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Abstract The large number of user-generated videos uploaded on to the Internet everyday has led to many commercial video search engines,

which mainly rely on text metadata for search. However, metadata is often lacking for user-generated videos, thus these videos are unsearchable by

current search engines. Therefore, content-based video retrieval (CBVR) tackles this metadata-scarcity problem by directly analyzing the visual

and audio streams of each video. CBVR encompasses multiple research topics, including low-level feature design, feature fusion, semantic detector

training and video search/reranking. We present novel strategies in these topics to enhance CBVR in both accuracy and speed under different query

inputs, including pure textual queries and query by video examples. Our proposed strategies have been incorporated into our submission for the

TRECVID 2014 Multimedia Event Detection evaluation, where our system outperformed other submissions in both text queries and video example

queries, thus demonstrating the effectiveness of our proposed approaches.
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1. Introduction

As we see an unprecedented growth of user-generated
videos on the Internet, it is crucial to have an effective index-
ing and searching mechanism for these videos. To perform
search, current existing video search engines mainly rely on
user-generated text metadata. However, text metadata is of-
ten not a comprehensive representation of the video as: 1)
users often do not provide metadata, and 2) even if users
do provide metadata, a user cannot possibly annotate all
facets of the video. Therefore, content-based video retrieval
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(CBVR), which directly analyzes the visual and audio chan-
nels of a video to perform search, has attracted the attention
of many researchers and the annual TRECVID Multimedia
Event Detection (MED) evaluation1) was created. In this inde-
pendent evaluation, participants design systems which utilize
the wealth of information in the visual and audio channels to
perform effective and efficient content-based video search for
different query types, including 1) text queries and 2) query
by video example.

Compared with the already mature text-based search,
CBVR is significantly more challenging. One big challenge
is the low-level feature extraction challenge. A big prob-
lem with raw visual and audio channels is that videos which
depict similar semantics will still look very different if one
directly compared the raw values of the two channels. To
make matters worse, user-generated videos are usually very
unstructured, have low resolution, severe camera motion, and
very large variability. Therefore, representing videos with
features which have certain invariance and generalization
capabilities is a crucial part of CBVR. Another challenge is
the text/video semantic gap challenge2). The main problem
is that the aforementioned feature representations for video
often do not contain semantic information, but to query video
data with textual queries, it is crucial to bridge the semantic
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gap between a pure text-based query and the non-semantic
representation of a video. The final challenge is the index-

ing/search challenge. As new features are used to represent
the visual and audio channels, traditional text-search tech-
niques are not directly applicable, and new search techniques
need to be developed. To enable search over large video
collections, these new search techniques have to be both
effective and efficient.

In light of the aforementioned challenges, we propose mul-
tiple strategies to tackle these problems. For the low-level fea-

ture extraction challenge, we propose two different features
to significantly enhance CBVR performance. The first feature
is a variant of the Improved Dense Trajectory feature3)4) (Sec-
tion 4. 1), and the second feature is a deep learning feature
(Section 4. 2) trained on ImageNet5)6) data. For the text/video

semantic gap challenge, we propose a method which utilizes
large amounts of weakly-labeled videos to learn semantic con-
cept detectors encompassing a large vocabulary (Section 5).
This enlarged vocabulary is crucial in bridging the semantic
gap between a text-query and non-semantic video represen-
tations. For the indexing/search challenge, we first propose
to utilize Explicit Feature Maps7) and Product Quantization8)

to perform efficient yet effective video search (Section 6. 1).
We then propose a novel fusion method called Multistage
Hybrid Late Fusion (MHLF) to effectively fuse search re-
sults from multiple feature modalities (Section 6. 2). Finally,
we propose a self-paced reranking method9) to automatically
enhance search results through pseudo-relevance feedback
(Section 6. 3). The aforementioned methods were all inte-
grated into our TRECVID MED 2014 system, which was the
leading system in all eight MED subtasks, thus demonstrating
the effectiveness of our proposed strategies.

In the following sections, we first give an overview of a
general CBVR system and related work in Section 2. Then
we summarize our results in the TRECVID MED 2014 task
in Section 3. Details of each proposed strategy are given in
Sections 4, 5 and 6. Finally, Section 7 concludes the paper.

2. Content-based Video Retrieval Preliminaries

A general pipeline of a CBVR system is shown in Figure 1.
There are mainly two phases: the offline phase and the online
phase. In the offline phase, low-level and semantic features
are extracted for a large video repository and indexed so that
the online phase is sufficiently efficient. The semantic fea-
tures are predictions of semantic concept detectors, which
takes low-level features as input and predicts whether a given
concept such as dog, cat, or car exists in a video. In the online
phase, users will provide different types of queries to search
for relevant videos. There are mainly two types:

Fig. 1 Pipeline of a general CBVR system. The purple boxes and
arrows correspond to components designed for querying by
video examples. The red boxes and arrows corresponds to
components designed for text queries.

( 1 ) Query by video example: The user provides one or mul-
tiple example videos to search for related videos.

