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Abstract

The feature analysis of point clouds, a popular

representation of three‐dimensional (3D) objects, is

rising as a hot research topic nowadays. Point cloud

data bear a sparse and unordered nature, making many

commonly used feature extraction methods, for exam-

ple, Convolutional Neural Networks (CNNs)

inapplicable, while previous models suitable for the

task are usually complex. We aim to reduce model

complexity by reducing the number of parameters

while achieving better (or at least comparable)

performance. We propose an Interpolation Graph

Convolutional Network (IGCN) for extracting features

of point clouds. IGCN uses the point cloud graph

structure and a specially designed Interpolation Con-

volution Kernel to mimic the operations of CNN for

feature extraction. On the basis of weight postfusion

and multilevel‐resolution aggregation, IGCN not only

reduces the cost of calculating the interpolation

operation but also improves the model's performance.

We validate the performance of IGCN on both point

cloud classification and segmentation tasks and explore

the contribution of each module of our model through

ablation experiments. Furthermore, we embed the
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IGCN point cloud feature extraction module as a plug‐
and‐play module into other frameworks and perform

point cloud registration experiments.
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1 | INTRODUCTION

The prevalence of three‐dimensional (3D) scanners, LiDARs, and RGB‐D cameras makes it possible
to acquire massive 3D data at low costs.1 Compared with 2D images, 3D data can provide enriched
geometric information and more accurate representation of environments and objects. Common
representations of 3D data include voxels, meshes, and point clouds. Voxels represent 3D data as
3D grids and describe 3D objects by occupancy and nonoccupancy states2; they generally require
huge memory for high‐resolution objects.3 Meshes are mainly used in computer applications to
store and render 3D graphics via a composition of vertices, edges, and faces; mesh data often suffer
from noise, missing data, and resolution problems.4 In comparison, point cloud data have a simpler
data structure and contain original spatial feature information; therefore, it becomes a popular
representation form for 3D analysis. Besides, the acquisition of point cloud data does not depend on
light sources and thus is more reliable in low‐light environments. Currently, point clouds have
broad applications in robotics5 and autonomous driving.6,7 Point clouds also have good prospects
for applications at night8 or in mine tunnels.9,10

Deep learning, especially Convolutional Neural Network (CNN), has been the main technique
for image processing, due to its strong feature extraction capabilities.11–15 However, many of these
methods (e.g., standard CNN) are not directly applicable to point cloud data, which is sparse and
unordered as opposed to the dense and regular image data. Some studies (e.g., multiview CNN16

and group‐view CNN17) transform point cloud data into a multiview projection image and then
utilize 2D CNNs for feature extraction. These view‐based methods face the challenge of losing 3D
geometric information and sacrificing efficiency during aggregating multiview features. Other
methods (e.g., VoxNet18 and PointGrid19) transform point cloud data into volumetric occupancy
and then utilize 3D CNNs for feature extraction; these methods, instead, may lose data accuracy
in the voxelization process and the complex 3D CNN calculation. In comparison, extracting
features directly from raw point cloud data without data transformation becomes a promising
solution. PointNet20 is a pioneering work towards overcoming the difficulty of extracting features
from point cloud data via point‐based methods. Since then, a range of methods have emerged on
that basis, including point‐based methods,21,22 convolution‐based methods,23–25 and graph‐based
methods.26–28 Point cloud classification and segmentation tasks are classical tasks derived from
2D images. However, due to the special nature of point cloud data, multiple scans and segmented
scans are often required during collection. Therefore, point cloud registration is a very important
front work in point cloud analysis. The point cloud registration task transforms two or more point
clouds into the same coordinate system for merging, which is the basis of subsequent point cloud
analysis. It is essential for reconstructing 3D models and evaluating the building structures of
various industries,29,30 especially in underground mining tunnels with dim light and complex
structure.
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In this paper, we propose an Interpolation Graph Convolutional Network (IGCN) for extracting
features from point cloud data. IGCN can achieve 2D image‐like feature extraction on point cloud
data and finally obtain global features by extracting local features level by level to mimic operations of
standard 2D CNN, as shown in Figure 1. Specifically, the interpolation operation makes Graph
Convolutional Network suitable for processing sparse and unordered point cloud data, while the
postfusion of weights and the aggregation of multilevel‐resolution features together reduce the model
complexity, ensuring the time and memory cost of interpolation is feasible for point clouds
classification and segmentation. Overall, IGCN not only reduces model complexity with respect to the
number of parameters but also outperforms multiple state‐of‐the‐art methods in point cloud
classification and segmentation. Our goal is to propose a model that can significantly reduce model
parameters to reduce model complexity and computational cost, while maintaining a comparable
result that will facilitate the future analysis of deep learning networks on point cloud. Finally, we
apply the proposed IGCN as a general point cloud data feature extraction module to the field of point
cloud registration for the alignment of unaligned point clouds. Point cloud registration contributes to
industries such as underground mining through a case study in the fields of tunnels and
underground excavation.

