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Prospection for Mobile Robots in Unknown Environments
by

Ki Myung Brian Lee

Abstract

Modern applications require robots to operate with a greater degree of autonomy in dy-

namic and unknown environments. This problem of robot autonomy has been tradition-

ally posed as that of improving adaptivity to support wider ranges of environments or

inputs. We argue that adaptivity alone is insufficient for realising robots that are truly

autonomous, because the resulting behaviour is inherently limited to be merely reactive

to external stimuli.

This thesis proposes robotic prospection as a new framework for autonomy that enables

proactive behaviours. Prospection is a concept from cognitive psychology that refers to

the ability to generate and evaluate possible future scenarios and outcomes. We math-

ematically formulate the notion of robotic prospection from a Bayesian perspective, and

define the problems of prospective perception and planning. The prospective perception

problem asks to design predictive priors that expedite Bayesian estimation for environmen-

tal perception. The prospective planning problem aims to design a strategy for choosing

control actions that maximise a task reward, by, for example, balancing exploration and

exploitation.

Under this formulation, we contribute a suite of algorithmic tools for prospective percep-

tion and planning in both general and specialised problem settings. In the most general

problem setting, we present the mutual information upper confidence bound (MI-UCB)

strategy for prospective planning. The MI-UCB is an exploration-exploitation trade-off

strategy that approximately maximises the posterior expected reward using information-

theoretic quantities. The generality of the MI-UCB also allows scaling prospective planning

to a heterogeneous multi-robot system consisting of scout- and task-robots, thereby dis-

tributing exploration and exploitation workloads. We apply the MI-UCB to a scout-task

robot team performing target search, and demonstrate that it outperforms the conven-

tional expected reward maximisation strategy.
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We then demonstrate prospective planning and perception in tandem in the special case

of environmental process monitoring. The goal is for the robot to seek the source of

an environmental process under the influence of an ambient flow field based on sparse

concentration measurements. As a predictive prior for prospective perception, we pro-

pose advection-diffusion Gaussian process (ADGP) by augmenting Gaussian process (GP)

regression with the advection-diffusion partial differential equation (PDE) from fluid dy-

namics. Based on the ADGP, actions are chosen to balance exploration and exploitation

using the Gaussian process upper confidence bound (GP-UCB) strategy. The results

demonstrate intelligent behaviours arise from prospection, such as prioritising down- or

cross-stream regions if the concentration measurement is low.

Subsequently, we consider prospective planning for complex semantic tasks specified us-

ing formal methods. To enable prospection, we propose random signal temporal logic

(RSTL) to capture the uncertain semantics of the environment. Planning is achieved with

gradient-based synthesis, and we present examples involving uncertain targets and obsta-

cles. The examples demonstrate benefits of prospection, such as prioritising targets that

are increasingly uncertain over those that are proximate, and reducing the uncertainty of

targets that are currently relevant to the task.

Finally, we conduct case studies to identify desirable properties of predictive priors for

prospection. We consider two problem settings: oceanic and indoor navigation. In both

cases, we derive predictive priors by imposing relevant PDE constraints on GP regression

for physical fidelity. Both case studies demonstrate that planning performance can be sig-

nificantly improved through prospective perception. Based on these examples, we conclude

that generative models serve as suitable predictive priors for prospective perception.

The contribution of this thesis represents a significant leap in progress toward robot au-

tonomy. The proposed perspective of robotic prospection extends autonomy beyond tra-

ditional adaptivity, and unifies several previous formulations that partially address the

problem of proactivity. This theoretical perspective is supported by the algorithmic tools

presented in this thesis, which allow implementation in practical robotics application. We

hope that the formulations and solutions presented in this thesis serve as a methodical

recipe for robot autonomy in the future.
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Chapter 1

Introduction

Greater autonomy is being asked of robots than ever before. Applications such as cobots [1]

and self-driving cars [2] increasingly demand robots to ‘just work’ in dynamic and unknown

environments. This new generation of robots must be autonomous, and must operate

without intervention given only high-level commands, by interrogating its surroundings

with limited onboard sensors. We are interested in developing algorithmic tools that

enable such autonomy in robots that they seem to ‘just work’.

The current developments in robot autonomy have focused on enhancing adaptivity to

the environment. This has been achieved through the use of the separation principle,

which views perception and planning as separate and independent modules. In this view,

perception and planning may regard each other as black boxes. The approach is not

without merits. It has been beneficial thus far, as it permits fast, modular development

of perception and planning algorithms with acceptable system performance overall.

However, we assert that the adaptivity approach will fall short of the requirements of

modern applications, as it inherently produces behaviours that are merely reactive. Be-

cause planning treats perception as a black box, even non-myopic planners are rendered

myopic1, in the sense that it does not account for the evolution of uncertainty over time,

or the resolution thereof that results from future measurements. Similarly, as perception
1Here, our notion of ”myopic” extends the traditional ones. Although non-myopic planners are capable

of selecting actions that prove optimal in a long time horizon, they are still myopic because the changes in
environmental uncertainty are typically unaccounted for.

1
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is unaware of planning, the processing of sensory information cannot discern what infor-

mation in particular is relevant to the task at hand. These limitations are fundamental in

nature, and will be increasingly conspicuous in modern robotics applications.

This thesis introduces robotic prospection to address such limitations of the current paradigm.

Prospection is a concept from cognitive psychology [3] that refers to the prediction and

evaluation of future scenarios against hedonic motives in humans and animals. In other

words, prospection equips an agent with foresight on possible future environmental states

and outcomes. We argue that prospection is necessary for achieving the next frontier

of robot autonomy. The information afforded by foresight and future-oriented decision-

making will be of greater value as robots start to operate in increasingly dynamic and

uncertain environments,

This thesis presents a mathematical formulation and recipe for robotic prospection from

a Bayesian perspective, as well as a suite of algorithmic tools that enable prospection

in practical robotics application. We demonstrate the utility of prospection across many

application domains, including ocean monitoring, indoor navigation, semantic planning,

and multi-robot systems.

In the rest of this chapter, we establish the context and direction of this thesis, and

introduce relevant concepts. We first discuss what constitutes robot autonomy, and argue

that adaptivity is only a part of autonomy. We then review the current paradigm of

separation principle, and highlight its limitations in meeting the modern demands. To

address these limitations, we devise a recipe for robotic prospection based on insights

from cognitive psychology. Finally, we lay out the specific objectives of this thesis, identify

relevant applications, and briefly summarise the main contributions and results.

1.1 Autonomy Beyond Adaptivity

Significant progress has been made towards developing autonomous robots. Robots are

no longer constrained to safety barricades in factories and conveyor belts. They are now

pervasive across all economic sectors: producing resources and food [4] in the primary
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sector, manufacturing products [5] in the secondary, providing daily transport [2] in the

tertiary, and exploring the unknown [6] in the quaternary.

These developments have been guided by the vision of robot autonomy. An autonomous

robot ‘just works’, without human intervention. However, one could argue the previous

generation of automated robots also operate without human intervention to some degree.

After all, automation, by definition, implies that the robot operates automatically. What,

then, distinguishes autonomy from automation?

A popular distinction is that an autonomous robot can adapt under uncertainty, by sensing

the surrounding environment and deliberating its actions. In contrast, an automated

robot only knows how to act, without deliberation. It is therefore ‘blind’, and requires an

operator to prescribe precisely what needs to be done, and any changes in the environment

will lead to undesirable behaviours.

Let us consider some examples to scrutinise this definition. Manufacturing robots such as

the one shown in Fig. 1.1a are considered a prominent example of automated robots. The

practitioner precisely pre-programs their motion, and obviate any deviations by installing

them behind a fence. Although they have contributed significant cost and lead-time re-

duction [5], their prospects seem to have hit a limit. Electric car manufacturer Tesla, for

example, found that over-automation is costly, because some processes, such as the final

assembly of automobiles, are still better suited for humans than robots [11].

Collaborative robots, or cobots [1], is an emerging alternative paradigm that addresses the

shortcoming of automated manufacturing robots. A cobot refers to a robot that interacts

with a human worker to collaboratively complete tasks, as shown in Fig. 1.1b. Doing so

synergistically combines the strengths of robot and human. Cobots must necessarily be

autonomous, because safety barricades no longer exist, and they must account for humans

that work in proximity. Therefore, cobots can no longer rely on pre-programming and

control of the environment, and the algorithms for a cobot must account for changes and

uncertainties in the environment.

Similarly, a self-driving car [2] is a clear example of an autonomous system. These systems

encapsulate well the spirit of robots that ‘just work’: the passenger simply inputs the
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(a) [7] (b) [8]

(c) [9] (d) [10]

Automation Autonomy

Figure 1.1: The spectrum from automation (a, c) to autonomy (b, d).

destination, to which the car drives itself, while abiding by the traffic rules. These self-

driving cars are intended for everyday people, not those highly trained, and must therefore

require minimal or no pre-programming at all. To this end, Google Firefly [10] completely

removed the interface for human control, as can be seen in Fig. 1.1d.

A perhaps less obvious example is the case of aircraft autopilots such as the one shown

in Fig. 1.1c. One could argue aircraft autopilots are automated in the sense that they

are programmed to do specific tasks well, such as cruising and landing. Meanwhile, high-

level decisions are deferred to highly trained human pilots, who command the aircraft

through numerous controls shown in Fig. 1.1c. Moreover, the surrounding environment
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is judiciously controlled by the control tower operators, unlike self-driving cars. However,

one may argue that aircraft autopilots are autonomous in the sense that they adapt to the

surroundings, for example, the wind gust during flight.

The examples of existing systems illustrate that, under the adaptivity definition, automa-

tion and autonomy lie on a spectrum. A robot may be considered ‘more autonomous’ than

automated if it can adapt to a wider range of environments, or a greater variety of stimuli.

In fact, one may even argue that the factory robots shown in Fig. 1.1a are autonomous

in that they sense their joint angles and apply voltage accordingly. Consequently, in this

perspective, to improve robot autonomy is to incrementally enhance adaptivity.

A natural question to ask, then, is if we can eventually develop a robot that is truly

autonomous in the literal sense of ‘just working’, by considering all possible stimuli. We

believe this is not the case. While adaptivity is an important part of autonomy, much

greater capabilities are required to realise a truly autonomous robot. Adaptivity implies

reactivity; the system passively reacts to changes in the environment to produce actions.

Therefore, an adaptive robot’s operation remains dependent on external entities.

In contrast, we envision that an autonomous robot should be proactive. It must predict

ahead what the environment looks like or will look like, and identify what it needs to know

about the environment in order to achieve its objectives. For example, a truly autonomous

cobot would identify the intentions of its human co-worker without explicit specification.

Similarly, a self-driving car must predict the surrounding traffic to operate reliably. In the

rest of this chapter, we discuss how such proactivity can be implemented.

1.2 Rethinking the Separation Principle

The question of robot autonomy has been traditionally posed as that of improving adaptiv-

ity to uncertainty. To this end, a prominent approach is to use the separation principle [12],

an idea borrowed from control theory. In a narrow technical sense, the separation principle

states that, for linear systems, one can design an optimal system as a whole, by separately

designing 1) an optimal state estimator (i.e., a Kalman filter) that produces an estimate

of the system state from measurements; and 2) an optimal state-feedback controller (i.e.,
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Figure 1.2: A typical perception-action pipeline under the separation principle.

a linear-quadratic regulator) that computes optimal actions given the system state esti-

mate [12, 13]. In a broader sense in robotic software architecture, the separation principle

is extended as a basis for a dichotomy between perception and decision making modules,

as illustrated in Fig. 1.2. Sensor measurements from the environment are processed by a

perception module to produce an estimate of environment and the robot itself. The esti-

mated environment is then consumed by a planning module to produce the action. This

pattern is ubiquitous at all levels of robotic software, from low-level control and collision

avoidance to high-level task and motion planning. The widespread adoption of the sepa-

ration principle is perhaps owing to the encapsulation of perception and decision-making

algorithms in independent modules, which allows modular re-use of different algorithms

in different applications.

However, the separation principle appears to be the barrier hindering a higher level of

autonomy. In particular, the separation principle is starting to prove ineffective as robots

are starting to operate in increasingly uncertain and adverse environments. Most funda-

mentally, good decisions require good situational awareness of the environment. This, in

turn, demands good sensory data that contains useful information about the environment,

despite significant efforts and progress toward robustness by the perception research com-

munity. To gather good sensory data, the decision-making algorithm must account for the

quality of potential measurements that may result from the robot’s actions.

An autonomous being does not passively process information. Instead, it actively seeks

relevant information that helps achieve its task. However, the separation principle fails

to capture the quality of measurements and how the robot’s belief will be shaped from

its own actions. This is because, under the separation principle, the environmental belief

produced by a perception module must be treated as immutable by the planning module,

whereas in reality the belief will change as the robot gathers more measurements. Instead,
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the planning module simply employ conservatism in parts of the environment not yet

observed, such as assuming unobserved regions as being occupied with low probability. In

other words, the separation principle leads to reactive behaviours in the sense that the

perception module passively processes incoming sensor measurements, and the planning

module passively consumes the result of perception.

Such reactivity renders non-myopic decision-making algorithms myopic. If the environ-

ment is largely unknown, any non-myopic plan lacks relevance especially further along

the planning horizon, because the actions in distant future either derive from inaccurate

knowledge or rely on conservatism against uncertainty. Therefore, in practice, the per-

formance of sophisticated non-myopic planning algorithms is limited by environmental

uncertainty and the neglection of how the robot’s actions can reduce the environmental

uncertainty. To be truly non-myopic, then, requires consideration of what level of envi-

ronmental knowledge will be afforded by the system in the future, and hence the quality

of sensor data throughout.

The idea of quantifying and accounting for the effect of measurements is not new. A

formulation to this end is active perception [14, 15], which aims to select actions such that

the measurements gathered throughout operation provide the best situational awareness

of the environment. Actions are explicitly valued according to the quality of measurements

or viewpoints quantified in terms of geometric criteria such as coverage, or probabilistic

criteria such as Shannon information gain [16, 17]. Improvement in situational awareness

often leads to demonstrable improvement in task performance, for example, in locating

objects of interest [18]. Similarly, some formulations incorporate the effect of measurements

into non-myopic planning by explicitly simulating or enumerating possible measurements,

and keeping track of how the robot’s belief would evolve over time [19–22]. Solutions

based on this perspective often demonstrate greater resilience against uncertainty. These

developments support our claim that we must transcend the separation principle in order

to achieve a higher level of autonomy. Motivated by these recent developments, this thesis

aims to develop a principled algorithmic framework for predicting possible measurements

and evaluating their quality in non-myopic planning.
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1.3 Robotic Prospection

1.3.1 Prospection in Cognitive Psychology

We look to theories of intelligence in cognitive science for inspiration on the mechanism

for robot autonomy. Earlier theories of intelligence was dominated by the behaviourist

theory [23], which strongly resembles the separation principle. Behaviourists believed that

all actions are ‘responses’ to external ‘stimuli’, much like in the well known Pavlov’s dog

experiment [24]. In this setting, the role of intelligence is to convert ‘sensory signals’

into ‘action signals’. Reward-seeking behaviours are instilled through reinforcement and

punishment from past experiences. In other words, actions are habitual and reflexive,

which is analogous to the perception-action pipeline in the separation principle in the

sense that incoming sensory signals are simply processed by a ‘filter’ to produce action.

Much like the shortcoming of the separation principle in realising true autonomy beyond

reactivity, the behaviourist thesis is now abandoned because of the necessity of a higher

degree of cognition and foresight in explaining intelligence. For example, in [25] the authors

conditioned a rat to turn left for food, and subsequently disabled turning left by severing

its motor cortex. The behaviourist thesis would dictate the rat can no longer reach the

food. However, the rat instead turned 270◦ right. This implies that the rat foresaw turning

right would lead to food, beyond simple conditioning and reflexes to its sensory data at

present, as we would like to instill in robots.

The concept of prospection has been proposed to explain such future- and goal-oriented

behaviours [3]. Prospection refers to episodic foresight in humans and other animals. Just

as retrospection reviews past events to evaluate the current ones, prospection previews the

future [3, 26]. The main claim is that an important element of intelligence is the ability to

generate and evaluate possible future scenarios and outcomes based on the present state.

Past experiences are used to build a predictive model of what the environment looks like,

or what future measurements or outcomes are [26]. It has been shown that prospection is

critical in motivation and planning in non-myopic tasks with delayed rewards [27]. Further,

prospection explains exploratory behaviours because executing an action offers not only

reward, but also information from verifying hypothesised outcomes [26, 28]. In doing
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Figure 1.3: An architecture diagram for robotic prospection.

so, exploration is guided toward likely scenarios based on inductive biases [29], or what

information is actionable [30].

1.3.2 A Recipe for Robotic Prospection

We are interested in translating the insights from prospection from cognitive science to

algorithms and software for autonomous robots. A prospecting robot will predict and act

in a dynamic and uncertain environment, rather than simply adapting to it. To realise

such prospecting robots, the separation principle must be modified in two main ways.

R1 Prospective Perception: the perception module should predict possible environ-

mental states based on onboard sensor measurements.

R2 Prospective Planning: the planning module should evaluate the evolution of en-

vironmental uncertainty, and the improvement in situational awareness from taking a

sequence of actions.

These modifications are illustrated in Fig. 1.3.

To achieve R1, the perception algorithm must make provision for non-trivial prediction of

the environmental state based on onboard sensor measurements. Inductive bias is crucial

to this end, because we must reduce the scope of possible environments. This implies a

departure from the conventional conservatism of assuming the most general model possible.

In practice, R1 can be achieved by using prior knowledge about the environment, or

by learning a model based on data. Additionally, the model must allow online updates
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from online sensor measurements. In Ch. 7, we investigate what models are suitable for

incorporating both prior knowledge and online sensor measurements via case studies.

For R2, we must devise a method for incorporating the evolution of environmental un-

certainty into non-myopic planning, especially the effect of measurements. A possible

solution is to enumerate all possible measurements, and grow a search tree to track the

possible paths of how a robot’s belief might evolve. However, this necessitates an exhaus-

tive simulation. Instead, a more efficient alternative would be to abstract the simulated

measurements in a form that is relevant to the task at hand. This thesis will investi-

gate methods for incorporating the effects of measurement into planning without explicit

simulation of the sensor model.

1.3.3 Technical Approach

The rest of this thesis is dedicated to implementing the extensions R1 and R2 as an al-

gorithmic framework. We take a Bayesian perspective of general robotic decision making

problems, where the robot is assumed to perceive the environment from sensor measure-

ments via Bayesian inference. The problem of prospective perception is then to design

effective predictive priors that expedite Bayesian perception. We formulate the prospec-

tive planning problem as that of designing acquisition strategies reminiscent of Bayesian

optimisation [31].

Under this formulation, we first derive a universal prospective planning strategy called the

mutual information upper confidence bound (MI-UCB) using information-theoretic tools

in Ch. 4. MI-UCB states that the posterior expected reward is probabilistically upper

bounded by a weighted sum of information gain and prior expected reward. Therefore,

choosing actions that maximise MI-UCB approximately maximises the posterior expected

reward based on the principle of optimism under uncertainty. In Ch. 5, we demonstrate

both prospective perception and planning in tandem in the special problem instance of

environmental monitoring. Prospective perception is realised by augmenting Gaussian

process (GP) regression with a partial differential equation (PDE) from fluid dynamics.

The augmented GP is used with an existing Bayesian optimisation strategy called Gaussian
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process upper confidence bound (GP-UCB), which realises prospective planning. Chap-

ter 6 considers prospective planning with complex semantic tasks. To model such tasks in

uncertain environments, we derive a new specification language called random signal tem-

poral logic (RSTL) as an extension of signal temporal logic (STL). Prospective planning

is achieved with gradient-based planning in the special case of linear Gaussian targets.

Finally, Ch. 7 presents two case studies on predictive priors for prospective perception in

order to identify common desirable characteristics. In both cases, we incorporate physical

PDE constraints into GP regression.

1.4 Scope of this Thesis

1.4.1 Prospective Planning Under Environmental Uncertainty

The primary objective of this thesis is to develop a mathematical framework for prospective

planning and provide a general solution to this problem. In particular, we are interested in

handling environmental uncertainty, because the emerging applications of robotics place

far greater importance on environmental uncertainty than others. Based on a principled

framework, we analyse how the measurements generated by different actions provide vary-

ing degrees of improvement in situational awareness and task performance of the system

as a whole.

Doing so requires an understanding of the perception algorithm in use. We consider both

general and problem-specific settings. Chapter 4 presents a general algorithmic framework

for the former case, where we regard the perception algorithm as a generic Bayesian esti-

mator that produces an environmental belief given sensor measurements. The latter case

is considered in Chapters 5 and 6, where we consider representative perception problems

such as target tracking and environmental monitoring, and exploit the problem structure.
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1.4.2 Predictive Priors for Prospective Perception

Another important aspect of robotic prospection is to predict future scenarios based on

current knowledge. In this thesis, we focus on predicting the unseen parts of the envi-

ronment given limited sensor measurements. We emphasise that the representation of

the environment varies significantly with the environmental phenomenon being modelled.

Therefore, this thesis will focus on identifying general characteristics of perception algo-

rithms that are suitable for robotic prospection, through a set of case studies on practical

applications in Ch. 7.

1.4.3 Practical Applications of Prospective Planning

We consider subproblems and specific instances of prospective planning in practical robotics

applications. This section introduces and motivates these problem instances.

Autonomous Ocean Monitoring

Ocean monitoring offers tremendous economic value with various applications such as

oceanographic research [32, 33] and military surveillance [34]. Various autonomous plat-

forms are being introduced for such tasks, including autonomous underwater vehicles

(AUVs) [35], underwater gliders [36], and even passive platforms without actuation [37–39].

An important example of ocean monitoring task that can significantly benefit from au-

tonomous robots is source localisation, where the goal is to find the source of a substance

that is suspended an ambient flow field. There are various circumstances in which it

would be beneficial to track substances diffusing in water, such as chemical warfare pro-

tection [40]. and oil and gas source localisation [33]. One interesting recent development

is a sensor that can measure methane concentration and that is suitable for use with

underwater robots [33], as illustrated in Fig. 1.4. It is imperative to develop algorithms

that make use of such sensors for effective application over large spatial scales of tens to

hundreds of kilometres. This problem is a prominent instance of prospective planning,

where the robot must simultaneously seek the source of a plume while simultaneously im-

proving the estimate of its location. Chapter 5 solves this problem from the prospection

perspective.
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(a) (b)

Figure 1.4: Autonomous monitoring of oceanic plumes using underwater gliders. (a)
shows An underwater glider equipped with a laser methane sensor (red box). (b) shows
the methane concentration measurement over trajectory. Images reproduced from [33].

150.77 150.78 150.79 150.8 150.81 150.82
Lon.

-35.13

-35.125

-35.12

-35.115

-35.11

-35.105

-35.1

-35.095

-35.09

La
t.

Dead-reckoning
GPS
Drift

Figure 1.5: Result of a Slocum G3 underwater glider operation in Jervis Bay, Australia.
The dead-reckoned position (yellow solid line) differ substantially from global positioning
system (GPS) measurements on surface (orange circle) due to ambient current. Orange
dashed line shows the drift, which we use for estimating ocean current. Inset: trajectory

inside the white box.



14 Chapter 1. Introduction

Task drone

Targets

Scout drone

Figure 1.6: An example application for multi-drone surveillance. The task is to confirm
all targets (yellow) with the task drones (red). Scout drones (white) support the process
by sensing targets (yellow) from a distance, at low resolution, and cueing for possible

target presence.

In deploying such algorithms to the ocean, a crucial challenge is the effect of ambient

ocean current. Due to lack of GPS while submerged, ocean currents can cause considerable

position drift. In the case of underwater gliders, this disparity is typically in the order of

a few hundred metres, as illustrated in Fig. 1.5. This has a strong impact on the utility

of the gathered data, as most ocean monitoring tasks concern spatial phenomena [41].

Thus, there has been substantial work on navigation and planning in flow fields [42–

45]. However, most of this work assumes that the flow field is given a priori, e.g., from

an external database [46–48]. Unfortunately, the spatiotemporal resolution or accuracy

provided by most databases is insufficient for the purpose of navigation, as noted in [44].

Inspired by the idea of prospection, we are interested in estimating and predicting the

ocean currents using limited onboard sensor measurements. In particular, we examine

how the result of an action as measured by GPS can be used to estimate and predict the

ocean currents in Ch. 7.

Heterogeneous Multi-Robot Systems

Decentralised multi-robot systems are a prominent approach to ensuring reliability and ro-

bustness in unknown environments, because many inexpensive, possibly disposable robots
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can be composed into an effective team while ensuring redundancy. Heterogeneity al-

lows further improvements via functional specialisation, because different robots can be

equipped with different payloads to enhance the team’s overall capability. A subset of the

team could focus on gathering information, while the rest perform tasks.

In the later parts of Ch. 4, we define and study the scout–task robot architecture, a team

composition in which some robots (i.e., task robots) are equipped to perform a particular

task while others (i.e., scout robots) are equipped with sensors to rapidly acquire knowledge

about the environment. There are many compelling applications of this idea. For example,

it may be desirable to deploy disposable scout robots to ensure safe operation of a high-

value task robot, as in the case of a Mars rover-copter team [49–51]. We consider the

multi-drone surveillance application illustrated in Fig. 1.6, where a limited number of

scout robots equipped with long-range sensors cue task robots for the presence of targets.

Scout–task robot architecture can be seen as an extension of prospective planning that

side-steps the trade-off between exploration and reward seeking through heterogeneity.

Whereas the two objectives must be balanced in the single-robot setting, a scout–task

robot team permits simultaneous exploration and exploitation. The challenge is how to

guide exploration in a way that is most relevant to exploitation. Scout robots should

provide information about the environment that allows task robots to improve their plans

and thus find higher-quality solutions. Chapter 3 presents a general formulation and

solution of the scout-task coordination problem.

Semantic Task Planning in Unknown Environments

As robot autonomy continues to evolve, an imperative question is how untrained human

operators will interact and command the robots. Temporal logic is a promising tool for

robotics applications and explainable artificial intelligence (AI) in that it can be used to

represent rich, complex task objectives in the form of human-readable logical specifica-

tions. Robotic systems equipped with the capability to perform temporal logic synthesis

can implement powerful, intuitive command interfaces. We are interested in developing

temporal logic synthesis for practical, real-world autonomous systems.
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More widespread adoption of temporal logic in practical autonomous systems, in our view,

is limited by two main factors. First, the computational requirements of existing synthesis

methods are seen as prohibitive. The logical nature of temporal logic often leads to problem

formulations that are NP-hard. For example, the complexity of linear temporal logic (LTL)

synthesis grows doubly exponentially with the formula size [52], and STL synthesis requires

mixed integer linear programming (MILP) of which the complexity grows exponentially

with search horizon.

