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A B S T R A C T   

A novel network-based approach for predicting missing proteins (MPs) is proposed here. This approach, PRO
TREC (short for PROtein RECovery), dominates existing network-based methods – such as Functional Class 
Scoring (FCS), Hypergeometric Enrichment (HE), and Gene Set Enrichment Analysis (GSEA) – across a variety of 
proteomics datasets derived from different proteomics data acquisition paradigms: Higher PROTREC scores are 
much more closely correlated with higher recovery rates of MPs across sample replicates. The PROTREC score, 
unlike methods reporting p-values, can be directly interpreted as the probability that an unreported protein in a 
proteomic screen is actually present in the sample being screened. 
Significance: Mass spectrometry (MS) has developed rapidly in recent years; however, an obvious proportion of 
proteins is still undetected, leading to missing protein problems. A few existing protein recovery methods are 
based on biological networks, but the performance is not satisfactory. We propose a new protein recovery 
method, PROTREC, a Bayesian-inspired approach based on biological networks, which shows exceptional per
formance across multiple validation strategies. It does not rely on peptide information, so it avoids the ambiguity 
issue that most protein assembly methods face.   

1. Introduction 

Despite technological advances in proteomics, proteome coverage 
and protein identification consistency issues persist, resulting in “data 
holes” corresponding to missing proteins (MPs). Although MPs are 
sometimes defined as proteins that are persistently unobservable in 
proteomics, a more inclusive definition is used here: MPs are defined 
here, with respect to a proteomic screen of a given sample, as those 
proteins which are not observed in that proteomics screen of that sam
ple, but which are actually present in that sample. This definition, 
therefore, also includes proteins that are sporadically or inconsistently 
observed in a given tissue [1]. This definition of MPs is also more 

relevant should proteomic screens be used in a day-to-day clinical 
context. Collectively, the issue of MPs in this scenario is referred as the 
missing protein problem (MPP), where relevant proteins are persistently 
unobserved or sporadically or inconsistently observed across samples 
[1]. MPP hampers reproducible functional analysis and impedes the task 
of identifying biomarkers and novel drug targets from proteomics data 
[2]. 

MPP may be resolved via network-based analysis methods [3]. In the 
literature, several approaches already exist, and have been demon
strated to aid in the recovery of MPs (i.e., identifying proteins which are 
not reported in a proteomic screen of a sample but are present in the 
sample). These approaches include Functional Class Scoring (FCS) 
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[4–6], Maxlink [7,8], Gene Set Enrichment Analysis (GSEA) [9,10] 
based on the Kolmogorov-Smirnov test [4], and the hypergeometric 
enrichment (HE) test [11]. Previously, we demonstrated that resolving 
MPP using FCS based on protein complexes provides unmatched per
formance over other network-based approaches [12]. 

However, network-based analysis methods can be further improved 
and evaluated more widely. In particular, prior methods such as HE, 
GSEA and FCS depend on p-values, which are reportedly unstable [13]. 
The p-value also only provides information on the likelihood that an 
observed result is not due to chance and does not provide a direct in
dicator on effect size; thus, a user is prone to fallaciously mistaking a 
significant p-value as evidence of the presence of an effect or signal. 

Here, we develop a method, PROTein RECovery (PROTREC), using 
improved contextual reasoning for MP recovery. We perform a rigorous 
comparative evaluation of PROTREC and several known computational 
methods for MP recovery across several proteomic acquisition para
digms, including Data Dependent Acquisition-Parallel Accumulation 
Serial Fragmentation (DDA-PASEF) [14],-Parallel Accumulation-Serial 
Fragmentation combined with data-independent acquisition (dia
PASEF) [15] and Sequential window acquisition of all theoretical frag
ment ion spectra (SWATH) [16]. We demonstrate that PROTREC is 
superior to other methods by convincing margins. 

2. Materials and methods 

2.1. Datasets 

2.1.1. Renal cancer (RC) acquired by DIA-SWATH 
The renal cancer (RC) study of Guo et al. [17] comprises 24 SWATH 

runs originating from six pairs of non-tumorous and tumorous clear-cell 
renal carcinoma (ccRCC) tissues, with two technical replicates each. RC 
has two phenotype classes, RC normal (RC_N) and RC cancer (RC_C), 
contains high amounts of individual variability, and has 36% data holes; 
cf. Supplementary Fig. 1. 

All SWATH maps are analyzed using OpenSWATH(version 10.5) 
[18] against a spectral library containing 49,959 reference spectra for 
41,542 proteotypic peptides from 4624 reviewed SwissProt proteins 
[17]. The library is compiled via library search of spectra captured in 
DDA mode (linking spectra m/z and rt. coordinates to a library peptide). 
Protein isoforms and protein groups are excluded from this analysis. 
Proteins are quantified based on the intensities of the top two most 
abundant peptides. 

2.1.2. HeLa and SiHa data acquired by DDA-PASEF 
The HeLa and SiHa DDA datasets have only one phenotype class with 

three technical replicates. The detailed data acquisition process is shown 
in Supplementary Method 1. Both datasets were analyzed by Peaks 
Studio (Version10.5 build on April 15th, 2020, Bioinformatics Solution 
Inc.) to search against the reference library obtained from SwissProt 
Human (20,421 sequences, downloaded on May 8th, 2019). 