Our main contributions are summarized as follows:

• We propose an IGCN model for the classification and segmentation of point cloud data,
which achieves better performance and reduces model complexity simultaneously.
Meanwhile, IGCN can be used as a plug‐and‐play point cloud feature extraction module
for the point cloud registration field.

(A)

(B)

FIGURE 1 Examples of 2D CNNmodel and IGCN model. (A) Standard CNN process and (B) IGCN process.
With the proposed convolution kernel, IGCN can mimic the CNN process on point cloud data. CNN,
Convolutional Neural Network; IGCN, Interpolation Graph Convolutional Network. [Color figure can be viewed
at wileyonlinelibrary.com]
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• We introduce an interpolation algorithm into the Graph Convolutional Network, which
makes it possible to apply CNN to sparse and unordered point cloud data while reducing the
network parameters.

• We present weight postfusion and multilevel‐resolution aggregation to reduce the time and
memory cost resulted from the introduction of interpolation operations, leading to an overall
improvement in the model performance.

2 | RELATED WORK

2.1 | Point‐based methods

PointNet20 is a pioneering method in 3D point cloud analysis. It directly uses raw point cloud data as
input and takes into account the order independence. PointNet uses multiple shared fully connected
layers (multilayer perceptrons [MLPs]) to deal with unordered 3D points and uses Max‐pooling to
extract global features for classification and segmentation tasks. PointNet extracts only global features
by each point after independent learning but cannot extract local features between points, so its
performance is limited. PointNet++21 solves this problem by dividing the space into several spherical
regions and using PointNet to extract features for each region. Specifically, PointNet++ proposes the
Set Abstraction (SA) level, each containing the sampling layer, the grouping layer, and the PointNet
layer. Then, it learns local features level by level through feature extraction of multiple SA levels.
Finally, it uses Max‐pooling to obtain global features for classification tasks or the proposed Feature
Propagation layer (which is time‐consuming) to obtain pointwise features for segmentation tasks. On
the basis of PointNet++, PointWeb22 uses Adaptive Feature Adjustment, which leverages local
neighborhood information to enhance the features of points. Point‐based methods are mostly based
on PointNet methods with improvements, adding local information to improve performance and
extracting information through fully connected layers.

2.2 | Convolution‐based methods

Convolution can extract features better than fully connected layers, so convolution‐based methods
have been developed. The challenge with convolution operation lies in designing the suitable
convolution kernels for sparse and unordered point cloud data. Existing convolution‐based methods
cover both continuous and discrete convolution methods. Relation‐shape CNN (RS‐CNN)24 and
DensePoint25 are representatives of continuous convolution methods. RS‐CNN24 obtains local
features through convolution of points and their surrounding points, and then obtains global features
by conducting the above level by level. The convolution operation uses Euclidean distance and
relative position information to obtain weights through shared MLPs. On the basis of RS‐CNN,
DensePoint25 reduces the model parameters and calculation cost by aggregating multilayer features. It
does not need to increase the number of out channels but output the same low number of channels
each time. It reduces the model parameters and computational complexity through cross‐level
aggregation without reducing the accuracy. Pointwise‐CNN31 is a discrete convolution method,
which divides the regular grid and allows the points in the same grid to share the same weights for
convolution. The convolution‐based approach focuses on designing suitable convolution kernels to
conduct discrete or continuous convolution on the point cloud data.
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2.3 | Graph‐based methods

The raw point cloud data contains 3D coordinates and other information, such as reflectivity.
Point cloud data have no topological structure, and the representation of point cloud data as a
model with a topological structure can enrich the representation ability of point clouds.
Therefore, graph‐based methods are becoming popular for point cloud analysis. Edge‐
Conditioned Convolution (ECC)26 is a pioneering work of point clouds processing using graph‐
based methods. ECC converts point cloud data into graph‐based data by taking the points in the
point clouds data as vertices and uses directed lines as edges to connect the points and their
neighbors. ECC uses a filter‐generating network to generate edge features through vertex
coordinate features and transform those features into weight information. ECC constructs a
new graph for the next feature extraction: it first updates the vertex features by the weight
information in the neighborhood; then, it uses the voxel‐based Max‐pooling for downsampling.
Dynamic Graph CNN (DGCNN)27 is a graph‐based method similar to the PointNet structure.
Compared with the ECC, DGCNN has no voxel‐based downsampling and uses feature
information instead of coordinate information to construct the graph. The proposed Edge
Convolution (EdgeConv) layer uses vertex features to learn edge features and uses aggregated
edge features to update vertex features. In DGCNN, the number of vertices does not change
after each EdgeConv layer, but the receptive field increases gradually as each vertex can learn a
wider range of features. 3DGCN28 performs convolution operations similar to 2D CNN by
defining learning deformable kernels. After constructing the graph, in the sphere formed by
each vertex and its neighbors, the neighbor points are normalized with the vertex as the ball
center, the original coordinates are replaced by direction vectors, and the similarity function of
the convolution is a cosine similarity function. The cosine similarity is irrelevant to absolute
distances, thus improving the model performance. The graph‐based methods rely on the graph
structure to construct the point cloud data and extract information by updating the features of
vertex and edges through the graph structure.