More importantly, the deterministic nature of STL limits reasoning over uncertain en-

vironments, because the logical predicates must evaluate to either true or false. This is

particularly detrimental in autonomous robots, which must operate in uncertain environ-

ments. Although it is possible to impose deterministic conditions on uncertain semantics

such as chance constraints [53] or bounds on Gaussian variance or entropy [54, 55], such

predicates limit the expressivity and often requires the operator to have an intimate un-

derstanding of the algorithms onboard the robot. Furthermore, reasoning over uncertainty

is crucial for prospection, as it allows evaluating how information gathering aids satisfying

task specification. Chapter 6 presents a probabilistic extension of STL called RSTL that

allows reasoning over uncertainty.

1.5 Contributions

The main contribution of this thesis is the introduction of prospection as a new mechanism

for robot autonomy. This novel perspective illuminates the importance of proactivity and

foresight, and unifies several previous formulations that partially address the issue. We

present a suite of algorithmic tools for realising robotic prospection. Each of the tools

solves the prospective planning problem in numerous settings. Chapter 4 considers a

generalised prospective planning problem and its extension in heterogeneous multi-robot

systems. Chapter 5 focuses on source localisation in environmental processes, a prominent

practical application of prospective planning. Chapter 6 extends formal methods-based

semantic planning to enable robotic prospection. Chapter 7 presents case studies on

predictive priors for robotic prospection, and investigates the properties of good models

for this purpose. More specifically, the contributions of this thesis are as follows:
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• Robotic prospection in uncertain environments: This thesis presents a mathe-

matical formulation of robotic prospection in uncertain environments. In particular, we

present several general and specialised formulations of prospective perception and plan-

ning under environmental uncertainty. The formulation is general and applies to most

modern robotic systems that perceive the environment using Bayesian principles. Based

on the general formulation, we consider specialised problem instances in order to exploit

the problem structure wherever available.

• Mutual information upper confidence bound (MI-UCB) for generalised prospec-

tive planning and simultaneous exploration and exploitation: We develop MI-UCB as a

general solution for prospective planning under environmental uncertainty. The MI-UCB

strategy allows selecting actions that approximately maximise the expected reward con-

ditioned on measurements, without actually taking the measurements. Further, we show

that MI-UCB can be scaled up to a scout-task team consisting of scout robots that gather

information and task robots that seek reward. The significance of MI-UCB is that it pro-

vides a methodical recipe for practical implementation of prospection in general Bayesian

robots, with a mild assumption that the environment is static.

• Physics-based predictive priors for robotic prospection: This thesis presents several

predictive priors for robotic prospection that employ inductive biases based on physical

knowledge. These models are derived by incorporating the governing PDE models into

GP regression. Through case studies, we show that these predictive priors significantly

improve planning performance in practical problem instances.

• Random signal temporal logic (RSTL) for uncertainty- and perception-aware se-

mantic planning: We present a probabilistic formulation of STL called RSTL, which is

designed to support synthesis of robot trajectories that satisfy specifications defined over

uncertain events in the environment. The quality of robot’s actions are evaluated in terms

of probability of success, rather than a binary measure of task compliance. The inclusion

of uncertain semantics is key to prospection, as it allows evaluating how the robot’s mea-

surements improve its situational awareness and hence the probability of mission success.

Concurrently, this novel probabilistic formulation leads to a ‘soft’ metric for evaluating

mission success, and hence allows efficient planning via gradient-based methods.
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1.6 Publications

The work presented in this thesis resulted in a total of 11 publications, consisting of two

journal articles, seven conference proceedings, and two refereed workshop papers. Of those,

C7 won the best student paper award, and W1 won the best poster award.

The contents of this thesis are largely based on these publications. Specifically, Ch. 3 is

based on C1. Chapter 4 is based on C1 and W1. Chapter 5 is based on C7. Chapter. 6

is based on C2. Chapter 7 is based on C5 and J1. Appendix A is based on C1 and W1.

Appendix B is based on C5. Appendix C is based on C2. Ki Myung Brian Lee is the

primary contributing author in these publications, except in J1. Other publications do

not directly appear in this thesis, but support and complement the results.

Journal Articles

J1 L. Wu, K. M. B. Lee, L. Liu, T. Vidal-Calleja. 2021. ‘Faithful Euclidean Distance

Field from Log-Gaussian Process Implicit Surfaces’. Robotics and Automation Letters, vol.

6, no. 2, pp. 2461-2468. [56].

J2 Y. Chen, L. Zhao, K. M. B. Lee, C. Yoo, S. Huang, and R. Fitch. 2020. ‘Broadcast

Your Weaknesses: Cooperative Active Pose-Graph SLAM for Multiple Robots’. Robotics

and Automation Letters, vol. 5, no. 2, pp. 2200-2207. [57].

Conference Papers

C1 K. M. B. Lee, F. H. Kong, R. Cannizzaro, J. L. Palmer, D. Johnson, C. Yoo, and R.

Fitch. 2021. ‘An Upper Confidence Bound for Simultaneous Exploration and Exploita-

tion in Heterogeneous Multi-Robot Systems’. International Conference on Robotics and

Automation (ICRA), Xi’an, China. [58].

C2 K. M. B. Lee, C. Yoo, and R. Fitch. 2021. ‘Signal Temporal Logic Synthesis as

Probabilistic Inference’. International Conference on Robotics and Automation (ICRA),

Xi’an, China. [59].
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C3 K. Y. C. To, K. M. B. Lee, C. Yoo, F. H. Kong, S. Anstee, and R. Fitch. 2021.

‘Estimation of Spatially Correlated Ocean Currents from Ensemble Forecasts and Online

Measurements’. International Conference on Robotics and Automation (ICRA), Xi’an,

China. [60].

C4 K. M. B. Lee, W. Martens, J. Khatkar, R. Fitch, and R. Mettu. 2020. ‘Efficient Up-

dates for Data Association with Mixture of Gaussian Processes’. International Conference

on Robotics and Automation (ICRA), Paris, France. [61].

C5 K. M. B. Lee, C. Yoo, B. Hollings, S. Anstee, S. Huang & R. Fitch. 2019. ‘On-

line Estimation of Ocean Currents from Sparse GPS Data’. International Conference on

Robotics and Automation (ICRA), Montreal, Canada. [62].

C6 K. Y. C. To, K. M. B. Lee, C. Yoo, S. Anstee & R. Fitch. 2019. ‘Streamlines

for Motion Planning in Underwater Currents’. International Conference on Robotics and

Automation (ICRA), Montreal, Canada. [63].

C7 K. M. B. Lee, J. J. H. Lee, C. Yoo, B. Hollings & R. Fitch. 2018. ‘Active Perception

for Plume Source Localisation with Underwater Gliders’. Australasian Conference on

Robotics and Automation (ACRA), Lincoln, New Zealand. Best Student Paper Award

Winner. [64].

Refereed Workshop Papers

W1 K. M. B. Lee, F. H. Kong, R. Cannizzaro, J. L. Palmer, D. Johnson, C. Yoo, and

R. Fitch. 2021 ‘Decentralised Intelligence, Surveillance, and Reconnaissance in Unknown

Environments with Heterogeneous Multi-Robot Systems” ICRA2021 Robot Swarms in the

Real World: From Design to Deployment, Best Poster Award, Xi’an, China. [65].

W2 G. D’urso, J. J. H. Lee, K. M. B. Lee, J. Shields, B. Leighton, O. Pizarro, C. Yoo,

R. Fitch ‘Field Trial on Ocean Estimation for Multi-Vessel Multi-Float-based Active Per-

ception’ ICRA2021 1st Advanced Marine Robotics TC Workshop: Active Perception. [39].
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1.7 Thesis Outline

The remainder of this thesis is organised as follows.

Chapter 2 surveys previous work related to the prospective planning problem.

Chapter 3 mathematically formulates robotic prospection from a Bayesian perspective.

Chapter 4 presents a general solution to the prospective planning problem using information-

theoretic tools. The solution is used to scale up the problem to simultaneous exploration

and exploitation in heterogeneous multi-robot systems.

Chapter 5 demonstrates prospection in both perception and planning in the special prob-

lem instance of environmental monitoring.

Chapter 6 presents a solution for prospective planning problem in complex semantic tasks.

Chapter 7 presents case studies on how predictive priors can significantly improve planning,

with examples in navigation in oceanic and indoor environments.

Chapter 8 concludes the thesis with important avenues for future work.



Chapter 2

Related Work

This chapter reviews previous work relevant to robotic prospection. An important premise

of prospection is that the environment and, hence, the outcomes are uncertain. We thus

give an outline of classes of uncertainty in robotics, and their representation in Sec. 2.1.

Then, we review general problem formulations and solution methods related to prospection

in Sec. 2.2. Subsequently, Sec. 2.3 reviews relevant work on specific problem instances

introduced in Ch. 1. Finally, Sec. 2.4 identifies limitations in previous work, and concludes

the chapter.

2.1 Classes of Uncertainty Relevant to Prospection

We first review common classes of uncertainty in robotics that prospection must consider.

We examine three major classes of uncertainty. First, we discuss how the environment,

for examples, obstacles and general scenes, are represented and updated in Sec. 2.1.1.

Then, we discuss how specific targets of interest, such as objects, are handled in Sec. 2.1.2.

Finally, Sec. 2.1.3 presents how uncertainty in robot dynamics is considered.

21
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2.1.1 Environment

A fundamental requirement for mobile robots is to avoid obstacles. If obstacles are un-

known a priori, they must be mapped using onboard sensors, with appropriate represen-

tation of uncertainty. The simplest method for obstacle mapping is to consider a discrete

grid on which the occupancy of obstacle is recorded [66]. The earlier work of [66, 67]

implemented exactly this idea, by fusing 2D laser scan data onto a discrete grid for map-

ping. The key insight is that the 2D laser scans can themselves be represented as a grid by

raycasting, which the authors refer to as inverse sensor model [67]. This can be augmented

with a confidence value to provide a richer description [68]. The mapping can be made

computationally efficient by the use of quad- or oc-tree data structures [69, 70], and can

be scaled to 3D [71]. By tracking the probability of obstacle occupancy, the planning

algorithms can plan conservative paths by computing and minimising the risk of collision

(see [72]).

Continuous approaches such as [73, 74] use Gaussian processes (GPs) [75] to represent the

occupancy. The spatial correlation between occupancy at different points are captured

using a kernel function, so that it is more likely to observe an occupied region near an-

other occupied region. This idea is developed further in [76] with a specialised kernel that

captures sharpness in obstacles, so that the learnt obstacles are more realistic. Addition-

ally, the uncertainty of the sensor location is considered in [77], and the authors of [78]

combine continuous mapping with insights from discrete mapping. Using the continuous

representation, collision-free paths can be planned with gradient descent [79].

Beyond occupancy, richer class of information such as distance to obstacle has proved useful

in navigation [80–82]. The information is stored as a signed distance field (SDF), which

records the distance to the closest obstacle. The SDF may be truncated to form a truncated

signed distance field (TSDF) [80, 81, 83], or computed exactly to form an Euclidean signed

distance field (ESDF) [82]. SDFs are useful because the planning algorithm can naturally

compute how close a path is to the obstacle, and can be used for topological analysis such

as computing the medial axis [84]. Further, SDFs are computationally advantageous in

constructing a realistic 3D mesh of the environment using sensor data [83].
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An even richer class of information is semantics which includes, for example, the category

of objects or rooms. Earlier work uses tools such as support vector machines (SVMs) [85]

or conditional random fields (CRFs) [86] to classify room category and build a semantic

topological map consisting of room categories. More recent work such as [87, 88] uses deep

learning-based classifiers to build a large-scale map with both object and room categories,

possibly using GPs for mapping [88]. It is also possible to learn the map directly using

generative models such as sum-product networks (SPNs) [89, 90] or generative adversarial

networks (GANs) [91]. Interestingly, semantic mapping algorithms can often predict the

unseen area using the semantics via Bayesian inference. Such capability is demonstrated

at the semantic level in [85, 86, 89], and at the metric level in [89–91].

2.1.2 Target Localisation

Another important class of environmental uncertainty is the state of targets of interest,

which robots may avoid [92], track [93, 94] or search for [93, 95]. This section reviews

representations of belief over targets and the methods for updating them.

The most common representation of target belief is to represent the target position as a

Gaussian distribution and use a Kalman filter [96]. The target’s dynamic model is assumed

to have constant velocity or acceleration. Nonlinear models can be used by linearising the

dynamic model (see [97, Ch. 6]).

If the target dynamics or the measurement model is too nonlinear, unscented transform

(UT) [98] or sequential Monte Carlo (SMC) methods [99] are used, where the belief is

propagated by using a set of particles. Alternatively, similarly to the case of obstacles,

target belief may be maintained using a discrete grid [100, 101] or a continuous func-

tion [102, 103]. For example, in [100], a grid-based filter is used to track the position of

a radio frequency (RF) tag, in order to employ a complex measurement model based on

received signal strength indicator (RSSI).

When there are multiple targets, the most immediate solution is to duplicate the filter

for each target, and associate the measurements to individual targets [104]. More recent

approaches such as the probability hypothesis density (PHD) filter [105, 106] alleviate the
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need for association using the random finite set (RFS) statistics [107]. A RFS represents

a finite set of unknown number of targets with unknown locations. A PHD filter is a

probabilistic filter for multiple targets with RFS statistics, just as a Kalman filter is for

a single target with Gaussian statistics. PHD filters can be implemented with a set of

particles based on the SMC method [106], or a mixture of Gaussian distributions each

maintained by a Kalman filter [105]. A hybrid method combining RFS filtering and discrete

grid mapping is presented in [108] to represent dynamic obstacles.

Similar to the case of obstacle mapping, a recent trend is to learn semantic correlation or

association between targets, such as objects that commonly occur together. This has been

demonstrated in household objects using Markov random fields (MRFs) [109] and particle

filtering augmented with a CRF [110, 111]. Learning such semantic correlation has been

shown to yield substantial improvements in object search [111, 112]

2.1.3 Robot Dynamics

An important class of uncertainty is the dynamics of the robot itself. In the simplest case,

the dynamics may be subject to parametric uncertainty, where, for example, the robot’s

inertial parameters are unknown. This is the system identification problem, which may

be solved with least squares [113–115], or Kalman filtering with augmented states [116,

117]. When the dynamics is completely unknown, non-parametric methods are used. One

non-parametric approach is to use a GP to learn the state-space model [118–120], using

expectation-maximisation (EM) or variational inference. Another approach is to estimate

the dynamics in terms of its Koopman operator, a ‘lifted’ representation of the dynamics in

an infinite-dimensional feature space [121]. With the dynamics identified, one may design

a controller with respect to the learnt model. This is referred to as certainty equivalent

control.

Adaptive control techniques [122–124] combine estimation and control of the unknown

dynamics with a prescribed convergence guarantee, for both parameteric [122] and non-

parameteric uncertainty [123, 124]. In particular, recent work on adaptive control and

system identification shows that certainty equivalent control may not be sufficient [125,

126], because it does not account for the uncertainty in the estimated dynamics, and
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it does not excite the system trajectory to improve the estimated dynamics. To this

end, optimal experimental design approaches generate trajectory that optimally excite

the system [127, 128] so that least squares- or Kalman filter-based estimators perform

well. Dual control approaches [129] directly design a controller that not only stabilises the

system, but also steers the trajectory toward optimal excitation [126, 130].

An important special case considered in this thesis is when a part of the robot’s dynamics

is known, but there is a significant unknown residual drift. Such is the case for vehicles op-

erating in oceanic currents or wind fields, such as underwater gliders [36, 62]. To estimate

residual drifts online, one approach is to consider the drift field as a low-frequency distur-

bance and then apply an extended Kalman filter (EKF) [131] or nonlinear observer [132] in

conjunction with acoustic sensors. However, modelling ocean currents or wind as a tem-

poral phenomenon clearly overlooks its spatial structure, and acoustic sensors typically

require a stationary reference (e.g., the seabed) [133].

An approach that does consider the spatial nature of drift is presented in [134], where the

authors estimate ocean current by taking the average velocity between global positioning

system (GPS) measurements. Due to its simplicity, the estimate is increasingly unreliable

as distance between diving and surfacing locations grows, and lacks predictive power.

An improvement on this concept is the ‘motion tomography’ algorithm [135, 136], which

reconstructs the local ocean current from GPS measurements using techniques from the

tomography literature. Similar techniques are developed in [137] and [44] with dense GPS

measurements and direct ocean current measurements respectively. Using such estimates

of the ocean current, approaches in [138, 139] plan efficient trajectories that exploit the

drift field. Both these approaches take multiple samples from a probabilistic belief rather

than a single most likely estimate, which shows the importance of considering the uncertain

nature of the estimate. Concepts similar to dual control are presented in [140, 141], where

the planning objective combines both navigation performance and system excitation.
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2.2 General Problem Formulations and Planning Methods

This section reviews previous formulations of planning under uncertainty. We first discuss

partially observable Markov decision process (POMDP) formulation and the corresponding

solution techniques in Sec. 2.2.1. Then, we review active perception and information

gathering formulations in Sec. 2.2.2. We then explore Bayesian optimisation formulation,

and the concept of exploration-exploitation trade-off in Sec. 2.2.3.

2.2.1 Partially Observable Markov Decision Processes

Markov decision processes (MDPs) and POMDPs are fundamental frameworks that model

sequential decision making. In this section, we present a brief overview of these concepts.

Following [142], in MDPs, a transition model p(st+1 | st, at) describes the ‘dynamics’ of

the robot, where at is the robot’s action at time t, and st and st+1 represent the robot’s

state at times t and t+ 1 respectively. The aim is to maximise a sum of expected reward∑
t E[R(st, at)] by either choosing a sequence of actions a1 . . . aT over a finite time horizon

T , or devising a ‘policy’ p(at+1 | st). POMDPs introduce an additional complication that

the states st are not directly observable. Instead, only the measurements yt are available,

which are generated according to a sensor model p(yt | st, at). This is useful for modelling

practical robotic systems, where the available information is limited to imperfect, noisy

sensor measurements or restricted knowledge about the environment. Although the aim is

still to maximise the sum of expected reward, the algorithm must account for the lack of

a direct measurement of st. The policy generated must depend on the measurement only,

and should follow the form of p(at+1 | yt).

Both MDPs and POMDPs are solved using value iteration based on Bellman’s principle of

optimality (see [143, Ch. 2]). In particular, POMDP instances are converted to MDPs over

the belief space, which necessitates the construction of a belief tree (see [19, 21, 144]). This

is because the combination of different measurements lead to different beliefs, even if they

share the same mean. For this reason, whereas MDPs can be solved in polynomial time

through value iteration, solving POMDPs exactly is generally PSPACE-hard [145]. Thus,

various POMDP solvers have been developed that approximate value iteration or speed up



Chapter 2. Related Work 27

the numerical operations involved in value iteration [20, 146]. Further, efficient algorithms

have been proposed by considering the special case of POMDP instances with Gaussian

belief space, such as maximum likelihood measurement assumption [22], feedback-based

information roadmap [21], belief roadmap [147], and reduced value iteration [16, 148, 149].

An emerging trend in POMDP solvers in general belief space is the use of algorithms rem-

iniscent of Monte Carlo tree search (MCTS). MCTS is a biased random search algorithm

that asymptotically finds the optimal sequence of actions. In the reinforcement learn-

ing community, MCTS has been popularly used for solving problems that are too large or

intractable. For example, AlphaGo [150] used MCTS in combination with a deep learning-

based value function estimator to play the game of Go. [19] proposes partially observable

Monte Carlo planning (POMCP), an MCTS-like algorithm for solving general POMDPs.

Actions are searched using the UCB on trees (UCT) heuristic [151], and possible measure-

ments are sampled according to the measurement model. This is later extended in [152],

where the authors learn the measurement model online. The determinised sparse par-

tially observable tree (DESPOT) algorithm [144] alleviates the computational complexity

of POMCP-like approaches [19] by considering a carefully selected subset of scenarios. In

[92], DESPOT is demonstrated in an autonomous navigation scenario comprising a large

crowd through combination with deep-learned value function similar to the technique used

in AlphaGo [150].

A variant of POMDP closely related to this work is the mixed observability Markov de-

cision process (MOMDP) [153]. In a MOMDP, a portion of the state variables st are

fully observable (e.g., robot’s state) whereas the rest (e.g., the environment) is partially

observable. The full observability of some state variables leads to considerable reduction

in the search space, thereby improving the computational speed. Meanwhile, it is still

required to construct a belief tree for all possible measurements of the partially observable

state variables.
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2.2.2 Active Perception and Information Gathering

Active perception approaches aim to overcome the challenge of perceptual uncertainty by

selecting the robot’s actions in a way that enhances its understanding of the environ-

ment [14, 15, 17]. In conventional passive perception systems, the perception algorithm

simply processes given sensory information. In contrast, an active perception system will

interactively choose what the sensor needs to see, closing the loop in the perception-action

cycle [154].

One possible approach to active perception is to use geometric heuristics such as coverage of

the environment. For instance, in [155], the authors propose to identify the frontiers of the

mapped portion of an indoor environment, and subsequently select the largest frontiers for

exploration. A similar simplification is as an orienteering problem [156], where the aim is to

choose a set of viewpoints such that the number of covered features is maximised. Another

simplification is the coverage formulation presented in [157], where the algorithm is given

an approximate 3D model of the environment to survey, and viewpoints are generated and

sequenced for maximal coverage.

More theoretically grounded approaches to active perception use concepts from informa-

tion theory. A typical formulation is to maximise the mutual information between the

measurements and the environment, or the information gain [158–160]. A fundamental

property is that information gain is monotone submodular [158, 161], which can be ex-

ploited to design efficient algorithms. Although maximising a monotone submodular func-

tion is NP-hard [161], many efficient algorithms can yield approximately optimal solutions

with known suboptimality bound, including recursive greedy [162], distributed sequential

greedy [163], rapidly exploring random trees (RRTs) [159], and MCTS [164, 165].

Using information-theoretic tools, the authors of [166] consider informative path planning

for weed classification in agriculture using uninhabited aerial vehicles (UAVs). Weed pres-

ence is represented using an occupancy grid, and a simple binary sensor model is used to

model the misclassification rate of a more sophisticated classifier. A similar approach is

presented in [167] for seafloor exploration, where the aim is to minimise the entropy of a

GP-based classifier over space. [168] models the surface of a ship hull as a combination of

2.5D height maps represented as GPs. The authors use an adaptive variant of Chekuri’s
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recursive greedy algorithm [162] to plan a sequence of viewpoints that minimise the to-

tal variance, and report better performance compared to standard coverage or random

viewpoints. In [169], an algorithmic framework is presented that enables active scientific

sample selection for an interplanetary rover. A Bayesian network is trained to encode

the scientific domain knowledge over different types of geological samples distributed over

space. Notably, these formulations do not require explicit sampling to evaluate the utility

of a possible measurement, unlike belief tree construction in POMDP solvers.

Meanwhile, more complicated formulations require sampling of possible measurements.

Active classification problems such as [170] and [171] sample the possible measurements,

and either compute the information gain or simulate the classifier to evaluate the view-

points. Similarly, the Monte Carlo active perception approach [165] uses an MCTS-like

search algorithm to maximise the information gain of a pointcloud-based GP classifier.

In particular, it is worth noting that occlusion is considered by sampling possible mea-

surements, and subsequently estimating the information gain during backpropagation. A

similar approach is presented in [172] for active object recognition with tactile inputs. The

sensor measurements are directly simulated, and MCTS is used to optimise for misclassi-

fication error directly. Approaches such as [18, 165] use GP to predict the unseen parts of

the environment, and optimise the information gain using variants of MCTS.

2.2.3 Bayesian Optimisation and Exploration-Exploitation Trade-Off

The simplest instance of decision making under uncertainty with measurements is the

multi-armed bandit (MAB) formulation [173–175]. In this formulation, a bandit is given a

number of slot machines that can be played. Each machine has a varying payoff rate that

is initially unknown to the bandit. The bandit’s goal is to adaptively choose the best slot

machine based on the payoff it observes.

The inherent challenge in the bandit problem is the exploration-exploitation trade-off. The

bandit must, at some point, decide the best slot machine based on the payoffs observed,

and exploit the knowledge to maximise the reward. Meanwhile, premature exploitation

may lead to misidentifying a suboptimal slot machine. The bandit must also explore.
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Numerous approaches have been proposed to solve the exploration-exploitation trade-off,

including ϵ-greedy [176], Boltzmann exploration or Thompson sampling [177, 178], and

principle of optimism under uncertainty [179]. Principle of optimism under uncertainty is

one of the most prominent of these approaches. It asserts that, based on the statistics of

the reward observed by the agent, the agent must act optimistically, and base its decision

on the highest reward probable. In other words, the agent must pick an action whose upper

confidence bound (UCB) of the reward is the highest. Here, UCB means the upper limit

attainable by the reward subject to a confidence constraint, as per confidence intervals in

statistics.

The principle of optimism under uncertainty is realised in multi-armed bandits by universal

UCT [151] and Kullback-Leibler UCB (KL-UCB) [180]. In UCT, the agent keeps track

of the mean of the reward and the number of times the action has been executed, with

which the UCB can be calculated. These UCBs are based on a very relaxed assumption

that the reward follows any distribution with a bounded range, and hence requires a large

number of samples for convergence. Hence, these approaches are parallel to ours, since it

is infeasible for a physical robot to gather sufficient data during its operation.

A more suitable class of algorithms for robotic applications in unknown environments is

Bayesian optimisation [31]. A prominent example is Gaussian process upper confidence

bound (GP-UCB) [181], which has been used in human–robot interaction [182] and envi-

ronmental monitoring [183]. In this setting, the goal is to find the maximum of a function

modelled as a GP. The agent cycles between gathering a new sample at a particular

location, and updating the belief represented as a GP (see Sec. 3.1.2). Given the GP

representation, the UCB is constructed as the sum of mean and a multiple of standard

deviation, just as confidence intervals in Gaussian distributions are calculated. Concur-

rently, the mean and standard deviation terms represent exploitation and exploration

respectively. Therefore, choosing points with higher UCB leads to convergence toward

the optimum. Further, because the GP prior is stronger than the ones in multi-armed

bandit formulations, the convergence is much faster.

At a more abstract level, exploration-exploitation trade-off has appeared as a heuristic in

various robotics problem instances. In [18, 166], the current predictive mean is exploited
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to focus exploratory efforts on specific areas of interest (e.g., high weed concentration or

likelihood of apple presence, resp.). On the other hand, the approaches in [57, 184] toggle

between exploratory (i.e., informative) and exploitative (i.e., task-oriented) actions using a

pre-defined threshold, such as mission risk or localisation error. In the case of unknown dy-

namics, a balance can be achieved between exploration for better dynamic modelling and

exploitation for minimising a control objective by considering a weighted sum of the infor-

mation gain on dynamics with the control objective [140, 141]. An analogous approach for

environmental uncertainty is presented in [185], which uses a weighted sum of information

gain on environment and path distance as an objective for indoor navigation. Meanwhile,

dual control approaches such as [126, 130] directly opt the for principle of optimism under

uncertainty. In a multi-robot setting, exploration and exploitation is distributed across a

heterogeneous team of a Mars rover and a helicopter in [49–51]. Although these approaches

offer a heuristic for the desired behaviour of balancing exploration and exploitation, the

performance implication is unclear, except in some dual control approaches [126, 130].