( 2 ) Text queries: The user types in a pure text query to
search for videos of interest.

As the input from different query types are of different modal-
ities (i.e. videos or text), different kinds of features and search
techniques are designed for each case. For the query by
video examples case, the learning-based search component
retrieves related videos by first training a model which dis-
tinguishes the exemplar videos from the non-related videos.
The model is trained based on the features extracted in the
offline phase. Then, the model is applied to the video repos-
itory to search for other related videos. Lastly, the search
results goes through an iterative reranking process, which per-
forms pseudo-relevance feedback to automatically improve
the search results. For searching by text queries, the first step
is semantic query generation, where the text query is mapped
to the system vocabulary. The system vocabulary constitutes
of all concepts that could be detected by the available seman-
tic concept detectors. Then the generated semantic query is
utilized to perform semantic search. The initial ranked list
also goes through the reranking process to acquire a more ac-
curate ranked list. In the following sections, we will explain
the details and also briefly review the related work for each
component.

2. 1 Searching by Video Examples
For the query by video examples scenario, low-level fea-

tures combined with discriminatively learned search models
play the key role in achieving good performance10)11). In the
following sections, we will review the related work on these
two topics.
( 1 ) Low-level Features
Many low-level audio and visual features have been uti-

lized to enhance CBVR performance. The most popular
low-level audio feature used is the Mel-Frequency Cepstral
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Coefficients (MFCC)11), which have been shown to be the
most cost-effective feature12). Other audio features including
Acoustic Unit Descriptors13) and Large-scale Pooling Fea-
tures14) have also been utilized.

Low-level visual features can be split into two categories:
static image features and motion features. Static image fea-
tures are essentially image-based features extracted from all
or selected frames of a video. The temporal relation between
the frames are not taken into account. Before the introduction
and success of deep features, mainstream static image fea-
tures were frequently hand-crafted SIFT-based features15)16).
Currently, deep convolutional neural network (DCNN) fea-
tures11)17) are significantly outperforming hand-crafted fea-
tures and represent the current mainstream. In this paper,
we present architectural improvements for static-image deep-
networks to enhance CBVR performance.

Motion features utilize the temporal relations between
frames to capture motion characteristics of a video. Optical
flow is typically used to compute motion features. Currently,
one of the most effective features is Improved Dense Trajecto-
ries (IDT)18), which significantly outperforms the previously
proposed popular motion features such as Space Time Inter-
est Points (STIP)19) and Motion SIFT (MoSIFT)20). In this
paper, we present two enhancements which further improves
the performance of IDT.

One problem with the previously mentioned low-level fea-
tures is that they will generate a different number of feature
vectors depending on the length, resolution and contents of
the video, thus leading to varying length vector represen-
tations for each video. It is very difficult to compare two
videos with different length representations. Therefore, the
varying length representations of each video need to be con-
verted to a fixed-length vector representation, thus many
different encoding/pooling techniques have been proposed,
including Bag-of-Words (BoW)21) and Spatial Pyramid BoW
(SpBoW)22), Fisher Vectors (FV)23)24), and Vector of Locally
Aggregated Descriptors (VLAD)25). FV and VLAD are the
current mainstream encoding methods17).

Overall, a “complete” feature is a combination of a low-
level feature and an encoding method. For example, SIFT
can be encoded with SIFT-SpBoW or SIFT-FV, and MFCC
can also be encoded with BoW (MFCC-BoW) or FV (MFCC-
FV) respectively. Once these encodings have been computed,
they are indexed for the subsequent learning-based search.
( 2 ) Learning-based Search
There are two key components to learning-based search:

the learning component, and the fusion component.
Utilizing machine learning models such as Support Vector

Machines (SVM)10)26) and Kernel Ridge Regression (KRR)11)

has shown to be very effective for querying with video exam-
ples. The main idea is to treat the example videos as positive
training data, and when combined with a large pool of nega-
tive videos, a classifier can be trained to determine whether
an input testing video is relevant or not.

Fusion enables the incorporation of search results from dif-
ferent features which capture the multiple aspects of a video.
The main challenge of fusion is to effectively estimate the
reliability of each feature source so that the fusion algorithm
knows which features to rely more on when dealing with dif-
ferent videos. Many fusion method such as early fusion, late
fusion, double fusion27) and other more complex methods28)

have been proposed. In this paper, we propose a Multistage
Hybrid Late Fusion method, which shows superior perfor-
mance and robustness over other fusion methods.
( 3 ) Reranking
Reranking utilizes pseudo-relevance feedback (PRF) to

automatically enhance an initial rank list. The intuition of
PRF is that the top-ranked results in an initial rank list are
highly likely to be correct, and adding these instances back
into the training set may improve performance. This simple
method has shown to be effective in many different scenarios.
However, previous PRF methods usually operate on a single
ranked list29), but the CBVR task inherently outputs multiple
ranked lists from different features, and effectively fusing
these ranked lists becomes a challenging task30).