2.4 | Point cloud registration methods

Determining the transformation matrix of two unaligned point cloud data is a prerequisite for
many high‐level tasks. Early 3D registration used the Iterative Closest Point method, but the
computational complexity of this explicit estimation method increases quadratically with the
number of points.32 In the feature descriptor‐based method, PPFNet33 and FoldNet34 manually
produce rotation‐invariant features using point pairs of angles and distances. However, the
descriptors are less discriminatory than when features are extracted directly from point cloud
data. With the introduction of deep learning, significant improvements have been made in
learning‐based feature descriptors compared with hand‐crafted descriptors. 3DSN35 proposes a
smoothed density voxel grid as input to the 3D CNN, and FCGF36 is based on this to improve
computational efficiency. The other method is the direct registration method, which in contrast
to the descriptor‐based method, does not extract feature descriptors but achieves alignment
directly from the information of the two point clouds, and this method allows the pose
estimation to be embedded in the learning pipeline. PointNetLK37 is representative of this
method, estimating relative transformations in an iterative process by combining the feature
extraction of PointNet20 with the Lucas/Kanadelike38 optimization algorithm.
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3 | METHODOLOGY

3.1 | Overview

We propose an IGCN for the classification and segmentation tasks of point clouds, as shown in
Figure 2. This feature extraction module can be used as a plug‐and‐play point cloud feature
extractor and applied to other tasks, such as point cloud registration. The model consists of
Interpolation Convolution Kernel generation and point patch graph construction. The convolution
operation is achieved by multilevel‐resolution aggregation and postweight fusion, which preserves
the superior performance of the original model while reducing the model's complexity.

First of all, we define the notations used in this paper. We denote a point cloud instance as a
set P, which contains N points as follows.

P p n N= { = 1, 2, 3, …, },n
(1)

where pn is the nth point in P. We only use the 3D coordinate information of the point cloud,
denoted by p x y z= ( , , )n n n n , where xn, yn, and zn are the 3D coordinate information. f p( )n
denotes the feature of pn, and d p( )n denotes the direction vector of pn with respect to the
specified centroid. Therefore, each input point cloud instance can be represented as an N × 3

matrix. Similarly, we define the convolution kernel as

K k i A B C= { = , , , … },i (2)

where ki is a weight parameter, w k( )i is the weight parameter value of ki, and d k( )i is the direction
vector of ki with respect to the specified centroid, which is also the relative coordinate of ki.

3.2 | Interpolation convolution kernel

Taking a 2D RGB image, for example, the kernel of a standard CNN is a grid containing weight
parameters. Since the 2D image is regular and ordered, each weight parameter of the kernel
will correspond to one pixel on the image, and convolution is achieved by sliding the position of
the kernel to share the weight parameters. In particular, the part of the pixels corresponding to

FIGURE 2 Overview of interpolation graph convolutional network. The model consists of Interpolation
Convolution Kernel generation and point patch graph construction, and the convolution operation is achieved
by multilevel‐resolution aggregation and postweight fusion. [Color figure can be viewed at
wileyonlinelibrary.com]
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the kernel is called the image patch. A straightforward way of introducing 2D CNNs into point
clouds is to provide a kernel that corresponds to the circled point patches, which contain the
same number and position of weight parameters as the points contained in point patches.

The core of convolution is the shared weight parameter. but for point clouds, each circled point
patch holds a different number and position points, making it impossible to determine a fixed
convolution kernel to implement the point cloud convolution operation. To solve this challenge, we
propose an IGCN by defining the Interpolated Convolution Kernel. Motivated by the fact that any
four points in space that are not co‐planar can completely represent a space, we generate convolution
kernels (interpolation kernels) with arbitrary numbers and positions by defining a kernel (original
kernel) containing four weight parameters with a spatial linear interpolation algorithm.

Figure 3 illustrates the interpolation convolution kernel. The original kernel is defined as
the four vertices of a cube with side length 2, namely, kA, kB, kC, and kD. The spatial coordinate
system is established by taking the center of the cube as the coordinate origin, the k kA B

