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Maximizing the Geometric Mean of User-Rates to
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Abstract— This paper considers a reconfigurable intelligent
surface (RIS)-aided network, which relies on a multiple antenna
array aided base station (BS) and an RIS for serving multiple
single antenna downlink users. To provide reliable links to all
users over the same bandwidth and same time-slot, the paper
proposes the joint design of linear transmit beamformers and
the programmable reflecting coefficients of an RIS to maximize
the geometric mean (GM) of the users’ rates. A new compu-
tationally efficient alternating descent algorithm is developed,
which is based on closed-forms only for generating improved
feasible points of this nonconvex problem. We also consider
the joint design of widely linear transmit beamformers and the
programmable reflecting coefficients to further improve the GM
of the users’ rates. Hence another alternating descent algorithm is
developed for its solution, which is also based on closed forms only
for generating improved feasible points. Numerical examples are
provided to demonstrate the efficiency of the proposed approach.

Index Terms— Reconfigurable intelligent surface, proper and
improper Gaussian signaling, transmit beamforming, trigono-
metric function optimization, geometric mean maximization,
nonconvex optimization algorithms.

I. INTRODUCTION

THE spectral efficiency optimization of wireless networks
is often carried out by sum rate (SR) maximization,

thanks to the computational tractability of the latter when
relying on beamforming [1], [2]. However, by its nature,
SR maximization has the deficiency of allocating a large
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fraction of the sum-rate to a few users having good channel
conditions, while leaving the rest of the users with almost zero
rates. Furthermore, the SR performance is typically improved
with more users involved because there are more flexible
choices for the users’ channels [3]. The spectral efficiency is
thus addressed more appropriately via either SR maximization
under specific quality-of-service (QoS) constraints in terms of
the users’ minimum rate, or by max-min user-rate optimiza-
tion, but their computation is quite demanding [1], [2], [4]–[6].

Reconfigurable intelligent surfaces (RISs) [7] are con-
structed by a planar array of programmable reflecting elements
(PREs), which have recently been introduced for improving
the energy and spectral efficiencies of future wireless networks
(6G) [8]–[11], the coverage, reliability and the average
achievable rate of UAV communication systems [12]–[14] and
the outage probability and bit error rate (BER) of indoor mixed
dual-hop VLC/RF systems [15]. Moreover, channel estimation
and physical layer security for RIS-aided networks have been
studied recently [16]–[19]. A typical RIS-aided system con-
sists of a base station (BS) and a RIS for beneficially reflecting
the incident electromagnetic waves from the BS to multi-target
directions, where the spectral efficiency may be improved by
the joint design of the transmit beamformer at the BS and RIS
PREs [20]. The joint design is often based on alternating opti-
mization between the beamformer and PREs. Thus, compared
to the design of stand-alone transmit beamformers, the new
challenge is the optimization of the PREs with the beamformer
weights fixed, which is computationally challenging due to
the nonconvex unit-modulus constraint (UMC) imposed on the
PREs. In [8] and [21], general-purpose gradient/projected gra-
dient algorithms were used, which do not necessarily converge.
By contrast to either convex relaxation relying on dropping
the matrix-rank of one constraint or on relaxing the UMC to
the convex bounded-by-unit-modulus constraint were used in
[22]–[26] for mitigating the computational challenge. Except
for the works [22] and [26], which particularly considered the
problem of transmit power minimization subject to signal-to-
interference-plus-noise ratio (SINR) constraints, all the fol-
lowing treatises [8], [21], [23]–[25] considered the problem
of SR maximization. The authors of [23]–[25] applied convex
relaxation not only to the UMC but also to the SR objective
function. It should be noted that alternating optimization
between two sets of decision variables is only efficient, when

1536-1276 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Technology Sydney. Downloaded on July 31,2023 at 02:15:26 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-2631-4764
https://orcid.org/0000-0003-0292-6061
https://orcid.org/0000-0002-4268-9286
https://orcid.org/0000-0002-2062-131X
https://orcid.org/0000-0002-2636-5214


296 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 21, NO. 1, JANUARY 2022

the optimization within each set with the other set held fixed
is computationally tractable. However that is not the case
for the problems considered in all these papers because both
the optimization of the beamformers with the PREs held
fixed and that of the PREs with the beamformer weights
held fixed present difficult nonconvex problems. In the end,
the convergence of alternating optimization-based algorithms
to a locally optimal solution is not guaranteed. Our recent
work [27] has been the first one that addressed the spectral
efficiency of RIS-aided communication via max-min user-rate
optimization. Instead of alternating optimization, we proposed
an alternating descent at the first stage and then a joint descent
at the second stage to confirm the optimality of the solutions
computed. While the descent iterations in the beamformers
generate a sequence of better feasible points, the descent
iterations in the PREs generate a sequence of better infeasible
points, which converges to a feasible point. Moreover, it has
been also shown in [27] that using widely linear beamformers
for facilitating improper Gaussian signaling (IGS) improves
the users’ max-min rate. To sum up, we provide a brief
comparison of the related literature in Table I.

Against the above background, this paper offers the follow-
ing contributions:

• We consider the problem of maximizing the geometric
mean (GM) of users’ rates for allocating the rates to
all users in an equitable manner. We use the users’ rate
deviation (RD) from their mean and the ratio of the users’
maximal and minimal rates (RR) as the main criterion
to judge the users’ rate balance, which are 0 and 1,
respectively, when all users are granted the same rate.
The smaller these values are, the fairer the users’ rate
allocation becomes (more balanced).

• As this problem of GM maximization is computationally
intractable, we address it via the min-max joint design
of beamforming weights and RIS PREs. To eliminate
the UMC of the RIS PREs, we use the polar form of
unit-modulus complex numbers that allows each descent
iteration of the RIS coefficient calculation to be based on
the closed-form solution of an unconstrained nonconvex
problem in the PREs’ arguments. Each descent iteration
of the beamformer weights and the PREs’ arguments
are also based on the closed-form solutions of convex
problems. Thus, the proposed alternating descent method
is purely based on closed forms and hence it is compu-
tationally efficient.

• Like in [27], here we also use improper Gaussian signal-
ing (IGS) in the BS signal transmission, which has been
shown to substantially improve the users’ max-min rates
(see e.g. [28]–[32]) thanks to its ability to mitigate the
severe interferences in interference-limited systems. The
performance gap between IGS and conventional proper
Gaussian signaling (PGS) becomes substantially wider
under more severe interference regimes. To elaborate a lit-
tle further, IGS is not useful in interference-free regimes
such as that of zero-forcing beamforming, which forces
all interferences to zero. The interference scenario of SR
maximization under PGS is unique in the sense that those
users who were allocated zero-rate impose no interference

on the other users. As a result, SR maximization under
PGS exhibit a high RD and near-infinite RR. Our finding
is that compared to PGS, IGS does not improve the
system’s SR but it results in much lower RD and RR
as a benefit of having no users with zero rate. Hence SR
maximization becomes a practically feasible option while
providing the users with beneficial rate-fairness.

The paper is organized as follows. The joint design of beam-
former weights and PREs to maximize the GM of users’ rates
by tractable computation both under PGS and IGS is addressed
in Section II and III, respectively. Their performances are
evaluated by the simulations in Section IV, while Section V
concludes the paper.

Notation: Only the vector/matrix variables are printed
in boldface; IN is the identity matrix of size N × N ,
while OM×N is a zero matrix of size M × N . For x =
(x1, . . . , xn)T , diag(x) is a diagonal matrix of the size
n × n with x1, x2, . . . , xn on its diagonal; [X ]2 is XXH ,
and �X, Y � = trace(XHY ) for the matrices X and Y .
Accordingly, the Frobenius norm of X is defined by ||X || =�

trace(XHX). We also write �X� = trace(X) for nota-
tional simplicity. The notation X � 0 (X � 0, resp.)
used for the Hermitian symmetric matrix X indicates that
it is positive definite (positive semi-definite, resp.). Let us
denote the maximal eigenvalue of the Hermitian symmetric
matrix X by λmax(X); vec(X) stacks the columns of the
matrix X into a single column (vector) and as such we
have vec(AXB) = (BT ⊗ A)vec(X) for the matrices A,
X , and B of appropriate sizes, where ⊗ is the Kronecker
product. For a real valued vector x = (x1, . . . , xn)T ∈ R

n,
ejx, cosx, and sin x are entry-wise understood, i.e. ejx =
(ejx1 , . . . , ejxn)T ∈ Cn, cosx = (cos x1, . . . , cosn)T ∈ Rn,
and sin x = (sin x1, . . . , sin xn)T ∈ Rn. As such ejx =
cosx + j sinx. For a complex number x, ∠x denotes its
argument, i.e. x = ej∠x for |x| = 1 and it is fully characterized
by ∠x ∈ [0, 2π]. Lastly, let us denote the set of circular
Gaussian random variables with the zero means and variance
a by C(0, a). Each s ∈ C(0, a) is termed as being proper
because E(s2) = E(�2{s})− E(	2{s}) = 0 as E(�2{s}) =
E(	2{s}) = a/2. By contrast, a Gaussian random vector
variable x is referred to as improper if E(xxT ) 
= 0, which
particularly implies that E(�{x}�T {x}) 
= E(	{x}	T {x}).