For HeLa datasets, 310,277 PSMs, 57,856 peptides and 6090 proteins 
were identified, on average, across the three replicates at the peptide 
FDR of 1%. For SiHa datasets, 351,782 PSMs, 74,658 peptides and 7298 
proteins were obtained on average across three replicates at the peptide 
FDR of 1%. There are 7% and 5% missing values in HeLa and SiHa 
respectively, the heatmap of the datasets is shown in Supplementary Fig. 
1. 

2.1.3. HeLa and SiHa data acquired by diaPASEF 
A second HeLa dataset was acquired by diaPASEF with two technical 

replicates. A second SiHa dataset was similarly acquired with three 
replicates. Details on this process can be found in Supplementary 
Method 1. 

The project-specific library from 24 high-pH reversed-phase peptide 
fractions of a HeLa digest with DDA-PASEF consisted of 301,353 target 
precursors and 16,578 target proteins on average. The SiHa library from 

6 high-pH reversed-phase peptide fractions consisted of 153,771 target 
precursors and 9774 target proteins on average. Protein inference was 
performed via ID-Picker, with the PSM-protein and precursor-protein 
FDR set to 1%. There are on average 9821 proteins quantified for 
HeLa DIA data and 8774 proteins for SiHa DIA data. Compared with its 
DDA counterpart, diaPASEF has higher consistency (~2% data holes) 
and protein coverage. However, due to software constraints, we cannot 
obtain full peptide information prior to protein inference. Hence, we use 
the diaPASEF data as a verification reference (for predicted missing 
proteins). 

2.2. Network-based methods 

We compare our new method PROTREC (described at the end of this 
section) against three network-based methods. These are Functional 
Class Scoring (FCS), the Hypergeometric Enrichment (HE) test and Gene 
Set Enrichment Analysis (GSEA). Since these are used widely, we will 
not provide full explanations here. This information is available in 
Supplementary Method 2. 

2.3. S-value transformation of p-values 

p-values are distributed on an inverse-exponential scale and are thus, 
non-linear and non-intuitive to interpret. So, following a common 
practice, we take the negative log (base 2) of the p-value, which yields 
the Shannon information value or surprisal value (S-value). Where 
required, an S-value cutoff of 4.32 is used (equivalent to a p-value cutoff 
of 0.05) [19]. S-value transformation is applied on the p-values obtained 
from FCS, HE and GSEA. 

2.4. Network feature vector based on real complexes 

Protein complexes are a special case of biological networks. 
Performance-wise, protein complexes can recover MPs with unmatched 
sensitivity [12], effectiveness and practicality [3,4,11,12,20–25]. 
Another advantage of using protein complex information is that infor
mation pertaining to protein complexes are highly centralized and easily 
accessible. For example, the CORUM [26,27] and MIPS [28,29] data
bases for human and yeast protein complexes, respectively, serve as 
dedicated species-specific repositories. Prior works demonstrate that 
protein complexes exhibit superior signal enrichment over many other 
sources of data including expressional correlation and predicted sub
networks [11,12]. Since protein complexes are established indepen
dently of the proteomics data, a set of complexes can serve as a 
standardized reference, facilitating cross-comparability between 
different proteomic studies [3,21]. Finally, standardizing protein com
plex representation is easy: A complex is simply a list of its constituent 
proteins (where stable identifiers for proteins, e.g. UniProtKB acces
sions, already exist [30]); and information regarding the exact topo
logical configuration among constituent proteins in a complex is not 
required (except in situations where we want to distinguish between 
core/peripheral proteins, or further classify complexes into topological 
families) [3]. 

Here, we use curated protein complexes from CORUM (release 2018) 
[26]. As small complexes can cause high fluctuation in test statistics, 
only protein complexes with accessions of Human and have at least a 
size of 5 are used in the analysis (611 out of 2916) [11]. Detailed in
formation regarding the protein complexes can be found in Supple
mentary Table 1. 

2.5. Evaluation of missing protein recovery based on replicates 

We define a recovered missing protein as one that is not observed in 
an initial proteomics screen (i.e., the protein is missing) but is predicted 
to be present (based on e.g., PROTREC) and subsequently verified to be 
present (using a variety of scenarios; see next paragraph). Prediction 
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without verification does not constitute recovery. 
Predicted MPs are verified based on the following scenarios: A/ 

proteins corresponding to the peptide list consisting of all significant 
peptide-spectra matches (PSMs) from a cross-batch replicate with fixed 
threshold cutoff, B/ proteins corresponding to the peptide list consisting 
of all significant PSMs from a cross-batch replicate using only top N 
proteins, C/ proteins corresponding to the assembled protein list based 
on the two-peptide rule, and D/ proteins obtained by other data acqui
sition methods of the same tissue or cell line. 

To determine whether the total set of recovered proteins is signifi
cant, we first assume that cross-batch replicates should report the same 
proteins, we then make predictions on one replicate, and test whether 
the predicted MPs show up in other replicates. Let R be the set of pre
dicted MPs, and r be the members of R that show up in other replicates. 
We generate a random set R’ of the same size as R, and let r’ be the 
members of R’ that show up in other replicates. This randomization is 
repeated 1000 times. We use this randomization to determine whether | 
r|/|R| is at the extreme right end of the |r’|/|R’| null distribution. If so, 
we say that this set of recovered proteins is significant and relevant to
wards the samples being studied. We express the recovery rate p-value 
(pval) as: 

pval =

∑n

i=1

|ri
′ |

|Ri
′ |
≥

|r|
|R|

n  

where n is the number of randomization rounds. In this case, it is 1000. 