In this paper, we introduce self-paced reranking, which fur-
ther improves the performance of existing PRF approaches.
Our system incorporates MMPRF30) and SPaR9) to conduct
reranking, in which MMPRF is used to assign the starting
values, and SPaR is used as the core reranking algorithm.
The reranking is inspired by the self-paced learning proposed
by Jiang et al.9), in that the model is trained iteratively as
opposed to simultaneously. Our methods are able to leverage
high-level and low-level features which generally leads to
increased performance31). The high-level features used are
ASR, OCR, and semantic visual concepts. The low-level
features include DCNN, IDT and MFCC features.

2. 2 Searching with Text Queries
This scenario takes a pure-text query as input, and outputs

a ranked list of relevant videos. It is an interesting task be-
cause it resembles a real-world video search scenario, where
users typically search videos by using query words instead
of providing example videos.

The main challenge of the text-to-video search scenario
is to bridge the semantic gap between text and video. In
current state-of-the-art systems, this gap is usually bridged
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with automatic speech recognition (ASR), optical character
recognition (OCR), and semantic concept detectors. Seman-
tic concept detectors are trained to detect whether a certain
object, scene, or action exists in a video or not. Given a pool
of concept detectors, these detectors can be applied on an
input video to acquire a semantic feature representation of the
video, which corresponds to the confidence score of detecting
a concept in the video. This feature representation is very
different from the low-level feature representations, where
each dimension in the vector does not have a clear semantic
meaning. Popular datasets to train concept detectors include
the ImageNET5) dataset, the SUN39732) scene dataset, and the
TRECVID Semantic Indexing (SIN)1) dataset. To train effec-
tive static-image-based detectors, the current mainstream is
deep convolutional neural network models6)33). To train video-
based detectors, the current mainstream is combining deep
static-image detectors with motion features such as Improved
Dense Trajectories18).

According to Jiang et al.2)30), a text-to-video search system
consists of three major components, namely Semantic Query
Generation (SQG), Semantic Search and Reranking/PRF as
shown in Figure 1. The Semantic Query Generation compo-
nent translates the description of the user’s information need
into a set of multimodal system queries that can be processed
by the system. There are two challenges in this step. Since
the semantic vocabulary of the system is usually limited, the
first challenge is to map the user’s query words into the sys-
tem vocabulary. The second challenge is assigning a given
query word its modality as well as its weight associated with
that modality. A preliminary study of these challenges is
detailed in Jiang et al.2).

The semantic search component retrieves multiple ranked
lists for a given text query. Our system incorporates various
retrieval methods such as the Vector Space Model, tf-idf,
BM25, language model34), etc. Surprisingly, a better retrieval
model on worse features actually outperforms a worse re-
trieval model on better features. This observation suggests
that the role of retrieval models in our semantic search sys-
tem may be underestimated in much current research. After
retrieving the ranked lists for all modalities, we apply a nor-
malized fusion to fuse different ranked lists according to the
weights specified in SQG.

Reranking is also performed for text query search. One
key advantage of reranking is that it “bridges” the semantic
search and the learning-based search30). Once the text query
search component generates an initial ranked list, the posi-
tives in this ranked list can be used to perform learning-based
search, which can often further improve search performance.

3. TRECVID Multimedia Event Detection 2014

The TREC Video Multimedia Event Detection (MED)1)

task is a standardized task held every year since 2010 to
evaluate the performance of different CBVR systems on the
MED task. Different CBVR systems are presented with mul-
tiple queries, and the CBVR system needs to retrieve relevant
videos from the evaluation set. Example queries are shown in
Figure 2. The query consists of two parts, the textual query
and the video examples. Different parts of the query will
be utilized for different query settings as described below.
For the TRECVID MED14 task, the organizers split the data
set into four standard sets: the positive examples, the back-
ground set, the validation set and the testing set. The positive
examples are videos relevant to a queried event. The number
of positive examples will vary according to the four different
query settings defined by the organizers:
( 1 ) Semantic Query (SQ): Only the textual query was given.
( 2 ) 0 Exemplar (000Ex): The textual query and background

videos were given. No positive videos were given.
( 3 ) 10 Exemplar (010Ex): In addition to what was given for

000Ex, 10 positive videos were given.
( 4 ) 100 Exemplar (100Ex): In addition to what was given

for 000Ex, 100 positive videos were given.
The background set, which can be viewed as the negative
videos, contained 4992 videos. The validation set, which is
also know as MEDTEST14, contained around 24,000 videos.
The testing set contained around 198,000 videos (8000 hours
of video) which does not contain any text metadata. In the
competition, competitors trained their system on the positive
and background sets, and then tuned the system on the valida-
tion set. Finally, the resulting system performed search over
the testing set and the results were submitted to the organizers.
Label information was only available for the positive, back-
ground and validation sets. The labels for the testing set were
never released to prevent overfitting on the testing set. In the
competition, there were two types of queries, pre-specified
and ad-hoc. For pre-specified queries, the names of events
were given a few months beforehand, so participants could
design specialized detectors for these events. On the other
hand, ad-hoc queries were given a few days before the dead-
line, leaving no time to design specialized detectors. There
were a total of 20 events/queries for the MED14 pre-specified
run and 10 events for the MED14 ad-hoc run. The evaluation
metric used was Mean Average Precision (MAP)1).