II. PROPER GAUSSIAN SIGNALING

We consider the RIS-aided communication system illus-
trated by Fig. 1, where a RIS of N reflecting units supports
the downlink spanning from an M -antenna array BS to K
single-antenna users (UEs) k ∈ K � {1, . . . , K}. Since the
RIS is typically deployed on the facade of high-rise buildings
and the BS is also usually at a certain elevated height [10],
it is justified to assume a LoS link between the BS and
RIS, LoS communication between the RIS and UEs, and
NLoS propagation between the BS and UEs. Accordingly,
the channels spanning from the BS and the RIS to UE k and
from the BS to the RIS are modelled by h̃B-k =

√
βB-khB-k ∈

C1×M , h̃R-k =
√

βR-khR-k ∈ C1×N , and H̃B-R =
√

βB-RHB-R ∈
CN×M , where

√
βB-k,

√
βR-k, and

√
βB-R model the path-loss
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TABLE I

A BRIEF COMPARISON OF THE RELATED LITERATURE

Fig. 1. System model.

and large-scale fading of the BS-to-UE k link, the RIS-to-UE
k link, and the BS-to-RIS link, respectively [21], [33], while
hR-k and HB-R are modelled by Rician fading for modeling the
line-of-sight (LoS) channels between the RIS and the UEs as
well as between the BS and the RIS [34]. Furthermore, hB-k is
modelled by Rayleigh fading in the face of non-LoS (NLoS)
channels between the BS and the UEs. Like many other papers
on RIS-aided communication networks, we assume having
perfect channel state information, which can be obtained from
channel estimation [8], [16], [22].

Let sk ∈ C(0, 1) be the information symbol intended for
UE k, which is beamformed by wk ∈ CM . The signal x
transmitted from the BS is

x =
�
k∈K

wksk. (1)

The signal received at UE k can be expressed as

yk =
�
h̃R-kR

1/2
R-k diag(ejθθθ)H̃B-R + h̃B-k

�
x + nk (2)

= Hk(γγγ)
�
k∈K

wksk + nk, (3)

for

Hk(γγγ) � h̃BR-kdiag(ejθθθ)HB-R + h̃B-k ∈ C
1×M , (4)

with

h̃BR-k �
�

βB-R

�
βR-khR-kR

1/2
R-k ∈ C

1×N , (5)

where RR-k ∈ CN×N represents the spatial correlation matrix
of the RIS elements with respect to user k [21], [35], nk ∈
C(0, σ) is the background noise at UE k, and diag(ejθθθ) in (2)
for γγγ = (γγγ1, . . . , γγγN )T ∈ [0, 2π]N represents the matrix of
PREs.

Let w � {wk, k ∈ K}. The rate in nats/sec at UE k is

rk(w, γγγ) = ln

�
1 +

|Hk(γγγ)wk|2�
j∈K\{k} |Hk(γγγ)wj |2 + σ

�
. (6)

We consider the following problem of jointly designing the
beamformers’ weight set w and the PREs γγγ to maximize the
GM of users’ rates:

max
w,θθθ

�
K	

k=1

rk(w, γγγ)

�1/K

(7a)

s.t.
K�

k=1

||wk||2 ≤ P, (7b)

where (7b) sets the transmit power constraint within a given
power budget P . It is plausible that this problem is equivalent
to the following one:

min
w,θθθ

f (r1(w, γγγ) , . . . , rK(w, γγγ)) � 1�
K
k=1 rk(w, γγγ)

�1/K

s.t. (7b). (8)

The function f(r1(w, γγγ), . . . , rK(w, γγγ)) is the composition
of the convex function f(r1, . . . , rK) = 1/(


K
k=1 rk)1/K and

the non-convex functions rk(w, γγγ), k = 1, . . . , K .
Let (w(κ), γ(κ)) be a feasible point for (8) that

is found from the (κ − 1)-st round. We note that
the linearized function of f (r1(w, γγγ), . . . , rK(w, γγγ)) at�
r1(w(κ), γ(κ)), . . . , rK(w(κ), γ(κ))

�
is

2f
�
r1(w(κ), γ(κ)), . . . , rK(w(κ), γ(κ))

�
− f(r1(w(κ), γ(κ))

, . . . , rK(w(κ), γ(κ)))
1
K

K�
k=1

rk(w, γγγ)
rk(w(κ), γ(κ))

. (9)

Since we have f
�
r1(w(κ), γ(κ)), . . . , rK(w(κ), γ(κ))

�
> 0,

we can use steepest descent optimization for the convex
function f(r1, . . . , rK) to generate the next feasible point
(w(κ+1), γ(κ+1)):

max
w,θθθ

1
K

K�
k=1

rk(w, γγγ)
rk(w(κ), γ(κ))

f(r1(w(κ), γ(κ))

, . . . , rK(w(κ), γ(κ)))s.t. (7b), (10)

which is equivalent to the following problem:

max
w,θθθ

f (κ)(w, γγγ) �
K�

k=1

γ
(κ)
k rk(w, γγγ) s.t. (7b), (11)

Authorized licensed use limited to: University of Technology Sydney. Downloaded on July 31,2023 at 02:15:26 UTC from IEEE Xplore.  Restrictions apply. 



298 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 21, NO. 1, JANUARY 2022

for

γ
(κ)
k �

f
�
r1(w(κ), γ(κ)), . . . , rK(w(κ), γ(κ))

�
rk(w(κ), γ(κ))

, k = 1, . . . , K.

(12)

A. Beamforming Descent Iteration

To generate w(κ+1) we seek w(κ+1), so that the following
holds:

f (κ)(w(κ+1), γ(κ)) > f (κ)(w(κ), γ(κ)). (13)

Using the inequality [1]

ln
In + [V]2(Y)−1

 ≥ ln
In + [V̄ ]2(Ȳ )−1


−�[V̄ ]2(Ȳ )−1�+ 2�{�V̄ H(Ȳ )−1V�}
−�(Ȳ )−1 − (Ȳ + [V̄ ]2)−1, [V]2 + Y�,
∀ V,Y � 0 & V̄ , Ȳ � 0, (14)

for V = Hk(γ(κ))wk, Y =
�

j∈K\{k} |Hk(γ(κ))wj |2 +
σ, and V̄ = Hk(γ(κ))w(κ)

k , Ȳ = y
(κ)
k ��

j∈K\{k} |Hk(γ(κ))w(κ)
j |2 + σ, yields

rk(w, γ(κ)) ≥ r
(κ)
k (w)

� a
(κ)
k + 2�{�b(κ)

k ,wk�}

−c
(κ)
k

K�
j=1

|Hk(γ(κ))wj |2, (15)

with a
(κ)
k � rk(w(κ), γ(κ)) − |Hk(γ(κ))w(κ)

k |2/y
(κ)
k − σc

(κ)
k ,

b
(κ)
k � HH

k (γ(κ))Hk(γ(κ))w(κ)
k /y

(κ)
k , and 0 < c

(κ)
k �

|Hk(γ(κ))w(κ)
k |2/

�
y
(κ)
k

�
y
(κ)
k + |Hk(γ(κ))w(κ)

k |2
��

.