direction as the positive X ‐axis direction, the k kA C direction as the positive Y ‐axis direction,
and the k kA D direction as the positive Z‐axis direction. Thus, the original kernel is denoted
as K k k k k= { , , , }A B C D , where d k( ) = (−1, −1, −1)A , d k( ) = (1, −1, −1)B , d k( ) = (−1, 1, −1)C ,
and d k( ) = (−1, −1, 1)D . For any point k ′m with certain coordinates in the space, we use the
original kernel K to calculate its interpolation weight parameter value (the interpolation
algorithm is shown in Equation 3 and obtain the convolution kernel K k m′ = { ′ = i, ii, iii, …}m ).
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FIGURE 3 Interpolation convolution kernel. In the coordinate system space, the interpolation weight
parameter for the position is calculated based on the pn+1 coordinates. [Color figure can be viewed at
wileyonlinelibrary.com]
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For any point patch, it can be normalized to a sphere with radius 1 and placed in the cube
formed by the original kernel. In the coordinate system formed by the original kernel, any point
in the point patch has a relative spatial position; so the interpolation weight parameter for that
point position can be calculated from the weight parameter of the original kernel, generating
convolution kernels with matching numbers and position for different point patches. The
interpolation algorithm calculates the convolution kernel from the original kernel by assigning
a weight parameter to each point in the point patch without caring about the sparsity and
disorder of the points in the point patch. The original kernel used for neural network
optimization contains a fixed number of four weight parameters. Therefore, more points in the
point patch do not increase the complexity of the model.

3.3 | Interpolation graph convolution

In 2D CNN, feature patches can be obtained by sliding a fixed‐size window over the feature map
from left to right and from top to bottom. The division of point patches in point clouds can usually be
improved using k‐Nearest Neighbors (KNNs) or Radius Nearest Neighbors (Radius‐NN) methods. In
this study, we select the Query Ball Point method proposed by PointNet++21 to divide point patches.
The Query Ball Point method is essentially a Radius‐NN method with a fixed number of neighbors,
which combines the advantages of Radius‐NN and KNN. Specifically, it takes a point in the point
cloud instance as the center point and finds a fixed number of neighbors within a defined range. In
the ball formed by the maximum search radius, more than the specified number of neighbors will be
discarded; if neighbors are insufficient, the first neighbor point will be replicated to make up the gap.
Each point in the point cloud instance is regarded as a center point to form a point patch.

We obtain the point patch P′ as

 { }P P p l L′ = ( ) = = 1, 2, 3, …, ,n
l

(4)

where() is the Query Ball Point method, the subscript n denotes the nth point in the point
cloud with P as the point patch center, and L is the number of points contained in the point
patch. In the point patch, the graph structure G P( ′) is formed by connecting lines from the
center point pn

1 to the rest of the neighboring points and itself p l L{ = 1, 2, 3, …, }n
l .

G P V P E P( ′) = { ( ′), ( ′)}, (5)

{ }( )V P f p l L( ′) = = 1, 2, 3, …, ,n
l

(6)

{ }( )E P d p l L( ′) = = 1, 2, 3, …, ,n
l

(7)

where V is the vertex set and E is the edge set. The position and number of convolution kernel
K′ coincide with the point patch P′, so we can use E P( ′) to calculate w K( ′). Therefore, we
propose an Interpolated Graph Convolution (IGConv) as



 

IGConv V P K E P IGConv f P w K

f P w K

( ( ′), ( , ( ′))) = ( ( ′), ( ′))

= ( ( ( ′), ( ′))),
(8)
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where () is the interpolation calculation of Equation (3), K is the original kernel, () is the
aggregation function (i.e., the maximum method in our model), and () is the fusion function
(i.e., inner product in our model).

Interpolation operation tends to cause huge time and memory cost of (). Therefore, we
perform weights fusion at different stages to reduce this cost, as shown in Figure 4.

  f P w K f P w K( ( ′), ( ′)) = ( ( ′) ( ′)), (9)

  f P w K f P w K( ( ′), ( ′)) = ( ( ′)) ( ′). (10)

Equation (9) is preweight fusion and Equation (10) is postweight fusion, where () is a
neural network method, for example, linear regression or 1D convolution. () has the same
input channel as f P( ′) and the same output channel as  f P w K( ( ′), ( ′)). A simple analysis
shows that only

input channel

1

_
of the original calculation cost is required by preweight fusion and

only output channel

input channel

_

( _ )2
of the original calculation cost is required by postweight fusion. Here, we use

linear regression and postweight fusion to enhance feature extraction while eliminating the
computational cost caused by the interpolation.

(A)

(B)

(C)

FIGURE 4 Interpolation graph convolution and weights fusion. (A) Feature aggregation process for
interpolation graph convolution, (B) weight fusion first, followed by extension of feature dimensions, and
(C) extension of feature dimensions first, followed by weight fusion. [Color figure can be viewed at
wileyonlinelibrary.com]
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3.4 | Network structure

On the basis of PointNet++21 and DensePoint,25 we further reduce model complexity by
multilevel‐resolution features aggregation. A standard 2D CNN extracts features level by level in
increasing feature channels, so the features in the final fully connected layer have a higher
dimension. In contrast, our model conducts feature extraction by aggregating multilevel‐resolution
features, avoiding the need to raise the channels to a high dimension. As shown in Figure 5, the
input of each level is a concatenation of the outputs of all previous levels. By extracting features
level by level, the input channels keep increasing while the output channels keep constant.