CMU MED14 Submission Overview
For MED14, we had a system11) for text queries (SQ,

000Ex) and another system for query by video examples
(010Ex, 100Ex). For text queries, our system utilized ASR,
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Fig. 2 Examples queries from the MED14 task. Each query consists
of a textual description and video examples.

Fig. 3 Official1) MAP performance on the MED14 testing set in dif-
ferent settings for pre-specified events.

Fig. 4 Official1) MAP performance on the MED14 testing set in dif-
ferent settings for ad-hoc events.

Metric: MAP 100Ex 010Ex
IDT 0.274 0.133

IDT + SPM 0.286 0.136
MIFS (L=0,2,5) 0.297 0.153

MIFS (L=0,2,5) + STED 0.298 0.162
Table 1 Performance comparison of MIFS and STED over baseline

methods.

OCR, and more than 3000 concept detectors (Section 5).
The semantic query generation utilized WordNet similar-
ity35), Point-wise Mutual Information on Wikipedia, and
word2vec35)36) to generate a mapping that maps the textual
event description to the concepts in our vocabulary. For
semantic event search2), our system incorporated various re-
trieval methods such as Vector Space Model, tf-idf, BM25,
language model34), etc. For query by video examples, our
system extracted 47 low-level and semantic features, which
were all provided to the learning-based search component.
The search components utilized two classifiers: SVM and
KRR. For 100Ex, both SVM and KRR were used. How-
ever, for 010Ex, experiments had shown that only using KRR
achieves better performance, so the 010Ex runs only utilized
prediction results from KRR. The output of the 47 features
from the classifiers were given to Multistage Hybrid Late
Fusion to acquire the final fusion results. More details of the
47 features are in Yu et al.11).

Figures 3 and 4 present the results of our system and other
competing systems on the MED14 task. We can see that our
system is significantly better than other competing systems,
thus demonstrating the effectiveness of our strategies. In the
following sections, we will detail each of our strategies. How-
ever, as the labels for the testing set were never released, we
can only present experimental results on the 20 pre-specified
events on the validation set MEDTEST14.

4. Improvements in Low-Level Features

4. 1 Enhancements for Improved Dense Trajectories
We improve the original Improved Dense Trajectory18) in

two ways. First, temporal scale-invariance is achieved by
extracting features under different video playback speeds,
which are generated by skipping frames at certain intervals.
We denote this new way of feature extraction as Multi-skIp
Feature Stacking (MIFS)4). Different from what has been
described in Lan et al.4), we use the combination of level 0, 2
and 5 to balance speed and performance.

Second, we propose a new space-time encoding method,
dubbed Space-Time Extended Descriptors (STED), that at-
taches spatial (x, y) and temporal (t) location information to
the raw features after PCA-projection4).

As illustrated in Table 1, by using MIFS, we improve MAP
of both 100Ex and 010Ex on MEDTEST14 by about 2%, ab-
solute. We further add STED to the results of MIFS and
compared it with Spatial Pyramid Matching (SPM)22), a clas-
sical space-time encoding method. As can be seen, STED can
get similar or better results compared to the results of only
using MIFS. SPM can also improve the baseline results, but
due to its high dimensionality, it needs large space for storing
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Fig. 5 Performance gains on MEDTEST14 100Ex after CNN struc-
ture modifications.

the resulting feature vectors and is computationally expensive
to run the classifiers, thus STED is a more space efficient
alternative to incorporate spatial and temporal information
into a feature. For details, please see Lan et al.4).

4. 2 Features from ImageNet DCNN Models
In order to leverage the powerful deep learning models in

MED, we improved existing DCNN models in two directions:
1) by utilizing more data and 2) by modifying the network
structure. In total, we have extracted a total of 15 different
Deep Convolutional Neural Network (DCNN) features in our
MED14 system. All models were trained on different subsets
of ImageNet.

We utilized more data by training 3 models12) on the whole
ImageNet dataset consisting of around 14 million labeled
images and 28,000 classes. We took the networks at epoch 5,
6 and 7 and generated features for MED keyframes using the
first fully connected layer and probability layer. To generate
video features from keyframe-level features, we used both
maximum pooling and average pooling for the probability
layer and only average pooling for the fully connected layer.
This procedure results in 9 DCNN-ImageNet representations
for each video.

To explore the performance of deep models under varying
network structures, another 5 models were trained on the stan-
dard ILSVRC 2012 dataset5) which had around 1.28 million
images belonging to 1,000 classes. Two models were trained
with six convolutional layers, two models were trained with
smaller filters, and one was trained with a larger number
of filters. A multi-view representation was used for one of
the models. The network structure is as described in Zeiler
et al.37). Except for different structures among models, the
models with the same structures differ in initialization. The
training process was tuned on the ImageNet ILSVRC 2012
validation set with 50 thousand images. These models result
in another 6 different feature representations. More details
and also some further improvements after the MED14 evalu-
ation are described in17).

