
not only the average results but also the best results after
several independent runs with different random seeds. As
show, our FreeDARTS outperforms the Random baseline
by large margins, showing the effectiveness of the proposed
framework. As verified before, the most attractive advantage
of our FreeDARTS is the efficiency, and it also completes the
architecture search NAS-Bench-1shot1 space within much
less time compared with the common differentiable NAS
baselines, with only 1.1s. Although these differentiable NAS
baselines achieve better results according to the average test
error, our FreeDARTS could find more competitive archi-
tectures based on the best test error. We need to notice that
the ability to find the superior architecture is the core in the
NAS compared with obtaining stable results. In addition,
all differentiable NAS baselines achieve very similar results,
and one possible reason is that the differentiable NAS is very
easy to be tracked in the local optimal in this space.

4.2. Experiments on DARTS search space

Search results on DARTS space. We follow most existing
NAS methods [25, 40], to conduct the architecture search
on the CIFAR-10 dataset in this subsection, where the best-

found cell is repeatedly stacked to form the full structure
for evaluation on CIFAR-10, CIFAR-100, and ImageNet
datasets. We conducted the architecture search with differ-
ent random seeds to obtain the architectures, and retrained
them to select the best architecture based on the retrained
validation performance. All experimental settings on our
FreeDARTS are exact same as DARTS, while FreeDARTS†
stacks 20 cells to form the backbone to eliminate the depth
gap, and FreeDARTS‡ directly searches on the ImageNet.

The comparison results with the state-of-the-art NAS
methods are presented in Table 4. As shown, the best archi-
tecture searched by our FreeDARTS achieves a 2.78±0.06
% test error on CIFAR-10, which is on par with the DARTS
while only costs 1.5 seconds. More interesting, after elimi-
nate the depth gap by our FreeDARTS†, we achieve much
better results with a 2.45 % test error on CIFAR-10, which
outperforms the DARTS baseline by a large margin, again
demonstrating the effectiveness of the proposed method.
When transferring to larger datasets, the best architecture
searched by FreeDARTS† also shows the competitive trans-
feribility, with 17.08 % test error on the CIFAR-100, and
25.4 / 7.8 % top1 / top5 test error on the ImageNet. When
directly searching on the ImageNet, FreeDARTS‡ obtains
16.35% test error on the CIFAR-100, and 24.8 / 7.5 % top1
/ top5 test error on the ImageNet. Our FreeDARTS is also
extremely efficient in DARTS space which completes the
architecture search with only 1.5s, while all existing NAS
methods cost GPU days or hours.

Comparison results on different search spaces. As de-
scribed above, due to the efficiency of our FreeDARTS, we

Table 5. Search results on with different settings.

Method CIFAR-10 Test Error (%) Param
Best Mean (M)

GDAS 2.93 3.22±0.31 2.83±0.07
DARTS (1st) 2.94 3.22±0.45 2.02±0.41
DARTS (2nd) 2.62 3.02±0.26 2.83±0.07

FreeDARTS 2.75 2.92±0.18 3.82±0.26
FreeDARTS† 2.45 2.78±0.28 3.49±0.13
FreeDARTS‡ 2.63 2.91±0.31 3.89±0.23

We report the best and mean test error after several searches.
“Param” is the average model size and after several searches.
“Mean” is the average test error of searched architectures.

can now perform the architecture search more flexibly, e.g.,
directly search with a larger backbone supernet with more
cells to eliminate the depth gap, or directly on ImageNet
dataset. In this subsection, we present an ablation study on
the architecture search in different space. The comparison
results are provided in Table 4 and 5, and all searched ar-
chitectures with different random seeds are visualized in
the Appendix. As shown, compared with the DARTS base-
lines which prefer those non-parameters operations, e.g. skip
and pooling, the architectures search by our FreeDARTS,
FreeDARTS†, and FreeDARTS‡ all contain more parame-
ters, implying that our FreeDARTS is more able to find valid
and competitive architectures. From Table 5, we can also
see that, the architectures searched by FreeDARTS† are gen-
erally better than those architectures searched on CIFAR-10
with smaller backbone, in terms of both the best and the av-
erage performance after several independent runs, showing
the depth gap is a serious issue to be fixed. More interest-
ing, although our FreeDARTS‡ has a minor performance
drop on CIFAR-10 compared with FreeDARTS†, it achieves
higher evaluation performance on CIFAR-100 and ImageNet
as it directly searched on ImageNet. The results in Table
4 and 5 verify that, our FreeDARTS can eliminate the gap
between the architecture search and evaluation as it can flex-
ibly search on different space, leading to more competitive
results from our FreeDARTS† and FreeDARTS‡.

5. Discussion
This section discusses the advantages and the limitations

of the proposed FreeDARTS framework by summarizing
the above experimental findings. An attractive advantage of
our FreeDARTS is the efficiency and effectiveness, which
completes the entire architecture search in seconds with ob-
taining competitive results. The experimental results verified
that the synaptic saliency based score metrics were not only
effective in the network pruning but also in the architecture
pruning. Since our FreeDARTS abandoned the supernet
training phase, the common issue in differentiable NAS,
that those parameter-free operations (e.g., pooling and skip-

connection, etc.) are preferred due to they are easy to be
trained with producing more consistent outputs [40], is re-
lieved. In addition, thanks to the memory efficiency by our
FreeDARTS, we can eliminate the depth gap that we can
conduct architecture search and evaluation in the same space.
More important, our FreeDARTS is hyperparameter-efficient
with only one hyperparameter to be tuned.

