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Abstract
The next release problem (NRP) refers to implementing the next release of software in the software industry regarding the
expected revenues; speci�cally, constraints like limited budgets indicate that the total cost corresponding to the next software
release should be minimized. This paper uses and investigates the comparative performance of nineteen state-of-the-art
evolutionary multi-objective algorithms, including NSGA-II, rNSGA-II, NSGA-III, MOEAD, EFRRR, tDEA, KnEA, MOMBIII, SPEA2,
RVEA, NNIA, HypE, ANSGA-III, BiGE, GrEA, IDBEA, SPEAR, SPEA2SDE, and MOPSO, that can tackle this problem. The problem
was designed to maximize the customer satisfaction and minimize the total required cost. Three indicators, namely hyper-
volume (HV), spread, and runtime, were examined to compare the algorithms. Two types of datasets, i.e., classic and realistic
data, from small to large scale were also examined to verify the applicability of the results. Overall, NSGA-II exhibited the best
CPU run time in all test scales, and, also, the results shows that the HV and spread values of 1st and 2nd best algorithms (NNIA
and SPEAR), for which most HV values for NNIA are bigger 0.708 and smaller than 1, while the HV values for SPEAR vary
between 0.706 and 0.708. Finally, the conclusion and direction for future works are discussed.

1. Introduction
The next release problem (NRP) refers to implementing the next release of software in the software industry. The problem arises
from the needs of software companies, which aims to develop and maintains the software systems that have been sold to
customers. The problem is constrained by the software systems’ total cost, whereby the objectives include maximizing total
customer satisfaction and minimizing the total cost (Veerapen et al., 2015; Y. Zhang et al., 2007). Companies are faced with the
problem mentioned above when their customers request an extensive range of software requirements, some of which
necessitate other requirements. Besides, depending on their ability to meet such requests, companies are recognized at different
levels of importance by customers. Figure 1 illustrates the trend of published documents since 1981 �ltered using “Next release
problem” and “Software” keywords. It can be seen that the focus on the next release problem optimization has increased
signi�cantly.

The above-mentioned problem is also known as a cost-pro�t analysis problem (Durillo et al., 2011), for which a Pareto optimal
solution is an exciting approach. However, it would be hard for a decision-maker to �nd a suitable solution and determine how
much cost would be acceptable for a corresponding increase in pro�t.

Nowadays, �rms developing and improving software structures and the features must be identi�ed and added as part of the
next release. Hence, the companies would like to select these features to ensure the demands of their customer base are
satis�ed.

Since introducing the next released problem, only a few papers have studied the exact solution methods (Almeida et al., 2018;
Dong et al., 2022; Freitas et al., 2011). Although classic algorithm are able to �nd the optimal solution for some special
problems, as the number of customers growths so the problem will become complicated. Therefore, as a NP- hard problem, in
this study, nineteen state-of-the-art evolutionary algorithms are used to �nd the high quality solutions as they are more common
because of their pros such as robustness and high �exibility in implementation.

This paper is the �rst comprehensive comparative study in the �eld of next released problem. Although many studies addressed
the problem and solved them with some evolutionary algorithms (EAs), this study is the �rst work, wich uses several new EAs
for solving the next released problem with two classic and realistic data. The remainder of this work is planned as follows.
Section 2 de�nes the related works. Then, section 3 illustrates the methodology. In section 4 the results of the work are shown
and section 5 shows a summary of the �ndings and conclusions.

2. Related Works
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The following subsections provide an overview on the problem statements and evolutionary algorithms that have been used to
tackle the above-mentioned problem.

2.1 Problem statement: the next released problem
The next release problem is also considered a combinatorial optimization problem (L. Li et al., 2014; Veerapen et al., 2015) .(Y.
Zhang et al., 2007) introduced a multi-objective next release problem (MONRP) and provided some benchmark data to analyze
the proposed model. Because of the fact minimizing a given function, for example (f), is the same as maximizing (-f), the
proposed model by(Y. Zhang et al., 2007) could be written as follows:

An important assumption is that all requirements are independent. The decision vector X = x1, x2, …, xn presents whether

the requirements are satis�ed in the next release of the software. The objective functions are as follows: (1) maximizing
customer satisfaction and (2) minimizing the total required cost. Constraint (3) shows that the decision variables are binary.

2.2 Solution approaches
In multi-objective optimization (MOO), there are two main ideas known as the Pareto dominance and the Pareto front. In this
concept, there is no unique optimal solution for a problem, but a Pareto front of solutions could be found (Coello Coello, 2009)
(Deb, 2014b), which optimize the objective functions along with the constraints. For these high-quality solutions, two properties
should be satis�ed; �rst, every two solutions should be non-dominated solutions, and the second property is that any other
solution found should be dominated by at least one solution in the set (Behmanesh et al., 2021; Coello Coello, 2009; Deb,
2014b) .

Since metaheuristics do not require concavity or convexity and also can produce several alternative solutions in a single run
(i.e., evolutionary algorithms) (Sarker & Ray, 2009), they are often used to tackle multi-objective combinatorial optimization
problems (Cheshmehgaz et al., 2015; Tan et al., 2002). Additionally, metaheuristics can integrate with speci�c decomposition
algorithms(Poojari & Beasley, 2009) and, generally, many metaheuristics have been developed to deal with some multi-objective
optimization problems (MOOPs)(C. Peng et al., 2017) (S. Yuan et al., 2017) (Coello et al., 2007) (Herrmann et al., 1995) .

(Y. Zhang et al., 2007) presented MONRP and provided some benchmark data to analyze the proposed model. Four solution
techniques, namely Pareto GA, Single-objective GA, Random Search, and NSGA-II, were applied during their study.

(Cai et al., 2012) applied a multi-objective evolutionary algorithm (MOEA), NSGA-II, Strength Pareto Evolution Algorithm
(SPEA2), random search, a multi-objective version of Invasive Weed Optimization (IWO/MO), and a proposed IWO/MO2. The
authors utilized two types of datasets for the problem mentioned above: the �rst data sets include random data, and the second
one is from Motorola (Baker et al., 2006). In the aforementioned paper, MOEAs had better performance than the random search.
Amongst four other algorithms, IWO/MO outperformed other MOEAs on a large scale (for the random data).