Figure 5 illustrates the improvements on different network
structures we have explored within the ILSVRC 2012 train-
ing setting. We started with the standard AlexNet but with
6 convolutional layers and the features were computed from
the 1,000 dimensional probability layer. Intuitively, the prob-
ability output provides a semantic feature representation for
each video, where each dimension corresponds to a specific
object. We can regard this feature as Bag-of-Words with a
vocabulary of 1,000 visual objects. The features were then
fed into a χ2-exponential SVM for classification. We only
achieved 0.246 MAP on MEDTEST14 100Ex, which is far
below IDT. We then explored features from other layers, e.g.,
pool5, fc6 and fc7. Adding multiple layers into the video
representation increases the MAP to 0.277.

We further explored a wider network by doubling the num-
ber of filters in each convolutional layer. For example, the
standard AlexNet had 256 filters in the 5-th convolutional
layer, while we explored the 5-th convolutional layer with 512
filters. This way, the network learns more complex patterns
in the images and improved the MAP to 0.288. Following
Zeiler et al.37), we made the filter size of the first convolutional
layer smaller, i.e., reducing it from 11 to 4, and decreased
the stride of this layer from 4 to 2. Though this dramati-
cally increased training time for the network due to much
more time-consuming convolutional operations on the first
convolutional layer, the smaller filter size and stride helped
the network capture finer patterns and boosted performance
to 0.325, which outperforms the previous versions signifi-
cantly. In the stages described above, we only utilized a single
crop from the central 224-by-224 pixels of the video frames,
which may lose some helpful visual information. Therefore,
we generated a multi-view DCNN feature by producing 10
crops per input frame, which included the top-left, top-right,
bottom-left, bottom-right and center crops along with their
corresponding mirrored crops. The features obtained from
the 10 views are subsequently averaged together to acquire
a single vector representation. This further improved perfor-
mance to 0.332. The whole exploration of utilizing features
extracted from ImageNet pretrained models with different
structures raised performance from 0.246 to 0.332, which is a
big improvement over state-of-the-art hand-crafted features.

5. Bridging the Text/Video Semantic Gap

Our shot-based semantic concepts were directly trained on
video shots and not still images for the following two reasons:
1) shot-based concepts have minimal domain difference; 2)
this allows for action detection. We have found that detectors
trained on still images usually do not work well on video,
which may suggest that the domain difference between static
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images and video data such as MED data is significant.
The shot-based semantic concept detectors were trained

with our pipeline based on our previous study on Cas-
cadeSVM and a new study on self-paced learning38)39). Our
system included more than 3,000 shot-based concept detec-
tors which were trained on around 2.7 million shots using
the standard improved dense trajectory features18). The detec-
tors are generic and include people, scenes, activities, sports,
and fine-grained actions described in40). The detectors were
trained on several datasets including Semantic Indexing1),
YFCC100M41) and Google Sports42). YFCC100M and Google
Sports are weakly-labeled datasets, i.e. the labels for each
video were inferred from the metadata of the videos and
not annotated by a human. The notable increase in quantity
and quality of our detectors significantly contributed to the
improvement in the text-to-video system performance.

Training large-scale concept detectors on big data is very
challenging, thus requiring research on both theoretical and
practical perspectives. Regarding theoretical progress, we
adapted self-paced learning theory, which provided theoreti-
cal justification for concept training. Self-paced learning is
inspired by the learning process of humans and animals39)43),
where samples were not learned randomly but organized in
a meaningful order: from easier samples to gradually more
complex ones. We advanced the theory in two directions:
augmenting the learning schemes9) and learning from easy
and diverse samples38). The two studies offer a theoretical
foundation for our detector training system.

As for practical progress, we optimized our pipeline for
high-dimensional features (around 100K dimensional dense
vector). Specifically, we utilize large shared-memory ma-
chines to store the kernel matrices, e.g. 512GB in size, in
memory to achieve 8 times speedup in training. This enabled
us to efficiently train more than 3,000 concept detectors over
2.7 million shots by self-paced learning38). We use around
768 cores in Pittsburgh Supercomputing Center for about 5
weeks, which could be roughly broken down into two parts:
low-level feature extraction for 3 weeks and concept training
for 2 weeks. For testing, we converted our models to linear
models to achieve around 1,000 times speedup in prediction.

In summary, our theoretical and practical progress pro-
vided the foundation for developing critical tools for large-
scale concepts training on big data. For instance, if we had
500 concepts over 0.5 million shots, then, optimistically
speaking, we can finish training within 48 hours on 512
cores, including the raw feature extraction. After getting the
models, the prediction for a shot/video only takes 0.125s on
a single core with 16GB memory.