2.3 Applications

2.3.1 Monitoring Environmental Processes

An interesting problem instance considered in this thesis is environmental process mon-

itoring, where the goal is to find or track the source of a plume given concentration

measurements [186]. A traditional approach is to adopt an empirical parametric model

referred to as the Gaussian plume [40], and to fit the observations to the model. However,

using a parametric model may prove demanding in practical scenarios, because the data

can be sparse or subject to noise. Adaptive heuristic strategies such as waiting time [187]

and centroid tracking [188] have been proposed that demonstrate improvement in accuracy

with additional data. A more principled approach is the ‘infotaxi’ strategy [189], where

actions are chosen to maximise the information gain on the source location [190]. Although

the infotaxi strategy has a theoretically justified background, a substantial limitation is

that the information gain cannot be calculated in closed form for any flow fields more

complex than the constant one.
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2.3.2 Target Search and Localisation

An important application of robotics in uncertain environments is to find and possibly

track targets of interest in an unknown environment. Active search algorithms [191] aim to

detect the most targets within an environment, whereas active localisation algorithms [16]

aim to plan a path that reduces the localisation uncertainty for the detected targets.

Sensor measurements are fused into a probabilistic belief over target locations, represented

as an occupancy grid [101] or a random finite set [93, 94, 192], as reviewed in Sec. 2.1.2.

Subsequently, a plan is generated that either maximises the expected number or probability

of detection [95, 103, 193, 194], or minimises the uncertainty of target locations [93, 100,

195].

A traditional approach to the active search problem is to model the problem as a pursuit-

evasion game, where a number of ‘pursuers’ search an environment to capture all ‘evaders’ [191].

These approaches are typically formulated over a graph [95] or a grid map [193], and a

Bayesian filter is often used to update the belief over target presence. Notably, the authors

of [102] present a continuous, probabilistic approach to the target search problem, where

the aim is to find a continuous path that maximises the detection likelihood. The con-

tinuous framework also allows inter-agent collision avoidance through distributed gradient

descent [103].

Multi-robot systems have been considered with varying mobility [193, 196, 197] or sensing

capability [198, 199]. Because solving the pursuit-evasion game over a general graph is

NP-complete [191], centralised computation is often necessary to coordinate a multi-robot

system in this case. Nonetheless, pursuit evasion-based frameworks have been demon-

strated experimentally with multi-robot systems consisting of uninhabited ground vehicles

(UGVs) [95], UAVs [200], and both [193].

Active localisation approaches aim to reduce the uncertainty of target position. For ex-

ample, in [100], active localisation is demonstrated for a radio-tagged wildlife bird using a

UAV. The belief over target presence is estimated using a grid Kalman filter, and the UAV

plans the next best sensing location to reduce the entropy over target location. A closely

related problem is the active simultaneous localisation and mapping (SLAM) problem.

Assuming a Kalman filter-based SLAM system, the approaches in [21, 147] minimise the
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position uncertainty of a single robot. Similarly, the target [148] and map uncertainty [16]

can be minimised using a multi-robot system. Sparse pose graph-based approaches are

presented in [57, 201] that reduce both the localisation and map uncertainty for single and

multiple robots.

Recent work on active localisation based on multi-target tracking combine both search

and localisation objectives. One such approach is presented in [93] based on the PHD

filter [105]. The robots maximise information gain over both the number of targets and

their respective positions, driven by analytical gradient of the RFS mutual information.

The authors later extend to multi-robot systems by considering Voronoi partitioning, where

each robot is only responsible for targets within its own Voronoi cell [202]. A similar

approach is presented in [148] for a fixed number of linear Gaussian targets. A specialised

tree search algorithm is used for planning, with a prescribed performance bound. Search

is achieved by introducing fictitious targets.

2.3.3 Planning for Semantic Tasks

To model semantic tasks in uncertain environments, one approach is to model the robots’

dynamics as a discrete MDP, where each state is assigned semantic labels with corre-

sponding uncertainty [51, 203–205]. A natural task specification tool is linear temporal

logic (LTL), given which a product MDP [203] is constructed from an automaton and

a sequence of actions are found that maximize the probability of satisfaction. These

ideas can be extended to the continuous case by judiciously partitioning the environ-

ment [45, 206, 207]. However, we find that partitioning is computationally prohibitive

for online operations in uncertain environments, because any change in belief about the

environment would lead to invalidation and expensive recomputation. Moreover, the con-

struction of a product MDP is a computationally expensive operation, and improving its

scalability remains an open problem.

A more suitable tool for continuous signals is signal temporal logic (STL) [208]. Unlike in

LTL, satisfaction is determined using continuous-valued robustness [209]. Existing work

uses STL to specify a task defined over a set of deterministic classes of conditions on the

environment uncertainty, such as chance constraints or variance limits [53–55]. However,



34 Chapter 2. Related Work

since the robustness evaluation is not differentiable, a common approach is to synthesise

solutions using mixed integer linear programming (MILP), which scales exponentially with

the size of mission horizon [53, 210]. To address the inherent complexity, the robustness

metric is often approximated to smooth the search space and find a solution using gradient

ascent [211–213].

Most previous approaches on semantic planning under uncertainty do not take into ac-

count the effect of measurements on environmental uncertainty or task completion. A

notable exception is [184], where a threshold-based information gathering strategy is used

in conjunction with semantic task planning. In this approach, the robot continually com-

putes the risk of mission failure due to uncertainty. If the risk is high, the robot visits an

informative state. Another relevant work is [214], where the robot plans an informative

path for surveying an area, similar to those described in Sec. 2.2.2, while subject to a

temporal logic constraint.

2.4 Summary and Limitations

We reviewed relevant work on representations of environmental uncertainty, general prob-

lem formulations and specific problem instances considered in this thesis.

Environmental uncertainty can be largely categorised into that of obstacles, targets and

robot’s dynamics. To map obstacles, discrete and continuous representations of occupancy

have been developed, and more recent approaches store distance to target. Targets can

be estimated using classical filtering techniques, and in some cases, using discrete grids

or a continuous function. In both cases, incorporating semantic information learnt from

data allows ‘imagining’ the environment at varying scales. Parametric and nonparametric

uncertainties in robot dynamics can be estimated using various tools. Notably, a good

exciting trajectory is required to generate a good estimate.

General problem formulations include POMDPs, active perception, and Bayesian optimi-

sation. POMDP is a general description of planning under uncertainty with measurements,

and can be solved using approximate value iteration or tree search techniques. The effect
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of measurements are considered, albeit through exhaustive simulation. Active percep-

tion approaches aim to maximise the information gain on environment. Planning can be

achieved via submodular maximisation or tree search. In some cases, active perception

problems can be solved without exhaustive simulation of sensor measurements and per-

ception algorithms. Bayesian optimisation formulations consider maximising an a priori

unknown function. A powerful insight is exploration-exploitation trade-off, which also

seems to appear in problem-specific forms throughout robotics literature.

In this light, previous work on plume monitoring seems to lack diversity in possible plume

models. Most previous work only consider parametric models derived from a particular

solution of the governing physics. Target search and localisation seems divided between

maximising the number of targets found, or minimising the error in position estimates.

However, the two objectives seem to come together if both the quantity and location of

targets are estimated using RFS statistics. Semantic task planning under uncertainty has

been considered in discrete formulations, or in continuous formulations with deterministic

predicates on the probabilistic belief. There is a need to extend the class of probabilistic

predicates available in the continuous domain.

In the following, we summarise the findings from the literature review, and their relevance

to the remainder of this thesis.

1. Representation of uncertainty: there are diverse representation of environmental

uncertainty, with increasing complexity as semantic information is considered. Such

a prior knowledge can be used to improve planning performance. The rest of this

thesis will examine how to incorporate prior knowledge to improve planning.

2. Comparison of previous formulations: although we can pose the problem of

planning under uncertainty as a POMDP, the corresponding solution methods are

often computationally expensive because sensor measurements must be simulated.

On the other hand, active perception algorithms only consider optimal reconstruction

of the environment and does not allow for separate reward. However, they can often

side-step the need to simulate sensor measurements using information-theoretic tools.

Bayesian optimisation allows modelling an uncertain objective, and can be solved
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via exploration-exploitation trade-off. Our approach unifies these formulations, and

combines their advantages.

3. Plume monitoring: most previous methods consider a fixed, parametric model

of plume with a spatially invariant flow field. There is a need to consider more

realistic flow and concentration models. We derive a GP model that addresses this

shortcoming.

4. Target search and localisation: most previous work considers search and locali-

sation separately. Our approach combines the two objectives by explicitly modelling

uncertainty in target location and quantity.

5. Planning for semantic tasks: most previous formulations either consider a dis-

crete environment, or convert probabilistic belief into deterministic conditions through

a careful choice of predicates. Moreover, the effect of measurements are not explic-

itly considered. We present a natural probabilistic extension of STL that permits

uncertain semantics and the modelling of measurement effects.



Chapter 3

Background and Problem

Formulation

Based on the ideas presented in the previous chapters, this chapter mathematically formu-

lates robotic prospection from a Bayesian perspective. Firstly, in Sec. 3.1, we review back-

ground information on Bayesian approaches to robotic perception, with relevant example

tools considered throughout this thesis. Subsequently, Sec. 3.2 formalises prospection in

planning and perception. Finally, Sec. 3.3 compares prospection to previous formulations

of planning and decision making under uncertainty.

3.1 Background

We first review Bayesian approaches to robotic perception. Section 3.1.1 presents general

theory of Bayesian inference and relevant examples for robotic perception. Section 3.1.2

presents Gaussian process (GP), a Bayesian inference model used extensively through-

out this thesis. Given the Bayesian tools for perception, Sec. 3.1.3 presents information

theory, which allows quantifying environmental uncertainty and the utility of sensor mea-

surements.

37
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3.1.1 Bayesian Robotic Perception

Robotic perception problems are often formulated on the basis of Bayesian probability

theory. In this section, we give a brief overview of Bayesian estimation, with relevant

examples to robotics applications.

In the most basic sense, Bayesian estimation is formulated as follows. Suppose we are

given two random variables, A and B. Then, the two random variables are described by

a joint probability distribution P(A,B). The marginal probability of the two variables

are given by integrating, or summing over the other variable. In other words, P(A) =∫
P(A,B)dB and P(B) =

∫
P(A,B)dA respectively1. Bayesian estimation is concerned

with estimating the value of A given B, or, conversely, B given A. Such a notion is

described by the conditional probability distribution of A given B or B given A, which

is defined as P(A | B) = P(A,B)
P(B) or P(B | A) = P(A,B)

P(A) . Based on this definition, Bayes’

theorem is given by a simple algebraic manipulation:

Theorem 3.1 (Bayes’ Theorem [215, Sec. 6.6]). Given two random variables A and B,

the conditional distribution is given by:

P(A | B) =
P(B | A)P(A)

P(B)
. (3.1)

The significance of Bayes’ theorem (3.1) is that it breaks down the Bayesian estimation

problem into terms that can be modelled with engineering methods. In the robotics

context, we are typically interested in estimating an environmental parameter E given

some sensor measurements Y. Thus, we would like to compute P(E | Y). Substituting E

and Y into Theorem 3.1, we find that the relevant terms are P(Y | E), P(E) and P(Y ).

The term P(Y | E) is called the likelihood distribution, and describes the probability of

obtaining a particular measurement Y, had the environment been in a particular state

E. For this reason, it is also called the sensor model because it describes what the sensor

would output assuming some fixed environmental state. The term P(E) is called the prior

distribution, which describes our a priori knowledge about the environment. As we will

see later, the prior distribution not only concerns the particular state of the environment,
1For discrete random variables, the integral is replaced by a sum.
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but also the correlation between the components that comprise the environment. The term

P(Y) is called the measurement marginal. It is often simply treated as a normalising factor

and ignored from computation, since it does not depend on the environmental parameter

E. In this case, we make use of the fact that P(E | Y) ∝ P(Y | E)P (E), where ∝ means

‘proportional to’.

In what follows, we give examples of how Bayesian estimation is applied in robotics appli-

cations.

Example 3.1 (Occupancy Mapping). Robotic systems often build a map of the environ-

mental obstacles in order to avoid them. Occupancy grids [67] are the most fundamental

means of building such a map. In this case, the environmental parameter is a matrix of

Bernoulli variables Eij ∼ Bernoulli(pij), where Eij = 0 means cell i, j is free of obstacles

and 1 means occupied. Similarly, pij is the probability of occupancy.

The measurements are also represented in terms of occupancy, such that Yij = {0, 1}

means cell i, j being reported as free or occupied respectively. The sensor model P(Y | E)

is representative of a confusion matrix, giving the probabilities of true/false positives/neg-

atives. Bayesian update can then be performed directly using (3.1) with the measurement

marginal being computed as P(Y) = P(Y | E = 0)(1− pij) + P(Y | E = 1)pij .

Example 3.2 (Linear Gaussian Systems). Another common task of robotic systems is

to estimate the position of a moving target, and possibly track it. In this case, the most

common approach is to model the target as a multivariate Gaussian random variable, and

fuse the measurements using Bayesian updates. Suppose the target’s position and velocity

are described by a multivariate Gaussian random variable E ∼ N (µ,Σ) with mean µ and

covariance Σ. The robot makes measurements of the position of the target Y = CE + ϵY,

where C is the measurement matrix that yields position and ϵY ∼ N (0, σ2
ϵ I) is noise.

Then, the target state and the measurement comprise a joint Gaussian random variable:

P(E,Y) = N (

 µ

Cµ

 ,

 Σ ΣCT

CΣ CΣCT + σ2
ϵ I

). (3.2)
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For joint Gaussian random variables, the Bayesian update (3.1) is given in closed form

using linear algebraic operations [216]:

P(E | Y) = N (µ−ΣCT (CΣCT + σ2
ϵ I)

−1(Cµ−Y),Σ−ΣCT (CΣCT + σ2
ϵ I)

−1CΣ). (3.3)

3.1.2 Gaussian Processes (GPs)

GP regression [75] is a powerful Bayesian inference technique for modelling spatially cor-

related pheonomena. In this section, we give a brief description of GP regression, as it

will be used substantially throughout the thesis.

GP regression is an extension of multivariate Gaussian random variables to random func-

tions. Similar to Gaussian random variables, a GP f(x) ∼ GP(m(x), k(x, x′)) is charac-

terised by the mean function m(x) and covariance function k(x, x′):

E[f(x)] = m(x),

Cov(f(x), f(x′)) = k(x, x′).
(3.4)

For simplicity, we only conisder the zero-mean case with m(x) = 0.

Given a set of measurements yi = f(xi) + ϵi with white noise ϵi ∼ N (0, σ2
y), we would

like to predict the value of the function at a remote location f(x∗). Let Y be a vector

constructed by concatenating the measurements: [Y]i = yi. Based on the definition (3.4),

we can write Y and f(x∗) as a joint Gaussian random variable:

P(Y, f(x∗)) = N

0,

K + σ2
yI k∗

k∗T k∗∗

 , (3.5)

where k∗∗ = k(x∗, x∗) and k∗ ∈ RN and K ∈ RN×N are constructed as [k∗]i = k(xi, x∗),

and [K]ij = k(xi, xj).

Based on the joint random variable (3.5), the posterior distribution of f(x∗) given Y is

given analogously to the linear Guassian estimation case in Example 3.2:

P(f(x∗) | Y) = N (k∗T (K + σ2I)−1Y, k∗∗ − k∗T (K + σ2I)−1k∗). (3.6)
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An interesting extension considered throughout this thesis is when two functions described

by a GP are related through a linear operator, i.e., g(x) = Axf(x). The linear operator Ax

may be an integral or a partial derivative, or even a partial differential equation (PDE).

In this case, the covariance between the two functions f(x) and g(x) are given by applying

the linear operator to the covariance function [217]:

Cov[g(x), f(x)] = Axk(x, x′),

Cov[g(x), g(x)] = Axk(x, x′)Ax′ .
(3.7)

The merit of the operator perspective is that the covariance functions (3.7) can be com-

puted analytically given a choice of k(x, x′). Given the covariance relation (3.7), one can

predict the value of g(x) given noisy measurements of f(x), and vice versa.

3.1.3 Information Theory

We are interested in how the uncertainty in environmental knowledge affects the planning

performance. Information theory provides tools for quantifying uncertainty in general

distributions. This section defines few fundamental information-theoretic quantities that

are relevant to this thesis. For a more thorough treatise, the reader is directed to [218].

Firstly, environmental uncertainty can be quantified using the Shannon entropy H[E] [218,

219]:

H[E] = −
∫
P(E) logP(E)dE. (3.8)

Higher entropy means higher uncertainty. In a Bernoulli variable, a probability of 0.5

yields the highest entropy, because the outcome is the most uncertain.

The uncertainty in posterior belief over E after measurements Y is defined similarly, and

is referred to as conditional entropy or posterior entropy:

H[E | Y] = −
∫
P(E | Y) logP(E | Y)P(Y)dEdY. (3.9)
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We emphasise that the posterior entropy is the expected value of entropy after possible

measurements Y obtained by integrating over Y. In effect, conditional entropy is the ex-

pected entropy of posterior, and is thus independent of the observed value of measurement.

The quality of measurement Y can be quantified as the expected reduction in uncertainty,

which is referred to as information gain:

I[E;Y] = H[E]−H[E | Y]. (3.10)

It can be shown that information gain is symmetric, i.e., I[E;Y] = I[Y;E].

The difference between two beliefs P(E) and Q(E) can be quantified using the Kullback-

Leibler (KL) divergence:

DKL[P,Q] =
∫
P(E)(logP(E)− logQ(E))dE. (3.11)

A peculiar aspect of the KL divergence is that it is not symmetric, i.e., DKL[P,Q] ̸=

DKL[Q,P].

A fundamental property of entropy is that it is always nonnegative for any probability dis-

tribution, and conditioning always decreases entropy i.e., H[E] ≥ H[E | Y] ≥ 0. Therefore,

the mutual information is also always nonnegative, i.e., I[E;Y] ≥ 0. The KL divergence

is also always nonnegative, i.e., DKL[P,Q] ≥ 0.

Using Bayes’ theorem (3.1), we can derive identities on the mutual information (3.10) that

allow computation in various ways. These are listed below:

I[E;Y] = H[E,Y]−H[E]−H[Y]

= H[E]−H[E | Y]

= H[Y]−H[Y | E]

= EY[DKL[P(E | Y),P(E)]].

(3.12)
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Measured

Figure 3.1: A probabilistic graphical model illustrating the prospective planning prob-
lem. Directed edges indicate availability of a generative model. A robot operates in an
unknown environment E. The robot can visit different states, e.g., position, xt with con-
trol input ut, e.g., velocity,. Depending on the state xt, the robot makes measurements yt

about the environment E. The robot’s task is to maximise the reward R, which depends
on both the environment E and the trajectory X.

3.2 A Bayesian Formulation of Prospection

Using the tools presented in previous sections, we now formulate the problem of robotic

prospection. This formulation serves as a general model for autonomous planning under

environmental uncertainty considered in this thesis.

The prospective planning problem asks to find a sequence of control actions that maximise

a task reward in an unknown environment. In doing so, the robot must take into account

the effect of its actions on the quality of information revealed about the environment, and,

in turn, its ability to successfully complete the task.

More concretely, the problem is illustrated as a graphical model in Fig. 3.1. We are given

a robot, which operates in an unknown environment, denoted by E. E represents any

arbitrary environmental parameters, and can follow any arbitrary distribution. It may

represent, for example, the position of targets characterised by Gaussian distributions or

even a random finite set, or it can represent an occupancy grid of obstacles characterised

by a matrix of Bernoulli variables. We assume that the true environment is described by

a distribution P∗(E). This encompasses the special case of a deterministic ground truth,

where P∗(E) is Dirac delta.



44 Chapter 3. Background and Problem Formulation

We assume that the robot’s dynamics is given by a deterministic model in the form of:

xt+1 = f(xt, ut), (3.13)

where xt, ut are the state (e.g., position, pose) and the control action (e.g., velocity, thrust)

of the robot at time t.

Since E is unknown, it must be estimated from measurements. As the robot travels around,

it generates measurements yt that reveal information about E with a known sensor model:

yt ∼ P(yt | E, xt). (3.14)

Importantly, the measurements depend on the state of the robot xt. For brevity, we

omit the subscript to mean the set of states or measurements over time. I.e., we use

X = {x1, ..., xT }, and Y = {y1, ..., yT }.

The robot’s task is modelled with a deterministic reward function R(E,X), which depends

on not only the robots state X, but also the environmental parameter E. Our aim is to

choose control inputs u maximising reward:

max
U

R(E,X). (3.15)

We cannot solve (3.15) directly because E is a random variable whose value is unknown,

and, consequently, so is R(E,X). Therefore, it is necessary to first estimate E given the

sensor measurements yt. We assume that this is achieved with Bayesian estimation:

P(E | y1:t) = P(E)
t∏

τ=1

P(yτ | E, xτ )

P(yτ | xτ )
, (3.16)

where we used the conditional independence of each yt given E, and the fact that the

dynamics of xt is deterministic.

The first problem of prospection is to accurately predict the environment E given the

available measurements. Since the sensor model P(yt | E, xt) is given by the problem

instance (and hence, the marginal P(yt | xt)), the only available avenue for modification

is the prior P(E). As the ground truth P(E) is unknown, we would like to design a prior
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that works well for all possible ground truth. Thus, the general problem statement for

prospective perception is as follows:

Problem 3.1 (Prospective perception). For an arbitrary true environment distribution

P∗(E), design a predictive prior P(E) that maximises the rate of convergence of the

posterior distribution P(E | y1:t).

We stress that the solution of Problem 3.1 is not to guess a prior P(E) that is already

close to the ground truth P∗(E). Instead, the aim is to introduce an inductive bias so that

the correlations in the elements of E are accurately modelled, based on previous data or

domain knowledge. If, for example, E were multivariate Gaussian, we are more interested

in accurately modelling the covariance, rather than the mean. Existing examples of such

priors include GPs for scalar fields [220], which encode smoothness, and sum-product

networks (SPNs) for indoor environments [90], which models common structural patterns.

Since the class of P(E) varies between problem instances (e.g., Gaussians or occupancy

grid), we cannot have a universal prior for all possible classes of environments that appear

in robotics applications. We thus focus on deriving suitable predictive priors for a few select

case studies in Chapters. 5 and 7. This is achieved by incorporating physical knowledge

into GPs.

Given the posterior estimate of the environment P(E | y1:t), the remaining problem is

to choose a sequence of control actions that maximise the reward upon execution. In

addition to the reward function and the dynamic model as in a typical planning problem,

we must consider the sensor model as the measurements depend on the control actions. As

the value of reward is probabilistic due to environmental uncertainty, we aim to design an

acquisition strategy, by which we mean any mapping that yields control actions U given the

posterior P(E | y1:t), and the sensor and dynamic models. The general problem statement

is as follows:

Problem 3.2 (Prospective planning). Design an acquisition strategy for choosing the con-

trol actions U that maximise the reward R(E,X) over a time horizon T given the posterior

distribution over the environment P(E | y1:t), and the sensor (3.14) and dynamic (3.13)

models.
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A canonical example of an acquisition strategy is the expectimax approach [152], where

the control actions are chosen to maximise the expected value of reward. Although com-

monly used, expectimax is not the only, nor the best strategy available. For example, the

Gaussian process upper confidence bound (GP-UCB) strategy [181] uses a weighted sum

of mean and standard deviation of the predicted reward to choose the control actions,

which leads to better performance than expectimax.

In Ch. 4, we design a new strategy called mutual information upper confidence bound

(MI-UCB) that enables prospective planning in the most general problem instances. We

also use GP-UCB in Ch. 5 in conjunction with a predictive prior to realise prospection in

the special problem instance of environmental monitoring.

3.3 Comparison to Previous Formulations

In this section, we compare the prospective planning problem described in Sec. 3.2 to previ-

ous problem formulations for planning under uncertainty. We consider four representative

formulations, which are reactive planning, active perception, MOMDP, and Bayesian op-

timisation, which are illustrated in Fig. 3.2. Each of these formulations shares a common

element with prospective planning, while missing other important aspects. Prospective

planning offers a unifying view of these formulations.

Reactive planning approaches (Fig. 3.2a) are a special case of prospective planning where

the acquisition strategy is to take the environmental belief from the perception algorithm,

and disregard the effect of future measurements. A common approach is expectimax, where

one takes the expectation over the uncertain environment given current belief:

max
U

E[R(E,X)]. (3.17)

In this case, the consideration of uncertainty may produce safe, conservative behaviours.

However, reactive planning approaches treat the belief as immutable. Due to the exclusion

of effect of measurements, the resulting behaviours are suboptimal when executed because

the environmental belief changes with incoming measurements.
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Perception
algorithm

(a) Reactive planning

Measured

(b) Active perception [14]

Measured

(c) Bayesian Optimisation

Measured

(d) mixed observability Markov decision
process (MOMDP) [153]

Figure 3.2: Comparison of related formulations as graphical models. Reactive planning
formulations ignore the effect of measurements and regard environmental belief as im-
mutable. Active perception formulations do not consider rewards other than reconstruct-
ing the environment. Bayesian optimisation is a special case of prospective planning, with
no distinction between reward, environment and measurements. MOMDP formulations
explicitly consider additive rewards, and planning methods typically require full simula-

tion of perception algorithm.

An interesting formulation that does consider the effect of measurements is Bayesian op-

timisation, where the reward function R is unknown, and the agent tries to maximise it

based on direct observations of R. This can be regarded as a special case of the prospective

planning problem where the environmental parameter, reward and measurements are all

merged into the reward itself. Based on this correspondence, we can borrow useful insights

from the solution approaches for Bayesian optimisation problem.

Another special case that does consider the effect of measurements is MOMDP [153].

Given
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In this formulation, the robot’s state xt is observable, whereas the environment E is

partially observable through the measurements yt. The MOMDP formulation explicitly

adopts an acquisition strategy to maximise the expected reward of actions over possible

measurements and environment instances, similar to the expectimax approach (3.17). In

doing so, a technical difference to prospective planning is that the reward is explicitly

additive over states, i.e., R(E,X) =
∑

tR(E, xt). As the acqusition strategy explicitly

takes an expectation over possible measurements, the solution approaches for MOMDPs

typically require eneumerating all possible measurements yt, and simulating the perception

algorithm to construct a belief tree. Instead, prospective planning aims to design an

acquisition strategy similar to Bayesian optimisation techniques, thereby avoiding the

need for exhaustive sensor simulations.