Herein, a set of state-of-the-art evolutionary algorithms were elected to implement on MONRP. These algorithms are categorized
into several groups: (a) Indicator-based, (b) reference set-based, (c) Neighbor-based, (d) Pareto-based, (e) Decomposition-based,

{ }
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(f) diversity, and (g) Preference-based, as shown in Table 1. The above-mentioned algorithms include NSGA-II, MOEA/D, SPEA2,
and NNIA from a set of multi-objective evolutionary algorithms; MOMBI-II, KnEA, NSGA-III, tDEA, EFRRR, HypE, PICEAg, GrEA,
ANSGA-III, SPEA2 + SDE, BiGE, I-DBEA, SPEA/R, and RVEA from a set of many-objective evolutionary algorithms; Reference-
point-based NSGA-II (rNSGA-II); and multi-objective particle swarm optimization algorithm (MOPSO).

The Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is one of the most popular evolutionary algorithms and is known as a
very e�cient algorithm as it employs an elitist principle and a diversity-preserving mechanism (Deb et al., 2002) . 

 
Table 1

Multi -objective evolutionary algorithms included in this study
EA/Group a b c d e f g

KnEA (X. Zhang et al., 2014)       ●   ●

NSGA-III (Deb & Jain, 2013)   ●   ●    

tDEA (Y. Yuan, Xu, Wang, & Yao, 2015)   ●   ●    

SPEA2 (Zitzler et al., 2001)       ●    

MOPSO (Coello & Lechuga, 2002)       ●    

NSGA-II (Deb et al., 2002)       ●    

EFR-RR (Y. Yuan, Xu, Wang, Zhang, et al., 2015)         ●  

MOEA/D (Q. Zhang & Li, 2007)       ● ●  

RVEA (Cheng et al., 2016)   ●     ●  

MOMBI-II (Hernández Gómez & Coello Coello, 2015) ●          

NNIA (Gong et al., 2008)     ●      

rNSGA-II (Said et al., 2010)   ●   ●    

ANSGA-III (Jain & Deb, 2013)   ●     ●  

BiGE (M. Li et al., 2015) ●     ●    

GrEA (Yang et al., 2013)       ●    

I-DBEA (Asafuddoula et al., 2014)       ● ●  

SPEA2 + SDE (M. Li et al., 2013)       ●    

HypE (Bader & Zitzler, 2011) ●     ●    

SPEA/R (Jiang & Yang, 2017)   ●   ●    

(Coello & Lechuga, 2002) proposed MOPSO, in which particles follow the concept of Pareto dominance to determine the �ight
direction. In this way, the particles maintain the global repository that other particles could use later to guide their own �ight.
MOPSO have been used widely in continuous and discrete optimization problems (Elloumi & Alimi, 2010; Sharaf & El-Gammal,
2009)(Lalwani et al., 2013; Mokarram & Banan, 2018).

(Baker et al., 2006) proposed a many-objective evolutionary algorithm based on the NSGA-II framework known as NSGA-III,
emphasizing non-dominated solutions, to be close to a set of provided reference points. NSGA-III is based on the principle of the
prede�ned multiple targeted search, such that a set of Pareto-optimal points could be found by using points corresponding to
each reference point.(Y. Yuan, Xu, Wang, & Yao, 2015) proposed the EFR-RR algorithm that enhances two decomposition-based
MOEAs, namely MOEA/D and EFR (Y. Yuan et al., 2014), and also maintains the desired diversity of solutions.
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(Cai et al., 2012) suggested a Knee Point Driven Evolutionary Algorithm (KnEA) for many-objective optimization, which
enhances the convergence performance. Recently, performance indicators have been introduced as a selection approach in
multi-objective optimization. For instance,(Hernández Gómez & Coello Coello, 2015) proposed an improved version of
metaheuristics called MOMBI-II based on the R2 indicator, considering two important aspects, i.e., computational cost and
Pareto compatibility. In the mentioned paper, MOMBI-II outperformed some evolutionary algorithms, speci�cally NSGA-III, on
test problems known as DTLZ and WFG.(Zitzler et al., 2001) presented an improved version of the Strength Pareto evolutionary
algorithm (SPEA2) and compared the results with those of other evolutionary algorithms, such as NSGA-II, on some classic test
problems (DTZ and knapsack). It was concluded that SPEA2 has better performance over NSGA-II, speci�cally in higher
dimensional objective spaces.(Y. Yuan, Xu, Wang, & Yao, 2015) introduced a new evolutionary multi-objective (EMO) algorithm,
the Territory De�ning Evolutionary Algorithm (tDEA), and tested its performance against well-known MOEAs in the literature. The
results revealed that tDEA outperformed the other algorithms.

(Said et al., 2010) established a new dominance relation for interactive evolutionary multicriteria decision making (r-NSGA-II)
and compared the proposed algorithm to other EMO algorithms.(Gong et al., 2008) suggested a novel non-dominated neighbor-
based selection approach (NNIA) in which the proposed algorithm uses an immune-inspired operator, two heuristic search
operators, and elitism. The algorithm introduced by(Gong et al., 2008) was compared with some evolutionary algorithms,
including NSGA-II and SPEA2, to solve some benchmarks, such as DTLZ, and ZDT. The results showed that NNIA has better
performance when considering convergence metrics, coverage of two sets, and spacing as performance metrics.

The reference vectors could be used for two key applications in multi-objective optimization: (1) to decompose the original
optimization problem and (2) to clarify user preferences of the whole front. Regarding the above-mentioned matter,(Cheng et al.,
2016) proposed RVEA, a reference-vectors approach, to decompose the original MOOP. The RVEA was adopted to maintain a
good balance between convergence and diversity and tested against some state-of-the-art algorithms, namely MOEA/DD,
NSGA-III, MOEA/D-PBI, GrEA, and KnEA. The experimental results on various benchmark test problems, including DTLZ1-DTLZ4,
SDTLZ1, SDTLZ3, and WFG1-WFG9, indicate that RVEA is effective and cost-e�cient.(Q. Zhang & Li, 2007) proposed a MOEA
based on decomposition (MOEA/D). The algorithm decomposes the multi-objective optimization problem into a number of
scalar sub-problems and optimizes all sub-problems simultaneously, resulting in generally lower computational complexity. The
author applied the algorithm mentioned above to a multi-objective 0–1 knapsack problem and showed that MOEA/D
outperformed or performed similarly to NSGA-II.