( )( )C Conv Concat C C C= , , …, ,n n n
out out

−1
out
−2

out
1

(11)

( )G P Concat C C C( ′ ) = , , …, ,n n
out
1

out
2

out (12)

where Cn
out denotes the output of the nth level of convolution, the output channel of each level is

fixed at k, the input channel is n k( − 1) × (except for the first level), and G P( ′ )n is the feature of
the nth level of the point patch graph with n k× channels. In our model, each Interpolation Graph
Convolution takes all the outputs of the previous Interpolation Graph Convolution as input, but
fixes the output at a lower dimension, which ensures the overall high efficiency of the model.

The pooling layer follows the 3DGCN28 approach with a simple and efficient pooling
method. We use the same graph structure as the IGConv process and then downsample it by
Max‐pooling.

P Pooling P r
Num P

Num P
= ( ) =

( )

( )
,n n

n

n
−1

−1

(13)

where r is the pooling rate, meaning the n( − 1)th layer has r times the number of points in
the nth layer.

For the classification task, after extracting the features, we apply IGCN again to obtain the final
feature with higher channels, aggregate them into global features, and finally conduct classification
using a fully connected layer (MLP). For the segmentation task, we directly aggregate the extracted

FIGURE 5 Multiresolution features aggregation. The input at each level is a concatenation of the outputs
from all previous levels. By extracting features level by level, the input channels are continuously increased
while the output channels remain the same. [Color figure can be viewed at wileyonlinelibrary.com]
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features into global features with lower channels, concatenate the features of all levels and the One‐
hot vector from PointNet20 into pointwise aggregated features, and finally conduct classification for
each point by the shared MLP. Since the number of sampling points in each level decreases due to
pooling layers in the segmentation task, we find the nearest neighboring points and making directly
replicate them as upsampling points—this makes it possible to concatenate the features in all levels.
By doing this, we make up for the points discarded during sampling and complete the concatenation
of features across levels for the segmentation task. For the point cloud registration task, we adopt the
structure of the PointNetLK37 model and replace the point cloud feature extractor PointNet in the
original model with the point cloud feature extractor composed of IGCN. The Lucas–Kanada (LK)
algorithm38 is originally applied to 2D images or 3D grids because 2D images or 3D grids are regular
and dense representations that can easily define the convolution process. The PointNetLK method
extracts point cloud features from PointNet and further optimizes them using the LK algorithm. Our
IGCN is a point cloud feature extraction method that is fully mimicking a standard CNN so it can be
easily embedded under the PointNetLK algorithm framework and improve alignment performance.

4 | EXPERIMENTS

4.1 | Parameter settings and model details

Our model takes the coordinate information of the 3D point cloud instance as input, as shown
in Figure 6. The first IGCN has four input channels and contains the 3D relative coordinates
and the 1D relative Euclidean distance of the point patch graph. In the feature extraction stage,

FIGURE 6 The model for classification and segmentation. The input to the feature extraction module is the three‐
dimensional (3D) coordinate information of the point cloud data and the module consists of eight layers of IGCN and
two layers of Pooling. The classification module takes the output of the feature extraction module as input and proceeds
through IGCN, Max‐pooling, and MLP to obtain the final classification result. The segmentation module concatenates
all IGCN outputs of the feature extraction module as well as Global Feature and One‐hot Feature to obtain feature
information, and obtains segmentation results by Shared MLP. IGCN, Interpolation Graph Convolutional
Network; MLP, multilayer perceptron. [Color figure can be viewed at wileyonlinelibrary.com]
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each IGCN has a fixed output channel of 32. According to the model we designed, each IGCN
output channel will be concatenated to each previous output channel, so after eight IGCN
feature extractions, the feature dimension will reach 8 × 32 = 256 dimensions. A pooling layer
follows every three IGCNs with a pooling rate of 4. When constructing the point patch graph,
the radius before the first input and after the two pooling layers are set to 0.25, 0.39, and 0.63,
respectively. The number of points contained in the point patch graph is set to 32, as this
number is twice the average number of points that can be covered by the point patch graph.
The reason for this setting is that in point cloud instances, the distribution of points is uneven
and a larger than average number of points collected in the point patch graph facilitates better
feature extraction in dense regions of points. In our model, the initial learning rate is set to
0.001 and the learning rate is decayed by half every 10 epochs using the ADAM optimizer, with
a total number of epochs of 100.

In the classification task, we use IGCN to raise the 256‐dimensional features after feature
extraction to 1024 dimensions to obtain the final features, and then make them into 1 × 1024

global features by feature aggregation, and finally classify them through the fully connected
layer (MLP). In MLP the feature dimension is first reduced to 256, and then to the number of
classes. In the segmentation task, we obtain the global feature directly by aggregating the 256‐
dimensional features obtained in the feature extraction stage. Then the concatenated feature is
obtained by concatenating the output features in the feature extraction stage, global feature,
and One‐hot vector through up‐sampling. The feature dimension of One‐hot vector is the
number of categories of instances. Finally we achieve the segmentation task by classifying each
point through a shared fully connected network (shared MLP). In Shared MLP, the feature
dimension first becomes 1024, then drops to 512, and finally to the number of categories. In the
point cloud registration task, we embed the point cloud feature extraction module obtained
from the training of the classification task into the PointNetLK framework, replacing the
PointNet module in the original model to complete the point cloud alignment.

