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ABSTRACT

There is increasing evidence that changes in the
variability or overall distribution of gene expression
are important both in normal biology and in dis-
eases, particularly cancer. Genes whose expression
differs in variability or distribution without a differ-
ence in mean are ignored by traditional differential
expression-based analyses. Using a Bayesian hierar-
chical model that provides tests for both differential
variability and differential distribution for bulk RNA-
seq data, we report here an investigation into dif-
ferential variability and distribution in cancer. Analy-
sis of eight paired tumour–normal datasets from The
Cancer Genome Atlas confirms that differential vari-
ability and distribution analyses are able to identify
cancer-related genes. We further demonstrate that
differential variability identifies cancer-related genes
that are missed by differential expression analysis,
and that differential expression and differential vari-
ability identify functionally distinct sets of potentially
cancer-related genes. These results suggest that dif-
ferential variability analysis may provide insights into
genetic aspects of cancer that would not be revealed
by differential expression, and that differential distri-
bution analysis may allow for more comprehensive
identification of cancer-related genes than analyses
based on changes in mean or variability alone.

INTRODUCTION

As RNA sequencing (RNA-seq) has replaced microarray as
the leading technology for large-scale gene expression anal-
ysis at the whole tissue level, there has been rapid progress
in the development of methods for analysing the resulting
count data. The focus of most of these methods is differen-
tial expression analysis – identifying genes whose mean ex-

pression levels differ between groups of interest. However,
there is a growing body of evidence to suggest that differ-
ences in variability of gene expression are also biologically
and medically important. Differences in expression variabil-
ity have been associated with biological function (1–3), de-
velopment (4,5) and ageing (6–9). Changes in expression
variability have also been implicated in diseases including
schizophrenia (3,10) and cancer (11–14). Genes selected for
differences in variability have been demonstrated to have di-
agnostic and prognostic potential in cancer (12–17).

Work on expression variability to date has often focused
on microarray data, and variability has been assessed using
empirical measures such as standard deviation (5,13,15), the
coefficient of variation (CV; the ratio of the standard devi-
ation to the mean) (3,10,11), or measures of deviation from
expected expression values determined by a relationship be-
tween the mean and variability (17,18). Tests for changes in
variability have generally been based on established normal
distribution-based tests such as the F-test and Bartlett’s test,
or robust alternatives such as Levene’s test or the Brown–
Forsyth test (6,14,19–22). In assuming that the data follows
a normal distribution or not assuming any parametric dis-
tribution, these tests are likely to be under-powered for all
but very large sample sizes. This is particularly the case if
they are to be applied to RNA-seq data, which takes the
form of counts, and so is discretely, rather than continu-
ously, distributed.

RNA-seq data is most commonly modelled using the neg-
ative binomial (NB) distribution, for which the variance is a
function of the mean and a dispersion parameter. Because
of this relationship, variability in RNA-seq data is generally
assessed using the dispersion rather than the variance. There
is one method published to date that provides a test for dif-
ferences in dispersion specifically for bulk RNA-seq data:
MDSeq (23), which uses an NB generalised linear model
to test for differences in mean and dispersion separately.
Generalised additive models for location, scale and shape
(GAMLSS) (24) form another family of regression models
with potential for identifying differentially variable genes,
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as has recently been demonstrated (25). BASiCS (26) uses
a Bayesian model to test for differences in mean and dis-
persion for single-cell RNA-seq data which relies on spike-
in genes or technical replicates to decompose the observed
variability into technical and biological components.

The NB distribution is completely defined by the mean
and dispersion. ‘Differential distribution’––any change in
the distribution of expression levels between groups––can
therefore be defined as a difference in either one or both of
these parameters. Since there is a clear interest in identifying
genes with differences in mean, and growing evidence for bi-
ological relevance of differences in variability, a method that
combines both types of analysis into a single test for differ-
ential distribution should allow for more complete identifi-
cation of genes with relevance to a disease or biological state
than either method alone.

We have developed a hierarchical Bayesian model based
on the NB distribution that provides tests for differen-
tial expression, dispersion and distribution for RNA-seq
data. The tests for differential expression and dispersion
are similar to those implemented in BASiCS. The hierarchi-
cal model (HM) is incorporated into a hierarchical mixture
model (HMM) which provides an overall test for differen-
tial distribution.

Using this model, we report here an investigation into
differential variability and distribution in human cancers.
Analysis of eight paired tumour–normal RNA-seq datasets
from The Cancer Genome Atlas (TCGA; https://www.
cancer.gov/tcga) demonstrates that differential variability
identifies different sets of genes from differential expression.
Using lists of genes previously identified as being related
to each of these cancers, we provide a demonstration that
differential variability and differential distribution analyses
are able to identify cancer-related genes, and that differen-
tial variability identifies cancer-related genes that are not
identified by differential expression. We further show us-
ing gene set enrichment analysis that differential variabil-
ity identifies functionally distinct sets of genes compared to
differential expression.

Together, these results add to the growing body of lit-
erature highlighting the importance of changes in expres-
sion variability in cancer, and suggest that differential dis-
tribution analysis may provide a more comprehensive way
of identifying potential cancer-related genes.

MATERIALS AND METHODS

Hierarchical model to detect differential distribution in RNA-
seq data

We assume that the observed read count Yij for gene
j in sample i follows a negative binomial distribution,
parametrised by a gene-specific mean �j and dispersion �j:

Yi j ∼ NB
(
μ j , φ j

)
. (1)

We specify log-normal priors for the mean and dispersion
parameters:

μ j ∼ log-normal
(
mμ, vμ

)
and

φ j ∼ log-normal
(
mφ, vφ

)
. (2)

The top level of the hierarchical model consists of hy-
perpriors on the prior parameters for the means and dis-
persions. We specify normal hyperpriors for the location
parameters m� and m�, and gamma hyperpriors for the
scale parameters v� and v�. The hyperpriors were chosen
to place most density on the regions of the mean and dis-
persion parameter distributions that are most likely to be
observed in real data, but with enough density outside of
these regions so as to not overly restrict posterior inference.
All priors are assumed to be independent, and an adaptive
Markov chain Monte Carlo (MCMC) sampling scheme is
used to obtain posterior samples of the mean and disper-
sion parameters, which are the basis for inference from the
hierarchical model. While posterior parameter estimates are
not used directly in inference of differential expression, dis-
persion or distribution, parameter estimates––particularly
estimates of dispersion––can be obtained as the mean of
the posterior sample for each parameter. Full details of the
MCMC algorithm are given in Supplementary File 1, Sec-
tion S5.