The function r
(κ)
k (w) is seen to be concave quadratic, which

matches with r
(κ)
k (w, γ(κ)) at w(κ). We solve the following

convex problem at the κ-th iteration to generate w(κ+1):

max
w

f
(κ)
b (w) s.t. (7b), (16)

where

f
(κ)
b (w) �

K�
k=1

γ
(κ)
k r

(κ)
k (w)

=
K�

k=1

γ
(κ)
k a

(κ)
k + 2

K�
k=1

�{�γ(κ)
k b

(κ)
k ,wk�}

−
K�

k=1

(wk)HΨ(κ)wk (17)

with 0 � Ψ(κ) �
�K

j=1 γ
(κ)
j c

(κ)
j HH

j (γ(κ))Hj(γ(κ)). By using
the Lagrangian multiplier method, we obtain the following
closed-form solution of (16)1

w
(κ+1)
k =

⎧⎪⎨
⎪⎩

(Ψ(κ))−1γ
(κ)
k b

(κ)
k if

K�
k=1

||(Ψ(κ))−1γ
(κ)
k b

(κ)
k ||2 ≤ P

�
Ψ(κ) + μIM

�−1γ
(κ)
k b

(κ)
k otherwise,

(18)

where μ > 0 is chosen by bisection such that�K
k=1 ||

�
Ψ(κ) + μIM

�−1
γ

(κ)
k b

(κ)
k ||2 = P .

1(Ψ(κ))−1 is understood as the pseudo-inversion when Ψ(κ) � 0.

B. Programmable Reflecting Elements’ Descent Iteration

We seek the next iterative point γ(κ+1) such that

f (κ)(w(κ+1), γ(κ+1)) > f (κ)(w(κ+1), γ(κ)). (19)

Using the inequality (14) for V = Hk(γγγ)w(κ+1)
k , Y =�

j∈K\{k} |Hk(γγγ)w(κ+1)
j |2 + σ, and V̄ = Hk(γ(κ))w(κ+1)

k ,

Ȳ = y
(κ+1)
k �

�
j∈K\{k} |Hk(γ(κ))w(κ+1)

j |2 + σ, yields

rk(w(κ+1), γγγ) ≥ r̃
(κ)
k (γγγ)

� 2�{(w(κ+1)
k )HHH

k (γ(κ))Hk(γγγ)w(κ+1)
k }

y
(κ+1)
k

+ ã
(κ)
k − ˜̃c(κ)

k

K�
j=1

|Hk(γγγ)w(κ+1)
j |2, (20)

with ã
(κ)
k � rk(w(κ+1), γ(κ)) − |Hk(γ(κ))w(κ+1)

k |2/y
(κ+1)
k −

σ˜̃c(κ)
k and 0 < ˜̃c(κ)

k � |Hk(γ(κ))w(κ+1)
k |2/

�
y
(κ+1)
k

�
y
(κ+1)
k

+|Hk(γ(κ))w(κ+1)
k |2

��
.

Let us define Υn as the matrix of size N ×N having only
zero entries, except for its (n, n)-entry, which is 1, to express

diag(ejθθθ) =
N�

n=1

ejθθθnΥn.

We then use (4) to arrive at:

(w(κ+1)
k )HHH

k (γ(κ))Hk(γγγ)w(κ+1)
k

= (w(κ+1)
k )HHH

k (γ(κ))
�
h̃BR-kdiag(ejθθθ)HB-R + h̃B-k

�
w

(κ+1)
k

= (w(κ+1)
k )HHH

k (γ(κ))h̃B-kw
(κ+1)
k

+(w(κ+1)
k )HHH

k (γ(κ))h̃BR-kdiag(ejθθθ)HB-Rw
(κ+1)
k

= (w(κ+1)
k )HHH

k (γ(κ))h̃B-kw
(κ+1)
k

+
N�

n=1

(w(κ+1)
k )HHH

k (γ(κ))h̃BR-kΥnHB-Rw
(κ+1)
k ejθθθn

= α
(κ)
k +

N�
n=1

b̃
(κ)
k (n)ejθn , (21)

with α
(κ)
k � (w(κ+1)

k )HHH
k (γ(κ))h̃B-kw

(κ+1)
k , and2 b̃

(κ)
k (n) =

(w(κ+1)
k )HHH

k (γ(κ))h̃BR-kΥnHB-Rw
(κ+1)
k , n = 1, . . .N .

To expound further, we have:

|Hk(γγγ)w(κ+1)
j |2 =

�h̃BR-kdiag(ejθθθ)HB-R + h̃B-k

�
w

(κ+1)
j

2
=
h̃BR-kdiag(ejθθθ)HB-Rw

(κ+1)
j

2
+2�{(w(κ+1)

j )H
�
h̃B-k

�H

h̃BR-k

diag(ejθθθ)HB-Rw
(κ+1)
j }+ |h̃B-kw

(κ+1)
j |2

=
h̃BR-kdiag(ejθθθ)HB-Rw

(κ+1)
j

2
+2�{

N�
n=1

(w(κ+1)
j )H

�
h̃B-k

�H

h̃BR-kΥn

HB-Rw
(κ+1)
j ejθθθn}+ |h̃B-kw

(κ+1)
j |2. (22)

2In what follows b(i) is the i-th entry of b and [A](i, i) is the i-th diagonal
entry of A, and [A]∗(i, i) is the complex conjugate of [A](i, i).
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Furthermore,

h̃BR-kdiag(ejθθθ)HB-Rw
(κ+1)
j

= h̃BR-k

�
N�

n=1

ejθθθnΥn

�
HB-Rw

(κ+1)
j

=
N�

n=1

α
(κ+1)
k,j (n)ejθn , (23)

for α
(κ+1)
k,j (n) = h̃BR-kΥnHB-Rw

(κ+1)
j , n = 1, . . . , N .

Based on (20), (21), (22), and (23), we obtain

r̃
(κ)
k (γγγ) = ã

(κ+1)
k + 2�{

N�
n=1

b̃
(κ)
k (n)ejθn}

−˜̃c(κ)
k

K�
j=1


N�

n=1

α
(κ+1)
k,j (n)ejθθθn


2

= ã
(κ+1)
k + 2�{

N�
n=1

b̃
(κ)
k (n)ejθn}

−˜̃c(κ)
k

K�
j=1

(ejθθθ)HΦ(κ+1)
k,j ejθθθ, (24)

where ã
(κ+1)
k � ã

(κ)
k + 2�{α(κ)

k }/y
(κ+1)
k −

˜̃c(κ)
k

�N
j=1 |h̃B-kw

(κ+1)
j |2, b̃

(κ+1)
k (n) � b̃

(κ)
k (n)/y

(κ+1)
k −

˜̃c(κ)
k

�K
j=1(w

(κ+1)
j )H

�
h̃B-k

�H

h̃BR-kΥnHB-Rw
(κ+1)
j , and

Φ(κ+1)
k,j (n, m) = (α(κ+1)

k,j (n))∗α(κ+1)
k,j (m), n = 1, . . . , N ; m =

1, . . . , N .
Note that Φ(κ+1)

k,j � 0. Therefore,

f (κ)
c (γγγ) �

K�
k=1

γ
(κ)
k r̃

(κ)
k (γγγ)

= ã(κ+1) + 2�{
N�

n=1

b̃(κ+1)(n)ejθn}

−(ejθθθ)HΦ(κ+1)ejθθθ, (25)

for ã(κ+1) �
K�

k=1

γ
(κ)
k ã

(κ+1)
k , b̃(κ+1)(n) �

K�
k=1

γ
(κ)
k b̃

(κ+1)
k (n), n = 1, . . . , N , and 0 � Φ(κ+1) ��K

k=1

�N
j=1 γ

(κ)
k

˜̃c(κ)
k Φ(κ+1)

k,j .
We use the following problem at the κ-th iteration to

generate γ(κ+1):

max
θθθ

f (κ)
c (γγγ). (26)

Following [36], we have (27), as shown at the bottom of
the page.

We thus solve the following problem at the κ-th iteration to
generate γ(κ+1):

max
θθθ

f̃ (κ)
c (γγγ), (28)

where the function f̃
(κ)
c (γγγ) is an affine function of ejθθθ. By

noting that �{cejθn} = |c| cos(∠c + γn) and thus it is
maximized at γn = −∠c, we obtain the closed-form solution
of (28) as3

γ(κ+1)
n = −∠(b̃(κ+1)(n)−

N�
m=1

e−jθ(κ)
m Φ(κ+1)(m, n)

+ λmax(Φ(κ+1))e−jθ(κ)
n ), n = 1, . . . , N. (29)

It follows from (27) that f (κ)(w(κ+1), γ(κ+1)) ≥
f

(κ)
c (γ(κ+1)) ≥ f̃

(κ)
c (γ(κ+1)) > f̃

(κ)
c (γ(κ)) = f

(κ)
c (γ(κ)) =

f (κ)(w(κ+1), γ(κ)), confirming (19), so γ(κ+1) is a better
feasible point than γ(κ).