2.6. PROTein RECovery (PROTREC) 

PROTREC is a novel probability-based scoring scheme that estimates 
the probability of a protein being present in a screen. It is based on the 
reasonable postulate that the probability of a protein being present in a 
sample being screened is dependent on the joint probability of it being 
present if its complex is formed (based on the fraction of constituent 
proteins being correctly detected), and the probability it is present if its 
parent complex is not formed. This is different from FCS-based inheri
tance where a protein inherits its probability of being present from the 
probability that the enrichment of the complex in the screen is non- 
random (see Supplementary Method 2). 

To calculate the probability above for a protein x, we first find all the 
protein complexes containing protein x. Let z denote this set of com
plexes. Then, we calculate the probability of a complex zi ∈ z being 
present, in the sample being screened, by the following equation: 

p(zi) =

∑
(xi ∈ L)*(1 − FDR)

| zi|

xi denotes a protein inside the complex zi. L denotes the set of pro
teins reported by the proteomic screen. If xi is reported by the prote
omics screen L, then its prior probability is (1 − FDR), where FDR is the 
false discovery rate of L. If xi is not reported in L, its prior probability is 
set to 0. Thus, the complex probability p(zi) is calculated by the average 
prior probability of all its components. 

To determine the score of a protein x, which is a member of multiple 
protein complexes, we use the complex with the highest probability. 
Thus, PROTREC computes the probability of a protein x being present in 
a sample being screened using each of the complexes that the protein x is 
a member of and returns the maximum. That is, the PROTREC score that 
determines whether a protein x is present in the sample is: 

p(x) = maxzi∈z {p(x|zi) p(zi)+ p(x|z̄i) p(z̄i) }

Since the presence of a protein complex implies the presence of all its 
constituent proteins, p(x|zi) = 1. Conversely, if x is reported, p(x|z̄i) =

(1 − FDR); i.e., when a complex is absent, the probability of a reported 
constituent protein being present is simply the complement of the false- 
discovery rate of the proteomic screen. Also, although p(x|z̄i) is unknown 

for an unreported protein x, to make the result more conservative, we set 
p(x|z̄i) as 0. 

This way, we can sort all proteins by their PROTREC score, and 
predict unreported proteins above a given PROTREC score threshold as 
predicted MPs. However, a threshold is only useful if the PROTREC 
probabilities are meaningful (i.e., higher PROTREC probabilities are 
associated with higher verification rates). And so, we shall evaluate and 
verify this in our analyses. 

The PROTREC score thus describes the probability of the existence of 
the protein in the given sample. In this manuscript, we use 0.95 as the 
cutoff. This can be taken to mean, given a PROTREC score of 0.95, we 
are at least 95% confident this is a correct prediction. 

3. Results 

3.1. PROTREC dominates in missing protein recovery across various 
verification strategies 

3.1.1. PSM verification using a fixed threshold cutoff 
Recall that the missing protein (MP) recovery rate is the proportion 

of verified proteins over all predicted MPs. We compare MP recovery 
rates of PROTREC and existing methods (viz. FCS, HE and GSEA) across 
four datasets (HeLa, SiHa, RC_N and RC_C), representing a variety of 
proteomic data acquisition strategies. We first verify predicted MPs by 
cross-replicate verification, where verified MPs are based on the list of 
PSMs from cross-batch replicates. The recovery rate and the number of 
MPs inferred are shown in Fig. 1. 

Among the compared methods, PROTREC has the highest recovery 
rate. Using a 0.95 score cut off for PROTREC and 0.05 p-value cut off for 
other methods, which is their default cut off, the cross-verification for 
PROTREC generally exceeds 80%, while other methods all scored below 
60%. For SiHa and HeLa datasets, PROTREC also achieved good per
formance: Where other methods achieve generally less than 40% re
covery rates, PROTREC achieved more than 95%. For RC, even though 
FCS predicts more MPs, with 23.6% more in RC_N and 15.8% more in 
RC_C, PROTREC has substantially more recovered proteins: 32.5% more 
in RC_N and 38.4% more in RC_C. This indicates that most FCS pre
dictions are low quality and likely false positives. We note both HE and 
GSEA make less predictions which also corresponded to lower recovery 
rates. Compared against HE, PROTREC has 26.7% more predicted 
missing proteins in RC_N and 12.6% in RC_C; PROTREC also has 67.4% 
more validated proteins in RC_N and 68.6% more in RC_C. Compared 
against GSEA, PROTREC has 51.7% more MPs in RC_N and 54.5% in 
RC_C; also, PROTREC has 70.5% more validated proteins in RC_N and 
59.6% more in RC_C. Detailed validation information can be found in 
Supplementary Table 2. 

We evaluate the recovery rate p-value for the four methods. For 
PROTREC, all derived recovery rate p-values are below 0.05, which 
means the recovered proteins are significant and cannot be emulated by 
randomization. However, for FCS, HE and GSEA, there are many 

Fig. 1. Verification based on PSMs from cross-batch replicates. A). Recovery 
rate of the four methods across four datasets. B). Missing protein recovery status 
are shown as predicted missing proteins (in light shading) and validated 
missing proteins (in dark shading). 
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samples with recovery rate p-value exceeding 0.05, which means the 
recovery rates for their predicted missing proteins are not significant 
and can be exceeded by chance (Supplementary Table 2). 