Tests for differential expression and dispersion. The poste-
rior samples resulting from the MCMC algorithm are used
to form tests for differences in mean and dispersion between
two groups, A and B. Given posterior samples for the mean
for gene j in each group, �jA and �jB, we obtain a poste-
rior sample of the log fold change (LFC) between groups
by taking log2�jA − log2�jB for each MCMC iteration, and
similarly for dispersion. Tail probabilities from these sam-
ples are taken as a measure of the probability that the true
difference in mean or dispersion, respectively, between the
two groups is not equal to zero or a given minimum LFC.
Tail probabilities are obtained by constructing highest pos-
terior density (HPD) intervals––the narrowest range of val-
ues that contains a given amount of posterior density––and
iteratively finding the amount of density that uniquely de-
fines the narrowest region that does not contain zero. Sub-
tracting these probabilities from one gives a posterior esti-
mate of the probability that there is no difference in mean or
dispersion between groups. For tests at a minimum LFC of
c, the narrowest region of posterior density that does not in-
clude the range [ − c, c] is used instead of zero. Although the
tail probabilities are not P-values, it was found that apply-
ing the Benjamini–Hochberg false discovery rate procedure
(27) worked well to control the false discovery rate (FDR)
in simulated data, and so this method was used where a bi-
nary decision on differential expression or dispersion was
desired.

Mixture model for differential distribution. To detect dif-
ferences in distribution between two groups, the hierarchi-
cal model is embedded in a mixture model indexed by a pa-
rameter zj, which indicates which of the two mixture com-
ponents the data for gene j comes from: zj = 0 if the mean
and dispersion for gene j are the same for both groups, and
zj = 1 if either the mean or dispersion for gene j differs be-
tween the groups, i.e. if there is differential distribution for
that gene.
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The mixture model is defined by the following model for
the distribution of read counts:

Yi j ∼
{NB(μ j0, φ j0) for all i if z j = 0

NB(μ j A, φ j A) for i ∈ {1, . . . n A} if z j = 1
NB(μ j B, φ j B) for i ∈ {n A + 1, . . . , n} if z j = 1,

where n is the total number of samples and nA the number
of samples in group A.

We assign a Bernoulli prior on the zj with a parame-
ter � representing the probability that zj = 1, that is, the
probability of differential distribution. We assign a uniform
prior on � over the range (0,1). The posterior mean of � is
taken as an estimate of the proportion of differentially dis-
tributed genes, and the posterior means of the zj are taken
as estimates of the probability of differential distribution for
each gene. These probabilities are used to rank genes by the
strength of evidence for differential distribution. A binary
decision can be made for each gene by using the posterior
estimate of the proportion of differentially distributed genes
to set a threshold such that the appropriate number of pos-
itive calls are made, or alternatively by using the Bayesian
FDR (BFDR) (28,29).

The R code used to implement the hierarchical model, in-
cluding the MCMC algorithm and differential expression,
dispersion, and distribution tests, is included in Supplemen-
tary File 2. The hierarchical model is implemented in an R
package, DiffDist, available at https://github.com/aedanr/
DiffDist.

Computational resources

Whole blood and skeletal muscle RNA-seq data from the
Genotype–Tissue Expression (GTEx) project (30) (https:
//gtexportal.org/home/) and RNA-seq data from TCGA
(https://www.cancer.gov/tcga), processed by the recount2
project (31), were downloaded from https://jhubiostatistics.
shinyapps.io/recount/.

Lists of genes that have previously been identified as be-
ing related to each of the eight cancer types considered were
obtained from five different databases: the Cancer Gene
Census (CGC) (32), DisGeNET (33), IntOGen (34), the
Kyoto Encyclopedia of Genes and Genomes (KEGG) (35)
and Malacards (36). Full details are given in Supplemen-
tary File 1, Section S7. The lists of genes obtained from each
database are given in Supplementary File 3, and the com-
piled lists of cancer-related genes in Supplementary File 4.

Datasets

Simulated data. Data was simulated using the compcodeR
R (37)/Bioconductor (38) package (39). Fifty simulated
datasets were generated for each of 2, 5, 10, 20 and 50 sam-
ples per group, with differences in mean only for 5% of
genes, dispersion only for 5%, and both mean and disper-
sion for 5%. Data was simulated for 20 000 genes, using the
default compcodeR settings except that a minimum counts
per million filter of of 0.5 was applied, and for differentially
expressed genes, half were upregulated in the second group
and half downregulated. compcodeR samples means and
dispersions from estimates obtained from two real datasets
(40,41), and, for differentially expressed genes, multiplies or

Table 1. TCGA tumour–normal sample pairs used

TCGA
ID TCGA project name

Sample
pairs Ref.

BRCA Breast invasive adenocarcinoma 182 (86)
KIRC Kidney renal clear cell

carcinoma
144 (87)

THCA Thyroid carcinoma 98 (88)
LUAD Lung adenocarcinoma 86 (89)
LIHC Liver hepatocellular carcinoma 98 (90)
LUSC Lung squamous cell carcinoma 92 (91)
PRAD Prostate adenocarcinoma 92 (92)
COAD Colon adenocarcinoma 78 (93)

divides means by a factor of 1.5 + x, where x is a random
sample from an exponential distribution with mean 1. The
minimum factor is therefore 1.5, and the mean factor is 2.5.
To simulate differential dispersion, a dataset with no differ-
ential expression and no filtering was first generated, from
which dispersion values were extracted and used as baseline
dispersions. Differential dispersions were then generated us-
ing the same model as for differential expression, and data
was simulated specifying these two sets of dispersions.

Artificially introducing differential distributions in GTEx
data. Gene-level counts for the GTEx data were obtained
using the recount R/Bioconductor package. Samples used
were limited to those from PAXGene-extracted RNA with
RNA integrity number ≥6.9, which left 405 whole blood
samples and 401 skeletal muscle samples. For each tissue
type, samples were randomly selected to create ten datasets
with each of 2, 5, 10, 20 and 50 samples per group. Samples
were chosen without replacement for 2, 5, 10 and 20 samples
per group, so that each of the ten datasets comprised differ-
ent samples, and with replacement for 50 samples per group
since there were insufficient samples to create ten completely
distinct datasets. Counts were then adjusted in one group to
introduce changes in mean and dispersion as estimated by
the method-of-moments estimators. Full details are given in
Supplementary File 1, Section S6.

TCGA data. RNA-seq data from TCGA were down-
loaded and processed as for the GTEx data. Matching pairs
of primary tumour and solid tissue normal samples were
retained. Where there were multiple primary tumour sam-
ples for a patient, the sample with the highest mapped read
count was selected. Cancer types with at least 40 tumour–
normal pairs for which lists of related genes were available
from KEGG were selected, and where there were multi-
ple histological diagnoses for a cancer type, only the most
common was used: infiltrating ductal breast carcinoma;
classical/usual papillary thyroid carcinoma; lung adenocar-
cinoma not otherwise specified (NOS); hepatocellular carci-
noma; lung squamous cell carcinoma NOS; and colon ade-
nocarcinoma. The resulting sample sizes and references for
original publications are summarised in Table 1.

