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ABSTRACT

Privacy safeguards are crucial, notably now with increased
virtual conferencing usage during the Covid pandemic. In
contrast to conventional facial expressions that are visually
obvious to humans, micro-expressions are involuntary and
transient facial expressions, commonly manifested involun-
tarily when we aim to withhold our emotions. Advanced
micro-expression recognition techniques exist that can reveal
the genuine emotions that people attempt to conceal, thus
threatening individual emotional privacy, as fundamental hu-
man rights would dictate that one should have a choice of
what emotion is being shown or not shown. We propose
the novel universal adversarial perturbation-based approach
- AdverFacial - for privacy concealment against automated
micro-expression analysis via deep learning techniques. We
derive the optimal strategy to achieve micro-expression mis-
classication with a high success rate, low perceptibility and
cross neural network transferability. We perform experiments
on two popular datasets with state-of-the-art microexpres-
sion spotting and recognition models and demonstrate our
approach’s effectiveness in emotional concealment.

Index Terms— Micro-expression recognition, withhold-
ment, emotional privacy, universal adversarial patterns

1. INTRODUCTION

Facial expression recognition is an active area of research for
various application domains including human-computer in-
teraction, security and health. In contrast to normal facial
expressions that may be posed or convincingly acted out by
talented humans, facial micro-expressions generally represent
the actual emotion of a person, as it is a spontaneous reaction
expressed involuntarily through the face [1, 2, 3]. In recent
years, deep learning based approaches have gained popular-
ity and now widely implemented in solving various computer
vision problems including Image Classication [4].

In general, deep learning techniques have shown to out-
perform hand-crafted techniques in most of these problems.
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Moreoever, a few convolutional neural network based ap-
proaches have been proposed for automated micro-expression
recognition [5, 6], achieving considerable accuracies.

Deep neural networks, while powerful in learning from
complicated visual data, are vulnerable to small noise i.e.
adversarial perturbations [7]. Szegedy et al. [8] showed that
adversarial perturbations imperceptible to humans can cause
misclassication in DNN-based image classiers; while
Mopuri et al. [9] proposed “image-agnostic” perturbations.

In this paper, we focus on safeguarding individual emo-
tional privacy against automated micro-expression spotting
and recognition tasks. Micro-expressions are emotions that
humans intentionally suppress. Thus, humans will feel their
privacy is violated if automatic algorithms, such as those in-
creasingly deployed in social media platforms, can recognize
their micro-expressions through the shared videos. Essen-
tially, this notion of privacy is in terms of ensuring micro-
expression mis-classications, and thus withholding the true
emotion currently felt by the human.

There have been some research work in this direction,
namely: adversarial image perturbation (AIP) [10], genera-
tive adversarial network based algorithm [11] and mapping
distortion based protection (MDP) [12]. Specically, AIP in-
troduces a general game theoretical framework for the user-
recogniser dynamics that involve the current state-of-the-art
AIP and person recognition techniques. Meanwhile, MDP
protects the privacy by modifying the original dataset with its
corresponding label. In contrast to our approach which fo-
cuses on videos, these methods are for protecting image pri-
vacy.

Research in attacking video-based classiers has emerged
over the years. [13] were the rst to propose white-box at-
tack on video action recognition focusing on networks with a
CNN+RNN architecture to compute sparse adversarial pertur-
bations. Essentially, they searched for the perturbation over
the video space. Note that the duration of a micro-expression
is usually only 1/25 to 1/5 of a second, such attacks may not
t with the frame rate in micro-expression settings. [14] pro-
posed a method that adds a universal adversarial framing on
the border of the image. On the other hand, [15] selects a
specic subset of frames to perturb. Meanwhile, [16] relied
on a GAN-like model to generate, in interaction with a dis-



criminator, the universal perturbation by up-sampling from a
random latent noise vector, and this is subsequently added to
the video clip. More recently, [17] considered searching for
perturbations based on intermediate layers of the neural net-
work, and adding the perturbations directly to the video. [18]
introduced a ickering temporal perturbation against action
classication tasks. However, such attacks may overly per-
turb the videos without learning the spatio-temporal features
(across temporal frames), which are commonly extracted by
DNN models for micro-expression recognition. Furthermore,
they require articially inducing light sources to the frames.

