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Abstract

Underwater visual-inertial navigation is chal-
lenging due to the poor visibility and pres-
ence of outliers in underwater environments.
The navigation performance is closely related
to outlier detection and elimination. Existing
methods assume the inertial odometry is ac-
curate enough for outlier detection, which is
not valid for low-cost inertial applications. We
propose a novel iterative smoothing and outlier
detection method aiming for underwater nav-
igation. Using the dataset collected from an
underwater robot and fiducial markers, exper-
imental results confirm that the method can
successfully eliminate the outliers and enhance
navigation accuracy.

1 Introduction

There has been an increasing interest in accurate un-
derwater navigation for underwater inspection and in-
tervention applications. Intervention is becoming one
fundamental task for underwater industrial applications:
construction or maintenance of underwater infrastruc-
tures [Bonin-Font et al., 2015] [Chavez et al., 2019].
The dynamic and hydrodynamic modelling of the ve-
hicle requires accurate navigation information. Particu-
larly when the vehicle is close to the object to be manip-
ulated [Nam and Gon-Woo, 2020]. Integrated inertial
navigation systems aided by vision or acoustic sensors
have been the primary approach for underwater naviga-
tion.

While the Kalman filter is a valuable tool in robotics
and navigation applications, its performance is severely
impaired by outliers in the measurements. Optimal
smoothing state estimation can also be degraded by the
presence of outliers in the measurements [Kautz and Es-
kofier, 2015]. According to [Aggarwal, 2017] ”an outlier
is an observation which deviates so much from the other
observations as to arouse suspicions that it was generated

Figure 1: The Submersible Pile Inspection Robot (SPIR)
developed at the UTS performing underwater inspection
and maintenance tasks in a test water-tank facility.

by a different mechanism.” Outliers may occur due to en-
vironmental disturbances, noisy sensor measurement or
temporary sensor failures [Agamennoni et al., 2011]. For
example, computer vision data contaminated by outliers
or sonar data corrupted by phase noise result in erro-
neous measurements [Lee and Johnson, 2020].

Optimal smoothing further improves state estimation
in the Kalman filter. Optimal smoothing can utilise the
measurements made after the current estimation time
[Grewal and Andrews, 2014]. In this work, we propose a
new iterative smoothing technique to detect and remove
outlier measurements for more accurate robot state es-
timation, which is required for precision underwater in-
terventional tasks as exampled in Figure 1. In partic-
ular, we utilise Biswas-Mahalanabis Fixed-lag smoother
(BMFLS) to detect outliers at the fixed-lag time step
from when the data is received. This method is quite
computationally efficient and stable compared to other
techniques such as EM (Expectation and Maximisation)
or two-pass smoothers.

Considering the low-quality inertial odometry and its
fast drifting solution, we treat all visual measurements



as inliers in the first smoothing iteration. The outliers
are declared using the standard chi-squared (χ2) gating
method. The trajectory is then refined without using
the outliers. By repeating these steps, the estimated
trajectory and set of outliers can converge.

Our key contributions are as follow:

• A novel iterative smoothing and outlier detection
algorithm, utilising Biswas-Mahalanabis Fixed-lag
Smoother (BMFLS). It addresses the problem of
rapid drift in the inertial odometry and iteratively
classifies the outlier candidates.

• We demonstrate the method using a dataset col-
lected from an underwater robot and fiducial
(ARTag) markers. The dataset suffers from noisy,
missing measurements due to the confusion in recog-
nising the markers, thus resulting in outliers.

The remainder of the article is outlined as follows.
Section 2 discusses the literature review of the work
done in outlier detection. Section 3 details the iterative
Biswas-Mahalanabis Fixed-lag Smoother with outlier de-
tection algorithm. Section 4 will provide experimental
results using data collected from a water-tank environ-
ment. Section 5 will conclude with future direction.

2 Related Work

Many approaches have been studied to make the Kalman
filter and its variants more robust towards measurements
with outliers. Some of these methods require manual
filter-tuning or low-dimensional, and it cannot be ex-
tended well into higher-dimensional problems [Agamen-
noni et al., 2011]. Identifying outliers in multivariate
data also poses challenges compared to univariate data
[Ghorbani, 2019].

[Agamennoni et al., 2011] introduced the outlier-
robust Kalman filter (ORKF) that uses the Student-t
distribution to model the outliers with a heavy-tail dis-
tribution which is not well described in the Gaussian
distribution. A fixed-interval smoother is used, which
is not well suited for near-real time estimation. Some
work is simulation-based (no real data), and outliers are
artificially added to the observations [Chang, 2014].

While [Chang, 2014] introduced a robust Kalman filter
based on Mahalanobis distance (MD) as judging criteria
for outlier detection. Suppose the variance of the current
innovation is greater than the Chi-square distribution
threshold. In that case, a scaling factor is introduced to
rescale the covariance of the observation noise to reduce
the filter Kalman gain to maintain robustness. However,
this method may not be suitable for outlier detection
for a real-time application and may lead to sub-optimal
performance.