Apart from our FreeDARTS, several recent works [5, 27]
also share the similar motivation as us to identify promising
architectures at initialization. However, comparing with elab-
orately designing score functions, introducing the saliency
metrics from a network pruning perspective is a more promis-
ing direction in train-free NAS, where FreeDARTS achieved
more competitive results than NASWOT [27] and TE-NAS
[5] with much less computational time.

FreeDARTS is a simple and direct application of network
pruning at initialization to differentiable neural architecture
search without any elaborately considerations, while it could
still achieve more reliable results than differentiable NAS
baselines with much less memory and computational con-
sumption. This also implies that explicitly designing a more
specific and explainable score function for NAS from the
pruning perspective is a promising direction. In addition,
our FreeDARTS simply prune the inferior operations by one-
shot, while the iterative method may further enhance the
performance as suggested in the network pruning [35].

6. Conclusion
This paper challenges the common practice in neural

architecture search by raising the question: can we mea-
sure the operation importance and find high-quality ar-
chitectures without any training under the differentiable
paradigm? We approach this question by reformulating
differentiable architecture search from a network pruning-
at-initialization perspective, and introducing the saliency
metrics to score the importance of operations in the super-
net. Built based on saliency metrics, we propose a novel
framework called training free neural architecture search
(FreeDARTS), which can perform architecture search ex-
tremely efficiently and more flexibly, with achieving com-
petitive or even better results against SOTA in a training-free
and even label-agnostic manner. Extensive experimental
results on NAS benchmark dataset and the common DARTS
search space verified the effectiveness of the proposed frame-
work, showing the supernet training and labels are not nec-
essarily required in differentiable NAS. We bridge the gap
between the network pruning at initialization and the differ-
entiable architecture search, and we hypothesize the infor-
mation flow is a more appropriate indicator to reveal a good
architecture than the validation performance in differentiable
architecture search. We hope our findings encourage the
community to further explore NAS from the perspective of
network pruning at initialization.

References
[1] Mohamed S Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak,

and Nicholas D Lane. Zero-cost proxies for lightweight nas.
In ICLR, 2021. 2, 3, 4, 5, 6

[2] Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil
Naik. Accelerating neural architecture search using perfor-
mance prediction. arXiv preprint arXiv:1705.10823, 2017.
2

[3] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay
Vasudevan, and Quoc Le. Understanding and simplifying
one-shot architecture search. In International Conference on
Machine Learning, pages 549–558, 2018. 1

[4] Francesco Paolo Casale, Jonathan Gordon, and Nicolo Fusi.
Probabilistic neural architecture search. arXiv preprint
arXiv:1902.05116, 2019. 7

[5] Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural
architecture search on imagenet in four gpu hours: A the-
oretically inspired perspective. In ICLR, 2021. 2, 3, 5, 7,
8

[6] Xiangning Chen and Cho-Jui Hsieh. Stabilizing differentiable
architecture search via perturbation-based regularization. In
ICML, 2020. 1, 2

[7] Xiangning Chen, Ruochen Wang, Minhao Cheng, Xiaocheng
Tang, and Cho-Jui Hsieh. Drnas: Dirichlet neural architecture
search. arXiv preprint arXiv:2006.10355, 2020. 7

[8] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive
differentiable architecture search: Bridging the depth gap
between search and evaluation. In Proceedings of the IEEE
International Conference on Computer Vision, pages 1294–
1303, 2019. 1, 3, 7

[9] Xuelian Cheng, Yiran Zhong, Mehrtash Harandi, Yunchao
Dai, Xiaojun Chang, Tom Drummond, Hongdong Li, and
Zongyuan Ge. Hierarchical Neural Architecture Search for
Deep Stereo Matching. In NeurIPS, 2020. 1

[10] Xuanyi Dong and Yi Yang. One-shot neural architecture
search via self-evaluated template network. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 3681–3690, 2019. 5

[11] Xuanyi Dong and Yi Yang. Searching for a robust neural
architecture in four gpu hours. In IEEE Conference on Com-
puter Vision and Pattern Recognition. IEEE Computer Soci-
ety, 2019. 5, 7, 12

[12] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the
scope of reproducible neural architecture search. ICLR, 2020.
5, 11

[13] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-shot
neural architecture search with uniform sampling. Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 2019. 2

[14] Song Han, Jeff Pool, John Tran, and William J Dally. Learn-
ing both weights and connections for efficient neural net-
works. In Proceedings of the 28th International Conference
on Neural Information Processing Systems-Volume 1, pages
1135–1143, 2015. 3

[15] Yiming Hu, Yuding Liang, Zichao Guo, Ruosi Wan, Xiangyu
Zhang, Yichen Wei, Qingyi Gu, and Jian Sun. Angle-based

search space shrinking for neural architecture search. In
European Conference on Computer Vision, pages 119–134.
Springer, 2020. 3