C. Proper Gaussian Signaling Geometric Mean Rate
Optimization

Algorithm 1 provides the pseudo-code for the proposed
computational procedure of steepest descent for computing (9)
as the iterations (18) and (29) seek a descent direction by
seeking a better feasible point for the nonconvex problem (10)
instead of seeking its optimal solution for reducing the com-
putational load with guaranteed convergence, as it is often

3[(Φ(κ+1) −µIN )ejθ(κ)
](n) is the n-th entry of (Φ(κ+1) −µIN )ejθ(κ)

.

f (κ)
c (γγγ) = ã(κ+1) + 2�{

N�
n=1

b̃(κ+1)(n)ejθn} − (ejθθθ)H(Φ(κ+1) − λmax(Φ(κ+1))IN )ejθθθ − λmax(Φ(κ+1))(ejθθθ)HINejθθθ

= ã(κ+1) + 2�{
N�

n=1

b̃(κ+1)(n)ejθn} − (ejθθθ)H(Φ(κ+1) − λmax(Φ(κ+1))IN )ejθθθ − λmax(Φ(κ+1))N

≥ f̃ (κ)
c (γγγ)

� ã(κ+1) + 2�{
N�

n=1

b̃(κ+1)(n)ejθn} − [2�{(ejθ(κ)
)H(Φ(κ+1) − λmax(Φ(κ+1))IN )ejθθθ}

−(ejθ(κ)
)H(Φ(κ+1) − λmax(Φ(κ+1))IN )ejθ(κ)

]− λmax(Φ(κ+1))N

= ã(κ+1) + 2�{
N�

n=1

(b̃(κ+1)(n)−
N�

m=1

e−jθ(κ)
m Φ(κ+1)(m, n) + λmax(Φ(κ+1))e−jθ(κ)

n )ejθn}

−(ejθ(κ)
)HΦ(κ+1)ejθ(κ) − 2λmax(Φ(κ+1))N. (27)
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Algorithm 1 PGS GM Descent Algorithm

1: Initialization: Set κ = 0. Randomly generate (w(0), γ(0))
satisfying the constraint (7b) and define γ(0) by (12).

2: Repeat until convergence of the objective in (8): Gener-
ate w(κ+1) by (18) and γ(κ+1) by (29). Reset κ← κ + 1.

3: Output (w(κ), γ(κ)) and rates rk(w(κ), γ(κ)), k = 1, . . . , K

with their GM
�
K

k=1 rk(w(κ), γ(κ))
�1/K

.

done in the context of the Frank-and-Wolfe method [37].
Of course, one can still seek the optimal solution of (10) for
the steepest descent by iterating (18) and (29) many times,
because according to [27], this kind of alternating descent
iterations often converge to at least a locally optimal solution
of (10). The global optimality cannot be proved theoretically,
but we found that it is globally optimal in many cases.

To the best of our knowledge, there is no the conventional
descent algorithm, because the conception of descent algo-
rithms is a research branch in computational optimization and
what make descent algorithms different is the specific way
they choose their a descent directions. Hence, our descent
directions are completely new and rather different from the
popular steepest descent techniques. Furthermore, all other
exiting algorithms, which solve convex problems and itera-
tively at a high complexity are very sensitive to the problem
sizes. However, our algorithms iterate using closed- form
expressions, hence their complexity is low.

III. IMPROPER GAUSSIAN SIGNALING

In (1), the proper Gaussian sources sk are linearly
beamformed by the beamformers wk, hence the trans-
mit signal x is also proper Gaussian, i.e. E(xxT ) =�

k∈K wk(wk)T E[(sk)2] = 0. In this section, the proper
Gaussian sources sk are widely linearly beamformed by the
pairs of beamformers w1,k ∈ C

M and w2,k ∈ C
M as in [38]�

w1,k w2,k

� �sk

s∗k

�
, (30)

resulting in the transmit signal

x =
K�

k=1

(w1,ksk + w2,ks∗k), (31)

and for improper Gaussian, as

E(xxT ) =
K�

k=1

(w1,kwT
2,k + w2,kwT

1,k)E(|sk|2) 
= 0.

The equation (2) of the received signal at UE k becomes:

yk = Hk(γγγ)
K�

k=1

(w1,ksk + w2,ks∗k) + nk. (32)

We augment (32) as�
yk

y∗
k

�
=
�Hk(γγγ) 0

0 H∗
k(γγγ)

� K�
k=1

�
w1,k w2,k

w∗
2,k w∗

1,k

� �
sk

s∗k

�
+
�
nk

n∗
k

�

= Λk(γγγ)
K�

k=1

Wks̄k + n̄k, (33)

for the linear mappings Λk(γγγ) �
�Hk(γγγ) 0

0 H∗
k(γγγ)

�
∈ C2×(2M),

and Wk �
�
w1,k w2,k

w∗
2,k w∗

1,k

�
∈ C2M×2, and s̄k �

�
sk

s∗k

�
∈ C2,

n̄k �
�
nk

n∗
k

�
∈ C2.

For w � {wk �
�
w1,k

w2,k

�
∈ C2M : k ∈ K}, the rate at UE

k is calculated by (1/2)rk(w, γγγ) [39] with

rk(w, γγγ) = ln

I2 + [Λk(γγγ)Wk]2

⎛
⎝ �

j∈K\{k}
[Λk(γγγ)Wj ]2 + σI2

⎞
⎠

−1
 . (34)

For the particular class of w2,k ≡ 0, i.e. when x in (31) is
proper Gaussian, it may be shown that

rk(w, γγγ)

= 2 ln

⎛
⎝1 + |Hk(γγγ)w1,k|2/(

�
j∈K\{k}

|Hk(γγγ)w1,j |2 + σ)

⎞
⎠ ,

hence (1/2)rk(w, γγγ) is the known rate (6).
Like (8), the problem of maximizing the GM for users’ rates

corresponding IGS is thus formulated as

min
w,θθθ

f (r1(w, γγγ) , . . . , rK(w, γγγ))

� 1�
K
k=1 rk(w, γγγ)

�1/K
(35a)

s.t.
K�

k=1

(||w1,k||2 + ||w2,k||2) ≤ P. (35b)

Let (w(κ), γ(κ)) be a feasible point for (35) that is found
from the (κ − 1)-st round. Like (11), we use the follow-
ing steepest descent optimization for the convex function
f(r1, . . . , rK) = 1/(


K
k=1 rk)1/K to generate the next fea-

sible point (w(κ+1), γ(κ+1)):

max
w,θθθ

F (κ)(w, γγγ) �
K�

k=1

γ
(κ)
k rk(w, γγγ) s.t. (35b) (36)

where

γ
(κ)
k �

f
�
r1(w(κ), γ(κ)), . . . , rK(w(κ), γ(κ))

�
rk(w(κ), γ(κ))

, k = 1, . . . , K.