The active perception formulation (Fig. 3.2b, [14, 15]) clearly differs from the prospective

planning problem because there is no notion of reward. Instead, the only objective is

to optimally reconstruct the environment E. Nonetheless, an encouraging observation is

that many active perception approaches can side-step the need to simulate all possible

measurements using information-theoretic tools described in Sec. 3.1.3.

3.4 Summary

In this chapter, we formulated the prospection problem based on a review of Bayesian

perception techniques. The prospection problem comprises two subproblems: prospective

perception and prospective planning. The prospective perception problem asks to find a

predictive prior that speeds up Bayesian perception through accurate modelling of correla-

tions in the environment. The prospective planning problem aims to design an acquisition

strategy for choosing a sequence of control actions that yield high reward given the pos-

terior environmental belief. This new formulation unifies several previous formulations

including reactive planning, Bayesian optimisation, MOMDPs, and active perception.

In the remainder of this thesis, we solve the prospective perception and planning problems

in a variety of settings. Chapter 4 offers a general solution strategy for the prospective
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planning problem in isolation. Chapter 5 presents an example of both prospective percep-

tion and planning in the special problem instance of environmental monitoring. Chapter 6

considers prospective planning in complex semantic tasks. Chapter 7 presents case stud-

ies on predictive priors for prospective perception to identify what constitutes a good

predictive prior.





Chapter 4

Generalised Prospective Planning

with MI-UCB

The previous chapter mathematically formulated prospection in the context of perception

and planning. In this chapter, we first focus on the prospective planning problem, and

present the mutual information upper confidence bound (MI-UCB) as a general solution

strategy.

MI-UCB states that, given a problem instance, the posterior expected reward after mea-

surements of the environment is upper bounded by the weighted sum of information gain

(i.e., exploration) and prior expectation of reward with respect to current environmen-

tal knowledge (i.e., exploitation). It significantly generalises the notion of exploration-

exploitation trade-off from standard Bayesian optimisation on restricted class of objective

functions to sequential decision-making agents with arbitrary environmental representa-

tions and task rewards. Inspired by active perception techniques, MI-UCB alleviates the

requirement of exhaustive simulation of sensor measurements as in partially observable

Markov decision processes (POMDPs) using information-theoretic tools, thereby decou-

pling exploratory and exploitative incentives. This allows scaling prospective planning

to even heterogeneous multi-robot systems consisting of scout and task robots, so that

the team can perform exploration and exploitation simultaneously and side-step the usual

trade-off.

51
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We first state and prove the MI-UCB in Sec. 4.1, and discuss its implication for online

decision making under uncertainty. Then, in Sec. 4.2, we demonstrate how MI-UCB allows

simultaneous exploration and exploitation in a scout-task team, and present a decentralised

coordination algorithm for that purpose. Using these theoretical and algorithmic develop-

ments, Sec. 4.3 presents an application in a multi-drone surveillance scenario. Section 4.4

evaluates the performance characteristics of MI-UCB in the multi-drone surveillance sce-

nario with photorealistic simulations, and Sec. 4.5 concludes the chapter. Appendix A

describes practical implementation details in doing so.

This chapter builds upon our prior publications [58, 65]. In particular, the proof of MI-

UCB in Sec. 4.1, and its application in a scout-task team was introduced in [58]. The

multi-drone surveillance application presented in Secs. 4.3 and 4.4, as well as Appendix A,

appeared in [58] and [65].

4.1 The Mutual Information Upper Confidence Bound

4.1.1 Statement and Proof

In this section, we derive MI-UCB by analysing the effect of improvement in environmental

knowledge on the estimated reward. MI-UCB is motivated by attempting to maximise the

posterior reward function:

max
U

E[R(E,X) | Y]. (4.1)

Although (4.1) incorporates the effect of measurements, we cannot solve it directly because

the measurements Y remain random variables whose values have not been observed. One

may take an expectation over possible measurements similar to POMDP approaches [19,

144], but the fundamental challenge of enumerating possible measurements over possible

trajectories remains.

Our finding is that we can solve (4.1) using the principle of optimism under uncer-

tainty [179], by deriving an upper confidence bound (UCB) on the posterior expected

reward. The exact statement is:



Chapter 4. Generalised Prospective Planning with MI-UCB 53

Theorem 4.1 (MI-UCB). Suppose R(E,X) is a measurable function of E for all X. With

probability ≥ 1− δ:

E[R(E,X) | Y] ≤ 1

δ
I[Y;E] + logE[expR(E,X))]. (4.2)

The most important merit of the MI-UCB (4.2) is that the posterior expected reward on

the right-hand side (RHS) may be calculated before taking the measurements, whereas

the left-hand side (LHS) of (4.2) cannot be calculated beforehand. Further, the UCB on

the RHS of (4.2) decouples exploration and exploitation because it separates information

gain and reward into a weighted sum. The term logE[expR(E,X))] is called the cumulant

generating function (CGF) [221, Sec. 2.5] in probability theory. for which analytical

expressions are often available.

Theorem 4.1 is proved by evaluating how the change from P(E) to P(E | Y) affects the

estimated reward. This is captured by the seminal result of Donsker & Varadarhan on

change of measure [222–224]:

Lemma 4.2 (Change of measure inequality [222]). Given any measurable function ϕ :

X → R and any two distributions P and Q on X, we have:

E
x∼P

[ϕ(x)] ≤ DKL[P,Q] + log E
x∼Q

[expϕ(x)], (4.3)

where DKL denotes the Kullback-Leibler (KL) divergence.

We also need the following fundamental inequality due to Markov, which provides a uni-

versal upper confidence bound for nonnegative random variables:

Lemma 4.3 (Markov’s inequality). Given any nonnegative random variable X and a

nonnegative real number δ > 0, we have, with probability ≥ 1− δ:

X ≤ 1

δ
E[X]. (4.4)

We are now ready to prove Theorem 4.1.
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Proof of Theorem 4.1. Consider the change of measure inequality (Lemma 4.2, [222]) be-

tween P(E | Y) and P(E):

E[R(E,X) | Y] ≤ DKL[P(E | Y),P(E)] + logE[expR(E,X)]. (4.5)

The KL divergence term is still a random variable, as the measurements have not yet been

taken. Applying Markov’s inequality over Y to the KL divergence term:

E[R(E,X) | Y] ≤ 1

δ
E [DKL[P(E | Y),P(E)]] + logE[expR(E,X)]. (4.6)

Now, the claimed result is obtained by noting that the first term in the RHS is equivalent

to mutual information using the fundamental identity (3.12).

4.1.2 Prospective Planning via Submodular Maximisation

Based on the UCB in Theorem 4.1, the online planning framework cycles between updating

the belief P(E) and maximising the MI-UCB (4.7). In other words, we consider the

following surrogate problem:

U∗ = argmax
U

I[E;Y] + δ logE expR(E,X). (4.7)

The principle of optimism under uncertainty [179] asserts that maximising the UCB (4.7)

maximises the posterior reward function (4.1) when evaluated in hindsight. This is referred

to as regret minimisation. In this context, [225, Lemma 3] establishes bounded regret for a

similar strategy to the surrogate problem (4.7), based on a UCB that only holds in specific

cases, such as tabular or linear Markov decision processes (MDPs). On the contrary, MI-

UCB (4.2) is universally true, and applies to all decision-making problems of the form

described in Ch. 3.

Maximising the MI-UCB (4.7) is much more computationally favourable than maximising

the posterior reward function (4.1) or the expected value thereof. In addition to allowing

computation without explicit sampling, MI-UCB can be maximised by using algorithms

designed for active perception and information gathering discussed in Sec. 2.2.2, such
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as recursive greedy [163], rapidly exploring random tree (RRT) [159], or Monte Carlo

tree search (MCTS) [164, 165], without loss of their performance guarantees. This is

because in many problem instances as we characterise below, the MI-UCB exhibits the

property of monotone submodularity [161], which is the underlying assumption in active

perception and information gathering algorithms. Recall that a set function f : 2X → R

is monotone submodular, iff for all A ⊂ B ⊂ 2X , it holds that f(A ∪ {x}) − f(A)) ≥

f(B ∪ {x})− f(B) [161]. The problem instances where MI-UCB is monotone submodular

are given as follows.

Corollary 4.4. Suppose:

1. the reward function is monotone submodular; or

2. the reward function is additive over states, i.e., R(E,X) =
∑

tR(E, xt), and is

nonnegative R(E, xt) ≥ 0.

Then, the MI-UCB (4.7) is monotone submodular.

Proof. Since the measurements yt are conditionally independent given the environment

E and states xt, the information gain term I[E;Y] is monotone submodular using [158,

Proposition 1]. The claim then follows from noting that the linear combination of two

monotone submodular functions remains monotone submodular, and that additive func-

tions are a special case of monotone submodular functions.

4.1.3 Online Planning

MCTS [226] is an increasingly popular planning approach for solving general reward max-

imisation problems such as submodular rewards in (4.7), owing to its asymptotic optimality

and anytime property. We give a brief description of MCTS to illustrate how MI-UCB

maximisation (4.7) can be solved with MCTS.

Each iteration of MCTS typically consists of four steps, which are depicted in Fig. 4.1.

First, the selection step recursively chooses promising child nodes based on the sampling

results so far. The selection step tries to account for future potential of each node, and tries

to balance between exploration and exploitation of the search space. This is achieved using
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Figure 4.1: An iteration of MCTS. Originally appeared in [226]

selection policies such as UCB on trees (UCT) [151] and exponential weight algorithm for

exploration and exploitation (EXP3) [177]. Although such selection policies also make use

of UCBs, they are independent of the MI-UCB. In this case, the MI-UCB is just a reward

function from the perspective of MCTS.

Subsequently, a new node is expanded, and a simulated rollout is carried out. A rollout

refers to a full simulation of the problem of interest until termination under a ‘default’

action policy, which can be set as random, or biased towards greedy behaviour depending

on the problem domain. The rollout returns the corresponding value of MI-UCB, which

is backpropagated along the tree nodes. This means that MCTS can find the optimal

plan that maximises the MI-UCB, as long as the value of MI-UCB can be computed for

a given plan. Therefore, the algorithm designer simply needs to focus on evaluating the

information gain and CGF terms in the MI-UCB (4.7) given a single path.

4.2 Simultaneous Exploration and Exploitation in a Scout-

Task Team

An exciting benefit of MI-UCB is that exploration (i.e., the information gain term) and

exploitation (i.e., the prior reward CGF term) are decoupled in the sense that they are

simply summed together. An implication of such decoupling is that we can distribute

exploration and exploitation across a functionally specialised team of robots. A subset of
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Robot 

Scout 
Task

Robot 

Figure 4.2: A probabilistic graphical model illustrating the scout–task coordination
problem. Dashed connections depend on team composition. The control inputs ut gener-
ates trajectory xt. A task robot (red) gains a reward R, depending on the trajectory xt

and the latent environment E. A scout robot (green) gathers measurements yt at each
state xt, revealing information about E.

the team could focus on gathering information, while the rest perform tasks. This section

discusses how MI-UCB can be used to coordinate the behaviour of such heterogeneous

teams that operate in unknown environments.

4.2.1 Scout-Task Coordination Problem

We define a team composition in which some robots (i.e., task robots) are equipped to

perform a particular task whereas others (i.e., scout robots) are equipped with sensors

to rapidly acquire knowledge about the environment as the scout–task robot architecture.

Scout robots gathers measurements about the environment, while the task robots gain re-

ward, as illustrated in Fig. 4.2. More concretely, we formulate the scout–task coordination

problem by extending the formulation in Ch. 3 as follows.

Consider a team of N mobile robots, the dynamics of which are described by:

xr
t+1 = f(xr

t , ur
t ), (4.8)

where xr
t and ur

t are the state and control action of robot r at time t, respectively. The

superscript 1 ≤ r ≤ N denotes the robot, the subscript t denotes time, and ur
t is the

control action applied to robot r at time t.

Each robot may belong to a set of scout robots S ⊂ [1, ..., N ] or to a set of task robots

T ⊂ [1, ..., N ]. S and T are not necessarily disjoint, and thus a robot may belong to
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Figure 4.3: An illustration of Decentralised Monte Carlo tree search (Dec-MCTS).
Originally appeared in [164]

both sets (i.e., it may be a scout-and-task robot). For brevity, we omit the subscript to

mean the set of states over time, and omit the superscript to mean the set of states over

different robots. That is, we use Xr = {xr
1, ..., xr

T }, Xt = {x1
t , ..., xN

t }. The omission of

both subscript and superscript indicates the set of all robots’ trajectories over time: i.e.,

X = {X1, ...,XN} = {X1, ...,XT }. We also replace the superscript with S and T to mean

the set of poses or trajectories of robots that belong to the set of scout or task robots,

respectively. Hence, XT = {Xi | i ∈ T }.

As in the general prospective planning problem, the robots operate in an unknown envi-

ronment, denoted by E, which can follow any distribution. If r ∈ S, robot r generates

measurements yr
t that reveal information about E:

yr
t ∼ P(yr

t | xr
t , E). (4.9)

If r ∈ T , robot r is equipped with a payload to perform an intended task, which depends

on the environment E. We thus model the task completion by a deterministic reward

function R(E,XT ). In doing so, the scout-only robots r ∈ S \T do not contribute directly

to the reward function. Instead, they allow the task and scout-and-task robots r ∈ T to

more effectively complete their tasks by gathering information on E.
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4.2.2 Decentralised Coordination

Using the MI-UCB, we can obtain the surrogate objective as:

U∗ = argmax
U

1

δ
I[YS ;E] + logE[expR(E,XT )]. (4.10)

This surrogate objective decouples scout-only and task-only robots because the respective

objective terms appear as a weighted sum. As with the single-robot case in Sec. 4.1.2,

for problem instances with additive or submodular rewards, MI-UCB can be maximised

using multi-robot information gathering algorithms such as distributed sequential greedy

assignment [227] or Dec-MCTS [164].

We use Dec-MCTS [164] to maximise the MI-UCB across the team. Dec-MCTS [164] is an

asynchronous and decentralised extension of MCTS that inherits the desirable properties of

MCTS while allowing scalable extension to multi-robot systems. We give a brief overview

of Dec-MCTS to illustrate how the MI-UCB (4.10) can be maximised in a decentralised

manner.

An iteration of Dec-MCTS consists of the following. First, each robot plans for their own

actions through some iterations of a standard single-robot MCTS as described in Sec. 4.1.2

and Fig. 4.1. Then, the distribution over next possible action is compressed into a sparse

representation appropriate for communication, based on product distribution approxima-

tion. Once the distribution is communicated, each robot ‘simulates’ other robots’ action

by sampling from the received probability distribution. Based on the sampled actions of

other robots, each robot plans to maximise the MI-UCB (4.10) given other robots’ ac-

tions. The probability distribution over action is further optimised through a variational

method [228]. An illustration of these steps is shown in Fig. 4.3. As with the single-robot

case in Sec. 4.1.2, the only requirement for implementation is that the MI-UCB can be

evaluated given the robot team’s trajectories.
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4.3 Application to Multi-Drone Surveillance

We apply MI-UCB to a multi-drone surveillance problem. Targets of unknown quantity are

at unknown locations, and the task is to maximise the number of targets that are visually

confirmed with a short-range sensor, which thus serves as the task payload. Task drones

are therefore equipped with short-range sensors only, and scout drones are equipped with

long-range sensors that can rapidly provide knowledge about the environment. Drones

may also be dual-equipped (i.e., they may be scout-and-task drones). Our focus will be

on evaluating the information gain and prior CGF terms in the MI-UCB (4.10) so that

Dec-MCTS can maximise it.

4.3.1 Reward Function

We represent the targets in a 2D occupancy grid, so that the environment is a Boolean

matrix E ∈ BNX×NY , where NX and NY are the number of cells in the X and Y directions,

respectively. E(i, j) = 1 means cell (i, j) is occupied by a target, and 0 indicates otherwise.

We model the visibility of cell (i, j) from robot r at time t as a Bernoulli random variable

vrt (i, j; xr
t ) ∈ B:

vrt (i, j; xr
t ) ∼ P(vrt (i, j) | xr

t ). (4.11)

The visibility over a trajectory Xr is a disjunction vr(i, j;Xr) = ∨tvrt (i, j; xr
t ). Similarly

for the visibility over different robots, v(i, j;X) = ∨rvr(i, j;Xr). Robot r ∈ T captures

a target at cell (i, j) iff the target exists and is within a given radius. The reward is the

number of targets captured:

R(E,XT ) =
∑
ij

v(i, j;XT )E(i, j). (4.12)

The reward function (4.12) is a sum of Bernoulli random variables, which is in turn a

Poisson binomial random variable. Its CGF is given by:

logE[expR(E,XT )] =
∑
ij

log(1 + P(d(i, j;XT ))(e− 1)), (4.13)
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where P(d(i, j;XT )) = P(v(i, j;XT ))P(E(i, j)).

4.3.2 Belief Update and Information Gain

We use a simple grid-based filter for decentralised data fusion of E. With the standard

independence assumption, the belief over target occupancy decomposes as:

P(E) =
∏
i,j

P(E(i, j)). (4.14)

When a target is visible, a scout robot can measure its position. We adopt the inverse

sensor model [67] approach to discretise the measurements and represent the measurement

as a matrix of Bernoulli random variables:

P(yr
t (i, j) | E(i, j), xr

t ) = vrt (i, j; xr
t )P(yr

t (i, j) | E(i, j)). (4.15)

The sensor model P(yr
t (i, j) | E(i, j)) is given by a confusion matrix between true and

measured occupancy.

Each scout robot communicates its position and detected target locations (if any) at regular

intervals. Measurements are fused with Bayes’ rule:

P(E(i, j) | yr
1:t(i, j)) =

(
(1− vrt (i, j; xr

t ))

+vrt (i, j; xr
t )
P(yr

t (i, j) | E(i, j), yr
1:t−1(i, j))

P(yr
t (i, j) | yr

1:t−1(i, j))

)
×P(E(i, j) | yr

1:t−1(i, j)).

(4.16)

Information gain may be calculated as follows. For each cell, the information gain is:

I[E(i, j); yr
t (i, j))] = H(P(yr

t (i, j)))− EE(i,j)H(P(yr
t (i, j) | E(i, j))), (4.17)

where H(p) = p log p+ (1− p) log(1− p) is binary entropy and the measurement marginal

is computed as P(yr
t (i, j)) = EE(i,j) P(yr

t (i, j) | E(i, j)). The information gain is summed
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over the visible region:

I[E;YS ] =
∑
ij

v(i, j;XS)I(E(i, j); yr
t (i, j)). (4.18)

4.4 Results

We analyse the performance of MI-UCB in the context of the multi-drone surveillance

problem. We first compare its performance in terms of ground-truth reward with that of

a conventional expectimax approach in a simplified simulation. We then demonstrate the

framework in two realistic simulated environments to examine the behaviour of MI-UCB

in practical applications.

4.4.1 Comparison with Expectimax

We first compare the MI-UCB approach with the standard expectimax approach (3.17).

Here, expectimax refers to maximising the expected reward, given the current belief at

each stage, without accounting for information gain.

The comparison is set in the environment shown in Fig. 4.4a, where known obstacles and

unknown targets are shown in black and yellow, respectively. The task is to capture targets

within a given radius representing task payloads’ field of effect. A scout robot may also

reveal knowledge about the environment using longer-range sensors.

There are two robots: red and green. To make the comparison fair, the red robot is a

scout-and-task robot, whereas the green robot is task-only. Thus, both are task robots,

so the expectimax approach can generate a meaningful plan for each. If one robot were

to be scout-only, the expectimax approach would not generate a plan for it, unlike MI-

UCB. Intuitively, the expectimax approach simply reacts to the updates in belief, whereas

MI-UCB proactively accounts for information gain associated with the belief update.

The robots start with a uniform prior, and the robots’ trajectory length for each time

step is fixed at 2.5 m. Each robot updates its environment belief after executing one time
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step and re-plans its trajectory. We measure the performance in terms of the fraction of

targets captured. In each simulation, the MI-UCB or the expectimax approach generates

the robots’ trajectories, while the environment is randomised by placing three targets in

different locations for each run.

Combined results for ten runs of each simulation, provided in Fig. 4.4b, demonstrate that

the MI-UCB approach outperforms the expectimax approach by ∼ 50% in terms of the

median fraction of targets captured. Examples that illustrate this trend are shown in

Figs. 4.4c and 4.4d. In Fig. 4.4c, it may be observed that MI-UCB causes the red scout-

and-task robot to (in effect) ‘delegate’ the task of capturing the target in the centre of

the environment to the green task-only drone, unlike the expectimax approach used to

generate the results shown in Fig. 4.4d. This is because information gain is considered

in MI-UCB. Therefore, the team can maximise its utility if the red robot continues to

explore and gather information, while the green robot captures the target. In contrast,

in the expectimax approach, there is no incentive to do so. Thus, the red scout-and-task

robot, being closer, captures the target in the centre. The higher variance of the MI-UCB

approach is attributed to its optimism and shows that the upper limit of attainable reward

is increased by valuing exploration.

We verify this trend in comparative performance with a four-robot experiment. As before,

all drones are task drones, but the number of scout-and-task drones is varied from one to

four. We fix the number of time steps and evaluate the reward per unit distance travelled

by the drones in five runs for each approach, with five randomly placed targets.

As illustrated in Fig. 4.5, when there are fewer scout drones, MI-UCB provides greater per-

formance benefit compared with expectimax. However, when all drones are scout-and-task

drones, the approaches yield identical rewards. This implies that MI-UCB makes better

use of limited information to provide consistent reward values with varying team compo-

sition. The performance improvement plateaus with two scouts, as shown in Fig. 4.5b,

motivating the question of what team composition is optimal for a given problem.
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4.4.2 Practical Demonstrations

Due to COVID-19 restrictions, which were enacted partway through the project, only

a limited number of field trials were performed at the Royal Australian Air Force base

in Point Cook, Victoria, as described in Appendix A. After restrictions were in place,

experiments were performed in photorealistic simulation instead. A detailed description

of the simulation framework is provided in Appendix A. To examine practical efficacy, we

perturb the problem from the ideal by varying the belief over time, introducing obstacles

with simultaneous mapping, and emulating sensor failure.

We implement the multi-drone surveillance framework in high-performance software based

on the Robot Operating System [229]. Each drone builds its own map using Real-Time

Appearance-Based Mapping [230]. The maps are combined to achieve inter-robot localisa-

tion and decentralised mapping. The grid-based filter for target estimation is implemented

by use of the grid_map library [231]. A detailed description of the software framework is

given in Appendix A.

The quadrotor simulation is based on the PX4 software-in-the-loop simulation [232], cou-

pled with a modified version of the Modular Open Robotics Simulation Engine [233]. The

simulation is distributed over two desktop computers, each equipped with an NVIDIA

RTX2060 graphics card. The computations for each drone are executed in real-time on an

NVIDIA Jetson AGX single-board computer.

We first demonstrate the framework with four drones in the environment pictured in

Fig. 4.6a. It is based on an urban area near Roma Street Station, Brisbane, Australia.

The 3D model is generated by use of high-altitude photogrammetry and contains a mixture

of open and cluttered terrain.

Figs. 4.7a–4.7c show the target occupancy belief held by the green scout-and-task drone,

as well as its intent. A target is identified at the start of the operation and is captured

by the blue task drone (Fig. 4.7b). The yellow task drone captures another target in the

upper-middle portion of the environment, where a parking lot is located. This behaviour

is consistent with the simplified simulation, in which, when cued by a scout drone, a task

drone undertakes the task instead, distributing the exploration–exploitation workload.
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Throughout the mission, the blue and yellow (task) drones focus on smaller, geometrically

complex areas (around the tall building and the parking lot), whereas the red and green

scout-and-task drones jointly cover a larger area above the train tracks. This demonstrates

MI-UCB’s inheritance from and generalisation of heterogeneous information gathering.

The difference between the two approaches is that MI-UCB results in all targets eventually

being captured, thus completing the intended task. A heterogeneous information-gathering

approach would accept the long-range sensor’s coverage of a target and not require that a

short-range sensor capture it. On the other hand, our decision-making under uncertainty

approach allows the practitioner to specify that it is imperative to capture targets with a

task drone. This provides great flexibility, as one can easily replace the task of capturing

targets with, e.g., payload delivery or casualty evacuation, each of which requires proximity.

We also demonstrate the framework in the environment shown in Fig. 4.6b, which is

modelled on Royal Australian Air Force Base, Point Cook, Australia. The environment

is prepared by modelling the buildings from a satellite image. It creates an interesting

scenario for low-altitude operations because of the alleyways and corners that limit full

visibility. In this simulation, we emulate perception failures to examine their effect on the

performance of the algorithm. For example, in Fig. 4.7d, the blue scout-and-task drone

has capturing a target, but that is not reported to the other drones, whereas in Fig. 4.7e,

the same occurs with the yellow drone. Despite these unmodelled failures, the algorithm

adapts to the change and successfully captures all targets eventually, as illustrated in

Fig. 4.7f.

4.5 Summary

This chapter presented MI-UCB as a general solution to the prospective planning prob-

lem. MI-UCB applies to any Bayesian agent that tries to maximise a reward based on an

environmental belief maintained using sensor measurements. It states that one can ap-

proximately maximise the posterior reward after measurement, without knowing the value

of measurements ahead, by selecting actions that yield the highest weighted sum of infor-

mation gain and prior expected reward. MI-UCB is significantly more computationally
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favourable than previous approaches for planning under uncertainty such as POMDPs,

and can be solved via algorithms for active perception and information gathering in a

wide class of problems. The decoupling of exploration and exploitation in MI-UCB al-

lows distributing exploration and exploitation across a heterogeneous multi-robot team

consisting of scout and task robots. The combination of MI-UCB and Dec-MCTS allows

coordinating such a scout–task robot team to undertake exploration and exploitation si-

multaneously and synergistically. The experiments demonstrate that using MI-UCB leads

to increased task performance in hindsight compared to the expectimax approach, where

one simply maximises the expected reward given the current belief. These results indi-

cate that prospective planning offers substantial performance improvements in practical

problem instances where the surrounding environment is unknown.

The example presented in this chapter considers only a simple reward function, and also

lacks prospective perception because only a simple prior is used. In the remainder of this

thesis, we will examine prospective planning in tandem with predictive priors, and with

more complex tasks.
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(a) Ground truth (b) Percentage of targets captured.

(c) MI-UCB (d) Expectimax

Figure 4.4: Comparison between MI-UCB and expectimax in a simplified scenario. A
robot captures a target (yellow) if it is within the circle representing its task payloads’ field
of effect (red stars for a scout-and-task robot equipped with task payload and long-range
sensor and green squares for a task-only robot, equipped only with task payload). The
colourmap shows the belief on target occupancy (increasing from blue to yellow), while
black areas indicate obstacles and yellow-green areas are yet to be explored. MI-UCB (c)
outperforms expectimax (d), because the former accounts for the fact that the task-only

robot can provide greater information gain than the green robot.
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(a) Reward per unit distance (b) Performance improvement

Figure 4.5: Comparison of reward between MI-UCB and Expectimax. (a) Reward
obtained with MI-UCB (green squares) and expectimax (red circles) as a function of
the number of scouts in the four-robot scenario. (b) MI-UCB provides the most benefit
compared with expectimax with two scouts, an improvement of 134%, and converges to

equivalence with expectimax when four scouts are used.