[16] Steven A Janowsky. Pruning versus clipping in neural net-
works. Physical Review A, 39(12):6600, 1989. 3

[17] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider,
Barnabas Poczos, and Eric P Xing. Neural architecture search
with bayesian optimisation and optimal transport. In Advances
in Neural Information Processing Systems, pages 2020–2029,
2018. 1

[18] Namhoon Lee, Thalaiyasingam Ajanthan, Stephen Gould,
and Philip HS Torr. A signal propagation perspective for
pruning neural networks at initialization. In International
Conference on Learning Representations, 2020. 2, 3

[19] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr.
Snip: Single-shot network pruning based on connection sen-
sitivity. In International Conference on Learning Representa-
tions, 2019. 2, 3, 4

[20] Changlin Li, Jiefeng Peng, Liuchun Yuan, Guangrun Wang,
Xiaodan Liang, Liang Lin, and Xiaojun Chang. Block-wisely
supervised neural architecture search with knowledge distil-
lation. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June
13-19, 2020, pages 1986–1995, 2020. 1

[21] Changlin Li, Tao Tang, Guangrun Wang, Jiefeng Peng,
Bing Wang, Xiaodan Liang, and Xiaojun Chang. Boss-
nas: Exploring hybrid cnn-transformers with block-wisely
self-supervised neural architecture search. arXiv preprint
arXiv:2103.12424, 2021. 1

[22] Liam Li and Ameet Talwalkar. Random search and repro-
ducibility for neural architecture search. arXiv preprint
arXiv:1902.07638, 2019. 2

[23] Hanwen Liang, Shifeng Zhang, Jiacheng Sun, Xingqiu He,
Weiran Huang, Kechen Zhuang, and Zhenguo Li. Darts+: Im-
proved differentiable architecture search with early stopping.
arXiv preprint arXiv:1909.06035, 2019. 1, 3

[24] Chenxi Liu, Piotr Dollár, Kaiming He, Ross Girshick, Alan
Yuille, and Saining Xie. Are labels necessary for neural
architecture search? In European Conference on Computer
Vision, pages 798–813. Springer, 2020. 1, 3

[25] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:
Differentiable architecture search. ICLR, 2019. 1, 2, 3, 5, 7,
11, 12

[26] Christos Louizos, Max Welling, and Diederik P Kingma.
Learning sparse neural networks through l 0 regularization.
In International Conference on Learning Representations,
2018. 3

[27] Joseph Mellor, Jack Turner, Amos Storkey, and Elliot J Crow-
ley. Neural architecture search without training. In ICML,
2021. 2, 3, 5, 6, 8

[28] Asaf Noy, Niv Nayman, Tal Ridnik, Nadav Zamir, Sivan
Doveh, Itamar Friedman, Raja Giryes, and Lihi Zelnik. Asap:
Architecture search, anneal and prune. In International Con-
ference on Artificial Intelligence and Statistics, pages 493–
503. PMLR, 2020. 3

[29] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff
Dean. Efficient neural architecture search via parameter shar-

ing. In International Conference on Machine Learning, pages
4092–4101, 2018. 2

[30] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. AAAI, 2019. 1

[31] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang,
Zhihui Li, Xiaojiang Chen, and Xin Wang. A comprehensive
survey of neural architecture search: Challenges and solutions.
arXiv preprint arXiv:2006.02903, 2020. 1

[32] Christian Sciuto, Kaicheng Yu, Martin Jaggi, Claudiu Musat,
and Mathieu Salzmann. Evaluating the search phase of neural
architecture search. arXiv preprint arXiv:1902.08142, 2019.
1, 2

[33] Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik,
Margret Keuper, and Frank Hutter. Nas-bench-301 and the
case for surrogate benchmarks for neural architecture search.
arXiv preprint arXiv:2008.09777, 2020. 5, 11

[34] Suraj Srinivas and R Venkatesh Babu. Generalized dropout.
arXiv preprint arXiv:1611.06791, 2016. 3

[35] Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya
Ganguli. Pruning neural networks without any data by itera-
tively conserving synaptic flow. Advances in Neural Informa-
tion Processing Systems, 33, 2020. 2, 3, 4, 8

[36] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking
winning tickets before training by preserving gradient flow. In
International Conference on Learning Representations, 2020.
2, 3, 4

[37] Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng
Tang, and Cho-Jui Hsieh. Rethinking architecture selection
in differentiable nas. In ICLR, 2021. 1, 2, 3, 4

[38] Lichuan Xiang, Łukasz Dudziak, Mohamed S Abdelfattah,
Thomas Chau, Nicholas D Lane, and Hongkai Wen. Zero-
cost proxies meet differentiable architecture search. arXiv
preprint arXiv:2106.06799, 2021. 3, 5, 7

[39] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas:
stochastic neural architecture search. ICLR, 2019. 5, 7

[40] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun
Qi, Qi Tian, and Hongkai Xiong. Pc-darts: Partial chan-
nel connections for memory-efficient architecture search. In
ICLR, 2020. 5, 7, 8, 12