(37)

Another way of defining the UEs’ rates is through the
equivalent composite real system for (32):

ỹk �
��{yk}
	{yk}

�

=
��{Hk(γγγ)} − 	{Hk(γγγ)}
	{Hk(γγγ)}�{Hk(γγγ)}

�
K�

j=1

��{w1,j}+ �{w2,j} − 	{w1,j}+ 	{w2,j}
	{w1,j}+ 	{w2,j}�{w1,j} − �{w2,j}

�
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×
��{sj}
	{sj}

�
+
��{nk}
	{nk}

�

= H̄k(γγγ)
K�

j=1

Vj s̃j + ñk, (38)

where we have:

H̄k(γγγ) �
��{Hk(γγγ)} −	{Hk(γγγ)}
	{Hk(γγγ)} �{Hk(γγγ)}

�
, s̃j �

��{sj}
	{sj}

�
,(39)

Vj �
�
v11

j v12
j

v21
j v22

j

�
, ñk =

��{nk}
	{nk}

�
, (40)

under the following transformation:��{w1,j}+ �{w2,j} −	{w1,j}+ 	{w2,j}
	{w1,j}+ 	{w2,j} �{w1,j} − �{w2,j}

�
= Vj . (41)

This transform is indeed legitimate, since its inverse is given
by ��{w1,j} 	{w1,j}

�{w2,j} 	{w2,j}
�

=
1
2

�
v11

j + v22
j v21

j − v12
j

v11
j − v22

j v21
j + v12

j

�
. (42)

Furthermore, we have:

||wj ||2 =
1
2

2�
i=1

2�
�=1

||vi�
j ||2, (43)

hence the power constraint (35b) for w is transferred to the
following constraint

K�
j=1

||vj ||2 ≤ 2P (44)

for

vj � vec(Vj) =

⎡
⎢⎢⎣
v11

j

v21
j

v12
j

v22
j

⎤
⎥⎥⎦ . (45)

For v � {vj , j ∈ K}, the problem (36) is equivalent to the
problem

max
v,θθθ

F̃ (κ)(v, γγγ) �
K�

k=1

γ
(κ)
k r̃k(v, γγγ) s.t. (44) (46)

with

r̃k(v, γγγ) = ln

I2 + [H̄k(γγγ)Vk]2

⎛
⎝ �

j∈K\{k}
[H̄k(γγγ)Vj ]2 + σI2

⎞
⎠

−1
 . (47)

We propose the following alternating descent iterations
at the κ-th round to generate a better feasible point
(w(κ+1), γ(κ+1)).

A. Widely Linear Beamforming Descent Iteration

We seek w(κ+1) such that

F (κ)(w(κ+1), γ(κ)) > F (κ)(w(κ), γ(κ)). (48)

Upon using (41) to define

V
(κ)
j �

"
�{w(κ)

1,j }+ �{w(κ)
2,j } −	{w(κ)

1,j }+ 	{w(κ)
2,j }

	{w(κ)
1,j }+ 	{w(κ)

2,j } �{w(κ)
1,j } − �{w(κ)

2,j }

#
(49)

we have v
(κ)
j � vec(V (κ)

j ).
By using the inequality (14) for V = H̄k(γ(κ))Vk, Y =�
j∈K\{k}[H̄k(γ(κ))Vj ]2 + σI2, and V̄ = H̄k(γ(κ))V (κ)

k ,

Ȳ = Y
(κ)
k �

�
j∈K\{k}[H̄k(γ(κ))V (κ)

j ]2+σI2 � 0, we obtain
the following concave quadratic lower bounding function
approximation of r̃k(γ(κ),v):

r̃k(v, γ(κ)) ≥ r̃
(κ)
k (v)

� a
(κ)
k + 2�B(κ)

k Vk� − �C(κ)
k ,

�
j∈K

[H̄k(γ(κ))Vj ]2�, (50)

with a
(κ)
k � r̃k(v(κ), γ(κ)) − �[H̄k(γ(κ))V (κ)

k ]2(Y (κ)
k )−1� −

σ�C(κ)
k �, B

(κ)
k � (V (κ)

k )H(H̄k(γ(κ)))t(Y (κ)
k )−1 × H̄k(γ(κ)),

and 0 ≺ C
(κ)
k � (Y (κ)

k )−1 −
�
Y

(κ)
k + [H̄k(γ(κ))V (κ)

k ]2
�−1

.

Note that �B(κ)
k Vk� = �vec((B(κ)

k )T ),vk�, and

�C(κ)
k , [H̄k(γ(κ))Vj ]2�
= ||vec

�
(C(κ)

k )1/2H̄k(γ(κ))Vj

�
||2

= ||
�
I2 ⊗ ((C(κ)

k )1/2H̄k(γ(κ)))
�

vec(Vj)||2

= vecT (Vj)
�
I2 ⊗

�
H̄T

k (γ(κ))C(κ)
k H̄k(γ(κ))

��
vec(Vj)

= vT
j Q(κ)

k vj

for Q(κ)
k � I2 ⊗

�
H̄T

k (γ(κ))C(κ)
k H̄k(γ(κ))

�
.

Thus, we have

K�
k=1

γ
(κ)
k r̃

(κ)
k (w) =

K�
k=1

γ
(κ)
k a

(κ)
k

+2
K�

k=1

�γ(κ)
k vec((B(κ)

k )T ),vk�

+
K�

k=1

K�
j=1

vT
j (γ(κ)

k Q(κ)
k )vj

=
K�

k=1

γ
(κ)
k a

(κ)
k +2

K�
k=1

�γ(κ)
k vec((B(κ)

k )T ),vk�

+
K�

k=1

vT
k

⎛
⎝K�

j=1

γ
(κ)
j Q(κ)

j

⎞
⎠vk. (51)

We solve the following convex problem at the κ-th iteration
to generate v(κ+1):

max
w

K�
k=1

γ
(κ)
k r̃

(κ)
k (w) s.t. (44), (52)

which similarly to (16) gives

F̃ (κ)(v(κ+1), γ(κ)) > F̃ (κ)(v(κ), γ(κ)) (53)

as far as v(κ+1) 
= v(κ).
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Like (16), the problem (52) admits the following
closed-form solution

v
(κ+1)
k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

��K
j=1 γ

(κ)
j Q(κ)

j

�−1

γ
(κ)
k vec((B(κ)

k )T )

if
K�

k=1

||
⎛
⎝ K�

j=1

γ
(κ)
j Q(κ)

j

⎞
⎠

−1

γ
(κ)
k vec((B(κ)

k )T )||2 ≤ 2P��K
j=1 γ

(κ)
j Q(κ)

j + μIM

�−1

γ
(κ)
k vec((B(κ)

k )T )

otherwise,

(54)

where μ > 0 is found by bisection such that�K
k=1 ||

��K
j=1γ

(κ)
j Q(κ)

j +μIM

�−1

γ
(κ)
k vec((B(κ)

k )T )||2 = 2P .

By reconstructing v
i�,(κ+1)
j , i = 1, 2 and � = 1, 2,

from v
(κ+1)
j we use (42) to determine w

(κ+1)
1,j

and w
(κ+1)
2,j :"

�{w(κ+1)
1,j } 	{w(κ+1)

1,j }
�{w(κ+1)

1,j } 	{w(κ+1)
1,j }

#

=
1
2

"
v
11,(κ+1)
j + v

22,(κ+1)
j v

21,(κ+1)
j − v

12,(κ+1)
j

v
11,(κ+1)
j − v

22,(κ+1)
j v

21,(κ+1)
j + v

12,(κ+1)
j

#
, (55)

which results in (48).

B. Programmable Reflecting Elements’ Descent Iteration

We seek γ(κ+1) such that

F (κ)(w(κ+1), γ(κ+1)) > F (κ)(w(κ+1), γ(κ)). (56)

By using the inequality (14) for V = Λk(γγγ)W (κ+1)
k , Y =�

j∈K\{k}[Λk(γγγ)W (κ+1)
j ]2 + σI2, and V̄ = Λk(γ(κ))W (κ+1)

k ,

Ȳ = Y
(κ+1)
k �

�
j∈K\{k}[Λk(γ(κ))W (κ+1)

j ]2 + σI2 � 0,
we obtain the following concave quadratic lower bounding
function approximation of rk(w(κ+1), γγγ):

rk(w(κ+1), γγγ) ≥ r̃
(κ)
k (γγγ)