3. Methodology
Although many-objective EAs are used usually for the problems with more than three objective functions, some efforts have
been addressed to employ these algorithms for single and multi-objective optimization problems (Anghinol� et al., 2021; Fu et
al., 2021; Kayvanfar et al., 2017; W. Peng et al., 2022; Seada & Deb, 2015). The following sub-sections provide the perforemance
evaluation metrics and data collection, which are parts of the methodology section. The framework of the methodology is
displayed in Fig. 2.

3.1 Performance evaluation metrics
This part presents some of the main performance metrics used in this work. The aim of using several performance metrics is to
compare the quality of the solutions set found by the suggested algorithms. Although several main metrics of MOOPs have
been presented in the literature, including GD, IGD, spread, HV, normalized HV (NHV), SM, diversity metricreleae(Dong et al.,
2022) (Behmanesh et al., 2021) (Behmanesh et al., 2021) (Coello et al., 2007) ,in this study, HV and spread, as two welknown
metrics, were implemented as accuracy, diversity and cardinality are considered with these metrics (Riquelme et al., 2015):

Hyper-volume (HV) has recently been addressed as an indicator by many researchers in the context of MOEA to evaluate
the performance of search algorithms (Auger et al., 2009). The bigger value of HV of the approximation indicates that its
Pareto set completely dominates other approximations, which means that the HV indicator shows a set quality measure
considered the dominated slice of the objective space(Bader et al., 2010; Zitzler & Künzli, 2004).
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Spread: based on the Euclidean distances between the extreme solutions and the boundary solutions of the obtained non-
dominated set (Deb, 2014a). The smaller value of the spread of the approximation, the better the distribution.

3.2 Data collection
Two types of data were tested in this paper to evaluate the algorithms. The �rst group includes a classic set with 5 test
instances (Bagnall et al., 2001; Xuan et al., 2012). For the classic dataset, each dataset corresponds to a single problem. Table 2
provides the classic datasets, nrp1 to nrp5, with a speci�c number of customers (m) and the number of requirements (n),
including cost and pro�t for each set. The second group includes a realistic dataset suggest by (Xuan et al., 2012). These data
were gathered from Eclipse (Nrp-e1 to Nrp-e4), Gnome (Nrp-g1 to Nrp-g4), and Mozilla (Nrp-m1 to Nrp-m3). Table 2 presents the
corresponding customers, requirements, cost, and pro�ts.

Table 2
Test sets for classic and realistic data

Test sets Name Customers (m) Requirements (n) Cost Pro�t

S1 nrp1 100 140 5–10 10–50

S2 nrp2 500 620 5–15 10–50

S3 nrp3 500 1500 5–10 10–50

S4 nrp4 750 3250 5–15 10–50

S5 nrp5 1000 1500 3–5 10–50

S6 Nrp-e1 536 3502 1–7 10–50

S7 Nrp-e2 491 4254 1–7 10–50

S8 Nrp-e3 456 2844 1–7 10–50

S9 Nrp-e4 399 3186 1–7 10–50

S10 Nrp-g1 445 2690 1–7 10–50

S11 Nrp-g2 315 2650 1–7 10–50

S12 Nrp-g3 423 2512 1–7 10–50

S13 Nrp-g4 294 2246 1–7 10–50

S14 Nrp-m1 768 4060 1–7 10–50

S15 Nrp-m2 617 4368 1–7 10–50

S16 Nrp-m3 765 3566 1–7 10–50

S17 Nrp-m4 568 3643 1–7 10–50

4. Results
This work employed PlatEMO (Tian et al., 2017), to test and implement the different evolutionary algorithms for various
problems. The parameters for implementing all algorithms are as follows:

Number of runs: 10 times for each algorithm on each test scale and take the average of the values,

Population size (N): 200,

Number of objectives: 2,
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Number of evaluations (E): 100,000, and the extra parameter settings for the speci�c algorithms are provided in Table 3. Also,
the other parameters have been set by the program defaults.

 
Table 3

Parameters setting of some speci�c evolutionary
algorithms

Algorithm Parameters setting

NNIA nA = 20, nC = 100

RVEA alpha = 2, fr = 0.1

MOPSO Div = 10

MOMBIII Alpha = 0.5, epsilon = 0.001, record = 5

MOEAD Type = 1

HypE nSample = 10,000

EFRRR K = 2

KnEA Rate = 0.5

rNSGA-II Delta = 0.1

GrEA Div = 10

There are 19 algorithms that running 10 times for each test scale (17 test scales in general), resulting in 3230 experiments. It is
nothworthy to mention that the expriments have been run on all test scales and because of the fact there are same results, only
S1 test scale results have been provided in this paper (Figs. 3 and 4). Figure 3 (a-s) show the solutions found by different
algorithms for the S1 test scale, revealing that algorithms such as EFRRR, NSGA-III, and IDBEA could �nd a large number of
Pareto solutions for the S1 test scale, while rNSGA-II, BiGE and MOEAD performed poorly. Some other algorithms, such as
MOPSO and RVEA, were more robust than rNSGA-II and MOEAD but did not work well like the earlier mentioned algorithms.
Figure 4 shows the changes in HV values against 100,000 evaluations for the 1st, 2nd, and 3rd best algorithms (See Appendix
�le A for other algorithms). It is clear that the amount of HV values for NSGA-III, ANSGA-III, tDEA, HypE, SPEA2SDE, EFRRR,
NNIA, MOMBI-II, and SPEAR gradually increased over the evaluation scales. In contrast, the values of HV for rNSGA-II sharply
declined over the evaluation scales. Based on the results of deep analysis, it can be said that the values of HV for NSGA-II,
RVEA, GrEA, MOEAD, and SPEA2 sharply increased, while MOPSO exhibited some �uctuations (Appendix �le A). One of the key
factors in the next generation population and achieving Pareto is selection. The Pareto solution consist of the non-dominated
solutions that are obtained in the �nal iteration. In some cases, the Pareto archive contains huge number of non-dominated
solutions, which are out of computer memory limit. Some techniques could be invented to remove some of the non-dominated
solutions and maintain the diversity of the solution as much as possible resulting in drop of the HV values in later iterations in
some implementations such as KnEA, MOPSO, BiGE, SPEA2SDE, ANSGA-III, and rNSGA-II.