4.2 | Classification task and segmentation task

We perform the classification task on ModelNet40,39 which contains 40 classes of 12,311 3D
point cloud instances. Each instance is downsampled to 1024 points and normalized. We use
9843 for training and 2468 for testing. The classification results in terms of the overall accuracy
of our model and several other models are shown in Table 1. The results show that our model
substantially reduces the network parameters while achieving better performance in several
models when the number of input points is 1k. Compared with nonpoint cloud models, such as
the OctNet40 and Subvolume41 models, our model achieves better accuracy, especially when
compared with the Subvolume model, where the number of parameters in our model is only
3.4% of the Subvolume model. In comparison with the point cloud model, our model
outperforms the PointNet20 model based on the point, the Pointwise‐CNN31 model based on
CNN, the ECC26 model based on the graph, as well as the Deep Set42 model in terms of
classification accuracy, while being only 16.4% of the PointNet model in terms of the number of
model parameters. Our model is slightly less accurate in comparison to some advanced models,
but our model maintains a comparable result while using a lower number of parameters.
Especially, in comparison with the InterpCNN43 model, which also uses an interpolation
algorithm, although it is slightly higher than our model in terms of accuracy, the number of
parameters used by our model is only 4.5% of those used by InterpCNN. At a time when deep

12294 | LIU ET AL.

 1098111x, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/int.23087 by C

ochraneC
hina, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



learning models are increasing the complexity in pursuit of high accuracy, the goal of our
model is to maintain a comparable result while reducing the complexity of the model by
significantly reducing the number of model parameters.

In particular, we compare our model with DGCNN and 3DGCN with respect to the number of
parameters. These two models also have the graph structure, and also conduct the classification task
by feature extraction and multilayer fully connected layers (the results are shown in Figure 7).
3DGCN has a variable kernel structure and in the original paper attempts are made to set up different
numbers of kernels, here we set up 1 and 4 kernels, respectively, to participate in the comparison.
Figure 7 shows the accumulated number of parameters for each level. We consider a module with a
convolutional layer or fully connected layer as a level. Then, our model has 11 levels, DGCNN has
eight levels, and 3DGCN has seven levels. The numbers of parameters in DGCNN and 3DGCN
increase dramatically after four levels due to channel expansion, while our model maintains a low
number of parameters. The parameters in our model after accumulating to 11 levels are still smaller
in size than those in either DGCNN with eight levels or 3DGCN with seven levels. Moreover, as can
be seen from the line in the figure, the increase in the number of parameters in our model is mostly
due to the final multilayer fully connected layers, which is a great advantage over other models as our
model uses very few parameters for the feature extraction stage. By comparing the previous layers,
our model uses a very low number of parameters to obtain the feature dimensions that can be
classified in the fully connected layer, which shows that our IGCN layer can obtain comparable
results with very few parameters through the interpolation algorithm. The results reveal our
interpolation algorithm, postweight fusion, and multilevel‐resolution aggregation can effectively
reduce the number of model parameters while preserving the performance.

Figure 8 shows a comparison of the convergence speed of the classification task, here we
compare the IGCN model with the DGCNN model and the PointNet model. In our
experiments, the IGCN achieves the highest classification accuracy of 90.1% in the 22nd epoch.
In our reproduced DGCNN, the highest classification accuracy of 90.1% is achieved in the 98th
epoch, which is the same accuracy as that of our IGCN. In the reproduced PointNet, the best

TABLE 1 Classification results on ModelNet40

Method Input #params (M) #points OA (%)

OctNet40 Hybrid grid octree – – 86.5

Subvolume41 Voxels 16.6 – 89.2

Deep Sets42 Points – 1k 87.1

PointNet20 Points 3.48 1k 89.2

pointNet++21 Points 1.48 1k 90.7

Pointwise‐CNN31 Points – 1k 86.1

ECC26 Points – 1k 87.4

DGCNN27 Points 1.84 1k 92.9

3DGCN28 Points 0.89 1k 92.1

InterpCNN43 Points 12.8 1k 93.0

IGCN (ours) Points 0.57 1k 90.1

Note: “#params” represents the number of parameters of the model, “#points” represents the number of points contained in the
input instance, and “OA” represents the overall accuracy.
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classification accuracy of 89.1% is achieved in the 52nd epoch. Our model uses less epochs to
achieve the highest classification accuracy, and the highest classification accuracy is the same
as that of DGCNN. Therefore, it can be seen that our model converges faster than DGCNN and
PointNet models. It can also be seen that in the first three epochs, especially the first epoch, our
classification accuracy is much higher than the other models, reaching 69.4%, which further
confirms the advantage of our model's convergence speed.