� ã
(κ)
1k + 2�{�B̃(κ)

k Λk(γγγ)W (κ+1)
k �}

−�C̃(κ)
k ,

�
j∈K

[Λk(γγγ)W (κ+1)
j ]2�

= ã
(κ)
1k + 2�{�B̃(κ)

k Λk(γγγ)W (κ+1)
k �}

−�C̃(κ)
k , Λk(γγγ)W(κ+1)

k (Λk(γγγ))H�, (57)

with ã
(κ)
1k � rk(w(κ+1), γ(κ)) −

�[Λk(γ(κ))W (κ+1)
k ]2(Y (κ+1)

k )−1� − σ�C̃(κ)
k �, B̃

(κ)
k �

(W (κ+1)
k )H(Λk(γ(κ)))H(Y (κ+1)

k )−1 ∈ C2×2, 0 ≺ C̃
(κ)
k �

(Y (κ+1)
k )−1 −

�
Y

(κ+1)
k + [Λk(γ(κ))W (κ+1)

k ]2
�−1

∈ C2×2,

and 0 ≺ W(κ+1)
k �

�
j∈K[W (κ+1)

j ]2.
For

HB-k �
�

h̃B-k 01×M

01×M h̃∗
B-k

�
,

we can write

Λk(γγγ) = HB-k

+
�
h̃BR-kdiag(ejθθθ)HB-R 01×M

01×M h̃∗
R-kdiag(e−jθθθ)H∗

B-R

�

= HB-k +
N�

n=1

��
h̃BR-kΨnHB-R 01×M

01×M 01×M

�
ejθn

+
�
01×M 01×M

01×M h̃∗
R-kΨnH∗

B-R

�
e−jθn

�

= HB-k +
N�

n=1

�
Γnejθn + Ξne−jθn

�
, (58)

with

Γn �
�
h̃BR-kΨnHB-R 01×M

01×M 01×M

�
, n = 1, . . . , N,

Ξn �
�
01×M 01×M

01×M h̃∗
R-kΨnH∗

B-R

�
, n = 1, . . . , N. (59)

By using the identity

�{ab∗} = �{a∗b} ∀ a ∈ C, b ∈ C, (60)

we arrive at:
�{�B̃(κ)

k Λk(γγγ)W (κ+1)
k �}

= ã
(κ)
2k + �{

N�
n=1

(b̂(κ)
1k (n)ejθn + b̂

(κ)
2k (n)e−jθn)}

= ã
(κ)
2k + �{

N�
n=1

b̃
(κ)
2k (n)ejθn}, (61)

for ã
(κ)
2k � �{�B̃(κ)

k HB-kW
(κ+1)
k �}, b̂

(κ)
1k (n) �

�B̃(κ)
k ΓnW

(κ+1)
k �, b̂

(κ)
2k (n) � �B̃(κ)

k ΞnW
(κ+1)
k �, and

b̃
(κ)
2k (n) = b̂

(κ)
1k (n) + (b̂(κ)

2k )∗(n), n = 1, . . . , N .
Furthermore, we have (62), shown at the bottom of the

next page, where ã
(κ)
3k � �C̃(κ)

k ,HB-kW(κ+1)
k HH

B-k�, b̃
(κ)
3k (n) �

�C̃(κ)
k ,HB-kW(κ+1)

k ΓH
n �∗ + �C̃(κ)

k ,HB-kW(κ+1)
k ΞH

n �,
Q(κ)

11,k(n, m) = �C̃(κ)
k , ΞnW(κ+1)

k ΞH
m�, Q(κ)

22,k(n, m) = �C̃(κ)
k ,

ΓmW(κ+1)
k ΓH

n �, Q(κ)
12,k(n, m) = �C̃(κ)

k , ΓnW(κ+1)
k ΞH

m�,
n = 1, . . . , N ; m = 1, . . . , N .

Let us define

Q(κ)
22,k +Q(κ)

11,k = QR,(κ)
2,k + jQI,(κ)

2,k ,

QR,(κ)
2,k ∈ R

N×N ,QI,(κ)
2,k ∈ R

N×N ,

where the matrix QR,(κ)
2,k is symmetric, while the matrix

QI,(κ)
2,k is skew-symmetric because the matrix Q(κ)

22,k + Q(κ)
11,k

is Hermitian symmetric, and

Q(κ)
12,k = QR,(κ)

1,k + jQI,(κ)
1,k ,QR,(κ)

1,k ∈R
N×N ,QI,(κ)

1,k ∈ R
N×N .

Upon recalling that ejθθθ = cosγγγ + j sinγγγ, we have (63)
and (64), shown at the bottom of the next page, whose proof
is given in the Appendix.

Therefore, we have (65), shown at the bottom of the next
page, for Q(κ)

k,R � QR,(κ)
2,k + QR,(κ)

1,k + (QR,(κ)
1,k )T , Q(κ)

k,C �
−QI,(κ)

2,k − QI,(κ)
1,k − (QI,(κ)

1,k )T , Q(κ)
k,I � QR,(κ)

2,k − QR,(κ)
1,k −

(QR,(κ)
1,k )T .
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Combining (57), (61), (62), and (65) yields

γ
(κ)
k r̃(κ)(w(κ+1), γγγ) = ã

(κ)
k + 2�{

N�
n=1

b̃
(κ)
k (n)ejθn}

−
�
cosγγγ
sinγγγ

�T

Q(κ)
k

�
cosγγγ
sinγγγ

�
(66)

with ã
(κ)
k = γ

(κ)
k

�
ã
(κ)
1k + 2ã

(κ)
2k − ã

(κ)
3k

�
, b̃

(κ)
k (n) =

γ
(κ)
k

�
b̃
(κ)
2k (n)− b̃

(κ)
3k (n)

�
, n = 1, . . . , N , Q(κ)

k =

γ
(κ)
k

"
Q(κ)

k,R Q(κ)
k,C

(Q(κ)
k,C)T Q(κ)

k,I

#
.

Therefore, we have:

F (κ)(w(κ+1), γγγ, γ(κ)) ≥ F (κ)
c (γγγ) � ã(κ)

+2�{
N�

n=1

b̃(κ)(n)ejθn} −
�
cosγγγ
sinγγγ

�T

Q(κ)

�
cosγγγ
sinγγγ

�
(67)

for ã(κ) =
�K

k=1 ã
(κ)
k , b̃(κ)(n) =

�K
k=1 b̃

(κ)
k (n), n =

1, . . . , N , and Q(κ) =
�K

k=1Q(κ)
k =

"
Q(κ)

R Q(κ)
C

(Q(κ)
C )T Q(κ)

I

#
,

with Q(κ)
R =

�K
k=1Q(κ)

k,R,Q(κ)
C =

�K
k=1Q(κ)

k,C ,Q(κ)
I =�K

k=1Q(κ)
k,I .

Furthermore, we have (68), shown at the bottom of the next
page.

Now, using the formula

αR,(κ)(n) cosγγγn + αI,(κ)(n) sinγγγn = �{β(n)ejθθθn}

for β(n) =
�

(αR,(κ)(n))2 + (αI,(κ)(n))2e−jγ(n),
where γ(n) is such that [cos γ(n), sinγ(n)] =
[αR,(κ)(n), αI,(κ)(n)]/

�
[αR,(κ)(n)]2 + [αI,(κ)(n)]2, we

can rewrite (68) by

F̃ (κ)
c (γγγ) = ˜̃a(κ) + 2�{

N�
n=1

b̃(κ)(n)ejθn�}

�C̃(κ)
k , Λk(γγγ)W(κ+1)

k ΛH
k (γγγ)� = �C̃(κ)

k ,

"
N�

n=1

�
Γnejθn + Ξne−jejθn

�
+HB-k

#
W(κ+1)

k

"
N�

n=1

�
ΓH

n e−jθn + ΞH
n ejθn

�
+HH

B-k

#
�

= �C̃(κ)
k ,HB-kW(κ+1)

k HH
B-k�+ 2�{�C̃(κ)

k ,HB-kW(κ+1)
k

N�
n=1

�
ΓH

n e−jθn + ΞH
n ejθn

�}
+�C̃(κ)

k ,

"
N�

n=1

�
Γnejθn + Ξne−jθn

�#W(κ+1)
k

"
N�

n=1

�
ΓH

n e−jθn + ΞH
n ejθn

�#�
= �C̃(κ)

k ,HB-kW(κ+1)
k HH

B-k�

+2�{
N�

n=1

�
�C̃(κ)

k ,HB-kW(κ+1)
k ΓH

n �∗ + �C̃(κ)
k ,HB-kW(κ+1)

k ΞH
n �
�

ejθn}

+
N�

n=1

N�
m=1

�C̃(κ)
k , ΓnW(κ+1)

k ΓH
m�ejθne−jθm +

N�
n=1

N�
m=1

�C̃(κ)
k , ΓnW(κ+1)

k ΞH
m�ejθne−jθm

+
N�

n=1

N�
m=1

�C̃(κ)
k , ΞnW(κ+1)

k ΓH
m�e−jθne−jθm +

N�
n=1

N�
m=1

�C̃(κ)
k , ΞnW(κ+1)

k ΞH
m�e−jθne−jθm

= ã
(κ)
3k + 2�{

N�
n=1

b̃
(κ)
3k (n)ejθn�}+ (ejθθθ)HQ(κ)