Figures 5 and 6 present the mean of HV and spread values of for the sets (S1), where each rectangle’s size shows the
Interquartile Range (IQR). The short line at the end of each rectangle presents the minimum and maximum values and the short
line inside boxes represents each rectangle’s median. Also, Fig. 5 shows that NNIA owns the best value. In Fig. 6, NNIA also
presents the best value of the spread, while GrEA illustrates the worst value of the spread. Tables 4 and 5 depict the mean and
the standard deviation of spread and HV indicators for all algorithms over all test scales (S1-S17), respectively. According to the
spread mean and standard deviation in Table 4, it is clear that NNIA possesses most of the best values (grey color), while GrEA
owns the worst spread values for all datasets. Also, the light gray in Tables 4 and 5 show the 2nd best values amongst the
algorithms. Again, it is apparent that NNIA owns the best value of HV for all test datasets, while MOPSO possesses the worst
value.
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Table 6 presents the 1st and 2nd best values of CPU run time for each dataset. It can be deduced that NSGA-II owns the best
performance for all datasets except S4, for which rNSGA-II has the best ranking among all algorithms. Also, rNSGA-II possesses
the 2nd best performance for S1-S2, S5-S7, and S11-S17, while tDEA has the 2nd performance for S4, S8, and S10. For other
datasets, S3 and S9, RVEA has the 2nd performance among all algorithms. 

 
Table 4

Spread mean and standard deviation obtained by the algorithms in the test problems
Test
size

ANSGA-III EFRRR HypE IDBEA MOEAD MOMBIII MOPSO NNIA

S1 0.825 ± 
0.039 =

0.73602 ± 
0.023=

0.815 ± 
0.010 =

0.794 ± 
0.027 =

1.000 ± 
0.000 =

0.917 ± 
0.026 =

0.831 ± 
0.071=

0.548 ± 
0.038 +

S2 0.821 ± 
0.032 =

0.78018 ± 
0.044=

0.804 ± 
0.009 =

0.783 ± 
0.027 =

1.000 ± 
0.001 =

0.911 ± 
0.018=

0.778 ± 
0.076 =

0.471 ± 
0.072 +

S3 0.867 ± 
0.067 =

0.74456 ± 
0.038 =

0.814 ± 
0.014 =

0.811 ± 
0.041 =

1.000 ± 
0.000 =

0.911 ± 
0.024 =

0.802 ± 
0.066=

0.548 ± 
0.059 +

S4 0.814 ± 
0.015=

0.7573 ± 
0.021 =

0.816 ± 
0.007=

0.807 ± 
0.019 =

1.000 ± 
0.001 =

0.915 ± 
0.020 =

0.777 ± 
0.064 =

0.471 ± 
0.044+

S5 0.814 ± 
0.027 =

0.76118 ± 
0.046 =

0.813 ± 
0.006 =

0.774 ± 
0.041 =

1. 000 ± 
0.001=

0.915 ± 
0.013 =

0.804 ± 
0.010 =

0.526 ± 
0.075+

S6 0.822 ± 
0.031=

0.76678 ± 
0.026 =

0.805 ± 
0.013 =

0.757 ± 
0.035 =

1.000 ± 
0.001 =

0.919 ± 
0.014 =

0.804 ± 
0.071 =

0.499 ± 
0.046+

S7 0.814 ± 
0.033 =

0.74051 ± 
0.036 =

0.813 ± 
0.014 =

0.805 ± 
0.053 =

1.000 ± 
0.001 =

0.916 ± 
0.019=

0.795 ± 
0.010=

0.510 ± 
0.058+

S8 0.805 ± 
0.026=

0.75091 ± 
0.029=

0.821 ± 
0.0091=

0.774 ± 
0.030 =

1.000 ± 
0.001 =

0.914 ± 
0.020 =

0.756 ± 
0.061=

0.545 ± 
0.060+

S9 0.823 ± 
0.040=

0.73720 ± 
0.031 =

0.816 ± 
0.006 =

0.804 ± 
0.044=

1.000 ± 
0.000 =

0.915 ± 
0.019 -

0.779 ± 
0.094 =

0.542 ± 
0.059+

S10 0.817 ± 
0.028=

0.74956 ± 
0.048 =

0.818 ± 
0.010 =

0.7920.058= 1.000 ± 
0.000=

0.910 ± 
0.015 =

0.784 ± 
0.065 =

0.513 ± 
0.052 +

S11 0.807 ± 
0.024=

0.73563 ± 
0.021 =

0.812 ± 
0.008 =

0.788 ± 
0.049=

1.000 ± 
0.001 =

0.915 ± 
0.015 =

0.762 ± 
0.066=

0.535 ± 
0.071+

S12 0.822 ± 
0.028=

0.75562 ± 
0.043 =

0.811 ± 
0.011 =

0.787 ± 
0.044=

1.000 ± 
0.001 =

0.916 ± 
0.019 =

0.744 ± 
0.070 =

0.504 ± 
0.030 +

S13 0.827 ± 
0.033=

0.78479 ± 
0.029=

0.810 ± 
0.011=

0.785 ± 
0.033 =

1.000 ± 
0.001=

0.911 ± 
0.020 -

0.794 ± 
0.052=

0.527 ± 
0.061+

S14 0.809 ± 
0.017=

0.74988 ± 
0.037=

0.809 ± 
0.012 =

0.792 ± 
0.044 =

1.000 ± 
0.000=

0.916 ± 
0.024=

0.821 ± 
0.011 =

0.520 ± 
0.024 +

S15 0.831 ± 
0.025=

0.73287 ± 
0.021=

0.822 ± 
0.010 =

0.793 ± 
0.038=

1.000 ± 
0.001 =

0.924 ± 
0.017=

0.807 ± 
0.089 =

0.528 ± 
0.081+

S16 0.805 ± 
0.037=

0.74194 ± 
0.044 =

0.806 ± 
0.011 =

0.792 ± 
0.022 =

1.000 ± 
0.001 =

0.903 ± 
0.022 =

0.837 ± 
0.010 =

0.504 ± 
0.050+

S17 0.806 ± 
0.029 =

0.76040 ± 
0.034 =

0.811 ± 
0.011 =

0.798 ± 
0.054=

1.000 
± .000=

0.906 ± 
0.022=

0.796 ± 
0.090 =

0.494 ± 
0.063 +
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Table 4
Spread mean and standard deviation obtained by the algorithms in the test problems (continue)

