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Abstract

Visual-Inertial SLAM has been studied widely
due to the advantage of its lightweight, cost-
effectiveness, and rich information compared to
other sensors. A multi-state constrained filter
(MSCKF) and its Schmidt version have been
developed to address the computational cost,
which treats key-frames as static nuisance pa-
rameters, leading to sub-optimal performance.
We propose a new Compressed-MSCKF which
can achieve improved accuracy with moderate
computational costs. By keeping the informa-
tion gain with compressed form, it can be lim-
ited to O(L) with L being the number of local
key-frames. The performance of the proposed
system has been evaluated using a MATLAB
simulator.

1 Introduction

The autonomous navigation system for mobile robots
has been focused on and studied for the past few decades.
As a solution, the Simultaneous Localisation and Map-
ping (SLAM) system has been used with different kinds
of sensors, such as cameras, Inertial Measurement Units
(IMU), Light Detection and Ranging (Lidar), sonar, and
so on. Multi-sensor fusion algorithms have been applied
to improve the accuracy of this system [Chang et al.,
2018a].
Visual-Inertial Navigation System (VINS) has been

investigated due to its advantages in size, cost and ro-
bustness. The visual sensor itself can detect and track
hundreds of features, and it provides rich information
through the images, which can bring the improvement
of state estimation accuracy. When the camera system
loses the tracking of visual features, the IMU can con-
nect the gap with the higher frequency data [Qin et al.,
2019].

To resolve the problem of high computational cost, a
balance between computational cost and accuracy of the

estimation is required for reliable real-time performance
[Campos et al., 2021b]. Multi-State Constraint Kalman
Filter (MSCKF) [Mourikis and Roumeliotis, 2007] deliv-
ers the localisation information utilising multiple mea-
surements of visual features without including the po-
sition of the 3D feature in the filter state vector, which
only brings linear computational complexity in the num-
ber of features. In Schmidt-MSCKF [Geneva et al.,
2019a], key-frame poses are selectively added to the state
vector for the loop closure constraints, but without up-
dating the key-frame states to reduce the computational
cost. Compressed-SLAM(CP-SLAM) [Kim et al., 2017]

has been demonstrated in which the active state is ac-
tively updated within the filter and inactive states are
updated in a less frequent rate by accumulating the cor-
relation information.

In this work, we apply the compressed filtering method
to the MSCKF to solve the VINS problem, in which
the key-frame poses are partitioned into local and global
states and updated at a lower rate. In this way, the sub-
optimality related to the Schmidt filtering can be ad-
equately handled while constraining the computational
complexity.

The outline of this paper is as follows. Section
2 provides the related work, and Section 3 reviews
Schmidt-MSCKF. Section 4 provides the details of the
Compressed-MSCKF, and the key-frame vector is up-
dated at a much lower rate by compressing the active and
key-frame state correlation information. Section 5 pro-
vides experimental results using the high-performance
MATLAB simulator to verify the Compressed version,
followed by a conclusion.

2 Related Work

A real-time SLAM system in a resource-limited embed-
ded computing system is still challenging in achieving
reliability and robustness.

Extensive research has been conducted to achieve re-
liable real-time VINS. ORB-SLAM3 [Campos et al.,
2021a] added the multi-map data association to their



previous work [Mur-Artal and Tardos, 2017], which con-
tains ORB sparse front-end, graph optimization back-
end, re-localization, and loop closure [Chang et al.,
2018b]. It can perform Maximum-a-Posteriori (MAP)
estimation during the IMU initialisation. Also, the
global Bundle Adjustment (BA) is only performed when
the key-frame number is below the threshold to reduce
the computational complexity. VINS-Mono [Qin et al.,
2018] contributed to the robustness of initialisation, re-
localisation, and reusing the pose graph. Their back-
end uses a sliding window and selectively marginalises
the state from IMU and features from the sliding win-
dow to reduce the computational cost. A lightweight
motion-only visual-inertial optimisation also has been
implemented for the low computational power devices.