(a) Brisbane (b) Point Cook

Figure 4.6: Environments used for high-fidelity simulation
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(a) (b) (c)

(d) (e) (f)

Figure 4.7: High-fidelity simulation results for decentralised intelligence, surveillance
and reconnaissance (ISR). Time runs horizontally. Red spheres are targets yet to be
captured, and green are those captured. The grey colourmap shows the robot’s belief

over target occupancy.





Chapter 5

Prospection for Environmental

Process Monitoring

In the previous chapter, we considered prospective planning in isolation in the most general

setting. This chapter demonstrates a complete example of prospection in both planning

and perception, restricting our attention to the special case of environmental monitoring.

We consider an underwater robot surveying an environmental process under the influence

of an ambient flow field, such as chlorophyll in water [234], as well as temperature [235]

and methane [236] in air and water. The aim is for the robot to reach the source of the

environmental activity.

To realise prospective perception, we develop the advection-diffusion Gaussian process

(ADGP), a specialised Gaussian process (GP) model that incorporates the advection-

diffusion partial differential equation (PDE) on chemical plumes from fluid dynamics.

ADGP allows the estimation of source location and strength given sparse measurements of

the environmental process. In this problem instance, prospective planning can be achieved

with Bayesian optimisation discussed in Sec. 2.2.3. We combine a Bayesian optimisation

strategy called Gaussian process upper confidence bound (GP-UCB) with a trim-based

fast marching tree (FMT)∗ planner [42, 237] for use in underwater gliders.

Empirical results on simulated and experimental datasets illustrate that the use of both

prospective perception and planning leads to efficient behaviour, such as prioritising cross-

71
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or downstream regions if the current concentration measurement (i.e. the source strength

of upstream region) is low. We attribute such an efficient behaviour to the combination

of prospective planning and perception. Prospective planning with Bayesian optimisation

permits reaching the source through balance of exploration and exploitation. Prospective

perception with ADGP expedites the process through the use of inductive bias afforded

by physical knowledge. Theoretical analysis also shows that the robot should reach the

source efficiently with high probability. This chapter builds upon our prior publication

in [64].

5.1 Problem Formulation

We consider a marine robot under the influence of a fully known, spatially varying flow

field w(x). The dynamics of such a robot is given in the form of:

ẋ(t) = f(x(t), u(t)) + w(x(t), t), (5.1)

where f represents the mechanical dynamics of the glider relative to water, x(t) is the state

at time t, u(t) is the control vector, and w(x, t) is the ocean current at the glider’s position.

The robot surveys an environmental process, such as a methane plume [33], quantified in

terms of its concentration c(x, t). Concentration is driven by a source strength function

s(x, t), which describes the amount of chemical substance entering or leaving the environ-

ment at position x and time t. The robot measures the concentration c(x, t) at a point

using an onboard sensor, modelled as:

y = c(x, t) + ϵ, (5.2)

where ϵ ∼ N (0, σ2
y) is white Gaussian noise with known variance σ2

y . We will denote a set

of observations as O = {xi, yi}Ni=1.

Given the source strength function, we model the source location by:

xs = argmax
x∈E

s(x, t), (5.3)
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where E is the operating environment of the glider.

As the source strength over the environment is initially unknown, the overall problem ne-

cessitates two main sub-problems: estimation and planning. The estimation problem is to

predict the source strength over the environment given sparse measurements of the plume

concentration. To do so, we exploit the physical relationship between source strength and

plume concentration, namely, the advection-diffusion PDE.

Based on the uncertain estimate of the source strength, the planning problem is to find

a sequence of control actions that is energy-optimal and leads the glider to the source in

a probabilistic sense. Because the true source strength is unknown, and the estimation of

the source strength also depends on the actions taken, the planner must also consider the

uncertainty of the estimated source strength, and encourage increase in information gain.

5.2 Advection-Diffusion Gaussian Process for Environmen-

tal Processes

The estimation part of the framework infers the source location by predicting the source

strength given concentration measurements. It consists of two components: concentration

estimation and source localisation.

5.2.1 Advection-Diffusion PDE

Advection-diffusion equation [238] describes the relation between source and plume under

the influence of a flow field. Advection refers to the transport of plume particles by the

flow field, and diffusion describes the natural dispersion in still water.

The addition or removal of a plume substance into the environment is modelled by a scalar

function s(x, t) , referred to as the source strength. The source strength s(x, t) is positive

if the substance is being introduced into the environment at position x and time t, and

negative if being removed. Given the source strength, s(x, t), the advection-diffusion PDE
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Figure 5.1: Examples of 2D advection-diffusion process
Examples of 2D advection-diffusion process, showing different components of the

advection-diffusion PDE. The advection-dominant example (a) shows greater alignment
between the directions of the flow and the plume than the diffusion-dominant one (b).

describes the evolution of concentration of a substance, c(x, t) as:

∂c(x, t)
∂t

+ w(x, t) · ∇c(x, t) = D∆2c(x, t) + s(x, t), (5.4)

where ∇ is the gradient operator, ∆2 is the Laplacian operator, and w is the flow field.

D is the diffusion coefficient, which, for example, ranges between D = 1 − 5m2/s for the

methane-water system depending on the temperature [236].

Assuming s(x, t) and w(x, t) are time invariant, the plume process reaches its steady-state.

Based on (5.4), the steady-state equation is obtained by setting the time derivative to

zero:

w(x) · ∇c(x) = D∆2c(x) + s(x). (5.5)

where we omit time as c(x) = limt→∞ c(x, t) with a slight abuse of notation.

If w(x) does not vary across space, it is well-known that (5.5) admits the so-called Gaussian

plume solution [238]. However, it is practically impossible to find an analytical solution

in the general case when w(x) varies spatially, and (5.5) needs to be solved numerically

using, e.g., a finite difference method. Examples of such a solution in 2D are shown in
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Fig. 5.1. In Fig. 5.1, it can be seen that the chemical substance is not only advected along

the flow, but also diffused in directions against the flow.

5.2.2 Advection-Diffusion Gaussian Process

The plume concentration at point x modelled as a GP is denoted as c(x). Formally,

c(x) ∼ GP (0, kcc(x, x′)), (5.6)

where kcc(x, x′) is a kernel function. Since the fundamental solution to (5.5) is given

by a Gaussian plume [238], we use the squared exponential (SE) kernel to model the

concentration function:

kcc(x, x′) = kSE(x, x′) ≡ σ2
c exp

(
−γ

2
∥x− x′∥2

)
, (5.7)

where σ2
c is a self-variance and γ is the length-scale parameter. Using the covariance

function (5.7), the concentration at an arbitrary query point c(x⋆) can be predicted using

the standard equation (3.6).

Although we can now estimate concentration at an arbitrary point, our main interest is

in estimating the source term, given concentration measurements. To do so, we exploit

the advection-diffusion PDE (5.5) to estimate the source strength. This can be achieved

by considering the PDE as an operator on the vector space of functions, as is considered

in [239] for other PDEs. The advection-diffusion PDE (5.5) can also be written as an

operator:

Dx ≡ (w(x) · ∇ −D∆2). (5.8)

By rearranging (5.5), we find that s(x) = Dxc(x). In other words, we can recover the

source strength from the concentration by applying Dx on c(x). Using this property of Dx,

it can be shown that the kernel function for s(x) and the cross-covariance functions are
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given by applying Dx as:

ksc(x, x′) = Cov(s(x), c(x′)) = Dxkcc(x, x′), (5.9)

kcs(x, x′) = Cov(c(x), s(x′)) = kcc(x, x′)Dx′ , (5.10)

kss(x, x′) = Cov(s(x), s(x′)) = Dxkcc(x, x′)Dx′ . (5.11)

A significant merit of using the cross-covariance kernels in (5.9), (5.10) and (5.11) is that

they can be calculated analytically for a given choice of kernel kcc(x, x′) for concentration.

For instance, assuming SE kernel (5.7), the cross-covariance function is given by:

ksc(x, x′) = (D(2γ − γ2∥x∥2) + γw(x)T (x− x′))kSE(x, x′). (5.12)

Using the cross-covariance kernel functions (5.9), (5.10) and (5.11), we can rewrite the

concentration c(x) and source strength s(x) as a joint GP [239]:

c(x)
s(x)

 ∼ GP

0,

kcc(x, x′) kcs(x, x′)

ksc(x, x′) kss(x, x′)

 . (5.13)

Using (5.13), we get a joint random variable for observation yO and the source strength s(x∗)

at a query point x∗ denoted as

 yO

s(x∗)

 ∼ N
0,

Kcc + σ2
yI k∗

cs

k∗T
sc k∗∗ss

 . (5.14)

where k∗∗ss ∈ R, k∗
sc ∈ RN , and k∗

cs ∈ RN are given by:

k∗∗ss = kss(x∗, x∗),

k∗
sc =

[
ksc(x∗, x1) . . . ksc(x∗, xN )

]T
,

k∗
cs =

[
kcs(x1, x∗) . . . kcs(xN , x∗)

]T
.
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The source strength at the query point can then be predicted as the conditional distribu-

tion [75]:

P(s(x∗) | O) = N (µs(x∗), σ2
s(x∗)), (5.15)

where the mean and variance are

µs(x∗) = k∗T
sc (Kcc + σ2

yI)
−1yO,

σ2
s(x∗) = k∗∗ss − k∗T

sc (Kcc + σ2
yI)

−1k∗
cs.

(5.16)

5.3 Prospective Planning for Source Seeking

5.3.1 GP-UCB Strategy

Given the GP model of source strength in Sec. 5.2, we find control vectors for finding the

plume source. We first find the best next sampling waypoint given the source strength

estimate, and find a continuous energy-optimal trajectory under the influence of ocean

currents.

Although the knowledge about the source is updated with concentration measurements

over time, the knowledge is still uncertain. This leads to the exploration-exploitation

dilemma. When there is not enough information about the source, the glider must explore

the environment before it exploits the information.

In this section, we present a solution to the exploration-exploitation dilemma with GP-

UCB. The GP-UCB strategy adopts the principle of optimism under uncertainty, and picks

the points that maximise the greatest value possible given the measurements so far (i.e.,

the upper confidence bound from posterior distribution). Another interpretation of the

GP-UCB is as a weighted sum of predictive mean and standard deviation, which achieves

a balance between exploitation (i.e., the mean) and the exploration (i.e., the variance).

In our case, we pick the next waypoint xk+1 as the one that maximises the following

acquisition function:

xk+1 = argmax
x∈N (xk)

[µs(x) + βkσs(x)], (5.17)
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Algorithm 1 GP-UCB-based Hierarchical Planner
1: GP ← InitialiseEmptyGP()
2: while Glider is operational do
3: if Previous dive xk completed then
4: Update GP with measurements Ok.
5: Nk ← GetNeighbours(xk)
6: for x ∈ Nk do
7: {µs(x), σs(x)2} ← GP.PredictSource(x)
8: repeat
9: xk+1 ← argmaxx∈Nk

µs(x) + βkσs(x)
10: until xk+1 is feasible
11: u(t) ← FMT∗(xk, xk+1).

whereN (xk) is a finite set of potential next sampling locations, µs and σs are the predictive

mean and standard deviation of the source term obtained from the GP after k samples,

and βk is a tuning parameter that balances between exploration and exploitation. As we

will see later, βk plays an important role in guaranteeing finding the source. Because we

consider a finite set of potential next sampling location, the acquisition function can be

maximised by direct sampling.

The pseudocode for GP-UCB-based hierarchical planner is shown in Alg. 1. We first sample

the candidate dive locations in line 5, and predict the source strength at these candidate

points (line 7). We pick the next dive location as the one that is feasible and maximises

the GP-UCB acquisition function. After we find the best next sampling waypoint xk+1,

we find the glider controls from xk using the FMT∗ algorithm [42, 237].

5.3.2 Regret Analysis

In an active perception task where a decision is made based on uncertain information,

the decision may not be correct. The performance loss due to making a wrong decision is

referred to as regret [181].

In the context of our source localisation task, regret is the disparity between sampling

locations xk+1 and the true source location xs in terms of source strength. We consider
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the average regret R̄k over the sequence of waypoints up to the k-th time step:

R̄k =
1

k

k∑
i=1

s(xs)− s(xi). (5.18)

The average regret approaches zero asymptotically with high probability. Intuitively, this

is because the GP describes the correlation between observations and source strength, and

ensures that the estimated source strength converges to the ground truth. In other words,

using the source GP to estimate the source location becomes increasingly accurate. The

convergence behaviour is satisfied with a particular choice of tuning parameter βk. The

following theorem provides the formal statement.

Theorem 5.1. Pick δ ∈ (0, 1), and let

βk = 2 log(π
2k2Ns

6δ
), (5.19)

where Ns is the size of potential sampling locations. Suppose we pick the sampling locations

as per (5.17). Then,

lim
k→∞

R̄k = 0, (5.20)

holds with probability greater than 1− δ.

Proof. The theorem is an application of Theorems 1 and 5 in [181]. By Theorems 1

and 5 in [181], we have R̄k ≤
√

C1βkγk
k for C1 a constant with probability > 1 − δ, and

γk = O(log(k)3). In other words, ∃k0 ∈ N and ∃M1 > 0 such that ∀k > k0, we have

γk < M log(k)3. Thus, it holds that R̄k ≤ M2

√
βk log k3

k . Because
√

βk log k3

k → 0 as

k →∞, the claim holds by the sandwich theorem [240, Lemma 2.2.1]

Intuitively, by Theorem 5.1, the GP-UCB-based planner guarantees that the true source

location is eventually visited.
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5.4 Realisation in Underwater Gliders

Underwater gliders [36] are an excellent platform for large-scale survey of environmen-

tal processes owing to their unparalleled power efficiency, which allows extended mission

duration and coverage of wide areas. The efficiency is attributed to their dynamics; un-

derwater gliders generate forward velocity by using the lift and drag forces from the diving

and surfacing motions. These forces are dependent on the glider’s angle of attack, which

is controlled by a ballast mass and a buoyancy pump.

Although such a dynamics allows power efficient operation, the nonlinear coupling between

the vertical and forward motions makes it difficult to directly solve for a sequence of

controls that complies with the GP-UCB strategy. Thus, we solve the planning problem

in a hierarchical manner by introducing an additional trajectory planner. Taking the

2D waypoints generated by the GP-UCB strategy as the dive-location, the trajectory

planner plans an energy-optimal path through these waypoints using the trim-based FMT∗

framework [42, 237]. A brief summary of the trim-based planning framework is presented

in the following.

A trim-state is a dynamic equilibrium of the vehicle dynamics (5.1) in the absence of

disturbances or variations in control input [241]. Because an underwater glider covers a

large area over a long period of time, we pose a computationally convenient approximation

that the glider operates in a sequence of trim states with negligible transition times. For

an underwater glider, the trim-state is characterised by:

u(t) =
[
V (t) γ(t) δ(t) mb(t)

]T
, (5.21)

where V (t) is the speed, γ(t) is the glide angle, δ(t) is the heading angle, and mb(t) is

the ballast mass (i.e., amount of water in the ballast tank). Within each trim state, the

dynamic model (5.1) reduces to a kinematic model:

x(t+ 1) = x(t) +



Vt cos γt cos δt
Vt cos γt sin δt

Vt sin γt

+ w(x(t))

∆t. (5.22)
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Figure 5.2: Trim-based glider manoeuvre over 3D environment under the influence of
ocean currents

The FMT∗ planner proposed in [42] generates a continuous, energy optimal trajectory

for following the 2D waypoint from the GP-UCB strategy by finding a sequence of trim

states. In other words, given each 2D waypoint xk+1, the FMT∗ planner solves the following

problem:

minimise
u(t)

T∑
t=1

E(x(t), u(t)),

subject to x(1) = xk, x(T ) = xk+1 and (5.22).

(5.23)

where E(x(t), u(t)) is the energy cost function, accounting for the sum of the ballast

pump cost, moving mass re-position cost, turning cost, and the hotel cost. An example

trajectory is shown in Fig. 5.2. Details on the FMT∗ planning algorithm for solving (5.23)

is presented in [42].

5.5 Case Studies

We present case studies to demonstrate the behaviour of the GP-UCB strategy in simu-

lated environment and real dataset. In both studies, the robot is initially given no prior

knowledge about the true source location xs. We show that the glider actively balances

between exploration and exploitation to reach the source location.
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5.5.1 Simulated 2D Source

In this section, we test the proposed GP-UCB algorithm on an simulated 2-dimensional

environment with a double gyre-flow field and plume. The plume with respect to the flow

field is generated using the advection-diffusion PDE in (5.5).

The results are illustrated in Fig. 5.3. The glider initially has no prior knowledge of the

source location as shown in Fig. 5.3a. Still, the upper confidence bound (UCB) map allows

the glider to choose the next waypoint effectively, because the proposed ADGP can exploit

the information about the flow field to compute a low uncertainty upstream of the glider.

Therefore, low concentration at the present location indicates low likelihood of a source

upstream. After the initial exploratory behaviour, the glider gets close to the source (i.e.,

around k = 16), and starts to develop a meaningful belief over the concentration and over

the source location. The UCB map starts to show more interesting areas to visit. As the

glider moves further, the waypoint from UCB approaches the true source location and the

glider finally reaches the source. At this point, source localization is accurate up to 1-2

distance units.

An interesting observation is that the UCB of the source strength becomes almost indistin-

guishable to the source strength when the estimate is converged. It is thus evident that the

upper confidence bound correctly balances between exploration and exploitation. When

the estimate is uncertain, the glider explores the areas where the uncertainty is higher.

When the estimate is certain, the glider exploits the estimate and converges toward the

true source location.

Meanwhile, the estimate of the concentration does not necessary converge to the ground

truth. This is because our objective is not to estimate the overall concentration of the entire

environment, but to simply reach the source location. Consequently, the algorithm does

not expend effort on trying to estimate the concentration correctly, unless it is necessary

for estimating and converging toward the source location.
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Figure 5.3: 2D simulation of source seeking. The vehicle (light blue) manoeuvres
through ocean currents (in pale blue) to find the source of plume (red diamond)
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Figure 5.4: Ground truth concentration from experimental dataset. Iso-value contours
are shown.

5.5.2 3D Experimental Dataset

We present a realistic 3D experiment using a methane plume dataset collected around

Perth, Australia by Blue Ocean Monitoring [33] with an optical methane gas sensor, and

the model of a Teledyne-Webb G2 Slocum glider [36]. The glider surveyed a region known

to exhibit methane concentration. We pre-processed the collected data with GP regression

to produce smooth ‘ground truth’ concentration, which is shown in Fig. 5.4. During

the validation, measurements are simulated using the pre-processed concentration data

through linear interpolation. As the data is from the real ocean, it is unknown where the

true source location is. However, it is intuitive to expect the source to be at the centre of

the plume shown in Fig. 5.4.

The result of the proposed algorithm is shown in Fig. 5.5. It can be seen that the dive-

and surface-locations are chosen sequentially to eventually reach the centre of the plume,

by updating the concentration and source estimation. Our analysis using GP-UCB shows

that there is a high chance of the source being located around the centre of the plume.

This is further ascertained by the convergence of the estimated source strength around the

glider’s final position.



Chapter 5. Prospection for Environmental Process Monitoring 85

(a) Est. concentration (b) Est. concentration (c) Est. concentration

0 5 10 15 20
Easting (km)

0

5

10

15

20

N
or

th
in

g 
(k

m
)

0

1

2

3

4

5

(d) Est. source

0 5 10 15 20
Easting (km)

0

5

10

15

20
N

or
th

in
g 

(k
m

)

0

1

2

3

4

5

(e) Est. source

0 5 10 15 20
Easting (km)

0

5

10

15

20

N
or

th
in

g 
(k

m
)

0

1

2

3

4

5

(f) Est. source

Figure 5.5: Planning over the real measurement dataset

5.6 Summary

We presented an example of full prospection in both planning and perception in the special

case of environmental monitoring. Prospection was used to enable a robot to reach the

source of an environmental process based on sparse concentration measurements. A spe-

cialised GP regression scheme called ADGP was developed by incorporating the physical

model of advection diffusion equation. By combining ADGP with the GP-UCB strategy

and the FMT∗ planner [42, 237], we demonstrated that the robot localises the source of

an underwater plume in an energy-efficient manner. Owing to prospective perception en-

abled by the physical prior of advection-diffusion PDE, the algorithm exhibits intelligent

behaviour such as assigning low priority to the downstream region if the concentration

measurement is low. This led to good empirical performance algorithms supported by a

theoretical guarantee.

Although the example presented in this chapter demonstrates both prospective perception

and planning, it is difficult to capture the relevance of environmental knowledge to task

completion due to the simplicity of the task considered. In the following chapter, we
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consider prospective planning in more complex tasks in order to explore how to capture

task-relevance of knowledge.



Chapter 6

Prospective Planning for Complex

Semantic Tasks

The previous chapters explored how prospection can be achieved in planning problems

whose objective is given by a simple numerical function, such as maximising the number

of targets captured (Sec. 4.3) or the magnitude of an environmental process (Ch. 5). In

this chapter, we consider prospective planning for complex semantic tasks that feature,

for example, ordinal constraints (i.e., task A must be completed before or after task B)

or ambiguity (i.e., tasks A and B must be completed regardless of order). The semantic

planning problem poses an interesting challenge for prospection as the relevance of en-

vironmental features to mission success varies significantly throughout the progress. For

instance, an environmental feature relevant to a particular task will no longer be of inter-

est once the task has been completed. We formulate and solve this problem by extending

signal temporal logic (STL) synthesis from formal methods [208] with uncertain semantics.

The results illuminate the importance of prospection. By accounting for the environmen-

tal uncertainty and the resolution thereof, desirable behaviours arise such as deliberately

reducing the location uncertainty of a relevant target, and prioritising targets whose un-

certainty is increasing over those that are physically proximate. Such behaviours illustrate

the benefits of prospection.

87
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This chapter builds upon our previous work in [59]. Further empirical analysis of perfor-

mance characteristics are presented in Appendix C.

6.1 The Semantic Planning Problem

We first define the semantic planning considered in this chapter. We consider a robot with

N -dimensional state xt ∈ RN and control actions ut ∈ U, where U is a continuous set

of admissible control actions. The robot’s dynamics are uncertain, and is modelled by a

discrete-time, continuous-space Markov chain P(xt+1 | xt, ut) between t and t+ 1, so that

the trajectory distribution over a horizon T is given by:

P(X | U) = P(x1)

T∏
t=1

P(xt+1 | xt, ut), (6.1)

where X ≡ x1...xT and U ≡ u1...uT .

The robot encounters a finite set of random events E = {E1, ..., EM} (e.g., ‘object de-

tected’), whose probability of occurrence depends on robot’s state xt and time t. We

are interested in finding control actions U∗ that maximises the probability of satisfying a

task specification Φ defined over E (e.g., ‘detect all objects’). This constitutes a synthesis

problem:

Problem 6.1 (Synthesis). Given the uncertain dynamics (6.1), and a temporal logic task

specification Φ over a set of random events E with probability of satisfaction P ((X, t) |= Φ),

find an optimal sequence of controls U∗ such that the trajectory X maximises the proba-

bility of satisfying Φ over time horizon T :

U∗ = argmax
U∈UT

P ((X, t) |= Φ) , (6.2)

with respect to time t = 1. We will shortly define the probability of satisfaction P ((X, t) |= Φ).
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6.2 Random Signal Temporal Logic (RSTL)

While STL is a prominent tool for task specification, it cannot be used directly for prospec-

tive planning because it is naturally deterministic and cannot reason over environmental

uncertainty. For this reason, we first propose random signal temporal logic (RSTL) as an

extension of STL with uncertain semantics. Our core insight is to consider the probability

of satisfaction, rather than a deterministic outcome.

6.2.1 Definition and Semantics

We model the random events E = {E1, ..., EM} as (not necessarily independent) Bernoulli

random variables that are dependent on robot’s state and time, with conditional proba-

bility of occurrence:

P(Ei = 1 | xt, t) = P i(xt, t). (6.3)

In other words, each Ei is a Bernoulli random field over RN ×R+. Given a set of random

events E , the syntax of an RSTL formula Φ is given by:

Φ := E | ¬Φ | Φ ∧Ψ | ΦU[t1,t2]Ψ, (6.4)

where E ∈ E , and Ψ,Φ are RSTL formulae. ¬ is logical negation, ∧ is logical conjunc-

tion. U is the temporal operator ‘Until’, and ΦU[t1,t2]Ψ means Φ must hold true between

time [t1, t2] until Ψ. Other operators such as ∨ (disjunction), F[t1,t2] (‘in Future’, i.e.,

eventually) and G[t1,t2] (‘Globally’, i.e., always) can be derived from the syntax the same

way as deterministic STL [208]. The events E will be referred to as ‘event predicates’.

RSTL is random in the sense that the satisfaction of an RSTL formula Φ is a Bernoulli

random event for a given trajectory X. The probability of satisfaction is the expected rate of

satisfaction computed over sampled instances of the event predicates Ê = {e1, ..., eM} ∼ E :

P((X, t) |= Φ) = E
Ê∼E

Sat(X, t, Ê ,Φ). (6.5)
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Here, Sat(X, t, Ê ,Φ) is a deterministic function evaluated recursively as:

Sat(X, t, Ê , Ei) ≡ ei(xt, t) ∼ P i(xt, t),

Sat(X, t, Ê ,¬Φ) ≡ ¬Sat(X, t, Ê ,Φ),

Sat(X, t, Ê ,Φ ∧Ψ) ≡ Sat(X, t, Ê ,Φ) ∧ Sat(X, t, Ê ,Ψ),

Sat(X, t, Ê ,ΦU[t1,t2]Ψ) ≡∨
τ1∈t+[t1,t2]

∧
τ2∈t1+[0,τ1]

Sat(X, τ2, Ê ,Φ) ∨ Sat(X, τ1, Ê ,Ψ),

(6.6)

where ei(xt, t) ∈ {0, 1} is a sample from Ei at robot state xt and time t.

For brevity, we use a shorthand P(Φt | X) ≡ P((X, t) |= Φ) in the rest of this chapter.

6.2.2 Examples

In this section, we give motivating examples of RSTL formulae. The simplest example we

consider is that of simply visiting a number of targets:

Example 6.1 (Visiting Multiple Targets). Suppose we are given target predicates Di,

i ∈ [1, N ], that represent visiting target i. A search formula can be defined as:

Φsearch =
∧
i

FDi, (6.7)

which, when read literally, means ”eventually visit target 1 and eventually visit target 2,

and so forth”.