Test size NSGA-II NSGA-III RVEA SPEAR SPEA2 tDEA

S1 0.817 ± 0.093= 0.762 ± 0.036 = 0.831 ± 0.026 = 0.648 ± 0.066 + 0.508 ± 0.046 + 0.768 ± 0.024 =

S2 0.779 ± 0.052= 0.761 ± 0.028 = 0.822 ± 0.023 = 0.601 ± 0.039 + 0.530 ± 0.055 + 0.791 ± 0.034 =

S3 0.822 ± 0.038 = 0.752 ± 0.025 = 0.824 ± 0.026 = 0.641 ± 0.086 + 0.521 ± 0.038 + 0.778 ± 0.034 =

S4 0.797 ± 0.043 = 0.782 ± 0.021 = 0.831 ± 0.044 = 0.623 ± 0.064 + 0.537 ± 0.040 + 0.780 ± 0.036 =

S5 0.760 ± 0.042 = 0.772 ± 0.031 = 0.815 ± 0.022 = 0.630 ± 0.075 + 0.519 ± 0.075 + 0.790 ± 0.043 =

S6 0.772 ± 0.043 = 0.786 ± 0.046 = 0.820 ± 0.029 = 0.611 ± 0.056 + 0.550 ± 0.067 + 0.771 ± 0.046 =

S7 0.759 ± 0.034 = 0.766 ± 0.040 = 0.836 ± 0.046 = 0.634 ± 0.038 + 0.534 ± 0.063 + 0.781 ± 0.030 =

S8 0.753 ± 0.045 = 0.745 ± 0.025 = 0.833 ± 0.023 = 0.606 ± 0.031 + 0.541 ± 0.056 + 0.773 ± 0.022 =

S9 0.786 ± 0.074 = 0.763 ± 0.036 = 0.817 ± 0.039 = 0.639 ± 0.047 + 0.562 ± 0.049 + 0.776 ± 0.035 =

S10 0.770 ± 0.055 = 0.744 ± 0.027 = 0.838 ± 0.021 = 0.587 ± 0.025 + 0.518 ± 0.046 + 0.790 ± 0.033 =

S11 0.761 ± 0.057 = 0.753 ± 0.038 = 0.841 ± 0.025 = 0.625 ± 0.050 + 0.547 ± 0.028 + 0.756 ± 0.019 =

S12 0.772 ± 0.063 = 0.768 ± 0.026 = 0.829 ± 0.020 = 0.643 ± 0.070 + 0.537 ± 0.048 + 0.795 ± 0.031 =

S13 0.803 ± 0.044 = 0.742 ± 0.029 = 0.842 ± 0.046 = 0.625 ± 0.066) + 0.527 ± 0.030 + 0.770 ± 0.029 =

S14 0.784 ± 0.023 = 0.765 ± 0.035 = 0.827 ± 0.035 = 0.610 ± 0.042 + 0.537 ± 0.041 + 0.797 ± 0.039 =

S15 0.794 ± 0.042 = 0.757 ± 0.040 = 0.826 ± 0.035 = 0.633 ± 0.034 + 0.508 ± 0.044 + 0.796 ± 0.035 =

S16 0.780 ± 0.035 = 0.765 ± 0.039 = 0.836 ± 0.035 = 0.667 ± 0.072 + 0.520 ± 0.052 + 0.784 ± 0.029 =

S17 0.776 ± 0.041 = 0.741 ± 0.039 = 0.818 ± 0.031 = 0.621 ± 0.036 + 0.532 ± 0.051 + 0.788 ± 0.047 =

Table 4 Spread mean and standard deviation obtained by the algorithms in the test problems (continue) 
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Test size BiGE GrEA KnEA rNSGA-II SPEA2SDE

S1 1.029± (0.019) = 1.048 ± (0.019) = 0.996± (0.008) = 1.006 ± (0.003) = 0.893 ± (0.028)

S2 1.024± (0.009) = 1.053± (0.022) = 0.997± (0.009) = 1.005 ± (0.004) = 0.904± (0.016)

S3 1.024± (0.009) = 1.048 ± (0.015) = 1.001± (0.013) = 1.002 ± (0.003) = 0.906± (0.020)

S4 1.030 ± (0.007) = 1.041 ± (0.015) = 1.000± (0.011) = 1.006± (0.005) = 0.906 ± (0.017)

S5 1.021± (0.009) = 1.041 ± (0.023) = 0.995 ± (0.008) = 1.008± (0.005) = 0.921 ± (0.019)

S6 1.026± (0.010) = 1.042 ± (0.008) = 1.000± (0.010) = 1.006 ± (0.006) = 0.911 ± (0.022)

S7 1.021± (0.006) = 1.043± (0.014) = 1.003± (0.009) = 1.004± (0.004) = 0.912 ± (0.021)

S8 1.026 ± (0.014) = 1.047 ± (0.017) = 0.995 ± (0.008) = 1.004± (0.003) = 0.886± (0.028)

S9 1.024 ± (0.007) = 1.034 ± (0.012) = 0.994 ± (0.013) = 1.006 ± (0.003) = 0.915 ± (0.011)

S10 1.027± (0.006) = 1.048 ± (0.011) = 0.997± (0.010) = 1.004± (0.003) = 0.894 ± (0.024)

S11 1.024± (0.01) = 1.039 ± (0.013) = 1.000± (0.012) = 1.005± (0.003) = 0.898 ± (0.018)