In terms of computing resources, EKF based SLAM
shows better efficiency in small-end applications com-
pared to the above optimisation-based methods [Chang
et al., 2018b]. [Mourikis and Roumeliotis, 2008] applied
the MSCKF [Mourikis and Roumeliotis, 2007] as a first
layer taking the computational advantage and BA for a
loop closure detection in the second layer. It could re-
lieve the linearisation errors and reduce the drift over
the long trajectory but still cause the processing over-
head during the BA. Maplab [Schneider et al., 2018]

utilises ROVIOLI [Bloesch et al., 2015] and enhances
the online performance, including the tools such as loop-
closure, multi-session map merging and pose-graph re-
laxation. However, this system only yields the accurate
pose estimation within the prior map. [Geneva et al.,
2019b] implemented the idea from Schmidt Kalman fil-
ter [Schmidt, 1966] which selectively includes the feature
information into the state vector and considers them as
a nuisance parameter. There is no updating process for
the key-frame state, but cross-correlation with the ac-
tive state is still maintained. They further applied the
method to the MSCKF as [Geneva et al., 2019a]. Even
though it enables linear computational complexity, the
estimator performance is still sub-optimal due to the
static nature of the key-frames.

3 Schmidt-MSCKF

In the Schmidt-MSCKF [Geneva et al., 2019a], the stan-
dard MSCKF [Mourikis and Roumeliotis, 2007] is imple-
mented which has the state vector containing the IMU
state xI and N cloned past camera poses xC as a sliding
window,

xk =
[
x⊤
I x⊤

C

]⊤
(1)

xI =
[

Ik
G q̄⊤ b⊤ωk

Gv⊤Ik b⊤ak

Gp⊤Ik
]⊤

(2)

xC =
[

Ck−1

G q̄⊤ Gp⊤Ck−1
· · · Ck−N

G q̄⊤ Gp⊤Ck−N

]⊤
,

(3)

where I
Gq̄ is the unit quaternion that represent the ro-

tation from frame {G} to frame {I}, bw and ba are
the biases of gyroscope and accelerometer, and GvI and
GpI are respectively IMU velocity and position with re-
spect to G. Furthermore, Schmidt-MSCKF includes the
keyframe poses into the state for loop closure as follows,

xk =
[
x⊤
I x⊤

C x⊤
S1

· · · x⊤
Sn

]⊤
=
[
x⊤
A x⊤

S

]⊤
,

(4)

where the xSi =
[

C
Gq̄

⊤ Gp⊤Ci

]⊤
is a keyframe pose to

solve the problem of the drifts accumulating over time.

3.1 Measurement Model

The measurement model of Schmidt-MSCKF is also de-
rived from the standard MSCKF. In the framework of
MSCKF, the camera observations are processed once the
features have enough parallax in the sliding window. The
same 3D pose point measurements are used to define a
constraint equation, relating all the camera poses which
are added when there is measurement. Therefore, the
stacked nonlinear camera measurement model can be de-
scribed as [Geneva et al., 2019a]:

zf = h
(
xk,

Gpf
)
+ nf , (5)

where nf is the white Gaussian noise with covariance
Rf , and

Gpf is the 3D position of the feature. The resid-
ual model can be obtained using the above measurement
model:

rf = zf − h
(
x̂k|k−1,

Gp̂f
)

(6)

rf = Hxx̃k|k−1 +Hf
Gp̃f + nf , (7)

where Hx and Hf are the Jacobians with respect to the
state and the feature position, and x̃ and Gp̃ are the er-
rors of state and feature position. However, standard
EKF update cannot be conducted due to the correlation
between x̃ and Gp̃. To resolve this problem, rf is pro-
jected to the left nullspace of Hf , which can transform
into the residual model independent from the position of
the feature as:

N⊤rf = N⊤Hxx̃k|k−1 +N⊤HG
f p̃f +N⊤nf (8)

r′f = H ′
xx̃k|k−1 + n′

f , (9)

where n′
f is white Gaussian noise with covariance R′

f =

N⊤RfN , and it can be updated as general EKF.