[41] Shen Yan, Yu Zheng, Wei Ao, Xiao Zeng, and Mi Zhang.
Does unsupervised architecture representation learning help
neural architecture search? Advances in Neural Information
Processing Systems, 33, 2020. 1, 3

[42] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real,
Kevin Murphy, and Frank Hutter. Nas-bench-101: Towards
reproducible neural architecture search. In ICML, pages 7105–
7114, 2019. 11

[43] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Mar-
rakchi, Thomas Brox, and Frank Hutter. Understanding and
robustifying differentiable architecture search. In ICLR, 2020.
1, 2

[44] Arber Zela, Julien Siems, and Frank Hutter. Nas-bench-
1shot1: Benchmarking and dissecting one-shot neural archi-
tecture search. In ICLR, 2020. 5, 11

[45] Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph hyper-
networks for neural architecture search. In 7th International
Conference on Learning Representations, 2019. 1, 2

[46] Miao Zhang, Huiqi Li, Shirui Pan, Xiaojun Chang, and Steven
Su. Overcoming multi-model forgetting in one-shot nas with
diversity maximization. In IEEE conference on Computer
Vision and Pattern Recognition (CVPR), 2020. 1

[47] Xuanyang Zhang, Pengfei Hou, Xiangyu Zhang, and Jian
Sun. Neural architecture search with random labels. arXiv
preprint arXiv:2101.11834, 2021. 1, 3

[48] Xiawu Zheng, Rongrong Ji, Lang Tang, Baochang Zhang,
Jianzhuang Liu, and Qi Tian. Multinomial distribution learn-
ing for effective neural architecture search. In International
Conference on Computer Vision (ICCV), 2019. 7

[49] Hongpeng Zhou, Minghao Yang, Jun Wang, and Wei Pan.
Bayesnas: A bayesian approach for neural architecture search.
In International Conference on Machine Learning, pages
7603–7613, 2019. 7

[50] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 8697–8710, 2018.
1

APPENDIX:

A. Search space description and experimental set-
ting

In our experiments, we consider two scenarios, NAS
benchmark datasets, including NAS-Bench-101, NAS-
Bench-1shot1, NAS-Bench-201, and NAS-Bench-301 [12,
33, 42, 44], and the common DARTS space [25], to analyze
the proposed framework FreeDARTS. The search spaces of
NAS-Bench-101, NAS-Bench-1shot1, and NAS-Bench-201
are much smaller than the common DARTS space, while the
ground-truth for all candidate architectures in the benchmark
datasets is known. The NAS-Bench-301 shares the same
search space with DARTS space, while the performance of
candidate architectures are obtained by a predictor fitted with
∼60k architecture ground-truths.

The search space in NAS-Bench-201 [12] contains four
nodes with five associated operations, resulting in 15,625 cell
candidates, where the performance of CIFAR-100, CIFAR-
100, and ImageNet for all architectures in this search space
are reported. The NAS-Bench-101 [42] is another famous
NAS benchmark dataset, which is much larger than NAS-
Bench-201 while only the CIFAR-10 performance for all
architectures are reported. More important, the architec-
tures in NAS-Bench-101 contain different number of nodes,
which makes it impossible to build a generalized supernet
for one-shot nor differential NAS methods. To leverage
the NAS-Bench-101 for analyzing the differentiable NAS
methods, NAS-Bench-1Shot1 [44] builds from the NAS-
Bench-101 benchmark dataset by dividing all architectures
in NAS-Bench-101 into 3 different unified cell-based search
spaces, which contain 6240, 29160, and 363648 architec-
tures, respectively. The architectures in each search space
have the same number of nodes and connections, making
the differentiable NAS could be directly applied to each
search space. We choose the third search space in NAS-
Bench-1Shot1 to analyse FreeDARTS, since it is much more
complicated than the remaining two search spaces.

As to the most common search space in NAS, DARTS
needs to search for two types of cells: a normal cell αnormal
and a reduction cell αreduce. Cell structures are repeatedly
stacked to form the final CNN structure. There are seven
nodes in each cell: two input nodes, four operation nodes,
and one output node. Each input node will select one oper-
ation from |O| = 8 candidate operations, including: 3× 3
max pooling and average pooling operation, 3× 3 and 5× 5
separable convolution operation, 3 × 3 and 5 × 5 dilated
separable convolutions operation, identity, and zero. The
common practice in DARTS is to search on CIFAR-10, and
the best searched cell structures are directly transferred to
CIFAR-100 and ImageNet. We conduct the architecture
search with 5 different random seeds, and the best one is
selected after the evaluation on CIFAR-10. The best one

is then transferred to CIFAR-100 and ImageNet. Since the
sizes of searched architectures are in a range, we adjust the
number of filter in the evaluation to make the model sizes
similar for fair comparison.

The NAS-Bench-301 [33] shares the same search space
with DARTS, which contains 1018 architectures, making it
impossible to report the ground-truths for all architectures.
Rather than training from the scratch to get the ground-truths
for all architectures, NAS-Bench-301 fits a Graph Isomor-
phism Network based on the ground-truths of∼60k architec-
ture to predict the performance of all remaining architectures.
The prediction usually could hardly indicate the the true per-
formance in practice. For example, the performance of an
architecture containing all parameter-free operations still
receive competitive predictive performance, in contrast to
the extremely poor true performance. However, the authors
showed that the prediction shows a positive correlation with
the ground truth, that the resulting search trajectories by
the prediction closely resemble the ground truth trajectories
when evaluating a differentiable NAS method.