3.1.2. PSM verification using top N 
For ease of comparisons, earlier, we used PROTREC score > 0.95 and 

p-value <0.05 (for HE, GSEA and FCS) which are their default cutoffs. 
This comparison is simply meant to reflect the performance of each 
method given a typical thresholding strategy. For p-value based 
methods, using a cutoff of p-value <0.05 is generally acceptable (pro
vided that the theoretical null distribution used for computing the p- 
value is a good fit for our data). However, this may not be a truly valid 
comparison as the 0.95 PROTREC score is in fact, not equal to a p-value 
of 0.05 in other methods. In null hypothesis statistical testing (NHST) 
frameworks, the p-value is the chance of rejecting the null hypothesis 
when it is true; it provides no information when the null hypothesis is 
false and its magnitude also reflects no information on effect size. 
Various approaches for converting p-values into estimates of effect size 
and probability that the null hypothesis is false do not seem feasible or 
introduce yet more unknowns [31]. 

Instead, we sort all proteins, including reported proteins of the 
proteomic screen, in descending order based on PROTREC score; this is 
called the PROTREC list. Then, we count the number of proteins 
(including reported proteins of the proteomic screen) whose p-value is 
less than 0.05 in a given method and select the same number of proteins 
in the PROTREC list. Next, we check the recovery rates given those 
significant proteins based on FCS/HE/GSEA, against the corresponding 
selected proteins in the PROTREC list. This approach sets PROTREC at a 
disadvantage, as we are comparing PROTREC against a competing 
method’s optimal performance threshold. Yet, by comparing PROTREC 
with other methods in turn, PROTREC still dominates, with highest re
covery rate and highest number of validated proteins recovered. 
Detailed information can be found in Supplementary Table 3. For HeLa 
and SiHa, the top N proteins in HE comparison does not contain pre
dicted MPs in PROTREC (all of the proteins are observed in the original 
screen), so we mark the recovery rate as 1. 

3.1.3. Protein verification based on two-peptide assembly 
In earlier comparisons, we used PSMs as evidence of protein pres

ence. But to constitute a strict validated recovery, this may not be robust 
enough. Suppose if we were to check for verification using assembled 
proteins instead, would PROTREC still dominate? 

To check this, instead of relying on sophisticated protein assemblers 
such as Percolator, we opted to use a stringent verification by assem
bling proteins based on the rather conservative two-peptide rule. For RC, 
to bolster sensitivity, we used all PSMs from the same class for protein 
assembly, this aggregated information can help expand coverage on 
those proteins likely to exist. For HeLa and SiHa datasets, we used both 
de novo only peptide list and data base search PSM list for protein as
sembly. The recovery rate is calculated by taking the ratio of verified 
proteins against the number of predicted missing proteins from the two- 
peptide assembled protein list. 

Comparing these three ways of verification, PROTREC dominates 
protein recovery not only in terms of recovery rates, but also in terms of 
absolute numbers of verified proteins (Fig. 3). For RC dataset, PROTREC 
has 73.2% recovery rate in RC_N and 77.2% in RC_C, while other 
methods scored all below 60%. For HeLa and SiHa dataset, compared to 
less than 30% recovery rate in other methods, PROTREC has 54.4% 
recovery rate in HeLa and 51.5% in SiHa. 

PROTREC has around 200 validated missing proteins in RC datasets, 
2 times more than other methods. It also has more than 100 validated 
missing proteins in Hela and SiHa, 4 times more than FCS and GSEA, and 
10 times more than HE. Detailed information can be found in Supple
mentary Table 4. 

3.1.4. Protein verification based on comparisons against other data 
acquisition methods 

DIA acquisition methods are increasingly used in proteomic 
profiling. In our HeLa and SiHa datasets, DIA methods identified more 
proteins while also boasting higher consistency (less data holes). Since 
DDA and DIA acquisition methods were performed on the same cell line, 
it makes sense to use predictions made with the weaker acquisition 
method (less proteins, less consistency) and validate it on the strong 
method (more proteins, more consistency). Hence, we checked PRO
TREC’s robustness by using DDA-PASEF protein list to predict MPs and 
verify based on diaPASEF reported protein list. If a predicted missing 
protein is validated by the diaPASEF reported protein list, it constitutes 
strong supporting evidence. We compare the predicted MPs, validated 
MPs and recovery rate for each network method. The recovery rate is 
calculated by comparing verified MPs against the total number of pre
dicted MPs. 

In this comparison, PROTREC dominates (Fig. 4). Compared against 
other methods which all reported less than 60% recovery rates, PRO
TREC’s recovery rate reached 87.4% in HeLa and 91.4% in SiHa. PRO
TREC also predicted significantly more validated MPs than other 
methods. PROTREC has around 176 validated MPs in HeLa and 187 
validated MPs in SiHa, several times more than other methods, (see 
Supplementary Table 5). 