Our study makes a valuable contribution in protecting
emotional privacy against automatic leakages because our
primary contribution is beyond leveraging the eld of adver-
sarial attacks, which has so far been mostly applied to image
classication tasks [7, 8, 9]. In contrast to the current adver-
sarial attacks on video action recognition tasks [13, 14, 15],
our proposed AdverFacial framework is the rst-known to
adopt dynamic imaging [19], which summarizes the subtle
and involuntary movements of the micro-expression image
sequences based on intermediate CNN layers into a single
dynamic imaging frame, in universal attacks. This is the rst-
known video-based universal perturbation technique focusing
on spatio-temporal features for the challenging subtle micro-
expressions problem, where variations are innitesimal and
occur within fractions of a second.

AdverFacial safeguards emotion privacy against auto-
matic emotional micro-expression recognition through adver-
sarial perturbations with a comparatively high fooling rate in
the automatic micro-expression classier and cross-models
transferability while keeping the perturbations imperceptible
to human eyes. In this way, we can still protect the emotional
privacy even when the facial videos or datasets are leaked.

2. METHODOLOGY

2.1. Preliminaries

Micro-expression Recognition Task: A micro-expression
classierFθ(X) = y accepts an inputX = [x1, x2, . . . , xT ] ∈
RT×W×H×C comprising T consecutive frames each of di-
mensions H,W and C notably the height, width and number
of color channels for each frame. The classier produces an
output y ∈ RK which can be treated as the probability distri-
bution over the micro-expression output domain, where K is
the number of classes. The classier F implicitly depends on
some parameters θ that are xed during the privacy protection
process. Note that adversarial video is denote as X̂ = X + δ
where the video perturbation δ ∈ RT×W×H×C and each
individual adversarial frame by x̂i = xi + δ. X̂ is adversarial
such that Fθ(X̂) ̸= Fθ(X), while minimizing the distance
between X̂ and X to be negligibly small under the selected
visual quality metric to ensure the visual perceptibility is
maintained despite the perturbation.

Fig. 1. AdverFacial Universal Perturbation framework.

Fig. 2. Demos of crafted AdverFacial adversarial examples
for CAS(ME)2 dataset. Rows respectively show the original
videos, adversarial examples and adversarial noise.

2.2. AdverFacial Generation for Emotional Privacy

As shown in Figure 1, we propose a micro-expression privacy
protection framework called AdverFacial. In more detail,
AdverFacial generates the privacy-preserving videos through
the infusion of adversarial frames with universal perturbation
vectors. As discussed above, hiding the ground-truth micro-
expression classication results between video frames and its
prediction label is critical for privacy protection. Therefore,
instead of storing the original dataset directly, we suggest ap-
plying the universal perturbation to video frames prior to be-
ing streamed or shared on social media. Our proposed Adver-
Facial framework seeks a universal perturbation δ such that
δp ≤ ϵ for some negligible visual quality threshold ϵ, while
fooling automated micro-expression recognition of videosX .
The algorithm starts with δ = 0 (no perturbation) and iter-
atively updates the minimal perturbation △δi that sends the
current perturbed frame xi+δ to the decision boundary of the
classier. These iterative updates continue until the termina-
tion conditions are satised, when the empirical “fooling rate”
Err(·) on the perturbed data set X̂ exceeds the target thresh-
old 1− ζ. Algorithm 1 shows our algorithm pseudocode.

Spatio-temporal features identify the micro-level informa-



Algorithm 1 Computation of AdverFacial Universal Pertur-
bation

Input Set of X of input Dynamic Imaging preprocessed
videos, classier Fθ(·), desired ℓp norm of perturbation ϵ and
desired accuracy on perturbed samples ζ

Output Universal Perturbation δ

1: Initialize δ ← 0
2: while Err(X̂) ≤ 1− ζ do
3: for all xi ∈ X do
4: if Fθ(xi + δ) = Fθ(xi) then
5: Compute the minimimal perturbation:
6: △δi ← argminr r2 s.t. Fθ(xi + δ + r) ̸=

Fθ(xi)
7: Update the perturbation:
8: δ ← project(δ +△δi)