22,kejθθθ + (ejθθθ)TQ(κ)
12,kejθθθ + (ejθθθ)H(Q(κ)

12,k)∗e−jθθθ

+(ejθθθ)HQ(κ)
11,kejθθθ, (62)

(ejθθθ)H(Q(κ)
22,k +Q(κ)

11,k)ejθθθ =
�
cosγγγ
sinγγγ

�T
"
QR,(κ)

2,k −QI,(κ)
2,k

QI,(κ)
2,k QR,(κ)

2,k

#�
cosγγγ
sinγγγ

�
, (63)

(ejθθθ)TQ(κ)
12,kejθθθ + (ejθθθ)H(Q(κ)

12,k)∗e−jθθθ =
�
cosγγγ
sinγγγ

�T

"
QR,(κ)

1,k + (QR,(κ)
1,k )T −QI,(κ)

1,k − (QI,(κ)
1,k )T

−QI,(κ)
1,k − (QI,(κ)

1,k )T −QR,(κ)
1,k − (QR,(κ)

1,k )T

#�
cosγγγ
sinγγγ

�
,

(64)

(ejθθθ)H(Q(κ)
22,k +Q(κ)

11,k)ejθθθ + (ejθθθ)TQ(κ)
12,kejθθθ + (ejθθθ)H(Q(κ)

12,k)∗e−jθθθ =
�
cosγγγ
sinγγγ

�T
"
Q(κ)

k,R Q(κ)
k,C

(Q(κ)
k,C)T Q(κ)

k,I

# �
cosγγγ
sinγγγ

�
(65)
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−2
N�

n=1

�{β(n)ejθθθn}

= ˜̃a(κ) + 2
N�

n=1

�{
�
b̃(κ)(n)− β(n)

�
ejθθθn}. (69)

Accordingly, we solve the following convex problem at the
κ-th iteration to generate γ(κ+1):

max
θθθ

F̃ (κ)
c (γγγ). (70)

Like (29), its optimal solution is given in closed-form by

γ(κ+1)
n = −∠

�
b̃(κ)(n)− β(n)

�
, n = 1, . . . , N. (71)

It follows from (68) that F (κ)(w(κ+1), γ(κ+1)) ≥
F

(κ)
c (γ(κ+1)) ≥ F̃

(κ)
c (γ(κ+1)) > F̃

(κ)
c (γ(κ)) = F

(κ)
c (γ(κ)) =

F (κ)(w(κ+1), γ(κ)), confirming (56), so γ(κ+1) is a better
feasible point than γ(κ).

C. Improper Gaussian Signaling Geometric Mean Rate
Optimization

All other exiting algorithms, which solve convex problems
and iteratively at a high complexity are very sensitive to
the problem sizes. However, our algorithms iterate using
closed-form expressions, hence their complexity is low. Algo-
rithm 2 provides the pseudo-code for the proposed computa-
tional procedure for the solution of (36).

IV. NUMERICAL EXAMPLES

This section evaluates the efficiency of the proposed algo-
rithms by numerical examples. Table II provides the numer-
ical values of the main parameters taken from [21], [34]
for numerical characterization. Furthermore, the elements
of the BS-to-RIS LoS channel matrix are generated by

Algorithm 2 IGS GM Descent Algorithm

1: Initialization: Set κ = 0. Randomly generate (γ(0), w(0))
satisfying the constraint (35b) and then define γ(0) by (12).

2: Repeat until convergence of the objective in (36):
Generate w(κ+1) by (54)- (55) and γ(κ+1) by (71). Reset
κ← κ + 1.

3: Output (w(κ), γ(κ)) and the rates rk(w(κ), γ(κ)), k =
1, . . . , K with their GM (


K
k=1 rk(w(κ), γ(κ)))1/K .

[HB-R]n,m = ejπ((n−1) sin θ̄n sin φ̄n+(m−1) sin ejθn sin φn), where
ejθn and φn are uniformly distributed as ejθn ∼ U(0, π)
and φn ∼ U(0, 2π), respectively, and γ̄n = π − γn and
φ̄n = π +φn [21]. The normalized small-scale fading channel
hB-k spanning from the BS to UE k follows the classic
Rayleigh distribution, while the small-scale fading channel
gain hR-k of the RIS to UE k obeys Rician distribution with
a K-factor of 3. The spatial correlation matrix is given by
[RR-k]n,n′ = ejπ(n−n′) sin φ̃k sin θ̃k , where φ̃k and γ̃ are the
azimuth and elevation angle for UE k, respectively. Unless
otherwise stated, P = 20dBm and N = 100 are used. The
results are multiplied by log2 e to convert the unit nats/sec into
the unit bps/Hz. The convergence tolerance of the proposed
algorithms is set to 10−3. For computational stability, γ

(κ)
k

in (12) is scaled as

γ
(κ)
k → γ

(κ)
k

minj=1,...,K γ
(κ)
j

, k = 1, . . . , K. (72)

For the setup of Fig. 1 the BS and the RIS are deployed
at the coordinates of (40, 0, 25) and (0, 60, 40) in the
three-dimensional (3D) space, while K = 10 UEs are ran-
domly placed in a (120m × 120 m) area right of the BS
and RIS. In what follows, we refer to SR-PGS and SR-IGS

F (κ)
c (γγγ) = ã(κ) + 2�{

N�
n=1

b̃(κ)(n)ejθn�} −
�
cosγγγ
sinγγγ

�T �
Q(κ) − λmax(Q(κ))I2N

��cosγγγ
sinγγγ

�

−λmax(Q(κ))N

≥ ã(κ) + 2�{
N�

n=1

b̃(κ)(n)ejθn�} − 2
�
cos γ(κ)

sin γ(κ)

�T �
Q(κ) − λmax(Q(κ))I2N

��cosγγγ
sinγγγ

�

+
�
cos γ(κ)

sin γ(κ)

�T �
Q(κ) − λmax(Q(κ))I2N

��cos γ(κ)

sin γ(κ)

�
− λmax(Q(κ))N

= ˜̃a(κ) + 2�{
N�

n=1

b̃(κ)(n)ejθn�} − 2
N�

n=1

�
αR,(κ)(n) cosγγγn + αI,(κ)(n) sinγγγn

�
� F̃ (κ)

c (γγγ), (68)

with

˜̃a(κ) = ã(κ) −
�
cos γ(κ)

sin γ(κ)

�T

Q(κ)

�
cos γ(κ)

sin γ(κ)

�
− 2λmax(Q(κ))N,

αR,(κ) = (γR,(κ))T
�
Q(κ)

R − λmax(Q(κ))IN

�
+ (γI,(κ))T (Q(κ)

C )T ∈ R
1×N ,

αI,(κ) = (γR,(κ))T (Q(κ)
C ) + (γI,(κ))T

�
Q(κ)

I − λmax(Q(κ))IN

�
∈ R

1×N .
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TABLE II

MAJOR PARAMETERS SETUP

Fig. 2. SR versus the number of antennas M .

as the SR under PGS and IGS, which are achieved by
iterating (18) and (29), and (54) and (55) with γ

(κ)
k ≡ 1. Their

stand-alone counter-parts dispensing with the RIS are referred
by SR-PGS w/t RIS and SR-IGS w/t RIS, which are achieved
by iterating (18) and (54) with γ

(κ)
k ≡ 1 in the corresponding

stand-alone models. Another pair of counter-parts labelled by
SR-PGS-RIS w. random θ and SR-IGS-RIS w. random
θ represent the SR with the PREs randomly selected, which
correspond to iterating (18) and (54) under a fixed γ(κ) = γ̄

with γ
(κ)
k ≡ 1. Finally, GM-PGS-RIS and GM-IGS-RIS

represent to the achievable GMs under PGS and IGS, which
are computed by Algorithm 1 and 2.

Fig. 2 plots the SR performance versus the number M
of antennas at the BS. The SR-PGS and SR-IGS are only
slightly better than their counter-parts SR-IGS w/t RIS and
SR-PGS, because the direct channel h̃B-k spanning from
the BS to UE k is much stronger than the reflected chan-
nel h̃R-kR

1/2
R-k (ejθθθ)H̃B-R. The performance margin becomes

wider with M increased. Furthermore, SR-PGS approaches
SR-IGS for M ≥ K in Fig. 2.