3.2. PROTREC provides meaningful scoring functions 

The score distribution graph (Fig. 5) is built based on the S-value for 
FCS, HE and GSEA and the PROTREC score. The S-value is normalized to 
the same scale as PROTREC score, between 0 and 1. For ease of visu
alization, Fig. 6 shows the score distribution of four methods for the first 
sample of RC_N (An example of four datasets’ score distribution can be 
found in Supplementary Fig. 2. Score distribution for every sample in the 
four datasets can be obtained in Supplementary Table 6). The PROTREC 
approach for assigning protein probabilities is much better than the 
other three methods, with all observed proteins in the original screen 
aggregated on the top as highest probability. Similarly, a high propor
tion of verified MPs are also aggregated at the top, suggesting that a 
higher probability assignment correlates with higher verification rates. 

3.3. PROTREC performance can be improved by reducing protein 
complex redundancies 

A few protein complexes are formed by protein isotypes that belong 
to the same protein family or constitute part of bigger protein complex 
families (e.g., some protein complexes have the same core protein set 
but different peripheral proteins). Members of such protein complex 
families may exhibit tissue-specific behaviors [32]. We may improve 
PROTREC performance if we retain complexes where they are more 
likely to exist in the tissue being analyzed. Unfortunately, there are no 
gold-standard tissue-specific “complexome” databases (a complexome 
being the full complement of protein complexes specific to a particular 
tissue or sample). And so, we propose a get-around: First, we link 
complexes that have mutual high similarities (> 75%). This similarity is 
determined by the number of shared proteins divided by the total 
number of proteins inside the smaller protein complex. Next, we only 
consider the complex pair containing at least one protein that appeared 
in the original screen or validated by cross-verification. Finally, among 
those linked complexes, we retain the complex with the highest PRO
TREC score and trash the others. If two complexes tie on their PROTREC 
scores, both are retained. 

Due to our high original PROTREC cut off (0.95), there is no signif
icant improvement for complex filtering as only a few complexes are 
involved. Thus, we used a 0.50 threshold for illustration here. The re
covery rates are shown in Fig. 6. Reducing protein complex redundancy 
results in a notable improvement for PROTREC on recovery rates for all 
four datasets. For HeLa and SiHa, both of them exhibited >15% 
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improvement; while for RC, > 5% improvement. It is worth noting that 
even though the recovery rate improved, protein complex filtering will 
result in information loss. Supplementary Table 7 shows there are fewer 
total and validated proteins recovered. For the other three methods, 
since the filtering is based on PROTREC score, there is no significant 
improvement. 

3.4. PROTREC protects from information loss 

Given a lossy screening where few proteins are reported, PROTREC is 
the best way to recover the lost information. To demonstrate this, we 
predicate on one data from a replicate pair, and randomly drop a certain 
number of proteins in its original protein list. We then predict using the 
four methods and then evaluate which approach recovers the most 
dropped proteins. Since each technical replicate contains slightly 
different numbers of proteins, we choose to drop the same number of 
proteins for each replicate to maintain result consistency. For HeLa and 
SiHa, we drop 2000 proteins whereas for RC, we drop 800 proteins. The 
performance is measured by sensitivity, recovery rate and precision. 
Sensitivity is calculated as the fraction of dropped proteins which are 
predicted as MPs. Recovery rate is calculated as the fraction of predicted 
MPs which are in the original protein list. Precision is calculated by 
using the self PSM list as the reference. 

According to Fig. 7, PROTREC has the highest sensitivity compared 
to other methods, with at least two times higher than other methods. 
This indicates PROTREC has the best ability to recover the dataset from 
information loss without using other reference information from repli
cate samples. 

Given HeLa and SiHa, we can see from Fig. 8, among the proteins 
that are predicted by PROTREC, it also has the highest recovery rate 
across the four methods. For RC datasets it is around 70% and in HeLa 
and SiHa it reaches 90%. Notably, PROTREC precision is more than 95% 
across all datasets indicating most predicted proteins are validated. 
Furthermore, PROTREC has the highest number of validated proteins. 
PROTREC correctly predicts 2–10 times more MPs than other methods. 
The result shows that where there is pronounced information loss, 
PROTREC can tell us which unreported proteins should indeed be 
present. 

3.5. PROTREC predictions are verifiable on other independent data 
platforms 

Previously, we used proteomic data from DIA-PASEF platform, to 
validate PROTREC predictions made from its DDA counterpart for HeLa 
and SiHa. While this constitutes some form of cross-platform indepen
dent support, it be further strengthened. And so, we cross checked gene 
and protein expression data from similar transcriptomic datasets and on 
Protein Atlas (a database of tissue-specific protein expression profiles). 

We checked the predicted MPs for RC_C and RC_N on kidney tissue- 
based datasets (RC_C are histologically cancerous tissue while RC_N are 
histologically normal-like tissue derived from cancer patients). Since we 
are searching additional evidence manually to corroborate our predicted 
missing proteins, it is unfeasible to check sample-by-sample. We thus 
added the following conditions: PROTREC score > 0.95 and not reported 
in any dataset sample. 