Building on this simple example, we can add a target to avoid:

Example 6.2 (Reach-Avoid Task). Suppose we are given a target predicate Dr to reach,

and Da to avoid. A reach-avoid task can be written in RSTL as:

Φreach-avoid = FDr ∧ G¬Da, (6.8)

which, when read literally, means ”eventually visit Dr and always do not (i.e. never) visit

Da”.
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We can further add temporal relations between tasks using the temporal operators of

RSTL. One such example is to define precedence relations between tasks as follows:

Example 6.3 (Precedence). Suppose we are given two tasks, Φ1 and Φ2, which we would

like to complete in the order of Φ1 then Φ2. This precedence relation can be written in

RSTL as:

Φprecedence = ¬Φ2UΦ1 ∧ FΦ2, (6.9)

which, when read literally, means ”do not complete Φ2 until Φ1 is complete, and eventually

complete Φ2”.

6.2.3 Approximate Analytical Semantics with Conditional Independence

To synthesise trajectories that maximise the probability of task satisfaction, we must first

be able to evaluate the probability of task satisfaction (6.5). However, computing the

expectation in (6.5) is intractable in general, and would require Monte Carlo sampling,

which is unappealing for use in trajectory synthesis. To compute (6.5) analytically with-

out sampling, we observe that (6.5) applies logical operations to samples from Bernoulli

random variables. A convenient approximation is the product relation for independent

Bernoulli random variables A and B:

P(A ∧B) = P(A)P(B). (6.10)

Technically, the product relation holds true if the operands are conditionally independent

given X. The conditionally independent (CI)-approximation was introduced in [242] as

follows:
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Definition 6.1 (CI-approximation [242]). Given an RSTL formula Φ, the CI-approximation

of P(Φt | x) is defined by:

P(Ei
t | X) ≡ P i(X, t),

P(¬Φt | X) ≡ 1− P(Φt | X),

P(
∧
i

Φi
t | X) ≡

∏
i

P(Φi
t | X),

P((G[t1,t2]Φ)t | X) ≡
∏

τ∈t+[t1,t2]

P(Φτ | X).

(6.11)

6.2.4 Recovering Deterministic Semantics with Log-Odds Transform

The output range for CI-approximation of P (6.11) is [0, 1] since it computes probability.

This can lead to numerical instability, and gradient ascent often leads to poor convergence.

A natural re-parameterisation for Bernoulli random variables is the log-odds:

L(A) = log P(A)

P(¬A)
. (6.12)

It can be shown with some algebraic manipulations that re-writing the CI rule for pairwise

disjunction ∨ in (6.11) in terms of log-odds leads to:

L(A ∨B) = log P(A)P(B) + P(¬A)P(B) + P(A)P(¬B)

P(¬A)P(¬B)

= lse(L(A),L(B),L(A) + L(B)),

(6.13)

where A and B are independent Bernoulli random variables, and lse is the log-sum-exp

function:

lse(L1, ...,LN ) = log
∑
i

expLi. (6.14)

A series of disjunction operations (6.13) is then:

L

(∨
i∈I

Ai

)
= log

∑
J∈2I

exp
∑
j∈J
L(Aj), (6.15)

where 2I denotes the power set of I.
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Computing log-sum-exp over sum of all subsets is clearly cumbersome. We avoid such

computation by using the relationship between elementary symmetric polynomials and

monic polynomials. Observe that the summations over j ∈ J can be taken out of the

exponential as products. Then, we have all elementary symmetric polynomials over Ai

less 1. We thus arrive at a more compact expression:

L

(∨
i

Ai

)
= log

(∏
i

(
1 + expL(Ai)

)
− 1

)
. (6.16)

Now, the CI computation rules in the log-odds domain are given as follows:

Definition 6.2 (CI-approximate log-odds). Given an RSTL formula Φ, the CI-approximation

of log-odds of satisfaction L(Φt | X) is calculated by:

L(Ei
t | X) ≡ logP i(X, t)− log(1− P i(X, t)),

L(¬Φt | X) ≡ −L(Φt | X),

L

(∨
i

Φi
t | X

)
≡ log

(∏
i

(1 + expL(Φi
t | X))− 1)

)
,

L((F[t1,t2]Φ)t | X) ≡ log
( ∏

τ∈t+[t1,t2]

(
1 + expL(Φτ | X

)
− 1
)
.

(6.17)

Interestingly, the proposed computation rules for probability of satisfaction exhibits strong

similarities to existing work on deterministic STL synthesis and model checking [208,

211, 212, 243, 244]. In the log-odds domain, certain satisfaction (i.e., probability of 1)

translates to ∞, certain dissatisfaction is −∞, and absolute uncertainty (i.e., probability

of 0.5) is 0, which are the behaviours of spatial robustness measure for deterministic STL

introduced in [208]. Further, the log-sum-exp function has been used in deterministic

STL synthesis [211, 243] as a smooth approximation of the maximum function. Finally,

a similar expression to (6.16) was presented in [244] as an alternative robustness measure

for deterministic STL. The authors report encouragement of repeated satisfaction, which

is consistent with the probability of disjunction increasing with increasing probability of

the disjuncts.
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Given that the approaches that do not encourage repeated satisfaction [211, 243] still

report acceptable results, we consider the following approximation for disjunction:

L(A ∨B) ≈ lse(L(A),L(B)))

= log P(A)P(¬B) + P(¬A)P(B)

P(¬A)P(¬B)
.

(6.18)

This ignores repeated satisfaction by omitting the P(A)P(B) term from the numerator

of (6.13). Meanwhile, there is a potential numerical benefit that log-sum-exp can be

computed numerically stably with the so-called log-sum-exp trick, whereas the product

in (6.16) may underflow. We thus define the mutually exclusive (ME) approximation as

follows.

Definition 6.3 (ME approximation). Given an RSTL formula Φ, the ME approximation

of L(Φt | X) is calculated by:

L(Ei
t | X) ≡ logP i(X, t)− log(1− P i(X, t)),

L(¬Φt | X) ≡ −L(Φt | X),

L(Φt ∨Ψt | X) ≡ lse(L(Φt | x),L(Ψt | X)),

L((F[t1,t2]Φ)t | X) ≡ log
∑

τ∈t+[t1,t2]

expL(Φτ | X).

(6.19)

6.2.5 Empirical Analysis of Approximation Quality

In this section, we evaluate whether the CI and ME approximations compute the proba-

bility of satisfaction accurately. Because the CI computation rule assumes independence

amongst operands, we expect it to be exact if 1) all predicates are conditionally indepen-

dent; 2) each predicate is independent across time and space; and 3) only one operator

uses each predicate. For example, assuming 1) and 2) hold, we expect the CI rule to be

exact on FA ∧ FB, but not F(A ∧ FB), because the disjuncts of the outer F operator

are not independent. The ME computation rules (6.19) will not be exact in any case.

We validate these hypotheses by comparing against a 1000-sample Monte Carlo (MC)

approximation of RSTL probability of satisfaction (6.5). We used the trajectories from

the first 2000 gradient ascent steps generated from the target search scenario (Fig. 6.2).
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(a) F(A) ∧ F(B) (b) F(A ∧ F(B))

Figure 6.1: Comparison of the CI (green) and ME (blue) approximation results against
MC estimates (‘Empirical’). CI is exact for F(A) ∧ F(B), whereas ME underestimates.
For F(A∧F(B)), the error increases, but not significantly. Naive method’s result showed

numerically insignificant difference to CI, and is omitted.

For simplicity, we evaluated each predicates’ marginal probability independently before

sampling, so that the first two conditions of exactness hold.

In Fig. 6.1a, CI (green) and ME (blue) results are compared against the MC estimate

for FA ∧ FB. It can be seen that the CI method matches the MC result as expected,

whereas ME consistently underestimates. This is expected, because ME does not account

for multiple satisfaction.

Fig. 6.1b shows comparison for F(A ∧ FB). As FB is double-counted by the outer F ,

CI and ME tend to over-estimate, but not by much. ME continues to underestimate, and

CI matches the MC closely, showing that CI and ME are reasonable approximations for

practical applications.

6.3 Event Predicates for Robotics Applications

RSTL can be used with a variety of event predicates to model a wide variety of uncertain

semantics. In this section, we present useful examples of event predicates for modelling

common tasks in robotics applications.
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6.3.1 Collision Avoidance

The most common representation of obstacles is to use an occupancy grid O, such that

Oi,j is the probability of obstacle occupancy [67]. A desirable property of the event predi-

cate is to ensure differentiability, because it allows efficient gradient-based synthesis. For

simplicity, we model the probability of collision with an obstacle by an interpolation, using

batch_interp_regular_nd_grid in Tensorflow [245], which is a differentiable operation.

Formally, the model can be written as:

P(O | xt) =
∑
i,j

Kij(xt)Oi,j , (6.20)

where Kij(x) denotes the interpolant.

Alternatively, continuous obstacle representations, such as Gaussian process (GP) occu-

pancy maps [73] or Log-Gaussian process implicit surface (GPIS) (Sec. 7.2) are also differ-

entiable and allows gradient-based synthesis. The incorporation of these representations

are deferred to future work for the sake of simplicity.

6.3.2 Target Detection

Another common class of robotic task is to visit or detect targets of interest. Such tasks are

modelled as follows. If the target’s position is known deterministically, the robot detects

the target with likelihood modelled by:

P(Dt | xt, zt) = PD exp
(
||xt − zt||2

2r2D

)
, (6.21)

where zt is the target location, rD is the radius of detection, and PD controls the peak.

Meanwhile, a target’s position is usually unknown or uncertain. A common approach is

to model the target’s position as a linear Gaussian system. Given a linear system model

ż = Az, the mean z̄t and covariance Σz
t of target position can be propagated from the

robot’s belief as follows:
˙̄z = Az̄,

Σ̇z
t = AΣz

t +Σz
tA

T .
(6.22)
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Given the mean z̄t and covariance Σz
t of target position, the marginal probability of de-

tection accounting for their uncertainty is given by:

P(Dt | xt) =

∫
exp

(
||xt − z̄t||2

2r2d

)
N (z̄t,Σz

t )dzt

=
√
2πNrNd N (z̄t,Σz

t + r2dI),

(6.23)

where N (z̄t,Σz
t ) is the multivariate Gaussian probability distribution function (PDF).

6.3.3 Prospecting for Measurements

For Guassian targets, it is possible to model the effect of measurements directly using tools

from Gaussian belief space planning [22], without requiring the use of mutual information

upper confidence bound (MI-UCB) in Ch. 4. This is achieved by using the maximum

likelihood observation assumption [22] and the information filter equations.

For simplicity, we consider a static target modelled by a Gaussian distribution with mean

and covariance z̄ and Σz
0. The robot makes a direct observation of the position of the

target, with measurement noise σ2(xt). The measurement noise is used to model the

robot’s field of view. For example, for a drone equipped with a downward looking camera,

the field of view is circular, and the corresponding measurement noise can be modelled as:

σ−2(xt) = σ−2
0 exp( ||z̄− xt||

2r2D
). (6.24)

Given the noise model, the posterior target covariance after accounting for measurements

is given by:

(Σz
t )

−1 = (Σz
0)

−1 + σ−2(xt)I, (6.25)

which can be combined with the detection model (6.23).

The merit of (6.25) is that there are no explicit inversions when computing the likelihood

of detection (6.25) given the robot’s position xt. This allows efficient and stable gradient

computation using autograd frameworks such as Tensorflow [245] or PyTorch [246]. The

static target assumption is important in ensuring this property, but may be relaxed through
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the use of sampling-based algorithms such as Monte Carlo tree search (MCTS) [164, 165],

or by differentiating the continuous-time Ricatti equation as done in [247]. For simplicity,

we restrict our attention to static targets.

6.4 Synthesis via Gradient-Based MAP Inference

6.4.1 Reformulation as MAP Inference

Since both task satisfaction and robot dynamics are probabilistic, it is natural to ask if

Problem 6.1 can be solved solely within the realm of probability theory. This is achieved by

the control-as-inference paradigm [248, 249], which has been shown to not only encompass

existing optimal control problems, but also to enable new approaches. We follow a similar

development and present an inference formulation of Problem 6.1.

In this formulation, the problem is modelled by the joint distribution among task satis-

faction, robot trajectory, and control actions:

P(Φt,X,U) = P(Φt | X)P(X | U)P(U). (6.26)

Here, P(U) is our prior belief on what the control actions should be, and is representative

of the admissible control space U in the synthesis formulation. For example, if P(U) is a

zero-mean Gaussian prior, it is equivalent to penalising quadratic control cost. The prior

can derive from other knowledge, e.g., an imitation-learnt prior as [250] does for optimal

control.

A balance between admissibility and probability of satisfaction is captured by the posterior

probability of control actions given that the task is satisfied:

P(U | Φt) ∝ P(U)P(Φt | U)

= P(U)

∫
P(Φt | X)P(X | U)dX.

(6.27)

We thus pose Problem 6.1 as a maximum a posteriori (MAP) inference problem:
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Problem 6.2 (Inference). Given the dynamic model (6.1) and an RSTL task specifi-

cation Φ, find the MAP control actions U∗ given the robot’s trajectory satisfies Φ with

respect to t:

U∗ = argmax
U

P(U | Φt). (6.28)

6.4.2 Approximate Gradient Ascent

The MAP control sequence U∗ that maximises the posterior probability is computed using

gradient ascent. We use Jensen’s inequality to bound the log of posterior probability (6.28):

logP(U | Φt) ≥ E
X∼P(X|U)

[logP(Φt | X))] + logP(U). (6.29)

Subsequently, we maximize the lower bound:

U∗ = argmax
U

E
X∼P(X|U)

[logP(Φt | U)] + logP(U). (6.30)

The maximisation is done by gradient ascent on (6.30). Because the expectation in (6.30) is

intractable, we replace it with an empirical mean over a Ns number of trajectory samples,

so that the i-th gradient ascent step is:

Ûi+1 = Ûi +
1

Ns

∑
j

∂

∂Ûi
[logP(Φt | Xj

1:T (Û
i)) + logP(Ûi)], (6.31)

where Ûi+1 =
[
ûi
1...ûi

T

]
. Each trajectory sample Xj(Ûi) is obtained by propagating the

dynamic model (6.1) forward in time including actuation uncertainty. Throughout this

process, the objective (6.31) remains differentiable as long as the predicates’ distributions

and the dynamic model are differentiable. If so, analytical gradients can be computed

easily using autograd frameworks such as Tensorflow [245] or PyTorch [213, 246] for both

CI and ME approximations. Therefore, we do not present the expressions here.
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6.5 Demonstrations

We demonstrate three example cases that illustrate how RSTL allows prospective planning

in uncertain environments. The proposed gradient ascent method was implemented in

Tensorflow [245]. For all examples, we consider a robot described by a bicycle dynamic

model:

ẋt =


ẋt

ẏt

θ̇t

 =


Vt cos θt
Vt sin θt
ωt + ϵt

 , (6.32)

where ϵt ∼ N (0, σu) is white Gaussian noise. The control inputs are ut =
[
Vt ωt

]⊤
.

6.5.1 2D Target Search

Motivated by Example 6.1, we consider a 2D target search scenario, where a robot is

tasked with detecting possibly moving targets in the environment: Tom and Jerry. Jerry,

as usual, is moving with increasing uncertainty, whereas Tom is stationary with high

certainty. Fig. 6.2 depicts an example where the mean paths for Tom and Jerry are shown

in green and red. The growing uncertainty over time is shown around the mean. Since

Tom (in green) is known to be stationary, its uncertainty does not grow over time. The

robot starts at x1 = [0, 0]⊤.

As per Example 6.1, the task of finding Tom and Jerry can be expressed using RSTL

as Φ = F(DTom) ∧ F(DJerry) (i.e., ‘eventually detect Tom and eventually detect Jerry’).

The event predicates DTom and DJerry are modelled as per Sec. 6.3.2. Tom and Jerry are

modelled by a constant acceleration model, which is a linear Gaussian system.

Fig. 6.2 shows global and local optima found using the log-odds CI computation rule (6.17).

It can be seen that the global optimum (Figs. 6.2a and 6.2b) is to detect Jerry first at

t = 15 (Fig. 6.2a), and to return to Tom at t = 45 (Fig. 6.2b), whereas the local optimum

is to detect Tom first at t = 10 (Fig. 6.2c) and then Jerry later. This is because the

uncertainty of Jerry grows unlike Tom, and the optimal trajectory should detect Jerry
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(a) global optimum, t = 15 (b) global optimum, t = 45

(c) local optimum, t = 10 (d) local optimum, t = 45

Figure 6.2: A 2D target search scenario using RSTL. The robot (blue) is tasked with
detecting both Tom (Green) and Jerry (Red). The global optimum with P(Φ | x) ≈ 0.7
(left column) is to detect Jerry before uncertainty grows. A local optimum with P(Φ |

x) ≈ 0.5 (right column) prefers Tom, who is closer. Circles show 1-covariance bound.

first before its uncertainty grows. This demonstrates that RSTL allows evaluating the

effect of uncertainty on mission success.

6.5.2 Complex Missions in an Indoor Environment

Based on Example 6.3, we consider a nursing robot with a complex task. The robot

operates in an indoor environment, modelled as an occupancy grid O. The robot cares

for two patients, Rob and Bob. The doctor asks the robot to avoid obstacles, and to visit

the supply station before visiting any of the patients, which can be written as an RSTL

formula using Example 6.3:

Φ1 = (¬(DRob ∨DBob)UDSup) ∧ G(¬O), (6.33)
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(a) σu = 10−4 (b) σu = 0.1

Figure 6.3: Results for complex indoor mission using RSTL. The robot’s (blue) task is a
conjunction of ‘never visit Rob (red) or Bob (blue) before visiting supply station (green),
and avoid obstacles (grey colormap)’, and ’visit Rob (red) and Bob (blue)’. With higher
actuation uncertainty σu, the trajectory becomes further from the walls. Solid lines are
the robot’s nominal trajectory in the absence of noise. Transparent blue lines are the

noised samples used during synthesis. The start location is top-left corner.

where DRob, DBob, and DSup are distributed as per (6.23).

Now, in addition to the previous command, the doctor asks the robot to visit the two

patients:

Φ2 = F(DRob) ∧ F(DBob) ∧ Φ1. (6.34)

We created an occupancy grid from a realistic dataset commonly used in perception

research [56, 251], and compared the results with low (10−4rads−1) and high (σu =

0.1rads−1) actuation uncertainty. The results are shown in Fig. 6.3. In both cases, the

generated trajectory is correct, visiting the supply station first, and then the two patients.

Interestingly, the trajectory changes drastically when control noise increases. The path

with small control noise in Fig. 6.3a is aggressively close to the wall, whereas the path with

control noise in Fig. 6.3b is more conservative in that the robot keeps distance away from

the wall by manoeuvring around the obstacle. This is because, with greater control noise,

more trajectory samples collide into obstacles as can be seen in Fig. 6.3b. This demon-

strates that the proposed probabilistic formulation encompasses risk-averse behaviour in

STL synthesis, a crucial property for practical applications.
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6.5.3 Reach-Avoid Task with Measurement Prospection

We now examine the effect of measurement prospection on the synthesised behaviours

with a simple reach-avoid task based on Example 6.2, as illustrated in Fig. 6.4. There

are two stationary targets, red and green. The robot’s task is to reach the green target

while avoiding the red target, which can be written in RSTL as Φ = F(DGreen)∧G(DRed).

For both targets, the robot can visit or avoid the target with a fixed range, which will be

referred to as the visit range.

The positions of both targets are uncertain. The uncertainty of the red target is especially

large and intrudes not only into the confidence bound of the green target, but also into

the visit range of the robot. Nonetheless, the uncertainties can be reduced by position

measurement during operation as per Sec. 6.3.3. We examine the effect of considering

uncertainty reduction by comparing the plans generated with and without measurement

prospection. The results are shown in Fig. 6.4.

It can be seen that the robot travels closer to the mean position of the red target when

measurement propsection is enabled (Figs. 6.4a- 6.4c) than when it is not. This is because

the plan takes into account the uncertainty reduction in red target. It can be seen that the

plan without measurement prospection (Figs. 6.4d-6.4f) takes a large detour in order to

avoid the red target with respect to the prior belief. This demonstrates that measurement

prospection leads to efficient behaviours without unnecessary conservatism by accounting

for uncertainty reduction. An interesting future work would be to examine the performance

benefits of such efficiency in a closed-loop setting with replanning.

Another interesting observation is that, although there is a moderate probability of vio-

lating the avoid the red (G(DRed))) specification, both variants successfully find the best

possible trajectory. This is in contrast to deterministic approaches, e.g., [53, 210], where

the initial violation would automatically lead to infeasibility. This highlights the fact that

explicit consideration of uncertainties without determinisation [53] allows flexible handling

probability of failure.
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(a) t = 0 (b) t = 180 (c) t = 290

(d) t = 0 (e) t = 180 (f) t = 290

Figure 6.4: Result of reach-avoid task using RSTL with measurement prospection. Top
row: RSTL with measurement prospection Bottom row: RSTL without measurement
prospection. Green and red circles show confidence bounds of the targets. The inner
grey circle shows the range of visit, and the outer circle shows the measurement radius.
Solid black line represents trajectory. The task is to reach the green target while avoiding
the red target (F(DGreen) ∧ G(DRed)). When considering the measurement effects, the
generated plan is closer to the red target because the uncertainty can be reduced, whereas

the non-prospective plan takes an overly conservative path.

6.6 Summary

We presented how to perform prospective planning for complex semantic tasks, focusing

on occupancy grids and targets described by a linear Gaussian system. To do so, we de-

rived RSTL as a natural probabilistic extension of STL by considering the probability of

satisfaction over possible realisations of the environment. This allows semantic planning

with uncertain dynamics and environments, in addition to efficient gradient-based synthe-

sis posed as MAP inference. The probabilistic semantics enables prospective planning by

describing how uncertainty grows, or can be resolved.
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Examples of prospective planning presented throughout this thesis consistently illustrate

that a better description of environmental uncertainty leads to desirable behaviours. The

remainder of this thesis will examine what constitutes a good description of environmental

uncertainty.





Chapter 7

Case Studies on Predictive Priors

The previous chapters demonstrated instances of prospection where the planning takes

into account the effect of measurements on the plan performance. Meanwhile, another

core element of prospection is to devise predictive priors on the environment given prior

knowledge and data, as was evident in the intelligent behaviours that arise from the

inclusion of physical models in Ch. 5. This chapter presents two case studies where a

predictive prior can significantly improve planning performance for navigation in oceanic

and indoor environments. The purpose is to identify the characteristics of a good predictive

prior for prospection.

This chapter builds upon our prior publications in [56, 62]. In particular, Sec. 7.1 is based

on [62], and Sec. 7.2 on [56].

7.1 Online Current Estimation and Navigation (OCEAN)

We first consider the online current estimation and navigation (OCEAN) problem. This

problem considers an underwater robot with limited actuation navigating in ocean cur-

rents without prior data. While submerged, global positioning system (GPS) is unavail-

able, and the robot has no position feedback. Due to limited actuation, it must exploit

the surrounding ocean currents, which is initially unknown. The robot must therefore

estimate the surrounding ocean currents from motion data. In doing so, we incorporate

107
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Figure 7.1: An illustrative example data from a Slocum G3 glider operation near Perth,
Australia. Black bottom-facing triangles: dive-in points. Black solid line: dead-reckoned
estimates (x̂t). Red circles: GPS measurements (yτk). Red dashed lines: the drift (∆xτk)

the physical knowledge that ocean currents are planar and incompressible. The incom-

pressibility assumption leads to substantial improvement in the quality of predictions at

remote locations, thereby assisting nonmyopic planning. The rest of this section describes

the theoretical algorithmic framework to this end. Practical implementation details are

deferred to Appendix B.

7.1.1 Problem Statement

We consider an underwater vehicle whose dynamics can be modelled as:

ẋ(t) = u(t) + w(x(t)), (7.1)

where x(t) ∈ R2 is the position of the vehicle at time t, u(t) ∈ R2 is the velocity through

water at time t, and w ∈ C∞(R2) is the ocean current modelled as a smooth 2D vector

field. For simplicity, we do not take into account the vertical motion of the vehicle. We

approximate the continuous time dynamics (7.1) with a discrete-time one as:

xt+1 = xt + (ut + w(xt))∆t, (7.2)

where ∆t is the sampling time.
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The vehicle’s velocity through water ut is known, whereas the current w(x) is unknown.

The vehicle estimates its own position based on dead-reckoning assuming zero ocean current

while submerged. The initial estimate derives from the last GPS measurement prior to

dive-in:

x̂t+1 = x̂t + ut∆t. (7.3)

The vehicle uses the dead-reckoned estimate to attempt to reach a target point. When

the vehicle’s estimate is within a pre-set tolerance range from the target point, the vehicle

climbs up to the surface and updates its position using GPS. We denote the time of

surfacing events as τk ∈ [1, T ], τk < τk+1. The GPS measurements are assumed to have

i.i.d. Gaussian measurement error:

yτk = xτk + ϵk, (7.4)

ϵk ∼ N (0, σ2
yI). (7.5)

For the periods in between each GPS measurement, we use shorthand notation Xk =

Xτk−1:τk for true trajectory, X̂k = x̂τk−1:τk for dead-reckoned trajectory, yk = yτk for GPS

measurements, and Wk = {w(xτk−1
), . . .w(xτk)} for current along trajectory respectively.

As the dead-reckoned estimates do not take ocean current into account, there is a substan-

tial disparity between the dead-reckoned estimate and the GPS measurement. Throughout

the rest of the paper, we refer to this disparity as drift, and denote it by ∆xk. In other

words:

∆xk = yτk − x̂τk . (7.6)

We will use the concept of a cycle to describe the three behaviours: 1) dive-in, 2) manoeu-

vre and 3) surfacing, as depicted in Fig. 7.1. A cycle ck = {∆xk,Xk} is a tuple containing

the dead-reckoned trajectory, Xk, and the measured drift ∆xk. Although the current w(x)

throughout each cycle is unknown, we know that the drift measurements are related to the

current. Thus, we estimate the underlying ocean current given the cycles. The estimation

problem is posed as a maximum a posteriori (MAP) inference problem:

Problem 7.1 (Ocean current estimation). Suppose we have a sequence of cycles C1:k =

c1c2 · · · ck. Find an optimal estimate for ocean current w∗(x) over the space of 2D smooth
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vector fields C∞(R2) that maximises the posterior probability:

w∗(x) = argmax
w(x)∈C∞(R2)

P(w(x) | C1:k). (7.7)

Intuitively, solving the MAP problem implies that we find the ocean current w(x) that is

the best trade-off between fitting 1) the drift measurements, ∆xk and 2) a constraint on

the general behaviour of ocean current, which we will discuss in Sec. 7.1.3. The constraint

is necessary because there are infinitely many possibilities of ocean current vectors that

sum up to the drift measurement ∆xk. In other words, the problem is underdetermined.