3.2 Update

With the derived measurement model, the residual of
Schmidt-MSCKF can be described as:

r′f ≃ HAk
x̃Ak|k−1

+HSk
x̃Sk|k−1

+ n′
f , (10)

where H ′
x = [HAk

HSk
]. However, due to the keyframes

in the state vector, xS , which can grow over time, update



process cannot be performed in real time. To solve this
problem, Schmidt Kalman Filter [Schmidt, 1966] is im-
plemented to avoid the high computational complexity.
The intention of SKF update is to treat the keyframe
state as static, which makes KSk

as a zero. Therefore,
using the general EKF update process, the estimation of
state can be described as follows:

x̂Ak|k = x̂Ak|k−1
+KAk

z̃′k (11)

x̂Sk|k = x̂Sk|k−1
, (12)

where the covariance matrix can be updated keeping the
cross-correlation term for consistency as

Pk|k = Pk|k−1− KAkSkK
⊤
Ak

KAkH
′
k

[
PASk|k−1

PSSk|k−1

]
[

PASk|k−1

PSSk|k−1

]⊤

H ′
k
⊤K⊤

Ak
0

 .

(13)

As a result, the computational complexity can be re-
duced from O(n2) to O(n).

4 Compressed-MSCKF

As shown in the previous section, Schmidt-MSCKF im-
plemented the nullspace technique, which enables to de-
fine the constraints without including the feature posi-
tion to reduce the computational complexity. In addi-
tion, they selectively store key-frames for the loop closure
using the Schmidt filtering techniques. It efficiently con-
trols the unbounded localisation error and the computa-
tional cost by treating the key-frame as static, leading
to the linear growth of computational complexity. How-
ever, even though it reduces the computational cost, the
loss of information cannot be ignored while treating the
key-frame state as a ’nuisance’ through the trajectory.
Finding the right balance between computing require-
ments and accuracy is a vital part of the real-time SLAM
system. Therefore, we present the Compressed-MSCKF
including loop closure in this section.

In a framework of standard Compressed SLAM [Kim
et al., 2017], the state vector is partitioned into a local
and global map state. The main benefit of this system
is the accumulation of local information gain while op-
erating within the local boundary. This compressed in-
formation only propagates to the global state when the
local boundary changes to the new boundary, and it al-
lows to update the global map at a much lower rate.
In Compressed SLAM, the key-frame states are further
partitioned into:

xS =
[
x⊤
SL

x⊤
SG

]⊤
, (14)

where xSL
and xSG

are the keyframe states in the lo-
cal and global boundary, respectively. Therefore, we can

describe the state vector and the corresponding covari-
ance of the Compressed-MSCKF based on [Geneva et
al., 2019a] as follow:

xk =

[
xL

xG

]
=

 xA

xSL

xSG

 (15)

P =

[
PLL PLG

PGL PGG

]
=

 PAA PASL

PSLA PSLSL

PLG

PGL PGG

, (16)

where xA =
[
x⊤
I x⊤

C

]⊤
. In this way, since the

keyframe need to be kept updated, compression method
can be implemented to effectively reduce the computa-
tional cost. It can operate the system in O(L2) of com-
putational complexity with L being the local map size,
which is much less than the total map size.

4.1 Propagation

Using a standard EKF, the estimation of IMU state can
be propagated with the incoming IMU measurement, lin-
ear acceleration (am) and angular velocity (ωm), based
on the following IMU kinematics [Mourikis and Roume-
liotis, 2007]:

xk = f
(
xk−1, amk−1

− nak−1
,ωmk−1

− nωk−1

)
, (17)

where na and nω are the zero mean white Gaussian noise
of the IMU measurements. The propagation of the co-
variance matrix also propagates as:

Pk|k−1

=

[
Jk−1PAAJ

T
k−1 Jk−1PAS

(Jk−1PAS)
T PSS

]
+

[
Qk−1 0
0 0

]
, (18)

where J and Q are the system Jacobian and discrete
noise covariance matrices for the active state. It can be
seen that the correlation between the active and key-
frame states can be expressed in a compressed form:

PAS(k) =

(
k∏

i=1

Jk−1

)
PAS(0), (19)

which can be compressed until the local boundary
changes.

4.2 Update

In our Compressed-MSCKF framework, the observations
are first used to update the local state, and the correla-
tion with global state is accumulated. Observation ma-
trix H is sparse and has values only for the local state,
it can be expressed as H ′

x =
[
HLk

0Gk

]
and it can

derive the residual measurement as:

r′f ≃ HLk
x̃Lk|k−1

+ n′
f (20)



Figure 1: The evolution of uncertainty of keyframes and the enhanced view of keyframe number 5 showing the
compressed updates during the simulation.