First, we cross-checked with transcriptomic evidence. We select the 
set of proteins that can be mapped to the GSE168845 gene expression 
dataset on the GEO website [33]. GSE168845 contains normal and 
cancer microarray expression profiles corresponding to normal kidney 
tissue and cancer clear-cell renal carcinoma, same tissue types as RC_C 
and RC_N. We simplistically assert that if the gene corresponding to the 
missing protein is present in the gene expression profile, then there is 
gene-level evidence. We cross map gene-protein identifiers using the 
UniProt database. We cross-validated 99.0% of proteins (96/97) for 
RC_N and 98.4% of proteins (61/62) for RC_C using the microarray 
expression profile. In both cases, only 1 protein was missed. Detailed 

information may be found in Supplementary Table 8. 
Next, we also rechecked the predicted MPs in the Tissue Atlas (ver 

20.1) inside Protein Atlas [34], which contains protein information 
across multiple tissues. Tissue Atlas discretizes protein expression into 4 
levels of tissue confidence, ‘Enhanced’, ‘Supported’, ‘Approved’ and 
‘Uncertain’. Excluding ‘Uncertain’, the other three levels are reliable; so, 
we filter the Tissue Atlas to confidence level above ‘Uncertainty’. 
Beyond confidence levels, Tissue Atlas also uses a discretized ordinal 
scale for tissue abundance level, ‘High’, ‘Medium’, ‘Low’, and ‘Not 
detected’. We assign numeric values of 3, 2, 1 and 0 according to the 
abundance level respectively. If a protein has a score more than 0 in the 
specific tissue, there is evidence of that it has the corresponding tissue 
abundance. Among PROTREC predicted MPs, 87/97 in RC_N and 50/62 
in RC_C of proteins are verifiable in the Tissue Atlas bank. Among them, 
90.8% (79/87) of the proteins in RC_N and 94.0% (47/50) of the pro
teins in RC_C are validated with protein expression in kidney tissue. 
Detailed information may be found in Supplementary Table 9. 

Finally, even though 8 proteins in RC_N and 3 proteins in RC_C have 
no supporting evidence in Tissue Atlas, we rechecked these on the DIA- 
SWATH protein and peptide lists from the other technical replicates. 
First, we do a cross-check in the protein list. Interestingly, all proteins 
(8/8) of RC_N are found in the reported list of RC_C and vice versa. We 
also checked the peptide list. 7/8 proteins in RC_N and 3/3 proteins in 
RC_C found peptide evidence in the self-peptide list. 1/8 protein in RC_N 
did not find peptide evidence in self RC_N but find evidence in RC_C. We 
guess most of these predicted missing proteins failed to be reported in 
the respective proteomic screens due to their low abundance and were 
filtered during the assembly process. In addition, Protein Atlas may not 
be an objective confirmation check for clinical tissue reflecting idio
syncratic development fates. Protein Atlas reflects typical expression 
profiles of normal tissue. But our tissues, both RC_C and RC_N come from 
cancer patients. That is, RC_N and RC_C are obtained from the different 
kidney regions in the same patients so that cancer might affect protein 
expression in normal cells. If we check these 8 proteins in RC_N on 
Protein Atlas website, we can see that 6/8 proteins are regarded as 
prognostic markers in renal cancer. We guess these proteins are un
usually expressed in both RC_N and RC_C due to cancer. However, their 
protein expression in RC_N is much smaller than other reported proteins, 
which explains why they failed to be detected during the data acquisi
tion process. Another plausible explanation is that these proteome 
profiles are tissue/cell mixtures, and perhaps, during the sample 
acquisition process, some cancer cells may have been mixed in. 

In summary, checking the transcriptomic and Protein Atlas data 
gives us more robust evidence of our MP predictions. Most predicted 
MPs seem to have reason to exist, given both independent protein and 
gene expression information. 

3.6. PROTREC distinguishes ambiguous proteins 

Mass spectrometry-based proteomics may suffer from ambiguous 
protein identification issues: A protein identification from a screen is 
said to be ambiguous if all the reported peptides used for supporting the 
identification of the said protein from the screen are ambiguous (i.e. 
each of these reported peptides occur in at least two reference proteins). 
PROTREC is able to single out ambiguous protein identifications that are 
reliable; i.e., it is able to distinguish recoverable ambiguous proteins 
from those that are not. To prove this, we perform an experiment on 
HeLa and SiHa dataset. For HeLa and SiHa DDA-PASEF, we have two 
types of peptide list: de novo peptide list and database PSM list. De novo 
peptide list contains mostly ambiguous peptide while database PSM list 
contains more unique peptide. First, we use the de novo peptide list as 
reference, we collect all purely ambiguous proteins having a PROTREC 
score above 0.95 and appearing only once in the protein complex list 
after reducing protein complex redundancies. Then, for each selected 
ambiguous protein A, we search for other proteins B with the same or a 
non-empty subset of the ambiguous peptides that support the selected 
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ambiguous protein. Next, we compare the complex that each protein 
belongs to and calculate the overlap of the two complexes. If the overlap 
is low, it means proteins A and B have different neighbors and different 
supporting information, which means both of the proteins should exist. 

We found for both HeLa and SiHa data, all A and B protein pairs have 
low complex overlap, even though they are supported by same ambig
uous peptide. Thus, they are both likely to exist. To further prove our 
idea, we use the database PSM list and rechecked the mapped proteins. 
The database PSM list shows both protein A and B are mostly supported 
by at least one unique peptide, which is further biological evidence that 
each protein is there (Supplementary Table 10). 

4. Discussion 

4.1. PROTREC design is sound because it considers contextual 
information 

Network-based methods for MPP are sound because they build on the 
fundamental understanding that proteins do not work alone, but as 
higher order aggregates such as protein complexes, pathways and 
modules. For such aggregates to function, all member proteins need be 
present. And so, the need for all components to be present for function to 
exist imposes a tight constraint, presenting an exploitable opportunity. 