Given the online estimate of the ocean current, the aim of navigation problem is to visit

a set of target points Xd = {xd
1, ..., xd

K}. To do so, we assume that the vehicle’s velocity

through water ut can be controlled on-board. However, since the vehicle does not have

GPS position feedback while underwater, we impose a constraint that the control stays

constant in each cycle, i.e., ∀t ∈ [τk, τk+1), ut = uk. We wish to find a sequence of control

actions that minimises the position error on surfacing:

Problem 7.2 (Navigation). Given the vehicles initial position xτk , estimated flow field

w∗(x), and a target point xd
k, find the control uk that minimises the position error:

min
uk

ϵx ≡ ||xd
k − xτk ||,

s.t. xt+1 = xt + (uk + w∗(x))∆t.

(7.8)

7.1.2 Planar Incompressible Flows

As aforementioned, solving the estimation problem (7.7) is difficult because the problem

is underdetermined, and there are infinitely many possible solutions for the ocean currents

w(x). To this end, we impose a stronger prior by modelling the ocean current as a planar,

time-invariant and incompressible flow field. Planarity implies that the ocean current has

no z-component, which describes the horizontal stratification of oceanic flow well (see

[252, 253]).
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A flow field is incompressible [254] if its divergence vanishes at all points:

∇ · w(x) = 0, (7.9)

where∇· is the divergence operator. Intuitively, incompressibility implies that ‘the amount

of water entering a point is equal to the amount exiting the area’. As we do not expect

to see surplus or deficit of water entering an area in the ocean, incompressibility is an

appropriate description. In fact, incompressibility of water is a common assumption made

universally in fluid dynamics [254]. Further, ocean current is almost planar, because the

vertical component is much weaker than the horizontal one [253]. We thus make the

following assumption about the ocean current w(x):

Assumption 7.1 (Incompressibility). The ocean current w(x) is planar incompressible

(i.e., satisfies (7.9)).

An important property of planar incompressible flow fields is that it can be fully repre-

sented by a scalar-valued streamfunction ϕ : R2 → R, which can be constructed as a line

integral:

ϕ (x) =
∫ x

x0
(w(x)× dx) , (7.10)

where × denotes the vector cross product and x0 ∈ R2 is an arbitrary reference point. If

a flow field is incompressible, the line integral (7.10) is well defined in the sense that the

result is the same for any curve connecting x0 and x. Therefore, a change in reference

point x0 simply leads to a change in the stream function by a constant offset.

Conversely, given a streamfunction ϕ(x), one can compute the current w(x) as partial

derivatives:

w(x) =
[
∂ϕ(x)
δy −∂ϕ(x)

δx

]T
. (7.11)

7.1.3 Online Current Estimation

We now present an algorithm for estimating the ocean current online. To do so, we first

make an observation that the drift measurements are not directly related to the current

vectors at all points. This is because drift is the product of current vectors along the
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trajectory, but not necessarily the current vectors at other points. Formally, this implies

conditional independence:

Assumption 7.2 (Conditional independence). For all x ∈ R2 such that x ̸= xt, w(x) is

conditionally independent of C1:k given the current along trajectory, W1:k = {W1, · · · ,Wk}.

In other words, w(x) is indirectly related to C1:k through W1:k.

With the assumption, the overall problem can be re-written in a form that reveals two

sub-problems:

P(w(x) | C1:k) =

∫
P(w(x) |W1:k)P(W1:k | C1:k)dW1:k. (7.12)

Namely, the two sub-problems are as follows:

Problem 7.3 (Drift-based Current Estimation). Estimate the current experienced along

the vehicle’s trajectory given drift measurements. In other words, find P(W1:k | C1:k))

in (7.12).

Problem 7.4 (Current Extrapolation). Estimate the current at a remote location given

the current along the trajectory. In other words, find P(w(x) |W1:k) in (7.12).

Although the two subproblems may seem hierarchical at first (i.e. the solution of Prob-

lem 7.3 directly feeds into Problem 7.4), the two are in fact intertwined, and it is necessary

to address Problem 7.4 before Problem 7.3. This is because, in order to estimate the cur-

rent given purely the drift, one must model the correlations between the current vectors

at each point along the trajectory in order to reduce the range of plausible solutions. In

the following section, we derive a suitable Gaussian process (GP) model for this purpose,

based on the physical assumption of incompressibility.

7.1.3.1 Incompressible Gaussian Process

In this section, we show how to enforce the incompressibility condition in a GP model

using a streamfunction. This addresses the problem of extrapolating the current vectors

at a remote location given the current vectors along the trajectory. The incompressibility
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assumption improves the extrapolation because we can model the correlation between

current vectors with greater accuracy.

As described in Sec. 7.1.2, all incompressible flowas can be represented by a streamfunction.

Therefore, we first consider a streamfunction modelled as a GP:

ϕ(x) ∼ GP (0, k(∥x− x′∥)), (7.13)

where k(∥x− x′∥) is a kernel function.

Because the derivative of a streamfunction ϕ is flow field w as shown in (7.11) and the

derivative of a GP is another GP [255], our flow field can be represented by a GP. To follow

the notations in Sec. 3.1.2, the derivative operators can be written as D =
[

∂
∂y − ∂

∂x

]T
and D′ =

[
∂
∂y′ −

∂
∂x′

]
. Then, the flow field can be represented as:

w(x) = Dϕ(x) ∼ GP (0,K(x, x′)), (7.14)

where the kernel function K is given by:

K(x, x′) = Dk(∥x− x′∥)D′

=

 ∂2k
∂y2

− ∂2k
∂x∂y

− ∂2k
∂x∂y

∂2k
∂x2

 .
(7.15)

From the first line to the second line in (7.15), we used the stationarity of the kernel. The

merit of applying the derivative operator to the kernel is that (7.15) can be computed

analytically given a choice of kernel for the streamfunction [255, 256].

Using the GP representation of flow field w with the kernel function in (7.15), we can

predict a set of current vectors W(XQ) =
[
w(xQ

1 ) . . . w(xQ
N )
]
given previous measure-

ment data W(XD) =
[
w(xD

1 ) . . . w(xD
M )
]
. The predictions are given as a set of normal

random variables:

P(W(XQ) |W(XD)) = N (µ(XQ), (XQ)), (7.16)
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with mean and covariance:

µ(XQ) = KT
DQK

−1
DDWD, (7.17)

(XQ) = KQQ −KT
DQK

−1
DDKDQ, (7.18)

where the matrices K(i,j)
DD =

[
K(xD

i , xD
j )
]
, K(i,j)

DQ =
[
K(xD

i , x
Q
j )
]
, and K(i,j)

QQ =
[
K(xQ

i , x
Q
j )
]

are constructed blockwise. Because GP regression yields a continuous estimate, the pre-

dicted mean (7.17) and covariance (7.18) do not rely on discretisation; the prediction can

be made at any arbitrary point. Further, GP regression allows prediction of ocean current

distant from the GPS measurements, depending on the lengthscale used for GP.

We now investigate if the incompressible GP is a better representation of the oceanic cur-

rents using a real dataset in Fig. 7.2. We selected a representative eddy from the east Aus-

tralian current data provided by the Australian Bureau of Meteorology. Then, we selected

training samples along a line to emulate the current estimated along a trajectory. These

training samples were extrapolated with GPs having the proposed incompressible kernel

and the standard squared-exponential kernel KSE(x, x′) = diag(kSE(x, x′), kSE(x, x′)).

The standard kernel only fits a smooth vector field to the training samples. Meanwhile,

the proposed incompressible GP extrapolates the ocean current much more accurately

even with the limited training samples. An apparent benefit is that we can reconstruct

eddy-like patterns [47], which leads to a better extrapolation for the flow along a future

trajectory given the estimate along the present trajectory.

7.1.3.2 Expectation-Maximisation for Drift-based Estimation

In this section, we solve Problem 7.3, which concerns estimating the current along trajec-

tory. For simplicity, we will focus on estimating the flow along trajectory sequentially,

given each incoming GPS measurements. In doing so, we are making a Markov assumption,

where we fix the estimate of current along previous trajectories, W1:k−1, when estimating

the current along the present trajectory, Wk. It substantially reduces the computational

complexity of the problem, as the algorithm is incremental. This is the key enabler for

online implementation of the algorithm, because the key computational bottleneck of GP
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(d) Result with standard GP

Figure 7.2: Comparison between incompressible GP and the standard multi-output GP.
Blue: true data. Green: the training data used for regression. Red: estimated current.
Gray: reconstructed streamline (only available with the proposed incompressible GP).
Data were selected to emulate current estimated along a trajectory at each cycle. The
proposed incompressible GP is capable of identifying large-scale eddy-like patterns, and

hence offers better extrapolation.

inference is significantly reduced by only considering the current vectors along the present

trajectory. More precisely, we assume:

P(W1:k | C1:k) = P(Wk | Ck,W1:k−1)P(W1:k−1 | C1:k−1),

which shows the problem reduces to estimating the current along present trajectory, given

GPS measurements and previous current estimates (i.e., P(Wk | Ck,W1:k−1)).
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The main challenge in estimating the current along trajectory arises from the strong causal-

ity between the trajectory itself and the current along the trajectory. To predict the current

along trajectory, we must know the trajectory beforehand, and to predict the trajectory, we

must know the current along trajectory. The challenge is solved through an expectation-

maximisation (EM) algorithm. In each iteration, i, the EM algorithm alternates between

1) estimating the trajectory Xi
k, called the expectation step (E-step) 6; and 2) estimating

the current along trajectory Wi
k given Xi

k, called the maximisation step (M-step). In effect,

we iteratively ‘guess’ the true trajectory, estimate the flow using the guess, and refine the

guess on trajectory using the estimated flow.

Problem 7.3 is re-written in the EM formulation:

P(Wk | Ck,W1:k−1) ∝
∫
P(Wk | Xk,Ck,W1:k−1)P(Xk |Wk,Ck)dXk

=EXk|Wk,Ck
[P(Wk | Xk,Ck,W1:k−1)].

(7.19)

In the E-step, we find P(Xi
k | Wi−1

k ,Ck) and evaluate the expectation (7.19). In the

M-step, we find the posterior estimate of the currents along the trajectory:

Wi
k = argmax

W
EXi

k|W
i−1
k ,Ck

[P(W | Xi
k,Ck,W1:k−1)]. (7.20)

E-step: In the E-step, we need to compute the expectation in (7.19). In (7.2), notice

that the only source of uncertainty derives from the fact that w(x) is a GP. Therefore,

given current, the trajectory is fully known. Formally, the conditional distribution of the

trajectory becomes a Dirac delta distribution:

P(Xi
k |Wi−1

k ,Ck) = δ(Xi
k − (Xk +BWi−1

k )), (7.21)

where B(i,j) =
[
∆tI2

]
if i ≤ j, and B(i,j) =

[
02×2

]
otherwise. I2 and 02×2 denote identity

and zero matrices.

Consequently, the expectation integral collapses to a mere evaluation at:

Xi
k = Xk +BWi−1

k . (7.22)
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M-step: In the M-step, we maximise the expectation taken in the E-step. From the E-step,

the expectation (7.19) is a simple evaluation at (7.22). As w(x) is a GP, this yields a prior

given by a Gaussian random variable:

EXi
k|W

i−1
k ,Ck

[
P(Wi

k | Xi
k,W1:k−1)

]
= N (µ(Xi

k), (Xi
k)), (7.23)

where µ(Xi
k) and (Xi

k) are calculated using GP prediction equations (7.17) and (7.18)

given the current estimated with previous drift measurements, W1:k−1.

Notice that we can write ∆xk in terms of Wk as:

∆xk = CWk + ϵk, (7.24)

where C = ∆t
[
I2 I2 . . . I2

]
. Thus, Wi

k and ∆xk are joint normal random variables:

EXi
k|W

i−1
k ,Ck

[
P(Wi

k,∆xk | Xi
k,W1:k−1)

]
= N

 µ(Xi
k)

Cµ(Xi
k)

 ,

 Σ(Xi
k) Σ(Xi

k)C
T

CΣ(Xi
k) CΣ(Xi

k)C
T + σ2

yI2×2

 . (7.25)

The merit of this formulation is that the maximising solution is now given in closed form,

because maximising the posterior (7.20) is equivalent to finding the conditional mean using

(7.25). This is given by [216]:

Wi
k = µ+ΣCT

(
CΣCT + σ2

yI
)−1

(∆xTk
− Cµ), (7.26)

where µ = µ(Xi
k) and Σ = Σ(Xi

k).

7.1.3.3 Implementation

The algorithm for solving Problem 7.1 is shown in Alg. 2. We initialise the algorithm

with a zero-mean GP without any measurements (Alg. 2 line 1). From lines 4 to 7, we

estimate the true trajectory and the current along the trajectory, Xk and Wk using our

EM algorithm based on incoming GPS measurement. The current along trajectory is then
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Algorithm 2 GP-EM algorithm for ocean current estimation
1: GP ← InitialiseEmptyGP
2: while Vehicle is operational do
3: if Drift measurement ∆xk available then
4: Initialise X0

k ← Xk

5: for i=1 …N do
6: Update estimate of Wi

k using (7.26) with Xi−1
k

7: Update estimate of Xi
k using (7.22) with Wi

k

8: GP ← UpdateGP(GP,WN
k ,XN

k )

added to the measurement set of the GP, as ‘pseudo-target’ [120]. As more measurements

become available, the GP produces better prior for the iteration.

7.1.4 Control Generation for Navigation

Given the estimated ocean current w∗(x), we use a simple model-predictive control algo-

rithm to generate the control action uk for navigation. This is achieved by directly simu-

lating the dynamic model (7.1) using the estimated current w∗(x) for a given value of uk,

and evaluating the position error (7.8). For simplicity, we used MATLAB’s fminsearch1

function to find the optimal control action uk. Although it may be possible to improve

the computational speed, it was found that the speed of fminsearch is sufficient for un-

derwater glider applications, where the typical dive duration is on the order of hours.

7.1.5 Results

In this section, we empirically analyse our framework in three settings: 1) simulation;

2) offline evaluation; and 3) online evaluation. The simulation experiment evaluates the

performance of the online current estimation algorithm (Sec. 7.1.3) in isolation, with ran-

domised flow fields. The offline evaluation experiment examines the behaviour of the online

current estimation algorithm in isolation with a dataset collected from a field trial. The

online evaluation experiment tests the entire framework including control generation in

the open ocean.
1https://www.mathworks.com/help/matlab/ref/fminsearch.html

https://www.mathworks.com/help/matlab/ref/fminsearch.html
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after 4 waypoints

150.72 150.725 150.73 150.735 150.74 150.745
Lon.

-35.17

-35.165

-35.16

-35.155

-35.15

-35.145

La
t.

0.4

0.45

0.5

0.55
Uncertainty

(c) Estimated flow field
after 8 waypoints

Figure 7.3: Simulation results for online current estimation. Trajectory converted to lat-
long for end-to-end testing. Black solid line: dead-reckoned trajectory. Green dashed line:
reconstructed trajectory. Red markers: GPS. Red dashed line: drift. Blue arrows: true
flow field. Green arrows: estimated flow field. Uncertainty refers to trace of covariance.
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Figure 7.4: Comparison of convergence between standard (blue, triangle) and incom-
pressible GPs (red, circle) for 100 different gyre patterns. Error normalized by the mag-

nitude of the true current. 99% confidence interval is shown.

We used the squared exponential kernel [75] for the streamfunction, having lengthscale of

ℓ = 35km, and self-variance of σ2
W = 0.5m2s−2. These hyperparameters were found by

maximising the likelihood of a dataset from the Australian Bureau of Meteorology using

a standard procedure [75]. The kernel for the current vectors was computed analytically

with (7.15).

7.1.5.1 Simulation Results

We validate the performance of the proposed framework with simulated data. We simu-

lated an underwater vehicle travelling in a flow field, with true and dead-reckoned esti-

mates evolving as (7.1) and (7.3). The vehicle is given four waypoints, and surfaces when



120 Chapter 7. Case Studies on Predictive Priors

its dead-reckoned position estimate obtained using (7.3) is within 100 metres from the

current target waypoint. For the purpose of validation, we ran the proposed algorithm on

a double-gyre model. The results are shown in Fig. 7.3.

From Figs. 7.3a to 7.3c, it can be seen that the algorithm actively improves the estimate of

current as the mission progresses. In Fig. 7.3a, it can be seen that the estimate after only

one cycle is as good as the average current method in [134]. However, by the fourth cycle,

it can be seen that the estimated and the true flow fields are already in good agreement,

with minor disparity. By the eighth cycle, the estimated and the true flow fields are almost

indistinguishable. The uncertainty of the estimated current also decreases.

To examine the convergence of the proposed algorithm further, we performed a Monte

Carlo simulation with 100 randomly generated double gyre patterns. We took the error

between predicted and true currents, normalised by the magnitude of the true current. The

convergence was compared with a standard GP with squared-exponential kernel function

K(x, x′) = diag(kSE(x, x′), kSE(x, x′)) having identical parameters, but without incom-

pressibility assumption. The result is shown in Fig. 7.4.

Fig. 7.4 shows that the algorithm gradually learns any randomly generated flow field,

which is demonstrated by the decrease in normalised error for both standard and the

proposed incompressible GP. However, the incompressible GP shows a much faster rate of

convergence and a lower steady-state error than the standard. The result clearly indicates

that our incompressible GP outperforms over the standard in describing oceanic flows as

shown in Fig. 7.2.

7.1.5.2 Offline Field Evaluation

We test the proposed algorithm in an offline setting with a drift dataset from a field

operation near Jervis Bay, Australia. Given a drift dataset, the current is reconstructed

offline, and we qualitatively examine its fidelity. The dataset and the results are shown

in Fig. 7.5. The glider was tasked to visit designated waypoints using dead-reckoning only,

and communicate the current cycle ck when on surface. For the purpose of experiment,
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Figure 7.5: Offline evaluation with Jervis Bay field trial data. Blue arrows: estimated
current. Red circles: position from GPS, Solid black lines: dead-reckoned trajectory.

we disabled the onboard average current correction [134] to ensure the dead-reckoned

estimates evolve as (7.3).

For the Jervis Bay trial in Fig. 7.5, it can be seen that the estimated current is remarkably

consistent with what is expected near a bay: ocean flow comes in from the open ocean,

and the majority enters the bay, with only a small perpendicular component to the bay’s

shoreline. This indicates that the proposed incompressible GP accurately models the

correlation between ocean currents at different points, as incompressibility is a physical

attribute of the real ocean. The improvement in prediction at a remote location, in turn,

leads to improvement in non-myopic planning.

7.1.5.3 Online Field Evaluation

We tested the entire closed-loop OCEAN framework in the open ocean in an online setting.

A field trial was conducted between 20th August 2018 and 9th October 2018 including three

days of preparation. The glider was deployed on 23rd August around Perth, Australia and

successfully recovered on 9th October. During this time, the glider was tasked to visit a

2km square sequentially, using the OCEAN framework to update estimate of ocean current
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and to generate control actions. Details on the software implementation is described in

Appendix B.

The control command uk is sent to the glider as a virtual waypoint. A virtual waypoint is

defined as the position the glider will reach if it executes action uk in the absence of ocean

currents:

x̂d
k = xτk−1

+ uk(τk − τk−1). (7.27)

If the estimated current is accurate, then dead-reckoning toward a virtual waypoint will

allow the glider to correctly reach the desired target point.

We examine the performance in terms of position error (7.8) as well as control error.

Control error arises because the Slocum G2 glider’s operation is constrained by safety

features such as maximum diving time, which prevents dead-reckoning towards the virtual

waypoint, and causes premature surfacing while en route. The control error ϵc is thus

defined by the distance between the virtual waypoint and the dead-reckoning position:

ϵc = ∥x̂d
k − x̂τk∥. (7.28)

Typical behaviours from the trial is shown in Fig. 7.6. In Fig. 7.6b, 7.6d, 7.6f, the glider

surfaces and updates the ocean current estimation. Prior to diving, the glider computes

a virtual waypoint. Ideally, we expect to see that the virtual waypoint overlaps with the

dead-reckoned position, and the desired target point with the GPS position.

In Fig. 7.6, it can be seen that the virtual waypoints computed based on the estimated

ocean current generally steers the glider towards the desired target point. Using the virtual

waypoint reduces the position error below 500m in most cases, as shown in Fig. 7.7. Yet,

there are cases with up to 2km position error, which is substantial.

A detailed analysis reveals that large position error is mostly attributed to control error

(i.e., premature surfacing triggered by glider). An instance of this failure mode is shown

in Fig. 7.8. Although the glider is commanded to a virtual waypoint at around (x, y) =

(−500, 500), it surfaces prematurely at (0,−500), which leads to a large position error.

This occurs because the glider is travelling directly against the current, and is thus slowed
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(a) 1st diving (b) 1st surfacing

(c) 2nd diving (d) 2nd surfacing

(e) 3rd diving (f) 3rd surfacing

Figure 7.6: Typical behaviours during online evaluation experiments. Using updated
ocean current after surfacing, virtual waypoints are generated (green circle). The target

position (green cross) is met by the true position (green cross in 2nd column)
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Figure 7.7: Distribution of position error

(a) Diving (b) Surfacing

Figure 7.8: Instance of failure due to control error. The glider does not correctly dead-
reckons to virtual waypoint because of dive-time safety feature.

down as a result. The maximum dive-time fail-safe is then activated which causes the

glider to surface.

Fig. 7.9 supports our hypothesis on correlation between control and position error. The

scatter plot suggests that there is a strong linear correlation between control and posi-

tion error, meaning that occasional large current estimation error is caused by glider’s

inevitable internal surfacing mechanism (i.e., control), not our framework. The strong

linear correlation appears because although the glider is driven to the virtual waypoint,

it does not in fact surface at the commanded virtual waypoint due to internal logic. In
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Figure 7.9: Correlation between control error (between the compensated virtual way-
point and dead-reckoning position) and position error (between the true desired waypoint
and the actual surfacing position). Control error must be zero, so that the glider dead-
reckons toward virtual waypoints, but it is not due to the dive-time safety feature. Position

error is largely explained by control error.

other words, if control error is reduced (i.e., dead reckoning works well), there is a strong

chance that the glider surfaces closer to the desired location.

7.2 Distance Field Estimation with Log-GPIS

We now consider the general problem of autonomous navigation in an indoor environment.

In particular, we focus on the obstacle representation, and aim to provide an accurate

continuous representation using an Euclidean distance field (EDF). In constructing an

EDF, a fundamental challenge is representing the (unbounded) increase in distance values

across space as we move further from the obstacles. Discrete techniques [80–82, 257] handle

this issue by restriction to a finite grid, whereas no clear solutions have been presented

for continuous approaches [251, 258]. We focus on the fact that the behaviour of an EDF

is elegantly described by the Eikonal equation, and combine it with GPs to improve the

mathematical fidelity of the prediction. This allows a more accurate prediction of distance

values further from the points measured by the sensor.
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7.2.1 Background

7.2.1.1 Euclidean Distance Field

Consider an obstacle represented as a manifold S ⊂ RD with boundary ∂S, of which the

orientation is given by the normal n. For all x ∈ RD, the EDF d(x) is the closest distance

to the boundary ∂S:

d(x) = min
y∈∂S

|x− y|. (7.29)

Consider the scenario where the boundary ∂S dilates along its normal direction with unit

speed. Then, the arrival time will be equal to the distance d(x). This intuition is captured

by the Eikonal equation [259], which is given by

|∇d(x)| = 1 x ∈ RD, (7.30)

with boundary constraints,

d(x) = 0 and ∂d(x)/∂n = 1 on x ∈ ∂S. (7.31)

Suppose we are given sparse measurements of the points on surface, X = {xi} ⊂ ∂S,

i = 1 . . . N . Our aim of is to estimate d(x) given X , thereby reconstructing S.

7.2.1.2 Gaussian Process Implicit Surfaces

Gaussian process implicit surface (GPIS) techniques [251, 258, 260, 261] use GP regression

to estimate the distance field of the surface. Consequently, the surface is given by the zero-

level set of the distance field. Most standard GPIS techniques directly model the distance

field as a GP [258], and often use normal measurements to ensure correct results [251].

However, although standard GPIS allows continuous and probabilistic representation of

the surface with high precision and continuity of the distance field near the surface, it

is often highly inaccurate further from the surface. For example, using a zero-mean GP

implies that the prediction will include false-positive artifacts as the predicted function
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value falls back to zero. Our method, log-GPIS, alleviates this issue, by elegantly enforcing

the Eikonal equation (7.30) into GP regression.

7.2.2 Varadhan’s Formula

A major challenge in exploiting the Eikonal equation (7.30) as we did in previous chapters

is that it is non-linear and hyperbolic. It is therefore difficult to solve directly, and special

numerical approaches are often required, including discrete and combinatorial methods

such as fast marching or label-correcting to propagate the distance field through a grid

(e.g., [257] [262]).

A recent work in the computer graphics literature [263] presents a smooth alternative

based on Varadhan’s distance formula [264] [265], which approximates the EDF d(x) using

the heat kernel on the manifold S. The physical intuition behind Varadhan’s formula is

as follows. Imagine that the target surface S is hot and emanates heat. The conduction

of heat can be viewed as particles taking a random walk starting from the boundary ∂S.

If we restrict the duration of the random walks to be short (i.e., as time t→ 0), the paths

taken will be close to the shortest possible one.

Heat conduction on S is modelled by the heat kernel, denoted by v(x). The heat kernel,

which we denote by v(x), is the solution of the homogeneous screened Poisson equation.

(1− t∆)v = (1/t−∆)v = 0 in S,

v = 1 on ∂S,
(7.32)

where ∆ = (
∑

i
∂2

∂x2
i
) is the Laplace operator and 1/t is a positive parameter that controls

‘screening’. An apparent merit of the screened Poisson equation (7.32) is that it is linear,

unlike the Eikonal equation (7.30).

The celebrated result of Varadhan (Theorem 2.3, [264]) is that the heat kernel v(x) and

the EDF d(x) are related as follows:

d(x) = lim
t→0
{−
√
t ln[v(x)]}, (7.33)
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where it can be seen that the approximation gets better as t approaches zero. Consequently,

we define the approximation of d(x) as u(x):

u(x) = −
√
t ln v(x). (7.34)

In this case, t serves as a smoothing factor of u(x). Accordingly, rewriting v(x) in terms

of u(x),

v(x) = exp{−u(x)/
√
t}. (7.35)

Substituting v(x) from (7.35) in (7.32) leads to:

v − t∆v = v
[(
1− |∇u|2

)
+
√
t∆u

]
= 0, (7.36)

which shows that we effectively solve the regularised form of the Eikonal equation.

Although the theory described thus far only applies to the case of x ∈ S (due to the

domain constraint in (7.32)), we can easily extend it to x ∈ RD. To do so, consider the

EDF of the complement, Sc. The corresponding heat equation (7.32) is then defined in

Sc. Meanwhile, the boundary condition remains the same, because ∂Sc = ∂S. Combining

the two, we have:
v − t∆v = 0 in RD,

v = 1 on ∂S,
(7.37)

in place of (7.32).