9: end if
10: end for
11: end while

tion that changes along the temporal dimension. Based on
these spatio-temporal features, the micro-expression classi-
er distinguishes between the emotion classes. Note that the
ith perturbation δi corresponds to the ith frame xi of the
video, which can be represented by three scalars. Thus, δ =
[δ1, δ2, . . . , δT ] ∈ RT×1×1×3 has in total 3T parameters to
optimize in the spatio-temporal domains. To generate an ad-
versarial perturbation, the objective function is formulated as:

argmin
δ

λD(δ) +
1

N

N∑

n=1

ℓ(Fθ(Xn + δ), tn) (1)

s.t. x̂i ∈ [Vmin, Vmax]
H×W×C and δp ≤ ϵ (2)

where N is the total number of training videos,Xn is the nth

video, Fθ(Xn + δ) is the classier output (probability dis-
tribution), tn is the original micro-expression label and ϵ de-
notes the maximum allowed perturbation strength. Note that
the rst term in Equation (1) is a regularization term, while
the second term is the adversarial classication loss which
will discussed later in this paper. The parameter λ weights
the relative importance of being adversarial and also the regu-
larization terms. The function D(·) determines the regular-
ization term that allows us to achieve better imperceptibil-
ity for the human observer. The rst constraint in Equation
(2) guarantees that after applying the adversarial perturba-
tion, the perturbed video will be clipped between valid val-
ues: Vmin, Vmax which respectively represent the minimum
and maximum allowed pixel intensity.

2.3. Dynamic Imaging

In our proposed framework, dynamic imaging [19] transforms
the video sequences into a frame instance by conserving the
spatio-temporal information. As discussed, micro expres-
sions are rapid and of short duration in nature. Thereby, they

will appear only in a few frames of a video. To extract these
momentary changes from the video, we adopt the dynamic
imaging technique to generate the universal perturbation.
These dynamic images are subsequently processed by the
proposed AdverFacial framework for further training.

2.4. Regularization Terms

In contrast to Universal Adversarial Perturbation [7], we
quantify the distortion introduced by the perturbation δ with
D(·) in the spatio-temporal domain. This metric is con-
strained such that the perturbation δ is imperceptible to
the human observer. In contrast to previous related works
[13, 15], in our case the focus is on the unnoticability to
the human observer. In order to achieve the most imper-
ceptible perturbation, we implement a regularization term to
control the different aspects of human perception. To sim-
plify the denition of our regularization terms and metrics,
we dene the following notations for video perturbation of
X = [x1, x2, . . . , xT ] ∈ RT×H×W×C .

With reference to [18], we apply the perceptibility regu-
larization term that forces the adversarial perturbation to be
as minimal over the three color channels of each frame. By
having no temporal constraint, which relates to the ’percepti-
bility’ of the adversarial pattern:

D(δ) =
1

3T
δ22 (3)

where  ·  is dened in Equation (4) with p = 2 as:

Xp = (

T∑

i1=1

· · ·
C∑

i4=1

xi1 . . .i4 p)
1
p (4)

where i1, i2, . . . i4 refer to the dimensions of the micro-
expression video sequences.

2.5. Evaluation Metric

To quantitatively examine the performance of AdverFacial in
the micro-expression privacy protection task through misclas-
sication, we consider state-of-the-art evaluation metrics of
adversarial attacks as follows:
White-box Fooling Rate: is the percentage of adversarial
videos that are successfully misclassied. It is computed
based on the reduction in accuracy due to adversarial attack
and causing false predictions as per the baseline [7].
Adversarial Transferability: attacking the target model us-
ing the adversarial videos which are generated on the source
model as suggested in [7, 8].
Perceptibility: Mean Absolute Perturbation per pixel

perceptibilityi(δ) =
1

3T
δ1 (5)

where  · 1 is dened as per Equation (4) with p = 1. The
perceptibility values in this paper will be presented as per-



cents from the full applicable values of the video span, e.g.,

perceptibility(δ) =
perceptibilityi(δ)

Vmax − Vmin
∗ 100

3. EXPERIMENTS

3.1. Experimental Setup

Dataset: To validate the performance of our approach, we
conducted experiments on benchmarked spontaneous mi-
cro expression datasets: SMIC [1], CASME II [2] , and
CAS(ME)2 [3]. These datasets were designed for the problem
of detecting and recognizing spontaneous micro-expressions.
These three corpora have the following characteristics:

• The SMIC dataset has 164 spontaneous microexpres-
sions from 16 subjects. The participants undergo high
emotional arousal through highly emotional clips and
suppress their facial expressions in an interrogation
room setting with a punishment threat.