B. Operation-level score and architecture-level
score comparison

In Section 2 and Table 2, we have compared zero-cost
NAS and FreeDARTS with the three different saliency met-
rics. We should notice that the major different between
zero-cost NAS and FreeDARTS is that zero-cost NAS calcu-
lates the metrics from the whole architecture weights θ level
while FreeDARTS directly calculates the metrics on α. Since
zero-cost NAS sums scores of all parameters θ in a specific
architecture, it could only sample a set of architectures to cal-
culate the scores for architectures rather than obtaining the
scores of candidate operations for pruning. Similar to NAS-
WOT, the sample size affects the performance of zero-cost
NAS if we directly use it for architecture search rather than
warmup. On the contrary, since FreeDARTS only needs to
calculate the scores for candidate operations for once, there
is no sampling-evaluation-selection process, and it is thus
much more efficient than zero-cost NAS. Figure 2 plots the
test accuracy of zero-cost NAS with different sample sizes
under the three train-free saliency metrics on NAS-Bench-
201. In our experiments, we found the calculation time of
SNIP is similar to SynFlow, while GraSP is about ten times
of them, since GraSP needs to calculate the second-order
Hessian matrix (which is implemented by the Hessian-vector
computation).

As shown, zero-cost NAS barely improves its perfor-
mance with the sample sizes for SNIP and GraSP, imply-
ing the two metrics are not appropriate metrics to evaluate
the whole architecture. On the contrary, the SynFlow, also
adopted by our FreeDARTS, shows a clear improvement for
zero-cost NAS with the sample size from 10 to 100, while it
also decreases when the sample size increases to 1000. We

CIFAR10 n=10 n=100 n=1000 n=10000
SNIP 91.2886667 91.672 89.0106667 83.338
GraSP 91.3486667 89.9893333 90.2746667 90.536
SynFlow 91.922 93.778 93.7566667 93.5966667
FreeNAS 93.62 93.62 93.62 93.62

CIFAR100 n=10 n=100 n=1000 n=10000
SNIP 66.882 67.0593333 59.884 50.3279999
GraSP 66.3993333 64.5833333 63.2546667 62.688
SynFlow 67.5246666 71.54 71.7786666 71.3666666
FreeNAS 70.89 70.89 70.89 70.89

ImageNet n=10 n=100 n=1000 n=10000
SNIP 36.0588889 35.7011111 17.8711111 5.85333333
GraSP 36.5411111 30.2166666 23.6022222 31.0155555
SynFlow 37.5722222 43.9755555 44.0555555 42.8177778
FreeNAS 45.06 45.06 45.06 45.06

78
80
82
84
86
88
90
92
94
96

n=10 n=100 n=1000 n=10000

CIFAR-10

SNIP GraSP SynFlow FreeDARTS

(a) CIFAR-10

0

10

20

30

40

50

60

70

80

n=10 n=100 n=1000 n=10000

CIFAR-100

SNIP GraSP SynFlow FreeDARTS

0

10

20

30

40

50

n=10 n=100 n=1000 n=10000

ImageNet

SNIP GraSP SynFlow FreeNAS

(b) CIFAR-100

0

10

20

30

40

50

60

70

80

n=10 n=100 n=1000 n=10000

CIFAR-100

SNIP GraSP SynFlow FreeNAS

0

10

20

30

40

50

n=10 n=100 n=1000 n=10000

ImageNet

SNIP GraSP SynFlow FreeDARTS

(c) ImageNet

Figure 2. Test accuracy of FreeDARTS compared with zero-cost NAS with different sample sizes and saliency metrics on NAS-Bench-201.

0 5 10 15 20 25
Step

80

85

90

95

Te
st

 A
cc

ur
ac

y

(a) CIFAR-10

0 5 10 15 20 25
Step

50

55

60

65

70

75

Te
st

 A
cc

ur
ac

y

(b) CIFAR-100

0 5 10 15 20 25
Step

20

25

30

35

40

45

50

Te
st

 A
cc

ur
ac

y

(c) ImageNet

Figure 3. Track of test accuracy during the pruning for FreeNAS on the NAS-Bench-201.

can see a sharp drop for the zero-cost NAS with SNIP and
GraSP when the sample size reaches 100 or more, showing
that the architecture level-scoring is not reliable. On the con-
trary, the performance of our FreeDARTS would not vary
since there is no need to sample a bunch of architectures
for selection. We should also notice that the zero-cost NAS
calculates the score for all θ whose size is much larger than
α. In addition, zero-cost NAS needs to calculate the score
for several hundred architectures, which means that the time
cost of zero-cost NAS increases linearly with the sample size,
resulting that zero-cost NAS is much more time-consuming
than FreeDARTS.