Therefore, network-based analysis methods add an independent in
formation layer on proteomics data. Because it is independent, network 
overlays can still work, even if a protein is very sporadically observed 
given repeated proteomics screens on a given tissue. Hence, network- 
based methods are useful for dealing with persistent MPs, which are 
difficult to observe with MS-based proteomics due to a lack of unique 
sequences, low-abundances, etc. We rechecked the proteomic feature 
difference in observed, validated and un-validated proteins by cross 
replicate PSM list. The most obvious proteomic feature is the peptide 
support, which is calculated by taking the number of supporting pep
tides for a given protein. Across all datasets, validated MPs have no 
significant difference in terms of supporting peptide information 
compared with the un-validated MPs with PROTREC scores above the 
0.95 threshold (Supplementary Fig. 3). This may not mean that the 
unvalidated MPs are not present in the sample being screened. This non- 
validation may also come about due to a lack of resolution of the vali
dation technique. Hence, we also compare with the supporting infor
mation of low PROTREC score proteins. For RC_C and RC_N, compared 
to the low score proteins (lower than 0.3 PROTREC score), validated and 
unvalidated high score proteins (at least 0.95 PROTREC score) has much 
higher peptide support. However, if the low score proteins are set to 
have score below 0.95 PROTREC score, then there is no significant 
difference between the supporting information of the three types of 
proteins (Supplementary Fig. 4). This suggests that recovering missing 
proteins may not be readily achieved purely by spectra analysis without 
using additional contextual information. Pure spectra analysis can only 
differentiate the proteins with very low peptide support. For protein 
with similar peptide support, it is hard to tell which one should be 
present or not. Using protein complexes as context, however, provides 
additional information that augments acquired spectral information on 
distinguishing missing proteins. 

Before PROTREC is introduced here, FCS was the most powerful 
method for identifying MPs, attaining the highest accuracy when 
benchmarked on the same proteomics data. Although FCS performs well 
in our analyses, according to our result discussed earlier, it is notably 
inferior to PROTREC. From Figs. 1–4, we can see an obvious superiority 
for PROTREC in terms of recovery rate and number of validated missing 
proteins. From Fig. 5, it is clear that PROTREC has more meaningful 
score distribution; and from Fig. 7, it shows PROTREC is much better in 
preventing information loss. 

Moreover, while the FCS test statistic is simple (it is simply the 
overlap between a network’s components and reported proteins in the 
proteomics screen), our results reveal that it cannot be used to proxy our 

confidence in the verification rate of a prediction. FCS seems to have 
estimated p-values incorrectly: It uses random sets of proteins to form 
pseudo complexes to estimate the significance of the observed overlap of 
reported proteins in a real protein complex; this randomization pro
cedure unreasonably assumes that all proteins have an equal and inde
pendent chance to form a complex of that size with each other. This FCS 
p-value is related to HE: Although FCS’s p-value is empirically gener
ated, it converges to the hypergeometric distribution used by HE when 
sample sizes are large enough. Hence, HE has similar difficulty as FCS. 

PROTREC recognizes that that test statistics and p-values are insuf
ficient. The PROTREC perspective suggests that we should consider 
evidence in totality, including looking at the same evidence that sug
gests support for non-true effect. For example, when a protein is not 
reported by the original screen, we do not immediately draw the 
conclusion that the protein is not there. We would instead judge by 
analyzing the presence of a relevant protein complex (containing that 
protein) and consider the protein’s presence by the joint probability. 
This perspective turns the situation from whether “the protein is not 
present” to “the network is not present”. 

Fig. 2. Comparison by selecting top N proteins in PROTREC against significant 
proteins in other methods. We count the number of proteins with p-value <0.05 
in one method (FCS, HE and GSEA) and select the exact number of top N 
proteins in PROTREC list. The recovery rate is calculated based on cross- 
verification. 

Fig. 3. Verification based on proteins assembled by two peptide rule. A). Re
covery rate of the four methods across four datasets. B). Missing protein re
covery status are shown as predicted missing proteins (in light shading) and 
validated missing proteins (in dark shading). 

Fig. 4. Verification based on other data acquisition method. A). Recovery rate 
of the four methods in HeLa and SiHa datasets. B). The number of predicted 
missing proteins (in light color) and validated missing proteins (in dark color). 
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Therefore, the PROTREC score is calculated based on the compound 
probability of the complex probability and the protein itself. This 
calculation allows us to abandon p-values in favor of likelihoods on 

whether a reported protein’s parent network exists. Our result in 
Figs. 1–4 and 7 suggests no matter what aspect we look at, the recovery 
rate and the number of validated proteins of PROTREC are much su
perior to other methods. 

4.2. PROTREC predicts rare proteins that are difficult to observe typically 

Regarding protein assembly, the conventional Human Proteome 
Project guideline suggests using the two-peptide rule to define if a 
protein exists [35]. The two-peptide rule defines a protein as detected in 
a sample when two non-nested detected peptides of length more than 
nine amino acids uniquely map to the protein. However, mass 
spectrometry-based proteomics already suffers from incomplete prote
ome coverage and consequent inconsistency issues, and there are quite a 
few peptides with low detectability and highly ambiguous proteins. 
Thus, this rule while stringent, does result in widespread data loss. Some 
approaches have tried using alternative ways (e.g., PEAKS Studio tends 
to use one supported unique peptide to define the existence of a protein), 
but they still face the same problem. Especially for purely ambiguous 
proteins, there is no way these methods can recover them. 