S12 1.022± (0.007) = 1.047 ± (0.014) = 0.952 ± (0.010) = 1.004± (0.003) = 0.895 ± (0.027)

S13 1.022± (0.009) = 1.051 ± (0.001) = 0.973± (0.007) = 1.002± (0.003) = 0.902 ± (0.021)

S14 1.018± (0.007) = 1.040± (0.012) = 0.948± (0.005) = 1.007 ± (0.004) = 0.903± (0.017)

S15 1.032± (0.015) = 1.031± (0.015) = 1.009± (0.010) = 1.006 ± (0.004) = 0.905 ± (0.025)

S16 1.022± (0.009) = 1.047 ± (0.010) = 0.978 ± (0.004) = 1.005± (0.006) = 0.897± (0.018)

S17 1.026± (0.013) = 1.046 ± (0.016) = 0.956± (0 .010) = 1.004± (0.003) = 0.906 ± (0.026)
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Table 5
HV mean and standard deviation obtained by the algorithms in the test problems

Test
size

ANSGA-III EFRRR HypE IDBEA MOEAD MOMBIII MOPSO NNIA

S1 0.679±(0.004)
=

0.683 ±
(0.005) =

0.647 ±
(0.005) =

0.674 ±
(0.005) =

0.182±
(0.006) -

0.588±
(0.011) -

0.015±
(0.001) -

0.708±
(0.000) +

S2 0.679±
(0.005) =

0.684 ±
(0.006) =

0.647±
(0.006) =

0.673±
(0.005) +

0.184±
(0.006) -

0.588 ±
(0.012) -

0.015 ±
(0.003) -

0.708±
(0.000) +

S3 0.668 ±
(0.047) =

0.684 ±
(0.004) =

0.646±
(0.006) =

0.672±
(0.005) =

0.182±
(0.006) -

0.591±
(0.012) -

0.016±
(0.005) -

0.708±
(0.000) +

S4 0.680 ±
(0.004) =

0.683 ±
(0.005) =

0.648±
(0.006) =

0.673 ±
(0.004) +

0.184±
(0.006) -

0.587 ±
(0.012) -

0.014 ±
(0.000) -

0.708±
(0.000) +

S5 0.681 ±
(0.003) =

0.684±
(0.005) =

0.647±
(0.006) =

0.674±
(0.11) =

0.186±
(0.006) -

0.588 ±
(0.011) =

0.0153 ±
(0.001) -

0.708±
(0.000) +

S6 0.680±
(0.004) =

0.684±
(0.006) =

0.648±
(0.006) =

0.675±
(0.004) =

0.181±
(0.006) -

0.589 ±
(0.013) =

0.015 ±
(0.001) -

0.708 ±
(0.000) +

S7 0.680 ±
(0.005) =

0.685 ±
(0.006) =

0.647±
(0.006) =

0.672 ±
(0.007) =

0.184±
(0.006) -

0.591 ±
(0.015) -

0.015 ±
(0.002) -

0.708±
(0.000) +

S8 0.680±
(0.003) =

0.685 ±
(0.004) =

0.645 ±
(0.007) =

0.675 ±
(0.003) =

0.182±
(0.006) -

0.590 ±
(0.014) =

0.015±
(0.001) -

0.708 ±
(0.000) +

S9 0.680±
(0.004) =

0.682 ±
(0.006) =

0.650±
(0.006) =

0.673±
(0.004) =

0.185±
(0.006) -

0.590±
(0.012) -

0.015±
(0.002) -

0.708 ±
(0.000) +

S10 0.680 ±
(0.004) =

0.684±
(0.004) =

0.646±
(0.005) =

0.676±
(0.005) =

0.184±
(0.006) -

0.590±
(0.013) =

0.015 ±
(0.002) -

0.708±
(0.000) +

S11 0.680 ±
(0.003) =

0.683±
(0.007) =

0.645±
(0.005) =

0.673 ±
(0.005) =

0.184 ±
(0.006) -

0.588 ±
(0.011) =

0.014 ±
(0.001) -

0.708 ±
(0.000) +

S12 0.679±
(0.004) =

0.682±
(0.006) =

0.648 ±
(0.005) =

0.676±
(0.005) =

0.185 ±
(0.006) -

0.591 ±
(0.013) -

0.015±
(0.002) -

0.708±(0.000)
+

S13 0.680±
(0.004) =

0.683±
(0.005) =

0.647±
(0.005) =

0.675±
(0.006) =

0.185 ±
(0.006) -

0.590±
(0.014) =

0.015±
(0.001) -

0.708 ±
(0.000) +

S14 0.681±
(0.004) =

0.683±
(0.004) =

0.648 ±
(0.006) =

0.674 ±
(0.004) =

0.185±
(0.006) -

0.590 ±
(0.013) =

0.016 ±
(0.003) -

0.708 ±
(0.000) +

S15 0.680±
(0.004) =

0.685±
(0.004) =

0.645 ±
(0.006) =

0.674 ±
(0.003) =

0.184±
(0.006) -

0.588 ±
(0.013) -

0.015 ±
(0.001) -

0.708 ±
(0.000) +

S16 0.679 ±
(0.004) =

0.686 ±
(0.004) =

0.648 ±
(0.008) =

0.674±
(0.006) =

0.184±
(0.006) -

0.593 ±
(0.010) -

0.015 ±
(0.003) -

0.708 ±
(0.000) +

S17 0.657 ±
(0.018) =

0.657 ±
(0.021) =

0.636 ±
(0.013) =

0.640 ±
(0.025) =

0.178±
(0.004) -

0.590±
(0.013) -

0.015 ±
(0.002) -

0.694 ±
(0.011) =
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Table 5
HV mean and standard deviation obtained by the algorithms in the test problems (Continue)