C. Analysis the operation remove by FreeDARTS

Algorithm 1 outlines the our FreeDARTS for the differ-
entiable neural architecture search. As known, the DARTS
utilized the trained magnitude of α to indicate the importance
of operations, while our FreeDARTS calculate the operation
saliency metrics to indicate the importance of the operations.
So, our FreeDARTS only replace the trained magnitude of
α with F(α), and the discrete architecture can be obtained
through apply argmax on F(α). To investigate whether our
FreeDARTS is effective in removing inferior operations, we
consider only pruning one inferior operation from the super-
net in each step based on the saliency metrics. Figure 3 tracks
the quality of the pruned supernet, by applying the argmax
on the architecture parameter α of the pruned supernet after
each step of operation pruning to get the architecture (Since
α is randomly generated, the argmax on the unpruned α is

Algorithm 1 FreeDARTS

1: input: Initialized supernet weights W and architecture
parameters α; Set of edges E and set of candidate opera-
tions O.

2: for all operations o ∈ Oe do
3: Calculate the operation saliency score for each opera-

tion αe,o based on Eq. (7), (8), or (10).
4: end for
5: Prune the candidate operation by one-shot based on
Fsnip(αe,o), Fgrasp(αe,o), or FSF(αe,o);

6: output: Obtain a valid architecture α∗.

Table 6. Statistic search results (test error) on NAS-Bench-301.

Method Average Best Ground-True

GDAS [11] 6.52±0.62 (%) 5.38% 3.07±0.16 (%)
PC-DARTS [40] 6.42±0.43 (%) 5.46% 2.57±0.07 (%)
DARTS (2nd) [25] 6.74±0.58 (%) 5.87% 2.76±0.09 (%)

Random 7.11±0.58 (%) 6.21% 3.29±0.15 (%)
FreeDARTS(SNIP) 6.60±0.47 (%) 5.71% 2.69±0.08 (%)
FreeDARTS(GraSP) 6.72±0.48 (%) 5.74% 2.78±0.09 (%)
FreeDARTS(Synflow) 6.65±0.52 (%) 5.50% 2.50±0.05 (%)

same as random sampling when we do not remove inferior
operations). As shown, the performance of the architectures
increases with the pruning proceeding, verifying that the
FreeDARTS can effectively remove inferior operations.

Table 7. Search results (test error) with the sample size on NAS-Bench-301.

Method Average (10) Best (10) Average (100) Best (100) Average (1000) Best (1000)

Random 7.11±0.58 (%) 6.21% 6.85±0.58 (%) 5.71% 6.89±0.55 (%) 5.61%
FreeDARTS(SNIP) 6.70±0.47 (%) 5.71% 6.77±0.51 (%) 5.65% 6.67±0.50 (%) 5.50%
FreeDARTS(GraSP) 6.72±0.48 (%) 5.74% 6.71±0.48 (%) 5.64% 6.65±0.49 (%) 5.55%
FreeDARTS(Synflow) 6.65±0.52 (%) 5.50% 6.66±0.53 (%) 5.49% 6.62±0.50 (%) 5.34%

D. Experimental results on NAS-Bench-301

We also conduct the experiments on the NAS-Bench-301,
the largest existing benchmark dataset, where the perfor-
mance of our FreeDARTS with different operation saliency
and tseveral differentiable NAS baselines are provided in
Table 6. The “Average” reports the average predictive perfor-
mance from the benchmark after several independent runs,
and the “Best” reports the predictive performance of the best
searched architectures. The “Ground-Truth” is the valida-
tion results based on the train-from-the-scratch. As show,
our FreeDARTS also outperforms the Random baseline by
large margins in the NAS-Bench-301, again showing the
effectiveness of the proposed framework.

As we can observed, the predictive results in NAS-Bench-
301 are not very consistent with the ground truth in Table 6.
For example, although GDAS achieves much lower ground
truth performance, it obtains the best predictive performance
from the NAS-Bench-301. Although the predictive perfor-
mance from NAS-Bench-301 could not exactly indicate the
true performance, the results still present several consistent
results with our previous observation in other benchmark
datasets. For example, our FreeDARTS with different oper-
ation saliency metrics outperforms “Random” baseline by
large margins, and the Synflow based metric achieved the
best results among the three operation saliency metrics. Com-
pared with several NAS baselines, our FreeDARTS without
any training also achieves comparable results.

In addition, Table 7 shows how the performance of our
FreeDARTS varies with different random seeds. We report
the average and best performance of FreeDARTS under dif-
ferent number of seeds. The “Random” baseline also reports
the average performance in NAS-Bench-301 with varying
the number of seeds. We can see that the “Best” performance
increase when we evaluate more randomly sampled points
with different seeds, which makes sense as we randomly
select architecture from the search space. In contrast, our
FreeDARTS with different saliency metrics are more robust,
where the best performance only changes slightly with dif-
ferent random seeds. As shown, compared with the random
baseline, our FreeDARTS presents more robust results.