Using this model, the updating process of state estimate
can be derived as follows:

x̂Lk|k = x̂Lk|k−1
+KLk

z̃′k (21)

x̂Gk|k = x̂Gk|k−1
+KGk

z̃′k (22)

The Kalman gain can be computed as

Kk = PHTS−1 =

[
PLLk|k−1

HT
Lk

Sk
−1

PGLk|k−1
HT

Lk
Sk

−1

]
=

[
KLk

KGk

]
,

where Sk = H ′
kPk|k−1H

′
k
T
+R′ = HLk

PLLk|k−1
HT

Lk
+R′,

and therefore the form of updated covariance matrix is
represented as:

Pk|k = Pk|k−1 −KkSkK
T
k

= Pk|k−1 −
[

PLLk|k−1
HT

Lk
Sk

−1

PGLk|k−1
HT

Lk
Sk

−1

]
S

[
PLLk|k−1

HT
Lk

Sk
−1

PGLk|k−1
HT

Lk
Sk

−1

]T
= Pk|k−1−

PLLk|k−1

(
HT

Lk
Sk

−1HLk

)
PLLk|k−1

(PLLk|k−1

(
HT

Lk
Sk

−1HLk︸ ︷︷ ︸
ϕ

) )PLGk|k−1((
PLLk|k−1

(
HT

Lk
Sk

−1HLk

)
PLGk|k−1

)T
PGLk|k−1

(HT
Lk

Sk
−1HLk︸ ︷︷ ︸
Ψ

)PLGk|k−1

 .

(23)

During this process, the terms of KGk
SkK

⊤
Gk

shows the
largest computational cost in standard system and it can
be computed in compressed form to effectively handle
the computational complexity. Correlation and global
state terms can be shortened using ϕ,Ψ, and Φ as fol-
lows:

PLGk|k = PLGk|k−1
− ϕPLGk|k−1

= ΦPLGk|k−1
(24)

PGGk|k = PGGk|k−1
−
(
PGLk|k−1

ΨPLGk|k−1

)
(25)

x̂Gk|k = x̂Gk|k−1
+
(
PGLk|k−1

HT
Lk

Sk
−1z̃′

)
(26)

As a result, accumulated form of the global state, corre-
lation term PLG ,and global state vector can be expressed
as below:

PLG(k) =
(∏

Φ
)
PLG(0) = Φ(k, 0)PLG(0) (27)

PGG(k) = PGG(0)− PGL(0)
(∑

Φ(k, 0)TΨΦ(k, 0)
)
PLG(0) (28)

x̂G(k) = x̂G(0) + PGL(0)
(∑

Φ(k, 0)THT
LS

−1z̃′
)

(29)

Using this compressed correlation term, the global map
and covariance can be recovered at a much lower rate
whenever the local map boundary changes.

5 Preliminary Results

A high-fidelity MATLAB simulator is used to verify
the method. The simulator, called Compressed-Pseudo-
SLAM, is for all-source navigation and utilises the
landmark-based visual-inertial SLAM together as well
as GPS pseudo-range and pseudo-range rate informa-
tion. The sensor data of IMU (at 100Hz), vision (at
30Hz) and pseudo-ranges (at 1Hz) are generated follow-
ing the simulated trajectory (a racehorse track in this
work) using realistic sensor models.

To demonstrate the compressed-MSCKF filter, the
simulator is modified to augment the key-frames of the
vehicle poses into the state vector. The frequency of
the augmentation is dependent on the camera’s field-
of-view and speed of the vehicle and a 5-second inter-
val is used in this work which evenly covers the tra-
jectory. Figure 1 (left) shows the uncertainty evolution
of the keyframes showing total 14 keyframes registered.
The compressed update is applied whenever the vehicle
reaches the boundary of the local map, in which case the
centre of the local map is re-centred at the current vehicle
location. In the simulation, the local map is re-centred



at approximately 1.5−2 seconds. Figure 1 (right) shows
the enhanced view of the key-frame number 5, showing
the effects of sensor updates as well as the compressed
updates. At around 30 seconds, the fifth key-frame is
added to the state vector and continuously updated from
the vision information. The correction at 31 seconds is
due to the 1Hz GPS data, while the correction at around
34.5 seconds is due to the global update. After 2 global
updates, the key-frame becomes out of the local region
and becomes an inactive state, corrected only by the
global compressed updates. In the Schmidt-MSCKF, the
key-frames are initialised using the corresponding vehicle
poses but without the covariance information. A more
in-depth analysis is planned to understand the optimal
trade-off between computational complexity and accu-
racy.