6. Improvements in Indexing/Retrieval

6. 1 Efficient Learning-based Search
The most natural way for a human to utilize a system is

through an interactive process. Therefore, to strive for inter-
active MED, we targeted completing learning-based search
over 200,000 videos in 15 minutes on a single machine. This
is a big challenge for the query by video example pipeline, as
we utilized 47 features and around 100 classifiers (SVM &
KRR) to create the final ranked list. The text search pipeline
is a lot simpler thus timing is not a big issue. Therefore,
we will focus on the query by video example system in the
remaining section. To speed up, we performed optimizations
in three different directions: 1) decreasing computational
requirements, 2) decreasing I/O requirements and 3) utiliz-
ing GPUs. Computational requirements were decreased by
replacing kernel classifiers with linear classifiers. I/O re-
quirements were decreased by compressing features vectors
with Product Quantization8) (PQ). GPUs were utilized for fast
linear regression and prediction.
( 1 ) Replacing Kernel Classifiers by Linear Classifiers

Kernel classifiers are slow during prediction time because
to perform prediction on a testing video vector, it is often re-
quired to compute the dot-product between the testing video
feature and each vector in the training set. For MED14,
we had around 5000 training videos, so 5000 dot products
were required to predict one video. This is too slow, as pre-
liminary experiments showed that prediction of improved
trajectory fisher vectors (IDT-FV, 109056 dimensions) on
200,000 videos required 50 minutes on a NVIDIA K-20 GPU.
Therefore, to accelerate this process, we switched to linear
classifiers, which requires only one dot product per testing
vector, thus in theory we have sped up by 5000x. However,
bag-of-word features do not perform well with linear ker-
nels. Therefore, we used the Explicit Feature Map (EFM)7)

to map all bag-of-word features to a linearly separable space
before applying the linear classifier. As the EFM is an ap-
proximation, we run the risk of a slight drop in performance.
Figures 6 and 7 show the performance difference before and
after EFM approximations. For most features, we suffer a
slight drop in performance, which is still cost-effective given
that prediction speed was sped up by 5000x.
( 2 ) Feature Compression with Quantization
In order to improve I/O performance, we compressed our

features using Product Quantization8) (PQ). Compression is
crucial because reading uncompressed features can take a lot
of time. PQ compresses feature vectors by first splitting each
feature vector into multiple chunks, and then quantizing each
chunk with a 256 word codebook. A 256 word codebook
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is ideal because cluster assignments can be stored with 1
byte. Therefore, the chunk, which we set to 8 floating point
numbers (32 bytes) in our system, is simply represented by 1
byte, thus achieving 32X compression. Also, faster classifier
prediction can be done based on the PQ codebooks. More
details are in Jegou et al.8) and Yu et al.44). However, as PQ
performs lossy compression, the quality of the final ranked
list may degrade. Figures 6 and 7 shows the performance
drop before and after PQ approximation. We can see that
there is nearly no performance drop before and after PQ. Fig-
ure 8 further shows MEDTEST14 010Ex performance when
performing quantization under different compression ratios.
We show performance of two quantization methods, PQ and
Uniform Quantization (UQ). The basic idea of UQ is to quan-
tize each dimension of all feature vectors into k bins, and
each dimension can be represented with log2(k) bits. As we
can see, PQ and UQ have similar performance. The problem
with UQ is that one can at most achieve 32X compression
when k = 2, but PQ can achieve higher compression ratios
by adjusting the size of each chunk.
( 3 ) Utilizing GPUs for Fast Linear Regression∗ and Linear

Classifier Prediction
Following the TRECVID MED 2014 guidelines, we were

limited to a single workstation for learning-based search.
Therefore, we utilized all available computing resources on
our workstation, which includes CPUs and GPUs. Exploiting
the fact that matrix inversion on GPUs are faster than CPUs,
we trained our linear regression models on GPUs, which
is 4 times faster than running on a 12 core CPU. We also
ported the linear classifier prediction step to the GPU, which
runs as fast as a 12 core CPU. Our workstation had 2 Intel(R)
Xeon(R) CPU E5-2640 6 core processors, 4 NVIDIA TESLA
K20’s, 128GB RAM, and 10 1T SSDs setup in RAID 10 to
increase I/O bandwidth.
( 4 ) Overall Speed Improvements
As both EFM and PQ are approximations, we quantified

the drop in performance when both methods were used. The
results are shown in Table 2. We see a 3% relative drop
in performance for 100Ex and a slight gain in performance
for 010Ex. Despite slight drop in performance, speed has
been substantially decreased. We have sped up our system
by 16 times for learning-based search with a cost of 3% rela-
tive drop in performance, which is negligible given the large
efficiency gain.

∗For linear features, the KRR model effectively becomes linear regression.
α : Used in our MED13 system27).
β : Extrapolated timing for our MED13 system27).
γ : A modified MHLF was used so that it is compatible with features of the

MED13 system, thus leading to slightly different numbers than Table 3.

Fig. 6 Performance difference before and after EFM and PQ approxi-
mations for MEDTEST14 100Ex.