Test
size

NSGA-II NSGA-III RVEA SPEAR SPEA2 tDEA

S1 0.681 ±(0.068)
=

0.685± (0.005)
=

0.642 ± (0.005)
=

0.706 ± (0.001)
+

0.702 ± (0.002)
+

0.735± (0.007) =

S2 0.699 ± (0.000)
=

0.687± (0.004)
=

0.642± (0.007)
=

0.706 ± (0.001)
+

0.702± (0.002)
+

0.725± (0.006) =

S3 0.699 ± (0.002)
=

0.688± (0.005)
=

0.642 ± (0.007)
=

0.706 ± (0.001)
+

0.702± (0.002)
+

0.755 ± (0.005)
=

S4 0.700 ± (0.002)
=

0.686± (0.005)
=

0.642 ± (0.009)
=

0.706± (0.001)
+

0.702 ± (0.002)
+

0.745 ± (0.007)
=

S5 0.700 ± (0.002)
+

0.685 ± (0.004)
=

0.642 ± (0.005)
=

0.706 ± (0.001)
+

0.702 ± (0.003)
+

0.764 ± (0.006)
=

S6 0.699± (0.002)
=

0.684± (0.004)
=

0.643 ± (0.006)
=

0.707± (0.001)
+

0.701 ± (0.003)
+

0.742 ± (0.006)
=

S7 0.700 ± (0.002)
=

0.684± (0.005)
=

0.642± (0.007)
=

0.706± (0.001)
+

0.701 ± (0.002)
=

0.735 ± (0.007)
=

S8 0.700± (0.002)
+

0.686 ± (0.003)
=

0.641± (0.008)
=

0.706 ± (0.002)
+

0.701 ± (0.002)
+

0.743± (0.005) =

S9 0.700 ± (0.003)
+

0.686 ± (0.005)
=

0.641± (0.008)
=

0.706 ± (0.001)
+

0.700 ± (0.002)
+

0.742± (0.005) =

S10 0.700 ± (0.002)
+

0.687 ± (0.004)
=

0.643± (0.005)
=

0.706 ± (0.001)
+

0.701 ± (0.003)
+

0.756 ± (0.005)
=

S11 0.700± (0.003)
+

0.685 ± (0.004)
=

0.635 ± (0.040)
=

0.706 ± (0.001)
+

0.701 ± (0.001)
+

0.738 ± (0.005)
=

S12 0.700± (0.002)
+

0.687 ± (0.005)
=

0.645 ± (0.007)
=

0.706 ± (0.002)
+

0.701 ± (0.003)
+

0.730 ± (0.006)
=

S13 0.699 ± (0.003)
+

0.686 ± (0.005)
=

0.640 ± (0.008)
=

0.707 ± (0.001)
+

0.702 ± (0.002)
+

0.725± (0.0077)
=

S14 0.700 ± (0.002)
+

0.686 ± (0.006)
=

0.641 ± (0.006)
=

0.706± (0.001)
+

0.701 ± (0.002)
+

0.721 ± (0.007)
=

S15 0.699± (0.002)
=

0.686 ± (0.005)
=

0.641± (0.007)
=

0.706± (0.001)
+

0.703± (0.002)
+

0.748 ± (0.007)
=

S16 0.700± (0.002)
=

0.687 ± (0.005)
=

0.640 ± (0.007)
=

0.706± (0.001)
+

0.701± (0.003)
+

0.754 ± (0.006)
=

S17 0.669± (0.023)
=

0.654 ± (0.023)
=

0.591 ± (0.039)
-

0.697± (0.007)
=

0.674± (0.021)
=

0.459± (0.022) =

Table 5 HV mean and standard deviation obtained by the algorithms in the test problems (continue) 
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Test size BiGE GrEA KnEA rNSGA-II SPEA2SDE

S1 0.461± (0.018) - 0.642 ± (0.007) = 0.513± (0.009) - 0.429 ± (0.004) - 0.671 ± (0.010)

S2 0.460± (0.013) - 0.642± (0.007) = 0.514 ± (0.006) - 0.430 ± (0.004) - 0.673 ± (0.006)

S3 0.454 ± (0.016) - 0.642± (0.006) = 0.512 ± (0.011) - 0.429 ± (0.003) - 0.675 ± (0.007)

S4 0.465 ± (0.012) - 0.644± (0.006) = 0.512± (0.005) - 0.430 ± (0.004) - 0.672 ± (0.009)

S5 0.461 ± (0.018) - 0.643 ± (0.006) = 0.515± (0.006) - 0.430± (0.005) - 0.671 ± (0.006)

S6 0.462 ± (0.016) - 0.642 ± (0.007) = 0.512± (0.010) - 0.430 ± (0.004) - 0.672± (0.007)

S7 0.453 ± (0.015) - 0.641± (0.008) = 0.514± (0.004) - 0.430 ± (0.003) - 0.674 ± (0.008)

S8 0.458 ± (0.014) - 0.645± (0.008) = 0.515± (0.007) - 0.429± (0.004) - 0.671 ± (0.008)

S9 0.465 ± (0.016) - 0.642± (0.007) = 0.512± (0.007) - 0.430± (0.003) - 0.671 ± (0.009)

S10 0.461± (0.017) - 0.643± (0.008) = 0.513 ± (0.006) - 0.430± (0.003) - 0.671 ± (0.010)

S11 0.466± (0.020) - 0.645± (0.006) = 0.514± (0.007) - 0.430 ± (0.003) - 0.669± (0.009)

S12 0.459 ± (0.011) - 0.643± (0.007) = 0.515± (0.007) - 0.430± (0.004) - 0.672± (0.006)

S13 0.457± (0.014) - 0.643± (0.006) = 0.512 ± (0.007) - 0.429± (0.004) - 0.672 ± (0.007)

S14 0.460 ± (0.015) - 0.643± (0.007) = 0.513 ± (0.009) - 0.429± (0.003) - 0.669 ± (0.007)

S15 0.463 ± (0.017) - 0.643 ± (0.007) = 0.516 ± (0.010) - 0.430 ± (0.005) - 0.672 ± (0.008)

S16 0.461 ± (0.015) - 0.642 ± (0.007) = 0.514 ± (0.009) - 0.430 ± (0.003) - 0.674± (0.008)

S17 0.497± (0.055) - 0.657± (0.013) = 0.525 ± (0.010) - 0.432 ± (0.005) - 0.661 ± (0.012)

 
Table 6

Average CPU time
Algorithm S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17