Next, Fig. 3 portrays a rate distribution pattern for
(M, N, P ) = (9, 100, P = 20dBm). Observe in the fig-
ure that only GM-IGS and GM-PGS are capable of avoid-
ing the assignment of zero rate, hence demonstrating its
superiority.

To substantiate this fact, Table III provides the average
number of zero-rate users (ZR-UEs) for the optimization
schemes considered under different number of antennas M .
For SR-IGS and SR-PGS, the number of ZR-UEs increases
when M is reduced. SR-PGS results in more ZR-UEs
than SR-IGS, while there are no ZR-UEs in GM-IGS and
GM-PGS, confirming that both of them are beneficial in
providing the adequate rates to all users.

Fig. 3. Rate distribution for M = 9.

TABLE III

THE AVERAGE NUMBER OF ZR-UEs VERSUS M

Furthermore, we also examine the resultant ratio of the
minimum rate and maximum rate (min-rate/max-rate) and the
resultant rate-variance of these schemes versus the number of
antennas, M . Fig. 4 shows that both GM-PGS and GM-IGS
produce min-rate/max-rates that are substantially higher than
that of SR-PGS and SR-IGS. SR-IGS produces higher min-
rate/max-rates than SR-PGS does. Fig. 4 also shows the
min-rate/max-rate of SR-PGS remains zero for M < K
since there are always some ZR-UEs. Furthermore, upon
increasing the number of AP antennas, both the min-rate and
the max-rate both are improved due to the increased benefit
of spatial diversity, but the value of min-rate /max-rate is not
necessary a monotonic function of the number of AP antennas.
In Fig. 5, the rate variance of SR-PGS is seen to be twice of
that by its IGS counter SR-IGS at M = 7. The discrepancy
becomes narrower upon increasing M and it is closer to zero
for M = 11. The rate-variances are beneficially reduced by
the GM-maximization based schemes GM-IGS and GM-PGS.
Both Fig. 4 and Fig. 5 indicate the advantages of IGS over
PGS both in terms of SR and GM maximization.

Fig. 6 shows the GM rates. As expected, GM-IGS and
GM-PGS produce much better GM rate than that of SR-IGS
and SR-PGS. Note that GM-PGS has better GM rates than
GM-IGS for M > K due to the well-known capability of
PGS to mitigate the multi-user interference, when the number
of transmit antennas is higher than the number of users.
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Fig. 4. Min-rate/max-rate versus the number of antennas M .

Fig. 5. Rate-variance versus the number of antennas M .

Fig. 6. GM versus the number of antennas M .

We also consider another scenario as illustrated by Fig. 7,
where the direct signal path between the BS and users is
blocked, i.e. we have hB-k ≡ 0 in (2) and (4). The distances
between the BS and users becomes slightly smaller upon
deploying the BS at the coordinates (20, 0, 25) and the RIS
at the coordinates (0, 30, 40). In this scenario, K = 10 UEs
are randomly placed in a (60m× 60 m) area right of the BS
and RIS.

Fig. 8 portrays the SR versus M , where SR-IGS out-
performs SR-PGS. Furthermore, both the former and the
latter substantially outperform their counter-parts SR-IGS w.

Fig. 7. System model.

Fig. 8. SR versus the number of antennas M .

Fig. 9. User rate distribution for M = 9.

random γ and SR-PGS w. random γ operating without
an RIS.

Similarly to Fig. 3, Fig. 9 shows a typical user rate dis-
tribution, where both the GM maximization based GM-IGS
and GM-PGS schemes assign more transmit power to the
users having worse channel conditions for achieving fair rate
distributions.

Table IV shows the average number of ZR-UEs versus M ,
demonstrating that the number of ZR-UEs for both SR-IGS
and SR-PGS is higher than 3, with that of SR-PGS having
higher than that of SR-IGS. As expected, there are no ZR-UEs
for GM-IGS and GM-PGS.

Fig. 10 and Fig. 11 plot the min-rate/max-rate and
rate-variance versus M , respectively. The min-rate/max-rate of
SR-IGS and SR-PGS remains zero for the practical range of
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TABLE IV

THE AVERAGE NUMBER OF ZR-UEs VERSUS THE
NUMBER OF ANTENNAS M

Fig. 10. Min-rate/max-rate versus the number of antennas M .

Fig. 11. Rate-variance versus the number of antennas M .

Fig. 12. GM rate versus the number of antennas M .

M ∈ {7, . . . , 11}. Furthermore, GM-IGS has a better perfor-
mance than GM-PGS. Fig. 11 shows that the rate variance is
substantially improved by the GM-based maximization, where
GM-IGS results in much better rate variance than GM-PGS.

The advantage of GM rate maximization based IGS becomes
quite convincing.

Finally, Fig. 12 plots the GM rate versus M , which remains
zero for both SR-IGS and SR-PGS for M ∈ {7, . . . , 11},
because there are ZR-UEs. The performance of GM-PGS gets
closer to that of GM-IGS for M ≥ K . The advantage of rates
GM maximization based IGS is well justified in above results.

V. CONCLUSION

In this paper, we have considered the maximization
of the geometric mean (GM) of users’ rates for the
sake of maintaining a uniform quality-of-service for the
downlink users of an RIS-aid communication network.
The computationally intractable unit modulus constraint
imposed on the programmable reflecting coefficients has been
eliminated by directly optimizing their argument. The problem
of maximizing the users’ GM rate has been solved by the pro-
posed alternating descent iterations leading to a closed-form
solution for the associated convex problems and thus it is
computationally efficient. The numerical examples provided
have shown a substantially improved rate-fairness amongst
the users. Extension of the GM maximization-based approach
to multi-carrier communication is under our current study.
Its extension to quantized RIS-aided communication is also
interesting and deserves a separate study in our future research.

APPENDIX

PROOF OF (63) AND (64)

Note that

Q(κ)
22,k +Q(κ)

11,k = QR,(κ)
2,k + jQI,(κ)

2,k

and QR,(κ)
2,k is symmetric, while QI,(κ)

2,k is anti-symmetric

(QI,(κ)
2,k = −(QI,(κ)

2,k )T , hence we have xTQI,(κ)
2,k x = 0 ∀ x ∈

RN ).
Then the

LHS of (63)

= (cosγγγ − j sinγγγ)T
�
QR,(κ)

2,k + jQI,(κ)
2,k

�
(cosγγγ + j sinγγγ)

=
�
(cosγγγ)TQR,(κ)

2,k − j(sinγγγ)TQR,(κ)
2,k + j(cosγγγ)TQI,(κ)

2,k

−(sinγγγ)TQI,(κ)
2,k

�
(cosγγγ + j sinγγγ)

= (cosγγγ)TQR,(κ)
2,k cosγγγ − j(sinγγγ)TQR,(κ)

2,k cosγγγ

+j(cosγγγ)TQI,(κ)
2,k cosγγγ − (sinγγγ)TQI,(κ)

2,k cosγγγ

+j(cosγγγ)TQR,(κ)
2,k sinγγγ + (sinγγγ)TQR,(κ)

2,k sinγγγ

−(cosγγγ)TQI,(κ)
2,k sinγγγ − j(sinγγγ)TQI,(κ)

2,k sinγγγ

= (cosγγγ)TQR,(κ)
2,k cosγγγ − (sinγγγ)TQI,(κ)

2,k cosγγγ

+(sinγγγ)TQR,(κ)
2,k sinγγγ − (cosγγγ)TQI,(κ)

2,k sinγγγ

= RHS of (63),

proving (63).
Furthermore,

LHS of (64)

= 2�{(ejθθθ)TQ(κ)
12,kejθθθ}
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= 2�
$
(cosγγγ + j sinγγγ)T

�
QR,(κ)

1,k + jQI,(κ)
1,k

�
(cosγγγ + j sinγγγ)}

= 2
�
(cosγγγ)TQR,(κ)

1,k cosγγγ − (cosγγγ)TQI,(κ)
1,k sinγγγ

−(sinγγγ)TQR,(κ)
1,k sinγγγ − (sinγγγ)TQI,(κ)

1,k cosγγγ
�

= RHS of (64),

proving (64).
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