Comparative assessment of model performance

Differential dispersion performance using HM was com-
pared against MDSeq and GAMLSS, and differential
expression performance was compared against edgeR

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/4/1/lqab124/6507421 by guest on 05 April 2023

https://github.com/aedanr/DiffDist
https://gtexportal.org/home/
https://www.cancer.gov/tcga
https://jhubiostatistics.shinyapps.io/recount/


4 NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 1

(42–44), DESeq2 (45), limma–voom (46,47), baySeq (48)
and MDSeq. The default settings were used for each
method except that any gene filtering that was applied
by default was not used as filtering was applied during
simulation. Three versions of edgeR were initially tested:
quasi-likelihood, likelihood ratio test and exact test. Quasi-
likelihood gave the best results, and so only results from
this version are reported. Preliminary testing showed that
results were nearly identical using edgeR’s TMM normal-
isation (49) and DESeq2’s normalisation. TMM was used
for all subsequent analyses.

The performance of the HMM differential distribution
test was compared against diffVar (50,51) and a naive
method combining the results from separate differential ex-
pression and differential dispersion tests. Differential ex-
pression was assessed using edgeR for the simulated data
and limma–voom for the GTEx data as these were the best-
performing tests in each situation, and differential disper-
sion using HM. Results from the two tests were combined
by taking the smaller of the P-value or posterior probability
of no difference between groups for each gene. The result-
ing values were adjusted for multiple comparisons using the
Benjamini–Hochberg procedure.

The R code used for each method is included in Supple-
mentary File 5, and can also be found at https://github.com/
aedanr/DiffDist.

Analysis of tumour–normal comparisons

Wilcoxon rank-sum tests were used to test the ability of dif-
ferential expression and differential dispersion analyses to
identify cancer-related genes. For each method, genes were
ranked by the strength of evidence for differential expres-
sion or dispersion, and genes previously identified as being
related to each cancer type were considered as positive, and
all other genes as negative. Where genes were ranked equally
by the HM differential dispersion test, the LFC in disper-
sion was used to separate them, genes with a greater change
in dispersion being ranked higher.

Spearman (rank) correlation was used to assess the sim-
ilarity between lists of genes identified by differential ex-
pression and differential dispersion. For a list of genes for
each method defined by a P-value or posterior probability
threshold, the Spearman correlation between the union of
genes in the two lists was calculated, and a corresponding
one-sided correlation hypothesis test performed, with the
alternative hypothesis that the correlation was negative.

Gene set enrichment analysis was performed using
the GSEA software (52), version 4.0.3, using the Hu-
man ENSEMBL Gene MSigDB.v7.1 chip annotation and
with genes ranked by the absolute LFC in mean or dis-
persion multiplied by −log10p, where p is the P-value or
posterior probability of no difference between groups. This
means that both the strength of evidence for a difference
between normal and tumour and the magnitude of the dif-
ference contribute to a gene’s ranking, and absolute values
are used since a change in either direction is relevant. Anal-
yses were carried out for Gene Ontology (GO) terms in each
of the three ontologies (biological process, molecular func-
tion and cellular component), with terms with less than two
or more than six levels of parent terms excluded in order

to avoid terms that were too general or too specific to be
meaningfully interpreted. GO terms were taken from the
org.Hs.eg.db annotation, and relationships between terms
were obtained using the GO.db R/Bioconductor package.
The resulting terms were then matched to the list of terms
for each ontology in Molecular Signatures Database gene
sets using the GSEABase package. To further aid the in-
terpretability of the results, semantic similarity matrices for
terms in the results lists were identified using the GOSem-
Sim R/Bioconductor package (53), and terms with high re-
dundancy removed using the rrvgo package, which is based
on REVIGO (54), with a threshold of 0.5.

Statistical analyses

Relative performances of differential expression, dispersion
and distribution methods were informally assessed, primar-
ily using FDR curves: plots of FDR against the number
of discoveries as the threshold for declaring a discovery
is varied. The FDR and number of discoveries were aver-
aged over the 50 (for simulated data) or 10 (for GTEx data)
datasets used for each comparison. Other measures of per-
formance used were boxplots of area under the receiver op-
erating characteristic curve (AUC), FDR, and true positive
rate (TPR; also known as sensitivity, power or recall).

Wilcoxon rank-sum tests were used to test whether dif-
ferential expression and differential dispersion analyses
ranked cancer-related genes above other genes. This method
allows the overall ranking of genes to be assessed, avoid-
ing the need to rely on an arbitrary threshold to declare a
gene as differentially expressed or dispersed. Tests were per-
formed using the wilcox.test function in R.

Tests for correlation between gene lists identified by dif-
ferent methods were performed using the cor.test func-
tion in R, with method=‘spearman’ and alternative=‘less’,
to test the null hypothesis of zero or positive correlation
against the alternative hypothesis of negative correlation.

RESULTS

Hierarchical model identifies genes with differences in mean,
dispersion or distribution

We perform differential dispersion and distribution analy-
ses using a Bayesian hierarchical model for RNA-seq data
based on the NB distribution. An MCMC algorithm pro-
vides samples from the posterior distributions of the mean
and dispersion for each gene. These posterior samples are
the basis for tests for differences in mean or dispersion be-
tween groups, and a two-component mixture model pro-
vides the basis for a test for differential distribution. The
hierarchical nature of the model allows information to be
shared among genes, producing parameter estimates for
each gene that are shrunk towards a common value esti-
mated over all genes and thereby allowing stable parame-
ter estimation for small sample sizes. Related information-
sharing schemes are common in dispersion estimation pro-
cedures for differential expression analysis methods (55–
57), and are at the core of Bayesian methods for differential
expression analysis (48,58), but are not used in MDSeq, the
only previously published method for differential dispersion
in bulk RNA-seq data. Figure 1A shows a schematic out-
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Figure 1. Hierarchical model for differential expression, dispersion and distribution. (A) Schematic illustration of the model. The count for each gene
is assumed to follow a negative binomial distribution (first level), with mean and dispersion parameters that are modelled as random realisations from
log-normal prior distributions (second level). The parameters of the log-normal priors are themselves modelled as random realisations from a set of fixed
hyperpriors (top level). The mean and dispersion parameters for each gene are therefore related to the parameters for all other genes; this is the information
sharing property of the hierarchical model that allows stable parameter estimates to be obtained even with small sample sizes. (B) False discovery curves for
detection of differential dispersion using the hierarchical model (HM), MDSeq and GAMLSS, averaged over 50 simulated datasets (top) and 10 datasets
generated from GTEx blood (middle) and muscle (bottom) data, with no minimum log fold change. (C) False discovery curves for differential distribution
using the hierarchical mixture model (HMM), diffVar and a hybrid method combining separate tests for differential expression and differential dispersion,
averaged over 50 simulated datasets (top) and 10 datasets generated from GTEx blood (middle) and muscle (bottom) data.

line of the hierarchical model. Further details on the hier-
archical model, MCMC sampling and posterior inference
are given in Materials and Methods.