NSGA-II 1 1 1   1 1 1 1 1 1 1 1 1 1 1 1 1

rNSGA-II 2 2   1 2 2 2       2 2 2 2 2 2 2

tDEA       2       2   2              

RVEA     2           2                

5. Summary Of Findings
This paper addresses 19 state-of-the-art evolutionary algorithms, including NSGA-II, rNSGA-II, NSGA-III, MOEAD, EFRRR, tDEA,
KnEA, MOMBIII, SPEA2, RVEA, NNIA, HypE, ANSGA-III, BiGE, GrEA, IDBEA, SPEAR, SPEA2SDE, and MOPSO, to can tackle the
multi-objective next released problem. Table 7 presents the summary of indicators’ performance, in which the 1st and 2nd best
performance for each indicator is shown. in the literature analysis, SPEA2 better NSGA-II with higher dimensional spaces. NNIA
has been reported to be better than NSGA-II and SPEA-2 in DTLZ and ZDT, as it is expected, NNIA is better than the other
proposed above-mentioned algorithms in the paper. It is worthy to mention that NNIA only chooses minority isolated
nondominated individuals in the current population and focuses more on the less-crowded areas of the current Pareto front
(Gong et al., 2008).
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Figure 7 displays the HV and spread values of 1st and 2nd best algorithms (NNIA and SPEAR), for which most HV values for
NNIA are bigger 0.708 and smaller than 1, while the HV values for SPEAR vary between 0.706 and 0.708.

Table 7
Summary of indicators performance studied in the paper (1st and 2nd best

performance)
Test scale HV Spread Run time

1st best 2nd best 1st best 2nd best 1st best 2nd best

S1 NNIA SPEAR NNIA SPEA2 NSGA-II rNSGA-II

S2 NNIA SPEAR SPEA2 NNIA NSGA-II rNSGA-II

S3 NNIA SPEAR NNIA SPEA2 NSGA-II RVEA

S4 NNIA SPEAR SPEA2 NNIA rNSGA-II tDEA

S5 NNIA SPEAR NNIA SPEA2 NSGA-II rNSGA-II

S6 NNIA SPEAR SPEA2 NNIA NSGA-II rNSGA-II

S7 NNIA SPEAR SPEA2 NNIA NSGA-II rNSGA-II

S8 NNIA SPEAR NNIA SPEA2 NSGA-II tDEA

S9 NNIA SPEAR SPEA2 NNIA NSGA-II RVEA

S10 NNIA SPEAR NNIA SPEA2 NSGA-II tDEA

S11 NNIA SPEAR SPEA2 NNIA NSGA-II rNSGA-II

S12 NNIA SPEAR SPEA2 NNIA NSGA-II rNSGA-II

S13 NNIA SPEAR NNIA SPEA2 NSGA-II rNSGA-II

S14 NNIA SPEAR SPEA2 NNIA NSGA-II rNSGA-II

S15 NNIA SPEAR NNIA SPEA2 NSGA-II rNSGA-II

S16 NNIA SPEAR NNIA SPEA2 NSGA-II rNSGA-II

S17 SPEAR SPEAR NNIA SPEA2 NSGA-II rNSGA-II

6. Discussion And Conclusion
This study evaluated several evolutionary algorithms to solve the MONRP. This problem arises when a developed software
system of urgent need, has been sold to customers, and a set of customer requirements must be met. Solving the MONRP
problem involves two objectives: maximizing customer satisfaction and minimizing the total cost regarding the requirements
for developing a software system. Therefore, 19 state-of-the-art EAs, namely NSGA-II, rNSGA-II, NSGA-III, MOEAD, EFRRR, tDEA,
KnEA, MOMBIII, SPEA2, RVEA, NNIA, HypE, ANSGA-III, BiGE, GrEA, IDBEA, SPEAR, SPEA2SDE, and MOPSO, were selected and are
categorized into several groups of EMO algorithms: (a) Indicator-based, (b) reference set-based, (c) Neighbor-based, (d) Pareto-
based, (e) Decomposition-based, (f) diversity, and (g) Preference-based.

Two types of datasets were examined to verify the simulation results. The �rst type includes classic data, and the second type
involves realistic data, such as Mozilla, Genome, and Eclipse. In general, 17 test scales were addressed. From the experiments,
te following results are summarized:

Amongst the proposed algorithms, (a) EFRRR, (d) MOMBIII, (f) NNIA, (g) NSGA-II, (h) NSGA-III, (k) SPEA2, (m) ANSGA-III, (p)
IDBEA, (q) PICEAg, (r) SPEA2SDE, (s) SPEAR, (t) HypE, and (l) tDEA could �nd a large number of Pareto solutions for the S1
test scale, while (i) rNSGA-II, (n) BiGE, and (c) MOEAD showed weak performance.
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NNIA possesses the best value for the HV indicator, while MOPSO owns the worst value amongst all algorithms for all test
scales.

For the spread indicator, NNIA and SPEA2 possess the best values, while GrEA owns the worst value amongst all
algorithms for all test scales.

Average CPU time shows that NSGA-II possesses the best performance of all algorithms for all test scales, except S4, for
which rNSGA-II has the �rst ranking.

rNSGA-II, tDEA, and RVEA own the 2nd best performance in average CPU time.

Applying other types of evolutionary algorithms is proposed as a direction for future study. Moreover, considering that
researchers have recently proposed newer formulations of the next release problem, it would be valuable to implement the
proposed algorithms for these problems. Furthermore, it is also suggested to verify the algorithms addressed in this paper with
other datasets available in the literature. Moreover, in this paper, we have set the operators based on program default; it is
interesting to check the performance according to various operators such as different types of crossover. Another research area
could be evaluating the performance of the algorithms with other metrics available in the literature.
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Figure 1

Trend of published documents on the next release problem since 1981 (database: Scopus)
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Figure 2

The framework methodology
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Figure 3

Comparison of solutions found by different algorithms on MONRP

Figure 4
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HV values vs. number of function evaluations on MONRP for the 1st , 2nd , and 3rd best algorithms 

Figure 5

Boxplot of the HV obtained by the algorithms in the test problems (S1)
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Figure 6

Boxplot of the spread obtained by the algorithms in the test problems (S1)

Figure 7

HV and spread values of 1st and 2nd best algorithms.
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