6 Conclusions

In this work, we applied the compressed filtering frame-
work to MSCKF-based Visual-Inertial SLAM. The exist-
ing Schmidt-filter based approach can reduce the com-
putational cost by treating the pose key-frames as static
variables and thus sacrificing the accuracy. We showed
that we can still retain the pose key-frames in the SLAM
state while limiting the computational complexity to
O(L) with L being the number of local key-frames. The
future is on the trade-off analysis between the computa-
tional cost and accuracy and the implementation of the
method for a real dataset collected from drones.
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Juan D. Tardós. Orb-slam3: An accurate open-source
library for visual, visual–inertial, and multimap slam.
IEEE Transactions on Robotics, pages 1–17, 2021.

[Chang et al., 2018a] Chen Chang, Zhu Hua, Li Meng-
gang, and You Shaoze. A review of visual-inertial si-
multaneous localization and mapping from filtering-
based and optimization-based perspectives. Robotics
(Basel), 7(3):45, 2018.

[Chang et al., 2018b] Chen Chang, Zhu Hua, Li Meng-
gang, and You Shaoze. A review of visual-inertial si-
multaneous localization and mapping from filtering-
based and optimization-based perspectives. Robotics
(Basel), 7(3):45, 2018.

[Geneva et al., 2019a] Patrick Geneva, Kevin Eckenhoff,
and Guoquan Huang. A linear-complexity ekf for
visual-inertial navigation with loop closures. In 2019
International Conference on Robotics and Automation
(ICRA), pages 3535–3541, 2019.

[Geneva et al., 2019b] Patrick Geneva, James Maley,
and Guoquan Huang. An efficient schmidt-ekf for 3d
visual-inertial slam. 2019.

[Kim et al., 2017] Jonghyuk Kim, Jiantong Cheng, Jose
Guivant, and Juan Nieto. Compressed fusion of gnss
and inertial navigation with simultaneous localisation
and mapping. IEEE Aerospace and Electronic Systems
Magazine, 32(8):22–36, 2017.

[Mourikis and Roumeliotis, 2007] Anastasios I.
Mourikis and Stergios I. Roumeliotis. A multi-
state constraint kalman filter for vision-aided inertial
navigation. In Proceedings 2007 IEEE International
Conference on Robotics and Automation, pages
3565–3572, 2007.

[Mourikis and Roumeliotis, 2008] Anastasios I.
Mourikis and Stergios I. Roumeliotis. A dual-layer
estimator architecture for long-term localisation. In
2008 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition Workshops,
pages 1–8, 2008.

[Mur-Artal and Tardos, 2017] Raul Mur-Artal and
Juan D. Tardos. Visual-inertial monocular slam with
map reuse. IEEE robotics and automation letters,
2(2):796–803, 2017.

[Qin et al., 2018] Tong Qin, Peiliang Li, and Shaojie
Shen. Vins-mono: A robust and versatile monocu-
lar visual-inertial state estimator. IEEE Transactions
on Robotics, 34(4):1004–1020, 2018.

[Qin et al., 2019] Tong Qin, Jie Pan, Shaozu Cao, and
Shaojie Shen. A general optimisation-based frame-
work for local odometry estimation with multiple sen-
sors, 2019.

[Schmidt, 1966] Stanley F. Schmidt. Application of
State-Space Methods to Navigation Problems, vol-
ume 3, pages 293–340. Elsevier, 1966.

[Schneider et al., 2018] Thomas Schneider, Marcin
Dymczyk, Marius Fehr, Kevin Egger, Simon Lynen,
Igor Gilitschenski, and Roland Siegwart. Maplab: An
open framework for research in visual-inertial map-
ping and localisation. IEEE Robotics and Automation
Letters, 3(3):1418–1425, 2018.