The chi-squared test is also a popular test method
for fault detection in the navigation field[Wang et al.,

2016].[Lee and Johnson, 2020] combines the random
sample consensus (RANSAC) and chi-squared test us-
ing the Mahalanobis gating test along with the extended
version of the ORKF to detect and handle measurement
outliers in vision-aided estimation problem. They have
initially used RANSAC to provide clean data to the fil-
ter. For the remaining outliers that are not detected
in the image processing, the Mahalanobis gating test is
used.

Further, the MD approach is also used by [Kautz and
Eskofier, 2015] to detect outliers. The authors intro-
duce a robust Kalman filter with re-sampling and opti-
mal smoothing. In their work, if an observation is greater
than the defined threshold, it will be rejected from the
fixed-lag smoother.

Furthermore, [Hadi, 1992] introduced an iterative MD
approach for detection of outliers in multivariate data
that also may be affected by masking or swamping issues.
However, this method may not be feasible for Kalman
filter applications.

In work mentioned above, the critical assumption is
that the odometry solutions are reasonably accurate for
outliner detection. If low-cost inertial sensors are used,
this assumption is not valid anymore. The direct and
catastrophic consequence is that the inertial errors can
reject all good measurements. For example, [Chavez et
al., 2019] admits localisation is a challenging task in un-
derwater environment in their work. They have pro-
posed to use aritifical markers to improve the navigation
in their intervention missions where the obvious outliers
are from sensor readings are rejected heuristically. Also,
few of the work mentioned have taken the advantage of
optimal smoothing in outlier detection problem. We ad-
dress this problem by introducing an iterative smoothing
and detection and including all measurements as inliers
in the first iteration.

3 Iterative Smoothing and Outlier
Rejection

The Biswas-Mahalanobis fixed-lag smoother is used to
provide the smoothed state. The BMFLS augments
the state vector xk[s] = {xk, xk−1, · · · , xk−N} using N -
lagged states and estimate the xk−N state, in which k is
the current measurement time. The augmented state is
run similar to an extended Kalman filter (EKF), yielding
an computationally efficient performance.

The state dynamic model is nonlinear consisting of
inertial navigation equations with 3D coordinate trans-
formation. The state model included the position and
velocity in x, y, z directions, and Euler angles (φ, θ, ψ).
The measurement model is linear in this case as the vi-



sual sensor delivers direct pose measurments. That is,

xk = f(xk−1) + g(wk−1), wk ∼ N(0, Qk) (1)

zk = H(xk) + vk, vk ∼ N(0, Rk), (2)

where H represents the measurement matrix , process
and measurement noise covariance matrices are Q and
R respectively and G is constructed as follows:

H =


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

 (3)
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2
ψ] (4)

R = diag[σ2
x, σ
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2
z , σ

2
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2
θ , σ

2
ψ] (5)

G =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0
Cnb 0 0 0

0 0 0
0 0 0
0 0 0 Cnb
0 0 0


(6)

The IMU (inertial measurement unit) outputs are the
body acceleration f b and angular velocity ωb. Euler an-
gle integration is applied for the orientation prediction.
The state prediction model is as follows: p̂kv̂k

Ψ̂k


9×1

=

 p̂k−1 + v̂k−1∆t
v̂k−1 + (Cnb f

b
k + g)∆t

Ψ̂k−1 + (Enb ω
b
k)∆t

 , (7)

where Cnb represents the body to frame direction cosine
matrix, and Enb represents the body rotation to Euler
angular rates transformation matrix, g represents the
gravitational acceleration and ∆t denotes the time in-
crement.

The BMFLS state is propagated using the nonlinear
dynamic model and linearised Jacobian matrix,

x̂k+1[s] = f(x̂k[s]) (8)

P̂k+1[s] = Φk[s]P̂k[s]Φ
T
k[s] +GkQk[s]G

T
k ∆t, (9)

where Φk[s] is the linearised and discrete state transition
matrix which is construcnted from the Jacobian of the
Equation 7 and fixed-lag sliding-window transition of the
states.

When the vision measurements are available, an inno-
vation (or error) and its covariance is computed,

ek[s] = c(zk −Hk[s]x̂k[s]) (10)

Sk[s] = Hk[s]Pk[s]H
T
k[s] +R (11)

Figure 2: ARTag-based fiducial markers installed on the
floor of the water tank, which is used to provide the
pose (position and orientation) measurements using a
monocular camera installed in the robot. The markers’
positions and orientation are pre-calibrated.

where c ∈ {0, 1} is the outlier association variable. When
the measurement is an inlier, c = 1, otherwise c = 0.

dk = eTk[s]Ss[k]ek[s] (12)

c =

{
1, if dk < χ2

T

0, if dk ≥ χ2
T
, (13)

where χ2
T is the threshold value selected from the

degrees-of-the freedom (DOF) of the measurement.
The BMFLS state and covariance are then updated

using the smoothing Kalman gain,

Kk[s] = Pk[s]H
T
k[s]S

−1
k[s] (14)

x̂k[s] = x̂k[s] +Kk[s]ek[s] (15)

Pk[s] = Pk[s] −Kk[s]Hk[s]Pk[s]. (16)

Algorithm 1 illustrates the iterative smoother outlier
detection process. It works by treating all the measure-
ments in the dataset as inliers initially. In the first itera-
tion, the first set of outliers are detected and are stored.
In the 2nd iteration, the BMFLS is run without the out-
lier set captured in the previous iteration. Then, the
outlier gating test is performed using all the measure-
ments in the dataset to identify and reclassify outliers.
This process is repeated until the number of inliers con-
verge.