By considering the contextual information, PROTREC can infer 
proteins based on the networks; even when a protein is ambiguous, it 
can still be present in a sample and be detected by PROTREC. PROTREC 
does not use the two-peptide rule and thus it can be used to find proteins 
that cannot be traditionally verified. In Supplementary Table 10, we 
show that even when two sets of pure ambiguous proteins have inclusive 
peptide support, their protein complex neighbors are different. Ac
cording to PROTREC’s algorithm, a protein’s existence is determined by 
its associated protein complex’s probability. Since the proteins inside 
the two complexes are different and the two complexes all have a high 
PROTREC score, it means both complexes should have the right to exist 
independently. As a result, even though the two proteins have inclusive 
ambiguous peptide support, they have different surrounding informa
tion, so they should both exist. 

4.3. Limitations and future plans 

Although PROTREC performs well, there are some limitations. First, 
there is no direct validation of MPs— in some cases, we inferred based 

Fig. 5. Score distribution of RC_N. The“original”label means the protein is 
found in the reported protein list. The “validated”label means the protein is 
missing but found in the cross replicate PSM list. “Unvalidated” means the 
predicted missing protein was non-verifiable. 

Fig. 6. Recovery rate before and after complex filtering with PROTREC 
threshold 0.50. The original bars show the recovery rate before complex 
filtering and the spotted bars show the recovery rate after complex filtering. 

Fig. 7. Performance of sensitivity from information loss.  

Fig. 8. Performance of recovery from information loss. A). Precision of the four 
methods across four datasets. B). Recovery rate of the four methods across four 
datasets. C). The number of predicted missing proteins (in light color) and 
validated missing proteins (in dark color) by taken the self PSM list as verifi
cation. D). The number of predicted missing proteins (in light color) and vali
dated missing proteins (in dark color) by taken the original protein list as 
verification. 
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on PSMs from the sample and also PSMs from cross-replicate compari
sons. Although we showed that using cross replicate protein assemblies 
still work well, these are still not direct evidence of existence. Although 
we performed a reasonable inference on ambiguous proteins with low 
support (lack of unique peptides), MPs whose peptides are entirely 
invisible and never detected in any sample cannot be verified directly. 
Moreover, the reliance on contextual information means that if a protein 
cannot be linked to some reference protein complex or network, it will 
remain invisible. 

Network-based methods like PROTREC are reliant on the quality and 
extensiveness of the network feature vector: If the network feature 
vector lacks coverage (where many important complexes are not 
included), then many MPs cannot be predicted. Similarly, if the network 
feature contains biases and errors, then use of these may lead towards 
poor quality predictions and mislead the experimentalist. Our bench
marks have been performed on CORUM, a high-quality curated database 
of protein complexes. These are known to exhibit high biological 
coherence but may not provide interesting nor groundbreaking insight. 
Conversely, predicting synthetic complexes from network data has the 
potential to unveil new discoveries, but such synthetic complexes need 
to be carefully analyzed and processed to minimize wastage of resources 
on validation efforts. 

Although we have picked a few representative methods for com
parison, we acknowledge we cannot test all network-based approaches 
in this study. However, these represent a wide variety of network 
methods: While HE and GSEA are classic examples of over- 
representation analysis and direct-group analysis respectively; and 
although FCS is similar to HE, it uses an entirely different p-value gen
eration strategy. 

Our results suggest that augmenting the network feature vector and 
reducing redundancies might improve performance. Indeed, the idea of 
tissue-specific complexomes have been floated some years back, and 
new algorithms now exist for making such predictions [36]. However, 
dedicated databases for tissue-specific complexes are still lacking. In 
future work, we would like to explore this further, as we feel that the 
quality and comprehensiveness of the list of complexes used are para
mount for practical deployment of PROTREC. 

In addition, it is arguable that PROTREC is limited in value if it only 
predicts presence of an MP but not quantity. Our work showed that there 
is immense value in binary prediction: PROTREC’s noise resistance 
quality means that should a screen severely under-reports protein 
identifications, PROTREC can be used as a rescue algorithm. PROTREC 
can reliably expand the set of proteins that should in theory be present. 
Knowing such information in advance, provides clear guidelines on 
which proteins we can try to attempt quantitation, whether based on 
existing information from the screen itself, or transferred from other 
screens of the same tissue. Leveraging on the former would be an 
immense upgrade for PROTREC. Now that we know it is extremely 
powerful in predicting the right proteins, this also gives future impetus 
on how we can use this for quantitation. Foreseeable challenges include 
how to attribute information from ambiguous peptides and how to 
resolve high variability signal from supporting peptides. 

5. Conclusion 

PROTREC is a novel probability-based approach for estimating the 
existence probability of a missing protein. Via PROTREC, we can recover 
proteins that are previously not found in the original proteomic screen. 
Comparing PROTREC against FCS, HE and GSEA across four datasets, 
PROTREC dominates in recovery and validation, score distribution and 
information protection. Since PROTREC relies on protein complexes to 
make predictions, we also show that PROTREC can be further improved 
by optimizing the protein complex set. PROTREC is a quantum leap for 
missing protein prediction algorithms. Given its efficacy across different 
proteomic acquisition platforms, it can be widely applied. 
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