Model performance was assessed using two approaches:
testing on simulated data, and on real RNA-seq data with
artificially-induced differences in expression. Using simu-
lated data allows assessment of the performance of a model
with reference to a known ground truth, but has the disad-
vantage that the data may not adequately reflect the prop-
erties of real data. This is an issue especially when the data
is simulated under an assumed parametric model––in this
case, the NB distribution. An alternative to using simulated
data is to use real data, but, with the exception of spike-
in experiments, this has the major disadvantage that the
ground truth is unknown.

Here, we take a different approach: using real data where
there is a reasonable assumption of no differences in dis-
tribution between groups, and manipulating the data to ar-

tificially introduce differences in distribution for a known
subset of genes. GTEx (30) (https://gtexportal.org/home/)
provides a source of RNA-seq data from a range of tis-
sues from healthy donors. Randomly splitting samples for a
given tissue type into two groups provides a baseline dataset
with no expected differences in expression between groups.
Using data from two tissues––whole blood and skeletal
muscle––we generated datasets with known levels of differ-
ential expression and/or dispersion by randomly selecting
samples and altering the counts for a proportion of genes
in one group to reflect a change in mean and/or dispersion,
under the assumption that the counts follow an NB distri-
bution. Full details are given in Materials and Methods.

The HM differential expression test was compared
against edgeR, DESeq2, limma–voom, baySeq––which also
uses a Bayesian hierarchical model––and MDSeq. HM pro-
vided similar performance to the best of the other methods
(Supplementary File 1, Section S1).
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The HM differential dispersion test was compared
against MDSeq and GAMLSS. False discovery curves (Fig-
ure 1B) show that HM consistently outperforms MDSeq,
and outperforms GAMLSS with five samples per group
while providing similar performance with 50 samples per
group. False discovery curves for 2, 10 and 20 samples per
group (Supplementary File 1, Figure S3) show similar pat-
terns, as do boxplots of FDR and sensitivity (Supplemen-
tary File 1, Figure S4). A weakness of HM is that, since
inference is based on a posterior sample, there is a limit
to the degree to which the most significantly altered genes
can be separated. This is evident particularly for the GTEx
data with 50 samples per group. This issue can be mitigated
by using additional information to rank genes, such as the
magnitude of the change in the parameter of interest. This
method is used in the analysis of TCGA data below.

Along with MDSeq, HM has an advantage over
GAMLSS in being able to test for differences in dispersion
at a given minimum LFC. False discovery curves (Supple-
mentary File 1, Figure S5) and boxplots of FDR and sen-
sitivity (Supplementary File 1, Figure S6) show that HM
clearly outperforms MDSeq for differential dispersion at a
minimum LFC of 1.44.

Along with the HMM differential distribution test, an
alternative method of testing for differential distribution
was also considered: a ‘hybrid’ method combining separate
tests for differential expression and differential dispersion
(see Materials and Methods). While there are no published
methods for differential distribution for RNA-seq data, an-
other alternative was considered taking advantage of the
fact that under the NB model, the variance is function of
the mean and the dispersion. This means that a test for a
difference in variance should effectively act as a test of dif-
ferential distribution. As such, diffVar was also included
as an alternative test of differential distribution.

False discovery curves (Figure 1C) show that both HMM
and hybrid tests are able to detect differentially distributed
genes, and that both are more effective than diffVar, par-
ticularly for small sample sizes. With 50 samples per group,
HMM and the hybrid method identify up to around 1900
differentially distributed genes while maintaining the FDR
below 0.05. False discovery curves for 2, 10 and 20 samples
per group are shown in Supplementary File 1, Figure S7,
and boxplots of FDR and sensitivity in Supplementary File
1, Figure S8.

Differential variability and differential distribution identify
cancer-related genes

To test whether differential variability and distribution
analyses are able to identify cancer-related genes, we ap-
plied tests of differential expression, dispersion and distri-
bution to paired normal–tumour RNA-seq data from eight
cancer types from TCGA, and compiled lists of genes that
have previously been identified as being related to each can-
cer from five different databases: CGC, DisGeNET, In-
tOGen, KEGG and Malacards. We then tested the abil-
ity of each method to rank cancer-related genes above
other genes using Wilcoxon rank-sum tests. The methods
included were differential expression (using limma–voom),
differential dispersion using HM, and differential distribu-

tion using both HMM and the hybrid method combining
limma–voom for differential expression and the HM differ-
ential dispersion test.

The resulting P-values are given in Table 2. Cancer-
related genes are statistically significantly ranked above
other genes at the 0.05 level for all eight cancers by differ-
ential expression, and for three out of eight by differential
dispersion: thyroid carcinoma, lung adenocarcinoma and
lung squamous cell carcinoma. For differential distribution,
statistically significant associations were identified for all
cancers using the hybrid method, and for lung adenocar-
cinoma, hepatocellular carcinoma and lung squamous cell
carcinoma using HMM. This difference can be explained
by the extremely small P-values that limma–voom returns
for many differential expression tests: around half of all P-
values returned by limma–voom are smaller than the min-
imum tail probability from the HM differential dispersion
test, meaning that the hybrid method is effectively biased
towards differentially expressed genes.

While differential expression analysis ranks previously
identified cancer-related genes above other genes more
strongly than differential dispersion or distribution in most
cases, this should not be surprising, since differential ex-
pression has been one of the main methods used to identify
cancer-related genes. Given this, it is particularly striking
that for three of the eight cancer types, there are similar lev-
els of evidence for association with cancer-related genes for
differential dispersion and differential expression.

Differential variability identifies different sets of genes from
differential expression

We next asked whether differential variability and differen-
tial expression identify different sets of genes. This is a crit-
ical question, and one that has not been formally tested in
previous studies: if differential variability identifies the same
sets of genes as differential expression, the method is of little
benefit.

To address this, we assessed the correlation between gene
lists identified by differential expression and differential dis-
persion tests. For a given P-value or posterior probability
threshold for calling a gene as differentially expressed or dis-
persed, we created a ranked list of all genes called by both
methods and calculated the Spearman correlation––the cor-
relation of the ranks––between the two methods. For a given
threshold, a positive correlation means that differential ex-
pression and differential dispersion are producing similarly
ranked lists of genes, while zero or negative correlation
means that the two methods are producing unrelated or in-
versely associated gene rankings.