FIGURE 7 Comparison of the model parameters number. The convolutional layer or fully connected layer
is regarded as a level. The first some layers of each model are the convolution‐like layers for feature extraction,
while the later layers are the fully connected layers for the classification task. 3DGCN, three‐dimensional Graph
Convolutional Network; DGCNN, Dynamic Graph Convolutional Neural Network; IGCN, Interpolation Graph
Convolutional Network. [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 Comparison of the model convergence speed. The IGCN achieves an optimal 90.1% classification
accuracy at the 22nd epoch, the reproduced DGCNN achieves the same optimal 90.1% classification accuracy at
the 98th epoch, and the reproduced PointNet achieves an optimal 89.1% classification accuracy at the 52nd
epoch. DGCNN, Dynamic Graph Convolutional Neural Network; IGCN, Interpolation Graph Convolutional
Network. [Color figure can be viewed at wileyonlinelibrary.com]
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We evaluate the segmentation performance of our model on ShapeNetPart data set,44 which
contains 16,881 point cloud instances in 16 categories. Each category contains between 2 and 6
parts with a total of 50 parts. The evaluation standard is mean intersection over union (mIoU),
where class mIoU is the average of 16 categories and instance mIoU is the average of all
instances. The results of different models are shown in Table 2. As can be seen from the table,
our model uses 1k points, while Kd‐Net45 uses 4k points, PointNet20 uses 2k points, PointNet+
+21 uses 2k points and the normal vector, as well as DGCNN27 uses 2k points. The
ShapeNetPart data set contains 16 classes, and different models have different segmentation
performances for different classes. It is clear that our model outperforms the current optimal
DGCNN model in two classes, ear phone and mug, and simultaneously obtains comparable
results in class mIoU and instance mIoU. Our model achieves the best performance in the two
classes while using a lower number of parameters, and the overall performance is comparable,
indicating that our IGCN can significantly reduce model complexity and maintain adequate
model performance through the interpolation algorithm. The results of the segmentation
visualization are shown in Figure 9, where we compare the PointNet model and the 3DGCN
model with the results of our model. The visualization results contain six categories from the
ShapeNetPart data set, for example, Motorbike, Car, Earphone, Mug, Pistol, and Rocket.

4.3 | Ablation study

We compare the results of preweight fusion (Equation 9) and postweight fusion
(Equation 10) for the classification task on ModelNet40 in Table 3. Postweight fusion can
better extract features at a lower calculation cost thanks to the weight‐independent
dimensional transformation before fusion. Taking the eighth IGCN as an example, with 224
input channels and 32 output channels, the computational cost of using prefusion of features is

input channels

output channels

224( )

32( )
times that of postfusion. In comparison with the classification results, our

postfusion not only saves computational cost but also improves the classification accuracy by
1.9%.

We explore the impact of the aggregation function on IGCN by replacing the maximum
method (Equation 8) with the summation method and the average method (the results for the
classification task on ModelNet40 are shown in Table 3). The results show the superiority of the
maximum method over the two alternatives. This is mainly due to the fact that the maximum
method is not affected by the replication operation, because when we construct the point patch
graph, we need to contain a fixed number of points within the specified range, and when there
are not enough points, we use the replication operation. Since the summation method and the
average method are affected by the redundancy value of replication, the maximum method has
a better performance, 5.4% and 7.1% higher than the summation method and the average
method, respectively.

Table 4 compares the effect of the number of neighbor points on classification
accuracy, again with the ModelNet40 data set. The number of neighbor points here refers
to the number of points contained in the point patch graph. Our point cloud instance
consists of 1024 points and is scaled to a cube of side length 2. Each time a point patch
graph is constructed with a radius of 0.25, 0.39, and 0.63, it can be calculated that each
point patch graph contains an average of 16 points. Here we set the number of neighbor
points to 16, 24, 32, 48, and 64 for comparison experiments. It can be seen that the highest
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classification accuracy is achieved when the number of neighboring points is 32. This is
because the point cloud data are not evenly distributed and setting the number of
neighboring points twice the average helps extract information in dense areas. Fewer
neighbors will not extract features accurately, while a larger number of neighbors may
contain redundant information, thus reducing accuracy.

Recall that we use a total of eight layers of IGCN for feature extraction and obtain
8 × 32 = 256 channels for classification and segmentation in our model. Here we use

FIGURE 9 Visualization of segmentation results on ShapeNetPart data set. The segmentation experimental
results of Motobike, Car, Earphone, Mug, Pistol, and Rocket are presented under Ground Truth, PointNet
model, 3DGCN model, and IGCN model, respectively, where different colors represent different parts in
instance, and each instance has 2–6 parts. 3DGCN, three‐dimensional Graph Convolutional Network; IGCN,
Interpolation Graph Convolutional Network. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Ablation study

Module Ablation experiments OA (%)

Original model PostWeight fusion and max method 90.1

Weight fusion Preweight fusion 88.2

Aggregation function Sum method 84.7

Aggregation function Average method 83.0

Note: “OA” represents the overall accuracy for the classification of ModelNet40. Comparison of the impact of weight fusion and
aggregation functions.