• The CASME II dataset has 256 micro-expressions from
26 subjects. It has higher video quality and image size
compared with SMIC.

• The CAS(ME)2 dataset, which contains 206 videos, is
the latest version of the CASME series of datasets on
facial micro-expressions.

Micro-expression Recognition Model: We apply the state-
of-the-art CNN-based micro-expression models as our base-
line targeted model for privacy protection: Lateral Accretive
Hybrid Network (LEARNet) [5] and Spatiotemporal Convo-
lutional Neural Networks (STCNN) [6]. Our experiments fol-
low the white-box setting, which assumes knowledge of the
targeted model, its parameter values and architecture.
Parameters: In this section, we generalize the attack to
cause misclassication to all videos from a specic class with
a single universal adversarial perturbation δ. The parame-
ter congurations for the micro-expression dataset are T =
96, H = 224,W = 224, C = 3, and Vmin = −1, Vmax = 1.
The perturbation size ϵ is 0.031 and the maximum number of
iterations is 1,000. Results are reported for p = 2, ϵ = 2000.
We have randomly partitioned the available benchmarked
datasets with a ratio of 80:20 respectively. Furthermore, the
training set is divided into training and validation set with a
70:30 ratio respectively. We developed the single universal δ
by solving the optimization problem in Equation (1), where
XnNn=1 is the training set dened as the entire evaluation-
split of the micro-expression dataset. Once the universal δ
was computed, we evaluated its fooling ratio, transferability
and perceptibility on a random sub-sample from the test-split.

3.2. Privacy Protection

We perform novel adversarial attacks on video-based micro-
expression recognition to confuse the automatic emotion clas-
sier so that classication accuracy is reduced, thereby guard-

Table 1. White-box Fooling Rate(%) performance against
different architectures with various datasets.
Attack CASME-II CAS(ME)2 SMIC
AF [14] 20.08 31.65 18.68
AdverFacial 65.49 68.02 62.12

Table 2. Adversarial Transferability performance against dif-
ferent architectures with the same datasets, CAS(ME)2.

Source Model STCNN LEARNet
STCNN [6] 69.50 55.20
LEARNet [5] 62.10 68.02

ing emotional privacy against automated emotional recogni-
tion while keeping the perturbations imperceptible to human
eyes.

Due to the feature representation in a small spatio-
temporal window for micro-expression datasets, it might
be unfair to compare AdverFacial with [13, 16]. Note that
our experiments follows the white-box setting; therefore,
[15, 17] which are black box techniques are not relevant in
this paper. The results of the privacy protection of micro-
expression prediction labels are shown in Table 1. Under
the white-box setting, all attacks are generated on the target
model and used to attack this model. As compared with Ad-
versarial Framing (AF) [14], the AF attack can only reduce
the fooling rate results slightly in all cases. In contrast, the
AdverFacial approach can effectively improve the fooling
rate results in attacking different video frame lengths for all
the three datasets.

3.3. Adversarial Transferability

We evaluate the transferability of the universal perturbations
across models on the same micro-expression dataset. It is un-
fair to compare AdverFacial with AF on transferability since
the latter is not designed towards that goal. Table 2 shows
the results of the transferability. Result shows that the Adver-
Facial successfully generates transferable adversarial pertur-
bations in privacy protection. The high effectiveness of the
attack applied across models indicates that our attack is trans-
ferable between these different models.

4. CONCLUSION

In this paper, we propose the AdverFacial framework which
adopts the universal adversarial perturbation on videos in or-
der to effectively safeguard the emotional privacy against au-
tomated micro-expression recognition tasks. This is achieved
by perturbing the videos without visually affecting the per-
ceptual quality. Thus, we show that it is possible to protect
emotional privacy even when one’s facial videos are publicly
available, while keeping such perturbations imperceptible to
human eyes.
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