Results are shown in Figure 2A for lung and prostate
adenocarcinoma, and in Supplementary File 1, Figure S9
for all eight cancers. Negative correlations are observed for
most of the range of thresholds, and correlations are more
strongly negative for the most highly ranked genes. Sup-
plementary File 1, Figure S9 also shows corresponding P-
values from hypothesis tests for negative correlation, with
the null hypothesis of zero or positive correlation rejected
for all thresholds that are likely to be of practical interest
for all eight cancers. These results clearly show that differ-
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Table 2. P-values from Wilcoxon rank-sum tests for ranking cancer-related genes above other genes

Dataset
Differential
expression

Differential
dispersion

Differential
distribution (HMM)

Differential
distribution (hybrid)

Breast invasive adenocarcinoma 9 × 10−13 1.00 0.16 5 × 10−11

Clear cell renal cell carcinoma 5 × 10−4 0.94 0.08 3 × 10−4

Thyroid carcinoma 0.003 0.002 0.28 9 × 10−4

Lung adenocarcinoma 0.009 1 × 10−4 0.005 1 × 10−4

Hepatocellular carcinoma 1 × 10−12 0.52 0.005 4 × 10−10

Lung squamous cell carcinoma 3 × 10−4 3 × 10−4 0.003 3 × 10−5

Prostate adenocarcinoma 1 × 10−10 0.17 0.91 1 × 10−10

Colon adenocarcinoma 2 × 10−17 1.00 0.89 4 × 10−11

Figure 2. Differential expression and differential dispersion analyses independently identify cancer-related genes. (A) Spearman correlation between gene
lists for differential expression and differential dispersion for TCGA lung and prostate adenocarcinoma data, with varying threshold for calling differ-
ential expression or dispersion. (B) Number of lung and prostate adenocarcinoma-related genes identified with varying thresholds for calling differential
expression or dispersion. Solid lines show the total number of genes identified by differential expression (red), by differential dispersion (blue), and those
identified by both methods (grey). Dashed lines show the number of genes uniquely identified by differential expression (red) and by differential dispersion
(blue).

ential expression and differential dispersion identify distinct
sets of genes.

These results and those in the previous section demon-
strate that, at least for some cancer types, differential vari-
ability analysis is able to identify cancer-related genes and
that it identifies different sets of genes from differential ex-
pression. We next looked specifically at whether differential
expression and differential variability identify different sets
of cancer-related genes.

Figure 2B shows, for lung and prostate adenocarcino-
mas, the number of cancer-related genes identified by each
method alone and combined, as the threshold for calling a
gene as differentially expressed or dispersed is varied. Re-
sults for all eight cancers are given in Supplementary File
1, Figure S9. The results are consistent with the Wilcoxon
rank-sum test results: there are more lung adenocarcinoma-
related genes identified by differential dispersion than by
differential expression, and the opposite for prostate ade-
nocarcinoma. Notably, however, in both cases, even with
high thresholds, there are some cancer-related genes that

are identified uniquely by each method. For example, even
though there is no overall evidence for an association be-
tween gene ranking by differential dispersion and prostate
adenocarcinoma-related genes, there are around 100 genes
that are correctly identified by differential dispersion but
not by differential expression. These results provide further
support for the idea that neither differential expression nor
differential variability should be relied on alone to identify
cancer-related genes, and that overall assessment of differ-
ential distribution can more comprehensively identify these
genes.

Differential expression and differential variability identify
genes in different functional categories

To further investigate the types of genes identified by differ-
ential expression and differential variability, we performed
gene set enrichment analysis. We looked for enriched terms
in each of the three GO ontologies––biological process,
molecular function and cellular component––among genes
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Table 3. Top 10 enriched GO terms in each ontology for lung adenocar-
cinoma based on differential expression

GO term GO ID
FDR

q-value

Biological process
Phagocytosis recognition GO:0006910 0.0000
B-cell mediated immunity GO:0019724 0.0000
Lymphocyte-mediated immunity GO:0002449 0.0000
Defense response to bacterium GO:0042742 0.0000
Phagocytosis GO:0006909 0.0000
Immunoglobulin production GO:0002377 0.0000
Membrane invagination GO:0010324 0.0000
FC receptor-mediated stimulatory
signaling pathway

GO:0002431 0.0000

Urogenital system development GO:0001655 0.0000
Regulation of body fluid levels GO:0050878 0.0000
Molecular function
Antigen binding GO:0003823 0.0000
Immunoglobulin receptor binding GO:0034987 0.0000
Receptor regulator activity GO:0030545 0.0003
Extracellular matrix structural constituent GO:0005201 0.0003
Oxygen binding GO:0019825 0.0003
G-protein coupled receptor activity GO:0004930 0.0004
Tetrapyrrole binding GO:0046906 0.0005
Iron ion binding GO:0005506 0.0006
Carbohydrate binding GO:0030246 0.0006
Glycosaminoglycan binding GO:0005539 0.0006
Cellular component
Immunoglobulin complex circulating GO:0042571 0.0000
Extracellular matrix GO:0031012 0.0000
External side of plasma membrane GO:0009897 0.0000
Collagen trimer GO:0005581 0.0000
DNA packaging complex GO:0044815 0.0000
Apical plasma membrane GO:0016324 0.0000
Blood microparticle GO:0072562 0.0000
Anchored component of membrane GO:0031225 0.0001
I band GO:0031674 0.0001
Basolateral plasma membrane GO:0016323 0.0002

ranked by differential expression and differential disper-
sion.

Tables 3 and 4 show the ten most significantly enriched
terms in each of the three ontologies for genes ranked by dif-
ferential expression and differential dispersion, respectively,
for lung adenocarcinoma. Some general themes are evident,
most notably the high proportion of terms related to the im-
mune system and signalling for differential expression, and
to transcription, translation and intracellular transport for
differential dispersion. Results for the other cancer types are
given in Supplementary File 1, Section S4, and in Supple-
mentary File 6.

GO categories relating to DNA replication, transcription
and translation are among the most significantly enriched
terms for several other cancer types with genes ranked by
differential dispersion. For example, for breast adenocarci-
noma, RNA 3’-end processing, gene silencing, DNA recom-
bination, telomere organisation and mRNA processing are
among the top 10 terms for biological process; histone bind-
ing, single-stranded DNA binding, chromatin binding and
basal transcription machinery binding are among the top
10 terms for molecular function; and nuclear chromosome
telomeric region and replisome are among the five terms
with FDR-adjusted q-values <0.05 for cellular component.
In contrast, there are very few such terms among the most
significantly enriched with genes ranked by differential ex-

Table 4. Top 10 enriched GO terms in each ontology for lung adenocar-
cinoma based on differential dispersion

GO term GO ID
FDR

q-value

Biological process
Chromatin assembly or disassembly GO:0006333 0.0000
Glycosylation GO:0070085 0.0000
DNA conformation change GO:0071103 0.0000
Protein-DNA complex subunit
organization