E. Visualization of the searched architectures
Since the inputs of FreeDARTS with Synflow are all-

ones vector, the search results will be the same for ar-

c_{k-2}

0

sep_conv_5x5
1

sep_conv_5x5

2

avg_pool_3x3

c_{k-1}

sep_conv_3x3

avg_pool_3x3

3
sep_conv_5x5

dil_conv_5x5

c_{k}

sep_conv_5x5

c_{k-2} 0
max_pool_3x3

c_{k-1}

sep_conv_5x5

1
sep_conv_3x3

sep_conv_5x5
2

sep_conv_5x5
3

sep_conv_3x3

c_{k}
sep_conv_3x3

sep_conv_3x3

(a) normal and reduction cells by FreeDARTS with seed4

c_{k-2}

0

dil_conv_3x3

2
skip_connect

3
sep_conv_5x5

c_{k-1} avg_pool_3x3
1

sep_conv_5x5

sep_conv_3x3

sep_conv_3x3

c_{k}

avg_pool_3x3 c_{k-2}

0

dil_conv_5x5

1

skip_connect

2
avg_pool_3x3

3

skip_connect

c_{k-1}

avg_pool_3x3

sep_conv_3x3

max_pool_3x3

c_{k}

sep_conv_5x5

(b) normal and reduction cells by FreeDARTS† with seed1

c_{k-2}

0

avg_pool_3x3

2

dil_conv_5x5

c_{k-1}

sep_conv_3x3 1

sep_conv_3x3
3

sep_conv_5x5

sep_conv_3x3

sep_conv_3x3 c_{k}

sep_conv_5x5

c_{k-2}

0
dil_conv_5x5

1

max_pool_3x3

2sep_conv_5x5
3

sep_conv_3x3

c_{k-1}
sep_conv_5x5 max_pool_3x3

sep_conv_5x5
c_{k}

dil_conv_5x5

(c) normal and reduction cells by FreeDARTS‡ with seed3

Figure 4. The best cells discovered by FreeDARTS, FreeDARTS†,
and FreeDARTS‡(from top to bottom) on the DARTS search space.

chitecture search on CIFAR-10 and CIFAR-100. So, we
only perform the architecture search on CIFAR-10 and Ima-
geNet. In result, there are 15 architectures searched by our
FreeDARTS, FreeDARTS†, and FreeDARTS‡ with 5 differ-
ent random seeds 0-4. In Figure 4, we present the best archi-
tectures searched in DARTS space by FreeDARTS(seed4),
FreeDARTS† (seed1), and FreeDARTS‡ (seed3), and the
remaining searched architectures are presented in Figure
5. An interesting finding is that, our FreeDARTS avoid se-
lecting too many weight-free operations (e.g., pooling and
skip-connection, that all searched architectures contains less
than two weight-free operations in the normal cells 1.

1The reproducible codes could be found in the supplementary material.