Fig. 7 Performance difference before and after EFM and PQ approxi-
mations for MEDTEST14 010Ex.

Fig. 8 Performance on MEDTEST14 010Ex under different quantiza-
tion methods and compression ratios.

MEDTEST14 MAP 100Ex Learning-based
Search Timing (s)100Ex 010Ex

No EFM, No PQ, with GMM
featuresα

0.405 0.266 17580β

EFM, PQ, no GMM features 0.394γ 0.270 1068
Relative Improvement -2.7% 1.5% 1646%

Table 2 Performance of different features and fusion methods.
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Fig. 9 Intuition and pipeline of Multistage Hybrid Late Fusion.

6. 2 Multistage Hybrid Late Fusion Method
For a given query, the goal of fusion is to learn the weights

of different modalities according to the effectiveness of each
feature. A simple way to learn modality specific weights
can be by training a linear regression model on held-out data
from the training set. However, this approach is usually not as
stable as if the held-out set is small, the learned weights tend
to overfit. To this end, we propose a new learning based late
fusion algorithm, named the “Multistage Hybrid Late Fusion”
(MHLF) as shown in Figure 9. The MHLF is designed based
on the following three key observations:
1. Ranking information is not explicitly modeled in the
prediction scores. Therefore, step 1 in Figure 9 augments
the original prediction scores with ranking information.
2. Prediction scores from different features contain du-
plicate information and should not be naı̈vely averaged.
Duplicate information comes from different features using the
same basic feature. For example, SIFT-BoW and CSIFT-FV
are all SIFT-based and their ranked lists are usually highly
correlated. We propose to model such highly correlated
ranked-lists as a generative process. The assumption is that
there are many “essential features”, whose classifiers gener-
ate noise free ranked lists. However, these essential features
goes through a duplication and noisy perturbation process,
thus what we observe are noisy prediction results. Therefore,
to recover the essential features, we perform PCA-Tree clus-
tering as shown in step 2 of Figure 9. The cluster centers
corresponds to a “cleaner” version of the prediction results
and can be viewed as an estimate of an essential feature.
These recovered essential features, and also the original pre-
diction scores are all provided to the next hybrid fusion step.
3. Prediction scores contain random noise and directly
learning fusion weights on top may lead to overfitting. To

Fig. 10 Results of fusion based on randomly sampled subsets of fea-
tures, where the number of randomly sampled features varies
from all features to 30% of the features. The sampling was re-
peated 60 times, and the 95% confidence intervals are shown.

deal with this issue, MHLF utilizes hybrid strategies to ac-
quire a more robust fusion weight estimate. The intuition is
that each fusion strategy can be viewed as a random obser-
vation of a “ground-truth fusion strategy”. Since there is no
single fusion strategy that performs better than others on all
queries, sampling multiple strategies and averaging them is a
simple and effective method to acquire a more stable estimate
of fusion weights. The key fusion strategies include:

( 1 ) Average fusion: each feature gets equal weight.
( 2 ) Single-AP: the weights of each feature is its average

precision (AP) on the held-out set.
( 3 ) Leave-One-Out: the weights of a feature is the AP per-

formance drop when removing this feature from an av-
erage fusion run.

( 4 ) SGD-AP: performs stochastic gradient descent which
maximizes average precision as the loss function.

Results on the key features of MEDTEST14 and final fu-
sion results are shown in Table 3. All these results were based
on prediction scores from 32X PQ. As we can see, MHLF
is superior than average fusion and linear regression fusion.
We also performed robustness tests on our fusion algorithm
as shown in Figure 10. In this experiment, we randomly
removed a subset of features from the original set of 47 fea-
tures and ran the different fusion methods. As we can see,
as we gradually remove features, MHLF is still consistently
better than the other two baseline fusion algorithms, thus
demonstrating the robustness of MHLF.

From Table 3, we can also compare the relative perfor-
mance of single features and encoding methods. For static
image features, it is clear that multi-view DCNN outperforms
handcrafted features such as SIFT and CSIFT. For motion
features, MIFS + STED is significantly better than MoSIFT
and STIP. Encoding wise, we can see that Fisher vector (FV)
encodings are in general better than BoW encodings. Also,
in general KRR performs better than SVM in the 010Ex
scenario, so for the 010Ex fusion runs we only used pre-

Paper ( 9 ) 9



Condition 10Ex 100Ex

Classifier KRR SVM KRR SVM

STIP SpBoW EFM 0.026 0.025 0.087 0.091
SIFT SpBoW EFM 0.042 0.036 0.145 0.157

MoSIFT SpBoW EFM 0.045 0.038 0.110 0.126
CSIFT SpBoW EFM 0.046 0.039 0.143 0.135
MFCC BoW EFM 0.057 0.051 0.101 0.112

CSIFT FV 0.065 0.051 0.157 0.140
SIFT FV 0.066 0.060 0.162 0.157
STIP FV 0.073 0.074 0.140 0.140

MoSIFT FV 0.081 0.083 0.179 0.184
IDT FV 0.135 0.128 0.270 0.268

MIFS + STED 0.161 0.142 0.292 0.277
Multi-view DCNN 0.187 0.167 0.319 0.299

MHLF, MIFS + STED &
multi-view DCNN

0.215 0.353

MHLF, MIFS + STED &
multi-view DCNN &

MFCC BoW
0.237 0.389

Linear Regression Fusion,
47 Features

0.250 0.362

Average Fusion, 47
Features

0.252 0.387

MHLF, 47 Features 0.285 0.419
Table 3 MAP performance of different features and fusion meth-

ods. The testing features have all gone through 32X PQ
compression, so the results are slightly lower than the non-
approximated results reported in Table 1 and Figure 5.