GO:0071824 0.0000

Homophilic cell adhesion via plasma
membrane adhesion molecules

GO:0007156 0.0009

Retrograde vesicle-mediated transport
Golgi to endoplasmic reticulum

GO:0006890 0.0027

RNA polyadenylation GO:0043631 0.0027
Ethanol metabolic process GO:0006067 0.0028
Telomere organization GO:0032200 0.0032
Glycoprotein metabolic process GO:0009100 0.0035
Molecular function
Oxidoreductase activity acting on the
CH-CH group of donors

GO:0016627 0.0008

Ligase activity forming carbon-oxygen
bonds

GO:0016875 0.0031

Transferase activity transferring pentosyl
groups

GO:0016763 0.0086

Ubiquitin-like protein transferase activity GO:0019787 0.0087
Cofactor binding GO:0048037 0.0088
Ubiquitin-like protein binding GO:0032182 0.0122
Symporter activity GO:0015293 0.0171
Transferase activity transferring
nitrogenous groups

GO:0016769 0.0211

Protein heterodimerization activity GO:0046982 0.0323
3’-5’ exonuclease activity GO:0008408 0.0325
Cellular component
DNA packaging complex GO:0044815 0.0000
Protein-DNA complex GO:0032993 0.0000
Transport vesicle GO:0030133 0.0000
Intrinsic component of endoplasmic
reticulum membrane

GO:0031227 0.0000

Coated vesicle GO:0030135 0.0007
Nuclear envelope GO:0005635 0.0016
Site of polarized growth GO:0030427 0.0019
Nuclear chromosome telomeric region GO:0000784 0.0044
Lamellar body GO:0042599 0.0047
Presynaptic membrane GO:0042734 0.0075

pression. To assess the consistency of the GO terms identi-
fied using differential variability analysis, we repeated this
analysis using GAMLSS instead of the hierarchical model.
These results are given in Supplementary File 6, and show
very high concordance between the two differential variabil-
ity methods.

Table 5 gives a deeper insight into the top genes driv-
ing the GSEA results for differential variability analysis
on lung adenocarcinoma. Differential variability and dif-
ferential expression results are shown for the top 20 ranked
genes among the top 10 GO terms in each ontology. Twelve
of these genes code for histone proteins, and others are
also involved in basic cellular processes, including pro-
tein degradation (CAND1 (59)) and transcriptional reg-
ulation (TAF7L (60,61)). Several of these genes have al-
tered expression or demonstrated functional roles in can-
cers, including non-small cell lung cancer (NSCLC) and
lung adenocarcinoma specifically: expression of CAND1
is altered in NSCLC (62); TAF7L is mutated in colorec-
tal cancer (63) and has reduced expression in acute myeloid
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Table 5. Differential dispersion and expression results for the top 20 genes
ranked by differential dispersion between normal and lung adenocarci-
noma tissue, considering only genes that are in the top 10 enriched GO
terms in each of the three ontologies

Differential dispersion Differential expression

Gene LFC FDR Rank LFC FDR Rank

CAND1 6.2 2 × 10−4 24 0.7 3 × 10− 6 6547
H4C5 6.1 2 × 10−4 26 2.2 2 × 10− 5 3434
H4C3 5.6 2 × 10−4 55 1.3 0.04 9400
H2BC17 5.5 2 × 10−4 70 1.9 2 × 10− 6 3294
TAF7L 5.5 2 × 10−4 72 1.6 3 × 10− 5 4490
H4C4 5.4 2 × 10−4 78 1.3 5 × 10− 3 7811
H2CA12 5.2 2 × 10−4 90 1.5 4 × 10− 4 5615
H1-3 5.2 2 × 10−4 94 2.9 6 × 10− 6 2391
SYP 5.1 2 × 10−4 98 − 1.8 9 × 10− 12 1837
PCCA 5.1 2 × 10−4 101 − 0.2 0.15 16721
DDHD2 5.0 2 × 10−4 109 0.0 0.91 22 439
H2BC7 5.0 2 × 10−4 112 2.6 1 × 10− 9 1529
H2BC15 4.9 2 × 10−4 125 1.3 4 × 10− 6 4731
H4C8 4.9 2 × 10−4 135 1.2 3 × 10− 5 5500
FOLR1 4.9 2 × 10−4 138 − 2.9 3 × 10− 8 1594
H2BC13 4.8 2 × 10−4 142 1.8 8 × 10− 5 4422
H2CA21 4.8 2 × 10−4 143 1.6 2 × 10− 3 6439
SFTPC 4.8 2 × 10−4 144 − 8.4 5 × 10− 16 20
OS9 4.8 2 × 10−4 154 0.0 0.56 21103
AKR1C1 4.8 2 × 10−4 157 − 0.8 0.13 12784

leukaemia (64); FOLR1 has altered expression in lung ade-
nocarcinoma (65,66); OS9 is overexpressed in sarcomas
(67); AKR1C1 promotes metastasis in NSCLC (68). Each
of these genes is ranked among the top 200 for differen-
tial variability, but with the exception of SFTPC, none are
ranked within the top 1000 for differential expression.

Beyond the gene set enrichment analysis, Table 6 shows
the top 20 genes identified by differential variability anal-
ysis overall. Some of these are pseudogenes, but the ma-
jority are non-protein coding genes––small nuclear RNAs,
small nucleolar RNAs or long noncoding RNAs––with the
exception being WDR74, a 60S ribosome assembly factor
which has been shown to promote lung cancer growth and
metastasis (69). Of the noncoding genes among the top 20,
SNORD13 (70), ST8SIA6-AS1 (71,72) and Y RNA (73)
have been shown to have altered expression in NSCLC or
in lung adenocarcinoma specifically.

DISCUSSION

Identifying differentially variable or distributed genes from
RNA-seq data

The hierarchical model presented here is similar to that
used by BASiCS, but applied to bulk RNA-seq rather than
single-cell, without the need for spike-in genes or techni-
cal replicates, and using a fully hierarchical model, where
the parameters for the priors on the mean and variance pa-
rameters are not fixed, but are also estimated as part of the
model. The model is further extended into a mixture model,
allowing for an overall test of differential distribution in ad-
dition to separate tests for differential expression and differ-
ential dispersion.