TABLE 4 Ablation study

Number of neighbors OA (%)

16 87.8

24 88.8

32 90.1

48 89.6

64 88.4

Note: “OA” represents the overall accuracy for the classification of ModelNet40. Comparison of the impact of the number of
neighbors.
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different numbers of IGCN and pooling layers to evaluate our model. First we still use
three layers of IGCN with one layer of Pooling as a group to build a five‐layer structure
and an 11‐layer structure, respectively, as shown in Table 5. The classification accuracy of
the ModelNet40 data set is also applied here for comparison and it can be seen that the
eight‐layer structure improves the accuracy by 0.6% compared with the five‐layer structure
and 2.2% compared with the 11‐layer structure. This can be explained by the fact that a
smaller number of layers leads to insufficient feature extraction capability, while a higher
number of layers leads to over‐fitting of the model, both of which affect the performance
of the model. We then build three‐, five‐, and seven‐layer structures with a group of two
layers of IGCN and one layer of Pooling, and the results are shown in Table 5. It can be
seen that the extraction ability of two‐layer IGCN is significantly lower than that of three‐
layer IGCN, so the eight‐layer feature extraction module constructed by three layers of
IGCN with one layer of pooling is the optimal structure.

4.4 | Case study

Here we perform a case study, embedding our feature extraction module consisting of eight
layers of IGCN into the PointNetLK framework for point cloud registration learning. In our
case study, we are following a strategy of pretraining on the ModelNet40 data set and fine‐
tuning on the target data. First we embed the feature extraction module into the PointNetLK
framework and then use the model parameters learned in the classification task as pretraining
parameters for the point cloud registration task. Subsequently, the ModelNet data instances are
split in two by means of settings in the PointNetLK framework and randomly rotated to be used
for training the parameters of the registration task. Finally, we fine‐tune the trained model on
the WHU‐TLS29 data set, which is then used for the alignment task, and the visualization is
shown in Figure 10. The WHU‐TLS data set contains point cloud scans from 11 different
environments, for example, subway station, high‐speed railway platform, mountain, forest,
park, campus, residence, riverbank, heritage building, underground excavation, and tunnel.
Here we present a point cloud registration visualization of tunnels and underground
excavations as an example. In Figure 10, the red color indicates the target data, the green

TABLE 5 Ablation study

Number of
layers Feature extraction module structure OA (%)

5 IGCN× 3→ Pooling→ IGCN× 2 89.5

8 IGCN× 3→ Pooling→ IGCN× 3→ Pooling→ IGCN× 2 90.1

11 IGCN× 3→ Pooling→ IGCN× 3→ Pooling→ IGCN× 3→ Pooling→ IGCN× 2 87.9

3 IGCN× 2→ Pooling→ IGCN× 1 84.1

5 IGCN× 2→ Pooling→ IGCN× 2→ Pooling→ IGCN× 1 88.8

7 IGCN× 2→ Pooling→ IGCN× 2→ Pooling→ IGCN× 2→ Pooling→ IGCN× 1 82.5

Note: “OA” represents the overall accuracy for the classification of ModelNet40. Comparison of the impact of the number of
layers.

Abbreviation: IGCN, Interpolation Graph Convolutional Network.
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color indicates the source data, and the blue color indicates the alignment results. The first row
contains six scenes from the tunnels as well as the second and third rows contain 12 scenes
from the underground excavations. It can be seen that our IGCN feature extraction module can
be used as a plug‐and‐play point cloud feature extraction module that can be easily embedded
in other modules for other tasks as it fully mimics the operation of a standard CNN. The
classification training results on ModelNet40 can also be used as pretraining parameters for
other tasks. Our model converts the unordered and sparse point cloud feature extraction
process into a process similar to a standard CNN, which will benefit the field of point cloud
analysis and contribute to industries, such as underground mining.

5 | CONCLUSION

In this paper, we propose and validate the performance of an IGCN for point cloud
classification and segmentation. Moreover, our IGCN feature extraction module acts as a plug‐
and‐play point cloud feature extraction module that can be integrated with other frameworks
for tasks, such as point cloud registration. Our model reduces the network parameters and
model complexity via the interpolation method. It also uses specially designed postweight
fusion and multilayer resolution aggregation to reduce the calculation cost of interpolation
while achieving superior performance. Our proposed IGCN allows unordered and sparse point
cloud feature extraction to be performed in a process similar to that of a standard CNN,
contributing to the development of the field of point cloud analysis.
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FIGURE 10 Visualization of point cloud registration results on the WHU‐TLS data set. The red color
indicates the target data, the green color indicates the source data, and the blue color indicates the alignment
results. The first row contains six scenes from the tunnel, and the second and third rows contain 12 scenes from
the underground excavation. [Color figure can be viewed at wileyonlinelibrary.com]
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