4 Experimental Results

Figure 2 shows the visual fiducial markers (ARTag) used
for the experiment. The markers are installed on the
floor of the water tank facility at the UTS. The robot
(shown in Figure 1) collects the data using a monocular
camera and an inertial sensor. ArUco ROS library is



Algorithm 1 Iterative Smoothing and Outlier Detec-
tion

1: Initialisation: x0, P0, Q, R, χ2
threshold

2: inlier index = ones(1, len)
3: while No of inliers converge do
4: for i = 1 : len do
5: c = inlier index(i)
6: xs = BMFLS Function(...., c)
7: end for
8: for k = 1 : len do
9: if measurement available then

10: ek[s] = zk −Hx̂k[s]
11: Ss[k] = HPk[s]H

T +R
12: dk = eTk[s]Sk[s]ek[s]
13: perform outlier gating test:
14: if dk >χ

2
threshold then

15: inlier index(k) = 0
16: outlier(:, k) = zk
17: else
18: inlier index(k) = 1
19: inlier(:, k) = zk
20: end if
21: end if
22: end for
23: plot(states)
24: end while

used to compute the pose measurements from the mark-
ers. Due to the lower visibility and low illumination,
the markers were frequently confused with other mark-
ers, causing frequent outliers in the measurements. The
robot was manually controlled to maintain a hovering
position under a current disturbance source. The IMU
has a sampling rate of 252Hz, and the camera has a sam-
pling rate of 26Hz.

Figure 3 shows an example of outliers obtained from
the camera/marker system. From the middle section of
the data, it can be seen that there are three layers of
measurements and the top two layers seem to be out-
liers. The ArUco marker system was likely confused
with neighbouring markers, resulting in offset errors in
the position. The challenge is that the inertial odometry
system is also vulnerable to drift if there are few inlier
measurements, which can reject all good measurements
and result in filter divergences.

By applying the iterative smoothing and outlier de-
tection method, the problem can be mitigated. Figures
5a and 5c show the first iteration results for the position
and Euler angles in which all measurements were con-
sidered as inliers. The EKF output (black curve) repre-
sents the odometry-based estimation, while the BMFLS
(blue curve) shows the iterative smoothing estimation.
As shown in the 1st iteration, the EKF output is severely

Figure 3: An example of outliers from the raw vision and
markers measurements. It can be seen that the noises do
not follow the standard Gaussian statistics but an offset-
like outlier pattern, which stems from the confusion in
recognising the markers.

Figure 4: Estimated 2D trajectory of the robot, showing
the vehicle poses by iterative smoothing (in blue), EKF
estimation (in black) and raw measurements (in red).

impacted by outliers. The outliers are then declared us-
ing the smoothing results and chi-squared gating test.
It can be observed that some of the inliers are wrongly
classified as outliers due to the presence of multiple out-
liers. Figures 5b and 5d show the 4th iteration results
for the position and Euler angles. It can be observed
that the inliers that are wrongly classified as outliers are
now correctly declared as inliers, thanks to the improved
smoothing results.

Moreover, figure 4 shows the estimated 2D trajectory



(a) Position (1st iteration) (b) Position (4th iteration)

(c) Euler Angles (1st iteration) (d) Euler Angles (4th iteration)

Figure 5: The first and fourth iteration results of the method for the position and Euler angles. It can be seen that
the set of outliers gradually decreases as the iteration progresses, resulting in a better smoothing result at the 4th
iteration.

from the proposed iterative smoothing method and EKF
estimation. It can been seen that the EKF trajectory is
impacted by the presence of outliers. While, the BMFLS
trajectory using the iterative smoothing demonstrates
improved accuracy due to the outlier rejection.

5 Conclusions

We presented an iterative smoothing and outlier de-
tection algorithm by utilising the Biswas-Mahanalobis
Fixed Lag Smoother. Initially, all measurements are
treated as inliers to minimise the drift in the inertial-
based smoothing solution. The outliers are gradually
re-classified using the chi-square gating test and the
smoothed solution through successive iterations. By us-
ing a real dataset, it was shown that the algorithm con-
verges reliably for a set of moderate-level of outliers. For
a severe level of outliers, however, the filter was vul-

nerable to divergence. A cluster of outliers can attract
the mean x̄ and inflate covariance S in its direction and
away from some other observation that belongs to the
pattern suggested by the majority of observation, thus
yielding large values of Mahalanobis distance values for
these observations [Hadi, 1992]. We are currently inves-
tigating the relaxation of the discrete indicator variable
(c ∈ {0, 1}) to a continuous one (c ∈ [0, 1]) for a soft
outlier detection.
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