In tests on simulated data and on real data modified to ar-
tificially induce changes in expression, tests for differential

Table 6. Differential dispersion and expression results for the top 20 genes
ranked by differential dispersion between normal and lung adenocarci-
noma tissue

Differential dispersion Differential expression

Gene LFC FDR Rank LFC FDR Rank

WDR74 7.6 2 × 10−4 1 1.2 6 × 10−4 6614
RNU5A-1 7.0 2 × 10−4 2 0.8 0.08 11 976
DEFA8P 6.8 2 × 10−4 3 0.1 0.19 18 199
SNORA53 6.7 2 × 10−4 4 0.7 0.06 12 371
SNORD13 6.7 2 × 10−4 5 0.6 0.04 12 142
SNORA49 6.7 2 × 10−4 6 0.8 0.01 9958
RNU11 6.6 2 × 10−4 7 0.4 0.17 17 823
RN7SKP90 6.6 2 × 10−4 8 0.7 0.21 14 248
RPL7A pseudogene 6.6 2 × 10−4 9 0.3 0.70 19 181
ST8SIA6-AS1 6.6 2 × 10−4 10 − 0.3 0.73 19 542
RP11-388K2.1 6.6 2 × 10−4 11 − 0.4 0.28 15 904
DEFA9P 6.5 2 × 10−4 12 0.3 0.13 15 358
Y RNA 6.5 2 × 10−4 13 1.0 0.02 9659
RNU11 6.5 2 × 10−4 14 0.1 0.44 19 217
RNVU1-2 6.5 2 × 10−4 15 0.7 0.06 11 977
SCARNA1 6.4 2 × 10−4 16 0.6 0.04 12 104
7SK 6.4 2 × 10−4 17 0.8 0.01 10 266
RN7SL296P 6.4 2 × 10−4 18 0.9 0.03 10 479
RNU12 6.4 2 × 10−4 19 0.5 0.47 16 918
RNU5B-1 6.4 2 × 10−4 20 1.1 0.06 10651

dispersion using the hierarchical model outperformed the
differential dispersion test of MDSeq. While MDSeq uses a
different formulation of the NB distribution, a difference in
dispersion under the form used here still equates to a differ-
ence in dispersion under the MDSeq model. Unlike the hi-
erarchical model, and most differential expression methods,
MDSeq does not share information between genes, instead
treating each gene independently. This may partly explain
the improvement of the hierarchical model over MDSeq
for differential dispersion detection. However, GAMLSS
also outperformed MDSeq, and gave nearly identical per-
formance to the hierarchical model on larger sample sizes.
Which method is preferred for differential dispersion anal-
ysis may depend on the study design. In particular, the hier-
archical model allows for testing at a minimum LFC, which
GAMLSS does not.

In addition to the hierarchical mixture model, we con-
sidered a ‘hybrid’ test for differential distribution that com-
bines separate tests for differential expression and differ-
ential dispersion. While both methods were successful in
identifying differentially distributed genes, false discovery
curves (Figure 1C) show that, for a given number of discov-
eries, combining separate tests generally resulted in fewer
false discoveries. This may at least in part reflect a general
issue with inference from MCMC models, where the preci-
sion of parameter estimates is limited by the posterior sam-
ple size.

This limitation of posterior sampling-based inference is
rarely discussed in the literature, but affects any method
that uses posterior sampling, such as BASiCS, when ap-
plied to data with a large number of parameters such as
genome-wide expression data. It is evident in the false
discovery curves for both the differential dispersion and
differential distribution tests from the hierarchical model,
for which there are sometimes several hundred top-ranked
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genes which cannot be separated (Figure 1B and C). This is-
sue could be avoided if a suitable hierarchical model could
be identified for which analytical solutions could be found
for the posterior parameter distributions. This is likely to
mean moving away from the NB model for RNA-seq count
distributions, but the success of limma–voom in identi-
fying differential expression using a method that focuses
on appropriately modelling the mean–variance relationship
rather than specifying the exact distribution of the counts
(46) suggests that such an approach is worth exploring. This
type of approach would also greatly increase computational
speed, which is another limitation of posterior inference-
based methods. On the lung adenocarcinoma data, for ex-
ample (23 416 genes after filtering and 43 samples per
group), the hierarchical model takes around three hours to
run on a 2.7 GHz, four core processor with 16GB RAM,
compared to around 12 min for GAMLSS and 4 min for
MDSeq. While our view is that processing time is not a crit-
ical consideration for a method that will typically be run
only a very small number of times per experiment, a de-
crease from several hours to several minutes or less would
be a vast improvement. Another way of avoiding the issue
of returning many equally-ranked genes is to incorporate
information on the magnitude of changes in mean or dis-
persion into gene rankings, as was done for the analysis of
the TCGA data. The issue may also be mitigated somewhat
by performing tests at a minimum LFC, as is evident from
Supplementary File 1, Figure S5.

Small sample sizes––from 2 to 50 samples per
group––were used for the methods comparisons in this
study. Extreme small sample sizes were included in order to
test the limits of differential variability detection, and while
the results show that the hierarchical model has advantages
over methods that treat each gene independently for very
small sample sizes, this is not enough to mitigate the diffi-
culty inherent in testing for changes in variability among
small datasets. While differential expression analysis can
be informative even with very small samples, analysis of
differential variability or distribution is best reserved for
situations where larger numbers of samples are available.

Differential variability and distribution in cancer

Expression variability has been shown to be a trait that
is under genetic control (74), as well as being influenced
by chromatin structure and promoter architecture (18,75).
Changes in variability define different pluripotent cell states
and developmental stages (4,5,76), and cell-to-cell expres-
sion variability has been found to be correlated with diver-
gence in transcriptional responses to immune stimuli be-
tween species (77), suggesting a link between variability at
the single-cell level and species-level evolution of transcrip-
tional regulation. Given these findings, a role for changes in
expression variability in cancer––whether cause, effect, or
both––should not be surprising.

While there is strong evidence in the existing literature
that differentially variable genes are important in cancer,
this work provides the first clear demonstration of the in-
verse: that differential variability can be used to identify
cancer-related genes. Importantly, these results also show
that differential expression and differential variability iden-

tify distinct sets of cancer-related genes. Differential vari-
ability analysis ranked previously identified cancer-related
genes higher than other genes for three out of eight cancer
types tested, with strength of evidence for association sim-
ilar to that found for differential expression. This is partic-
ularly remarkable since it can reasonably be assumed that
most cancer-related genes identified to date have been iden-
tified at least in part because they have been found to differ
in mean expression levels between normal and tumour tis-
sues.

The results for lung adenocarcinoma in Table 6 pro-
vide a concrete demonstration of the ability of differen-
tial variability analysis to identify potential cancer-related
genes that may be missed by differential expression analy-
sis. Among these genes are several that have previously been
shown to have altered expression patterns in NSCLC or
in lung adenocarcinoma specifically, and which would not
have been identified based on differential expression alone
for the dataset considered here. Of particular interest is the
long noncoding RNA ST8SIA6-AS1. This gene has been
associated with multiple cancers, including lung adenocar-
cinoma (71,72), but whereas it has previously been found
to be overexpressed in cancer, differential expression analy-
sis in this study found no change in mean expression levels
between normal and paired tumour samples from TCGA.