c_{k-2}

0
sep_conv_3x3

1sep_conv_3x3

2

dil_conv_3x3 3

sep_conv_3x3

c_{k-1}

sep_conv_5x5

dil_conv_5x5

dil_conv_3x3

c_{k}

max_pool_3x3
c_{k-2}

0

avg_pool_3x3

1

dil_conv_5x5

c_{k-1}

avg_pool_3x3

3

dil_conv_5x5

dil_conv_5x5

2
sep_conv_3x3

c_{k}

avg_pool_3x3

dil_conv_5x5

(a) normal and reduction cell by FreeDARTS with seed0

c_{k-2}

0

dil_conv_3x3
2

sep_conv_3x3

c_{k-1}

dil_conv_5x5

1
avg_pool_3x3

sep_conv_3x3

sep_conv_3x3

c_{k}

3
sep_conv_5x5

dil_conv_3x3

c_{k-2}

0
dil_conv_5x5

c_{k-1}
sep_conv_3x3

1sep_conv_5x5

3avg_pool_3x3

sep_conv_5x5

2dil_conv_5x5

dil_conv_5x5

c_{k}

sep_conv_5x5

(b) normal and reduction cell by FreeDARTS with seed1

c_{k-2}

0

max_pool_3x3

1

sep_conv_3x3 2

sep_conv_5x5

c_{k-1}
sep_conv_5x5 sep_conv_5x5

dil_conv_5x5

c_{k}

3sep_conv_5x5

sep_conv_5x5

c_{k-2} 0sep_conv_5x5

1

sep_conv_3x3

c_{k-1}

skip_connect

sep_conv_3x3

2
sep_conv_3x3

c_{k}

sep_conv_5x5

3
sep_conv_3x3

sep_conv_3x3

(c) normal and reduction cell by FreeDARTS with seed2

c_{k-2}

0

dil_conv_5x5
1dil_conv_5x5

c_{k-1}
dil_conv_5x5

2
dil_conv_5x5

3
avg_pool_3x3

sep_conv_5x5

sep_conv_3x3

c_{k}

dil_conv_5x5

c_{k-2}

0

dil_conv_5x5
1

sep_conv_5x5

2
skip_connect

c_{k-1}
dil_conv_5x5

sep_conv_5x5

3sep_conv_3x3

c_{k}

sep_conv_5x5

sep_conv_3x3

(d) normal and reduction cell by FreeDARTS with seed3

c_{k-2} 0
sep_conv_3x3

c_{k-1}

avg_pool_3x3

1

dil_conv_5x5 2

dil_conv_5x5

dil_conv_5x5

dil_conv_5x5

c_{k}

3sep_conv_5x5

dil_conv_3x3 c_{k-2}
0

dil_conv_5x5

1

max_pool_3x3

c_{k-1}

dil_conv_5x5

sep_conv_5x5

2

sep_conv_3x3

c_{k}max_pool_3x3
3dil_conv_5x5

sep_conv_5x5

(e) normal and reduction cell by FreeDARTS† with seed0

c_{k-2}

0

dil_conv_3x3
1

sep_conv_3x3

2

dil_conv_5x5

c_{k-1}

dil_conv_3x3

sep_conv_5x5

3dil_conv_5x5

avg_pool_3x3

sep_conv_5x5 c_{k}

c_{k-2}

0
max_pool_3x3

c_{k-1}
max_pool_3x3

1
sep_conv_3x3

2
max_pool_3x3

dil_conv_5x5

sep_conv_5x5

3
sep_conv_5x5

c_{k}

max_pool_3x3

(f) normal and reduction cell by FreeDARTS† with seed2

c_{k-2}

0

avg_pool_3x3
2

sep_conv_3x3

c_{k-1}

sep_conv_5x5

1
skip_connect

sep_conv_3x3

3sep_conv_5x5

sep_conv_3x3 c_{k}

max_pool_3x3

c_{k-2}

0

max_pool_3x3

1

dil_conv_5x5

3

dil_conv_5x5

c_{k-1}

dil_conv_3x3

sep_conv_5x5

2sep_conv_3x3

max_pool_3x3

max_pool_3x3

c_{k}

(g) normal and reduction cell by FreeDARTS† with seed3

c_{k-2}

0skip_connect

1
sep_conv_5x5

3

dil_conv_5x5

c_{k-1}

dil_conv_3x3

sep_conv_5x5 2sep_conv_5x5

c_{k}

dil_conv_5x5

sep_conv_5x5

c_{k-2}

0

avg_pool_3x3
1

max_pool_3x3 3
skip_connect

c_{k-1}

max_pool_3x3
2

dil_conv_3x3

max_pool_3x3

sep_conv_3x3

c_{k}dil_conv_5x5

(h) normal and reduction cell by FreeDARTS† with seed4

c_{k-2}

0

dil_conv_5x5

1

dil_conv_3x3

3

sep_conv_5x5

c_{k-1}

dil_conv_5x5

dil_conv_3x3

2dil_conv_5x5

sep_conv_3x3

sep_conv_3x3

c_{k}

c_{k-2}

0
dil_conv_3x3

1
dil_conv_3x3

2
dil_conv_5x5

3avg_pool_3x3

c_{k-1}
max_pool_3x3

skip_connect

sep_conv_5x5

c_{k}

sep_conv_5x5

(i) normal and reduction cell by FreeDARTS‡ with seed0

c_{k-2}
0sep_conv_5x5

2

sep_conv_5x5

c_{k-1}

max_pool_3x3

1

max_pool_3x3

sep_conv_5x5

dil_conv_5x5

c_{k}

3
sep_conv_3x3

sep_conv_3x3

c_{k-2}

0

avg_pool_3x3
1

max_pool_3x3

2

dil_conv_5x5

c_{k-1} dil_conv_5x5

max_pool_3x3

sep_conv_3x3

3
dil_conv_3x3

sep_conv_3x3

c_{k}

(j) normal and reduction cell by FreeDARTS‡ with seed1

c_{k-2}

0

skip_connect
1

skip_connect

2

skip_connect

c_{k-1}
sep_conv_5x5

sep_conv_5x5
3

sep_conv_5x5

c_{k}

sep_conv_5x5

sep_conv_5x5
c_{k-2} 0

avg_pool_3x3

c_{k-1}

avg_pool_3x3
1

sep_conv_5x5

sep_conv_5x5 2

dil_conv_5x5

3dil_conv_3x3

c_{k}
dil_conv_5x5

sep_conv_5x5

(k) normal and reduction cell by FreeDARTS‡ with seed2

c_{k-2}

0avg_pool_3x3

1
sep_conv_5x5

2

sep_conv_5x5

c_{k-1}

dil_conv_3x3

dil_conv_5x5 3sep_conv_5x5

c_{k}

sep_conv_5x5

sep_conv_5x5

c_{k-2} 0
max_pool_3x3

c_{k-1}

sep_conv_3x3

1sep_conv_5x5

2dil_conv_5x5

3sep_conv_5x5

sep_conv_5x5

sep_conv_5x5

c_{k}sep_conv_5x5

(l) normal and reduction cell by FreeDARTS‡ with seed4

Figure 5. The cells discovered by FreeDARTS, FreeDARTS, and FreeDARTS‡ with different random seeds on the DARTS search space.

	1 . Introduction
	2 . Preliminary
	2.1 . A Review of NAS
	2.2 . Connecting NAS with Network Pruning

	3 . Methodology
	3.1 . Revisit Synaptic Saliency Metrics
	3.2 . Adapt Saliency Metrics for Differentiable NAS

	4 . Experiments
	4.1 . Experiments on benchmark datasets
	4.2 . Experiments on DARTS search space

	5 . Discussion
	6 . Conclusion