diction results from KRR. Finally, if there were resource
constraints in feature extraction, combining the 3 core fea-
tures: MFCC BoW, MIFS + STED, and multi-view DCNN
can achieve around 90% of the full system’s performance.
Among these 3 core features, MFCC excels on events such as
“Tuning musical instrument” and “Town hall meeting”, where
audio such as instrument sounds or speech is an important
cue. MIFS + STED performs well on events such as “Rock
climbing” and “Winning a race without a vehicle”, where the
action of people is crucial in determining if a video is rele-
vant. Finally, multi-view DCNN achieves high performance
on events which have discriminative objects, such as honey-
comb for the “Beekeeping” event, and cars in the “Parking a
vehicle” event.

6. 3 Self-Paced Reranking
Our PRF system was implemented according to Self-Paced

Reranking (SPaR) detailed in Jiang et al.9). SPaR represents
a general method of addressing multimodal pseudo relevance
feedback for SQ/000Ex video search. As opposed to utilizing
all samples to learn a model simultaneously, the proposed
model is learned gradually from easy to more complex sam-
ples. In the context of the reranking problem, the easy sam-
ples are the top-ranked videos that have smaller loss. As
the name “self-paced” suggests, in every iteration, SPaR ex-
amines the “easiness” of each sample based on what it has
already learned, and adaptively determines their weights to
be used in the subsequent iterations. The mixture weight-
ing/scheme self-paced function was used, since we empiri-

cally found it outperforms the binary self-paced function on
the validation set2). Since the starting values can significantly
affect final performance, we used the reasonable starting val-
ues generated by MMPRF30). The high-level features used
were ASR, OCR, and semantic visual concepts. The low-
level features were DCNN, IDT and MFCC features. We did
not run PRF for SQ since our 000Ex and SQ runs are very
similar. The final results were computed by averaging the
initial ranked list with the reranked list. This is beneficial
because for the 000Ex case, the initial ranked list is from
semantic search (high-level features), whereas the reranked
list is from learning-based search (low-level features), and
leveraging high-level and low-level features usually yields
better performance31). To be prudent, the number of iterations
is no more than 2 in our final submissions.

The contribution of our reranking methods is evident be-
cause the reranking method is the only difference between
our noPRF runs and PRF runs as shown in Figure 3 and 4.
According to the MAP on the testing set of MED14, our
reranking method boosted the MAP of the 000Ex system by
a relative 16.8% for pre-specified events and a relative 51.2%
for ad-hoc events. Besides, it also boosted the 010Ex system
by a relative 4.2% for pre-specified events, and a relative
13.7% for ad-hoc events. This observation is consistent with
the ones reported in previous work9)30). Note that the ad-hoc
queries are very challenging because the query is unknown to
the system beforehand. As we can see, our reranking meth-
ods still managed to yield significant improvement on ad-hoc
events. More reranking results on MEDTEST14 data can be
found in Jiang et al.2).

It is interesting that our 000Ex system for ad-hoc events
outperforms 010Ex systems from many other teams. In
MED14, the difference between the best 000Ex with PRF
(17.7%) and the best 010Ex noPRF (18.2%) is marginal. In
MED13, however, this difference was very large where the
best 000Ex and 010Ex system was 10.1% and 21.2%∗ respec-
tively. This observation suggests that the gap of real-world
000Ex event search system is shrinking rapidly. We attribute
the improvement of the 000Ex system to the following key
reasons: 1) improved semantic concept detectors (Section 5),
2) improvement achieved by the reranking algorithm SPaR,
and 3) reasonable queries formulated by human experts.

7. Conclusion and Future Work

We have described multiple strategies to enhance both the
accuracy and speed of content-based video retrieval systems.
Overall, the main conclusions are: 1) IDT-based and CNN-

∗The runs in different years are not comparable since different queries were used.
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based features are the current best motion and static image
feature, 2) semantic concept detectors trained from big data
are effective, 3) EFM and PQ compression can significantly
speed up the system with only a negligible drop in accuracy,
4) MHLF fusion, which fuses multiple fusion strategies, is ro-
bust, and 5) reranking is an effective way to enhance accuracy.
Looking into the future, we believe that current systems can
already achieve reasonable accuracy, but speed is still a big
issue. Efficiently extracting features, indexing and searching
the billions of videos online will be the next big challenge.
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