As well as identifying different genes, gene set enrich-
ment analysis showed that differential expression and dif-
ferential variability identify functionally distinct sets of
genes. GO terms commonly enriched among differentially
expressed genes are often related to cell structure and mi-
gration (for example extracellular structure organisation),
signalling (e.g. G protein-coupled receptor activity) or im-
mune system functions (e.g. antigen binding). In contrast,
GO terms relating to basic cellular processes such as tran-
scription and translation are frequently enriched among
genes with differences in dispersion between normal and tu-
mour samples. For example, ncRNA metabolic process, nu-
cleic acid phosphodiester bond hydrolysis, RNA 3’-end pro-
cessing and mRNA processing are all significantly enriched
among differentially dispersed genes for multiple cancer
types. Top-ranked genes among the most highly enriched
GO categories for lung adenocarcinoma exemplify this pat-
tern, including genes coding for histone components and
with roles in protein degradation, endoplasmic reticulum–
Golgi transport, and regulation of transcription (Table 5).
Several of these genes have previously been linked with lung
adenocarcinoma or other cancers, and, importantly, most
were not ranked highly enough by differential expression
analysis to be identified as potentially cancer-related from
the TCGA data used here.

Functions relating to transcription and translation have
previously been identified among low-variability genes
(5,76,78). These are processes that need to be tightly reg-
ulated for cells to function properly, and so any change in
expression––up or down––for genes involved in these pro-
cesses is likely to disrupt normal cell function. This sug-
gests a possible biological basis for the differences in types
of genes identified by differential expression and differen-
tial variability in cancer. Genes identified by differential ex-
pression may be either genes that are normally active and
for which loss of expression disrupts normal signalling or
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cellular transport processes, or genes that are normally ex-
pressed only in certain cell types or at certain times and for
which constitutive expression similarly disrupts normal cell
function. On the other hand, genes identified by differential
variability may be either genes that under normal circum-
stances are consistently expressed within a narrow range
of levels, the regulation of which is lost in cancer, or genes
whose normal function requires changes in expression levels
in response to signals, and for which tightening of expres-
sion levels therefore disrupts their normal function. This
idea is also consistent with previous observations that low
variance genes often have ‘housekeeping’ functions, while
genes with high expression variability often have functions
related to development and response to extracellular sig-
nals, for which changes in expression in response to sig-
nals are crucial (18). Altered biological states in cancer may
be dependent on different sets of genes being more or less
tightly regulated than in healthy tissue, which may result in
differences in variability between normal and tumour tis-
sues. Decreased variability among a set of genes associated
with invasive potential has previously been observed across
multiple cancers (11), with the suggestion that tumour pro-
gression may be dependent on the precise regulation of these
genes.

There is a distinction between cell-to-cell variability
in gene expression at the tissue level and individual-to-
individual variability at the population level, the former
measured using single-cell RNA-seq and the latter using
bulk RNA-seq or microarray. This distinction has not al-
ways been made explicit in studies on expression variabil-
ity, and the arguments above are stronger in the context
of differences in expression between cells within a tissue.
There have been suggestions that there is some correlation
between the different levels of gene expression variation
(79,80), but this has not been demonstrated for multicel-
lular organisms, and it is not clear why levels of variability
between cells should correlate with levels of variability mea-
sured at a tissue level between individuals. Given this, it is in-
triguing that studies at the single-cell level (5,76) and at the
tissue level (18,78) have found similar patterns in the func-
tions of genes with different levels of expression variability,
which are also consistent with the GO categories enriched
among differentially dispersed genes in this study. This is an
active area of research, and there is clearly more work to be
done to elucidate the sources and significance of differences
in variability at the cell-to-cell and individual-to-individual
levels. In both cases, care must be taken to distinguish be-
tween differences in variability arising as an artifact of hid-
den heterogeneity and differences in variability within a ho-
mogeneous population.

One potential way of distinguishing between changes in
variability within a single tissue or population of cells and
apparent changes in variability caused by tissue heterogene-
ity is to assess the shape of gene expression distributions.
In a tumour predominantly composed of a mixture of two
cell types, for example, a gene that is differentially expressed
between these cell types will have a bimodal distribution,
whereas a gene whose expression variability is uniformly in-
creased compared to normal tissue will still have a unimodal
distribution, but with a wider spread. There is a similar dis-
tinction to be made at the individual level, between a uni-

form change in variability among a group of individuals,
and an increase in variability arising from changes in mean
expression between sub-groups. The methods used in this
study cannot distinguish between these two situations, but
there are methods specifically designed to identify changes
in gene expression distributions arising from mixtures of cell
types (81,82).

Assessment of some of the top-ranked genes identified
from differential dispersion analysis for lung adenocarci-
noma gives some clue as to possible sources of the de-
tected changes in variability. For example, changes in ex-
pression of FOLR1, found to have increased variability in
lung adenocarcinoma in this study (Table 5), have previ-
ously been found to depend on factors such as smoking
history, tumour differentiation and stage, and mutations
in other genes (65,66). It is possible, therefore, that the in-
creased expression variability observed here could be a re-
sult of changes in mean expression levels among a subset
of tumour samples. CAND1 had increased variability in
this study, along with increased mean expression in tumours
(Table 5). Increased expression of CAND1 has previously
been found in NSCLC (62). CAND1 is a regulator of cullin-
RING ligases (CRLs), and conflicting reports on CAND1
as a promoter or inhibitor of CRLs have led to suggestions
that there is an optimal level of CAND1 required for appro-
priate protein degradation driven by CRLs (83,84). It seems
plausible, then, that changes in the expression of CAND1 in
either direction could be associated with cancer phenotypes.
Yet another possibility is suggested by the abundance of hi-
stone genes among the differentially dispersed genes: sev-
eral of these genes are located in a cluster on chromosome
6p22.1, which as been identified as a region frequently am-
plified in NSCLC (85). Increased variability in the expres-
sion of these genes could, therefore, be equally plausibly a
result of chromosomal instability or a cause of disruption of
normal patterns of transcription. It seems likely that differ-
entially variable genes in cancer could variously be artifacts
of tumour heterogeneity, or drivers or consequences of cel-
lular dysfunction.

While there is a clear interest in elucidating the roles that
different patterns of disruption of normal expression play,
in terms of identifying cancer-related genes, any difference
in the distribution of expression values between groups is
of interest. Differential distribution has also been shown
to provide improved feature selection for cancer classifi-
cation compared to differential expression or variability
alone (17). Differential distribution analysis may therefore
be preferable to separate tests of differential expression and
variability both in terms of identifying potential cancer-
related genes, and for studies into diagnostic or prognostic
prediction.

DATA AVAILABILITY

R code used to generate synthetic data, introduce changes
in mean and dispersion into real RNA-seq data, and process
the GTEx and TCGA data is given in Supplementary File
7. Code used for analyses is given in Supplementary Files
2 and 5, and at https://github.com/aedanr/DiffDist (DOI:
10.5281/zenodo.4544153).
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SUPPLEMENTARY DATA

Supplementary data are available at NARGAB online.
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