In doing so, we have lost the information on whether x is inside or outside S (i.e., the sign

is lost), because we have ‘stitched’ the EDFs on S and Sc. In our view, the loss of sign

is a small price to pay compared to the convenience of using (7.37) to approximate the

(unsigned) distance field everywhere on RD.

7.2.3 Log-Gaussian Process Implicit Surfaces (Log-GPIS)

In this section, we describe how to exploit Varadhan’s formula in GP regression. Based on

Varadhan’s formula, we find that it is advantageous to model the heat kernel v(x) (i.e., the
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exponential of the EDF) as a GP, instead of the EDF d(x). This is because v(x) is governed

by the screened Poisson partial differential equation (PDE) (7.37), which is linear unlike

the Eikonal (7.30) or the regularised Eikonal (7.36) equations. Linear PDE constraints

can be naturally incorporated into GP regression by ensuring that the covariance function

follows the linear PDE [217], which we will describe shortly.

Assuming that the choice of covariance function respects (7.37), we estimate v(x) by

simply using the GP regression equation (3.6) with target measurements set to yi = 1 at

locations xi on the surface. Intuitively, this implies the target values in terms of the EDF

is log(1) = 0 on the surface boundary. Similarly, this enforces the boundary condition

in (7.37).

Subsequently, we use Varadhan’s formula (7.34) to recover the EDF from the predictive

mean and covariance function:

d̄∗ = −
√
t ln f̄∗. (7.38)

Remarkably, (7.38) shows that we can incorporate the Eikonal equation (7.30) by a careful

choice of covariance and a simple log-transformation, which justifies the name of log-GPIS.

Despite its simplicity, the log-transformation has a non-trivial benefit that the predicted

distance will approach infinity as we query points further away from the surface unlike the

standard GPIS, which will predict distance value of zero. In other words, log-GPIS solves

the issue of undesirable artifacts in the predicted surface geometry.

The log-transformation also affects the gradient. Taking the gradient of both sides of

(7.38) respect to the distance,

∇d̄∗ =
−
√
t

f̄∗
∇f̄∗, (7.39)

where it can be seen that the gradient of d̄∗ is in the opposite direction as the gradient of f̄∗,

subject to a scaling factor
√
t/f̄∗. However, because the Eikonal equation (7.30) requires

that the magnitude of the gradient is normalised to 1, the scaling factor is unimportant,

and we simply need to normalise the gradient of f̄∗, and invert the sign.

Based on the gradient (7.39), the predictive variance can be calculated using a first-order

approximation:

V [d∗] =
−
√
t

f̄∗
V [f∗]

−
√
t

f̄∗

⊤

. (7.40)
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7.2.4 Choice of Covariance Function

In this section, we derive a covariance function that satisfies the screened Poisson PDE (7.32),

inspired by Sarkka’s work [217]. The main result is that the Whittle kernel [266], which is a

special case of the Matérn family of order 1 [75], satisfies the screened Poisson PDE (7.37)

exactly. The Whittle kernel is given by:

k
(
x, x′) = |x− x′|

2λ
Kν

(
λ
∣∣x− x′∣∣) . (7.41)

Here, Kν is the modified Bessel function of the second kind of order ν = 1. λ is the

characteristic length scale hyperparameter, and is set as λ = 1/
√
t. In choosing the

hyperparameter λ, two considerations need to be made. The first is that as λ→∞, the log-

GPIS inference equation (7.38) will satisfy the Eikonal equation (7.30) more faithfully. This

is because (7.33) shows that when t→ 0 it will produce a better distance approximation,

which means the value of λ gets bigger. Meanwhile, the choice of hyperparameter also

affects the computational stability of GP inference, and also the reconstruction accuracy

for the heat kernel v(x). Therefore, λ must be set as large as possible, while ensuring

computational stability and reconstruction accuracy are not affected.

We present why the Whittle kernel (7.41) satisfies the screened Poisson PDE (7.32). For

brevity, we only consider the 2D case, where we may expand (7.32) as:

∂2v (x1, x2)

∂x21
+

∂2v (x1, x2)

∂x22
− λ2v (x1, x2) = w (x1, x2) , (7.42)

where w(x, y) is the white noise. To exploit the Wiener-Khinchin theorem [75], we take

the Fourier transform of (7.42) and obtain the spectral density:

S (ω1, ω2) =
1(

ω2
1 + ω2

2 + λ2
)2 . (7.43)

Now, the Wiener-Khinchin theorem [75] provides that the covariance function is given

by the inverse Fourier transform of the spectral density (7.43), which is the Whittle ker-

nel (7.41).
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To summarise, log-GPIS is capable of producing EDF estimates that faithfully satisfy the

Eikonal equation (7.30) by simply applying a log-transform to a GPIS with a covariance

of the Matérn family. The implication is that there is no need to provide sample points

inside and outside the surface. Our algorithm only requires the measurements around the

surface, and the EDF will be predicted accurately throughout the entire domain.

(a) ground truth (GT) [251] (b) truncated signed distance
field (TSDF) [83, 251]

(c) GPIS-SDF [251] (d) Log-GPIS

Figure 7.10: Comparison of inferred distance fields in a 2D dataset. a) The ground
truth. b) TSDF [83, 251]. c) GPIS-SDF [251]. d) Log-GPIS (proposed). All methods
accurately reconstruct the obstacle boundary (solid red line), but only log-GPIS infers the
EDF accurately over the whole field. The bottom subplots show the EDF values along the
black line. N.b., the colormap is differs among different maps for visualisation purposes,
except for the GT and ours. In the subplots of c) and d), the green area is variance.
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7.2.5 Evaluation

We compare the performance of log-GPIS against state of the art techniques including

GPIS-signed distance field (SDF) [251] and TSDF [83] in a 2D navigation setting. For

fairness, we use the same dataset as [251], which consists of 28 LIDAR scans from different

robot poses with angular range of −135◦ to +135◦, sensing resolution of 1◦, and noise

σ = 0.01m.

As aforementioned, our approach does not contain sign information. However, we can

simply recover the sign of the log-GPIS by comparing the predicted gradient of each testing

point with sensor position. If the gradient is in the opposite direction of the sensor, we

flip the sign of distance value of the testing point. This recovery procedure was considered

during comparison.

The results of TSDF [83], GPIS-SDF [251], and our method log-GPIS and the ground truth

are shown in Fig. 7.10. The sub-figures at the bottom show the distance field sampled

along the solid black line. The ground truth in Fig. 7.10a) shows that the distance field

grows linearly away from the surface. Because the signed distance field is shown, the

surface is exactly at the zero crossing. Fig. 7.10b) shows the distance field estimated by

the TSDF method [83] with constant weights. Although TSDF still produces an accurate

continuous implicit surface, it can be seen that TSDF overestimates the distance field

due to the limited viewpoints, and only agrees with the true Euclidean distance if the

sensor ray is in the direction of surface normal. Fig. 7.10c) is the result of what the

authors in [251] called GPIS-SDF, which is an online continuous and probabilistic method

to recover the implicit surface and the distance field. It can be seen that, although the

distance value within a small region around the surface is accurate, if the testing points

are far away from the measurements, the uncertainty increases and the distance values

are not properly estimated. As we can see, the region without measurements nearby is

covered by the white color with brighter being more uncertain. Fig. 7.10d) shows the

surface and distance field estimated by our method log-GPIS. Here, it is evident that the

EDF is accurately predicted even when far from the surface measurement with the same

linear growth as in the ground truth, and the surface is accurately reconstructed. This

shows that log-GPIS is advantageous in both mapping and accurate distance estimation.
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The latter advantage is particularly useful for planning, because it allows advanced biasing

such as the medial axis [84]. Thus far, doing so required a computationally intensive fast

marching techniques [80–82, 257], but log-GPIS handles EDF estimation elegantly and

efficiently by a simple log-transformation. For this reason, log-GPIS can significantly

improve planning.

7.3 Summary and Evaluation

In summary, the two case studies demonstrate that planning performance can be signif-

icantly improved by incorporating predictive priors into perception algorithms. In both

case studies, a PDE constraint was imposed on GP regression, thereby improving the phys-

ical fidelity of the predicted environments. This allows the robot to make better prediction

of the environment at a remote location using the sensor data at the current location.

In the OCEAN problem, we exploited the fact that ocean currents are planar incompress-

ible. Planar incompressibility implies the existence of a streamfunction, which is related to

the ocean currents via partial derivatives. We presented incompressible GP, which makes

use of this relationship. Incompressible GP can extrapolate the ocean currents with a

greater accuracy than standard GPs. The extrapolative power enabled drift-based current

estimation and navigation to goals.

In the EDF mapping case, we used the fact that EDFs must satisfy the Eikonal equa-

tion. Whereas the Eikonal equation is nonlinear and difficult to incorporate, Varadhan’s

formula allows approximate enforcement of the Eikonal equation through linear PDEs.

We presented log-GPIS which enforces Eikonal equation through Varadhan’s formula. We

demonstrated that using log-GPIS allows accurate reconstruction of EDF especially further

away from measurement points.

Overall, in both cases, the improvement in planning performance was driven by the predic-

tive capability of the GP model of the environment. In particular, incorporating the PDE

model improved the accuracy of covariance function that models correlation between the

value of the underlying field. In the case of incompressible GPs, we obtained a more accu-

rate and specific model of the correlation between current vectors. In the case of log-GPIS,
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the combination of the heat kernel and log-transform yielded a linear behaviour in the dis-

tance field as we move away from the obstacles. In abstract terms, these observations

indicate that the underlying GP became a better generative model of the environment,

because correlation between values affect the joint distribution. Based on this observation,

we hypothesise that generative modelling is the ideal method for devising predictive priors

for prospection.
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Conclusion

8.1 Summary of Thesis

This thesis proposed prospection as a mechanism for autonomous mobile robots in uncer-

tain environments. Prospection refers to predicting possible future environmental states

and evaluating them with respect to the task at hand. This new perspective offers a unify-

ing view of autonomous decision-making that combines insights from active perception [14]

and planning under uncertainty [153, 267]. Specifically, robotic prospection comprises two

main elements: prospective perception with predictive priors, and prospective planning

with uncertainty awareness.

We considered general and specialised variants of prospective planning. Chapter 3 pre-

sented the most general instance of prospective planning under environmental uncertainty,

comprising a Bayesian robot operating in an unknown environment using its onboard sen-

sor. The aim of the problem is to find a strategy that maximises the reward gathered

based on previous sensor measurements.

Chapter 4 presented mutual information upper confidence bound (MI-UCB) as a solution

to this general problem formulation. MI-UCB is defined as the weighted sum of infor-

mation gain and prior expected reward. The main result is that we can approximately

maximise the posterior reward after measurements without knowing their values ahead, by

selecting actions with the highest MI-UCB value. Under mild assumptions on the problem

135
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instance, the MI-UCB exhibits submodularity, which permits the use of algorithms for

active perception and information gathering. We also showed that MI-UCB can be used

to distribute exploration and exploitation in a scout–task robot team, consisting of scout

robots that gather information and task robots that take reward. This allows simultaneous

and synergistic exploration and exploitation, as opposed to a trade-off in the single-robot

setting, as we demonstrated experimentally in a multi-drone surveillance application.

Chapter 5 demonstrated prospective perception and planning in tandem in the case of

environmental process monitoring, where the goal is for a robot to reach the source of

an environmental process based on sparse concentration measurements. Prospective per-

ception was realised with a specialised Gaussian process (GP) regression scheme called

advection-diffusion Gaussian process (ADGP) which incorporates the physical model of

advection diffusion partial differential equation (PDE) into GPs. The combination of

ADGP with Gaussian process upper confidence bound (GP-UCB) [181] strategy led to

theoretical guarantees on convergence and intelligent behaviour such as prioritising cross-

stream regions if the concentration measurement (i.e., the advection from down-stream

regions) is low.

Chapter 6 presented prospective planning for complex semantic tasks beyond simple scalar

fields. To reason over uncertainty, we developed random signal temporal logic (RSTL),

which extends signal temporal logic (STL) from binary evaluation of task satisfaction to

continuous probability of task satisfaction. This uncertain semantics allows diverse and

flexible reasoning over environmental and dynamic uncertainties, as well as the effect of

future measurements, which was shown to resolve the issue of over-conservatism.

Finally, in Ch. 7, we investigated what constitutes good predictive priors for prospective

perception through two case studies, and concluded that generative modelling is likely the

most suitable. We considered two problem instances, of oceanic and indoor navigation.

For the former, we developed the incompressible GP using the fact that ocean currents

are planar incompressible. This physical knowledge granted sufficient extrapolation for

the robot to simultaneously estimate ocean currents from motion data and navigate based

on the estimated current. For the indoor navigation problem, we developed log-Gaussian

process implicit surface (GPIS), which exploits the fact that Euclidean distance fields
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(EDFs) must satisfy the Eikonal equation. Similar to the case of oceanic navigation, the

incorporation of Eikonal equation improved accuracy further away from measurements.

These observations support the relevance of generative models, as the improvement in

prediction accuracy resulted from accurate modelling of correlation through the use of

physical models.

In the remainder of this final chapter, we review and summarise the significance of these

results. We then recommend several avenues for future research, and discuss the implica-

tions of robotic prospection towards autonomy.

8.2 Main Contributions

Most importantly, this thesis introduced robotic prospection, a novel mechanism for auton-

omy that extends the typical perception-planning pipeline with foresight and proactivity.

Robotic prospection comprises prediction of possible environmental states given sensor

measurements, and evaluation of these states for action selection. It combines insights

from multiple formulations for planning, including active perception [14], decision-making

under uncertainty [267], and Bayesian optimisation [31]. We presented a general mathe-

matical formulation of robotic prospection in the case when the main source of uncertainty

is the surrounding environment, as well as special cases with favourable problem struc-

tures that can be exploited. The significance of this new perspective is that it explicitly

accounts for how the robot’s possible future understanding of the environment should

affect the present decision.

Based on the general and specialised problem formulations, we presented a suite of algo-

rithmic tools, assuming that the environment is static. We believe that, together with

these tools, prospection has the potential to shift the paradigm of robotic system archi-

tecture, from the conventional reactive perception-planning pipeline to a proactive loop of

queries between perception and planning algorithms. The rest of this section reviews and

summarises the significance of these tools relative to the vision of robot autonomy.



138 Chapter 8. Conclusion

8.2.1 MI-UCB for General Prospective Planning

We proposed MI-UCB as a strategy for solving the generalised prospective planning prob-

lem, based on prior work in [58, 65]. Most importantly, MI-UCB shows that combining

mutual information (i.e., exploration) and reward (i.e., exploitation) serves as a proxy for

optimising posterior reward in hindsight. MI-UCB can be computed efficiently in many

problem instances, and essentially circumvents the computational requirement of enumer-

ating possible environmental states or sensor measurements as did previous formulations.

In fact, we showed that MI-UCB reduces partially observable Markov decision process

(POMDP) and mixed observability Markov decision process (MOMDP) formulations to

submodular maximisation. Although submodular maximisation is still NP-hard, as are

POMDP and MOMDP formulations, many computationally efficient, polynomial-time

approximate solvers are available. Therefore, it enables prospective planning in practical

robotic systems.

We defined the concept of scout-task architecture, in which some robots gather information

and others take reward, and showed how such a team can be coordinated through the use of

MI-UCB. The scout-task architecture provides a unifying view of ideas from many previous

implementations, such as in [49–51, 193]. Further, we demonstrated how scout-task teams

can be viewed as simultaneously performing exploration and exploitation, by extension of

the classical trade-off. Significantly, this provides the grounds for generalising scout-task

robot teams to other problem instances where selected subset of robots are specialised for

implicitly aiding through observation.

8.2.2 Physics-based Priors

Throughout this thesis, we proposed several novel GP priors that faithfully satisfy phys-

ical models, including incompressibility (based on [62]), advection-diffusion PDE (based

on [64]), and the Eikonal equation (based on [56]). These models are highly useful as

predictive priors for prospection, as they offer excellent extrapolation with minimal data,

while their correctness is guaranteed by our understanding of physics. Even more im-

portantly, an exciting aspect of these models is that they each serve as powerful tool for
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Bayesian data assimilation in various branches of natural sciences. Therefore, we antici-

pate that these models could serve as an intermediate layer between the natural science

and robotics communities that enables both high-quality data assimilation and develop-

ment of prospection or information gathering algorithms. Having such an intermediate

layer will be instrumental in widespread adoption of robotics in scientific missions.

8.2.3 An Uncertainty-Aware Temporal Logic for Semantic Task Planning

We proposed RSTL to model uncertainty in semantic task planning based on [59]. Rea-

soning over uncertainty allows integration with practical robotic systems, and also with

prospective planning. Further, because probability is continuous, as opposed to binary

Boolean evaluations, it allows efficient gradient-based synthesis. For these reasons, we

believe that RSTL will be pivotal in the adoption of formal methods in practical robotic

systems.

In addition to the inherent benefits of incorporating uncertainty, RSTL leads to a natural

synthesis-as-inference perspective. The reformulation of STL synthesis as probabilistic

inference in Sec. 6.4.1 has important implications for future work. Independently, it has the

potential to accelerate the development of explainable artificial intelligence (AI) techniques

through seamless integration between formal methods and machine learning techniques as

did the optimal control-as-inference paradigm [248, 249]. Further, under the synthesis-as-

inference paradigm, multi-robot planning is equivalent to decentralised data fusion, which

is well studied. These examples illustrate the opportunities offered by RSTL for designing

new algorithms for STL synthesis by adopting tools from probabilistic inference.

8.3 Future Work

Prospection is a novel perspective on robot autonomy that significantly improves upon

the previous one of adaptivity. Many important avenues for future work arise from this

new perspective. This section summarises these areas of future work, and their impact on

advancing robot autonomy.
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8.3.1 Prospective Perception with Deep Generative Models

This thesis developed a methodical recipe for robotic prospection comprising prospective

perception and planning. In particular, the practitioner may realise prospective planning

by using MI-UCB, which only involves definition of the reward, and evaluation of he

Shannon information gain between the measurements and the environment. As was seen

in the case studies, predictive priors based on generative models can be used to significantly

improve the performance of planning.

An important recent development is the advance of deep generative models, such as genera-

tive adversarial networks, variational autoencoders, and sum-product networks (SPNs) (see [90,

152]), which offer powerful extrapolation given limited data. The combination of prospec-

tive planning with such powerful predictive priors has significant potential for enhancing

robot autonomy. In fact, the utility of such deep generative models has been already

demonstrated in simple navigation tasks [90]. Further, prospection can naturally handle

more complicated problem instances such as the Canadian traveller’s problem with corre-

lated edge costs [185, 268]. The remaining challenge is the computation of information-

theoretic quantities for such models. The result would be a robot that not only reacts to

changes in the predicted environment, but also actively selects actions that offer useful

knowledge.

8.3.2 Communication and Composition Planning in Multi-Robot Sys-
tems via Prospection

The scout-task coordination problem considered in Sec. 4.2 stimulates much imagination

for future work. The most immediate avenue based on the results are some fundamental

questions in multi-robot coordination. Given a problem instance, can we postulate an op-

timal composition of scout and task robots? Can the composition be adapted dynamically

depending on the task at hand? These problems allows operational optimisation in many

practical applications in areas such as agriculture, infrastructure monitoring, construc-

tion, marine robotics, and others where there is value in separating scout and task robots.
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Further, we conjecture that it will offer interesting insight into information-theoretic char-

acterisation of difficulty of a problem instance [181].

Another exciting aspect is that prospective planning in a scout-task team can be extended

to implement planning-aware communication [269, 270]. An entire scout-task robot team

can be viewed as a system on its own with sensors and effectors that can be controlled.

Measurements in this system are realised through communication, in the sense that com-

munication actually delivers the value of measurement to other agents. In fact, Shan-

non [219] initially developed information theory to quantify the utility of communication

packets. The extension to evaluation of measurements is owing to an analogy to commu-

nication in that both are conveyors of information. By extension, the scout-task coordina-

tion problem of selecting task-relevant measurements is equivalent to the planning-aware

communication problem of choosing task-relevant communication packets.

8.3.3 Semantic Task as Predictive Prior or Environmental Parameter

The perspective of viewing a task as a Bayesian conditional [248, 249] offers useful insight

for prospection. In a cooperative setting, a multi-robot system may share the knowledge

about what task is to be conducted prior to mission. Using this knowledge, each robot

can augment or replace explicit communication for behaviour coordination with trajec-

tory predictions derived from specifications [58, 164], through integration with estimation

methods [271, 272].

Another important extension is when the task itself is unknown or unclear. This occurs

when the instruction contains ambiguities that must be grounded given context [273].

Under the prospection formulation, we can pose the task specification as an environmental

parameter that must be estimated given observations, and employ MI-UCB as we do

for any other environmental uncertainty. Indeed, the questions remain open, as to how

task can be inferred given observation, and how we can quantify the information gain of

measurements in this setting.
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8.3.4 Extensions to Dynamic Environments

For the sake of simplicity, the formulation in this thesis exclusively considered situations

where the environment is static. An important direction for future work is to handle

dynamic environments.

In the simplest case, the environment may be varying over time, independently of the

robot’s action. In principle, MI-UCB can solve this issue via over-parameterisation, by

redefining a new environmental parameter as concatenation over time. Nonetheless, more

efficient treatise of temporal variation would be necessary in practice. To this end, recent

work on transfer operators [121] appears to be a promising direction for scalar field prob-

lems such as the one considered in Ch. 5. More ambitiously, the dynamics itself could

also be treated as a part of the environmental parameters to be identified, similar to the

premise of dual control [129, 130].

A less trivial case is if the changes in the environment are the result of robot’s actions. In

this case, one must consider what the robot is allowed to change in the environment, or,

aptly, the affordance [274]. As an extension of the results presented herein, we conjecture

that the solution involves steering the environmental state to be favourable not only in

terms of possible reward, but also in terms of uncertainty reduction. Even so, practical

identification of affordance on its own remains the subject of active research, particularly

in manipulator motion planning (see [154, 275]).

8.4 Concluding Remarks

A new era of robotics is coming. In this new era, robots will need to proactively postulate

and query its surroundings, rather than simply reacting to the changes. A higher degree

of autonomy beyond reactivity will be increasingly important.

Robotic prospection presented in this thesis offers a unifying view of such foresight. In this

new setting, robots predict future measurements and environmental states, and evaluate

the prospects with respect to the task at hand. The result is proactive robots that can pre-

dict beyond their sensing horizon and deliberately interrogate their surroundings to extract
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task-relevant knowledge. Such an ability will be crucial in extending robotic applications

to handle the extent of environmental uncertainty required in modern applications.

This thesis presented a practical recipe for realising robotic prospection. We hope that

the results of this thesis serve as useful building blocks in the road towards autonomous

robots that ‘just work’.





Appendix A

Implementation Details for

Decentralised ISR Application

This appendix presents the design and implementation for demonstration of the decen-

tralised intelligence, surveillance and reconnaissance (ISR) task described in Sec. 4.4.2.

We present a practical system implementation, including decentralised inter-robot locali-

sation, mapping, data fusion and coordination. The system is demonstrated in an efficient

distributed simulation. We also describe an uninhabited aerial vehicle (UAV) platform for

hardware experiments, and the preliminary progress toward hardware verification. The

contents of this Appendix is based on our previous publication in [65].

A.1 Software Architecture

In this section, we present the sensors and software components of the framework, as

summarised in Fig. A.1.

A.1.1 Target Detection and Decentralised Fusion

To detect the presence of a target in a sensor measurement, classifiers were trained to

segment humanoids from LIDAR and RGBD point clouds. The RGBD classifier is based on

145
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Multi-Robot Comms

Map StitcherRTABMap Global planner

Local plannerLIDAR classifier

RGBD classifier

Data fusionOuster OS1
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Figure A.1: Software system overview for a single LIDAR drone. RGBD drones do not
have the LIDAR sensor onboard.

the jetson-inference1 library, which was modified to correlated RGB and depth images

from the RealSense D435 camera. We use the LIDAR classifier proposed in [276], which

consists of a cluster extraction algorithm, an support vector machine (SVM) classifier, and

a nearest-neighbour-based Kalman filter for data association and tracking. The LIDAR

classifier required additional training data, which was sourced from some field trials.

The detection results from the RGBD and LIDAR classifiers are broadcast to the entire

team. Each drone runs an independent occupancy grid filter described in [58] to fuse the

detections generated by itself and the ones communicated by others.

A.1.2 Decentralised mapping and localisation

For a drone to perform its mission, it must be able to map its environment and localise

itself in the map. Each drone runs real-time appearance-based mapping (RTABmap)

[230] onboard using sensor measurements from the Realsense T265, D435, and if available,

the Ouster OS1 and global positioning system (GPS) sensor. RTABmap enables each

drone to build a map of its surroundings, assign a geographic location to detected targets,

and to perform reliable path-planning and navigation. The C++ RTABmap package
1https://github.com/dusty-nv/jetson-inference
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interfaces with Robot Operating System (ROS) via the rtabmap_ros node, which allows

other processes (e.g., the global planner) access to the map and current drone pose estimate

generated by RTABmap.

In addition to decentralised operation, another requirement of the system is that it can

operate in GPS-denied scenarios. Since the system consists of multiple drones, a common

geographic reference frame must be established online between drones without the use of

GPS services. An online “map stitching” ROS node was developed to “stitch” maps of

different drones together, thereby joining the maps between drones, and thus allowing a

common reference frame. In particular, the relative 3D rotation and translation between

two drones’ individual simultaneous localisation and mapping (SLAM) maps is estimated

periodically, facilitated by sharing of downsampled sensor data. This is the main idea

behind the map_stitcher node, which simply performs loop closures between drones, as

opposed to between poses of a single drone. Although this functionality exists in RTABmap

during offline postprocessing, the map_stitcher node was developed for this project for

online map stitching, with modifications for fast execution.

We present a high-level overview of the map stitching process (see Algorithm 3). Let Zi be

the set of all of its sensor measurements of the environment. The elements z ∈ Zi are “full”

sensor measurements, with geometric information about the environment, in contrast to

the “measurements” Y , which refer to target detections by the classifier. Then, given an

initial pose, the internal SLAM algorithm of drone i will produce a pose graph Gi, which

can be solved to estimate its trajectory Ti, i.e., the set of all of its poses. Drone i the

receives compressed sensor measurements from other drones, and uses them to perform a

map stitching.

Suppose drone i receives an incoming sensor measurement zj at pose pj from drone j and

its pose graph Gj . The map stitching algorithm running on drone i compares zj to all

of its own measurements Zi. The function SimilarityScore is a fast way to estimate

the “similarity” between two RGB images; if the images are similar enough, relative pose

estimation is attempted. If the relative pose between the two estimates is successful, then

a the relative pose (along with covariance information) is added between the two pose

graphs Gi and Gj . If multiple measurements have high similarity score and successful



148 Appendix A. Implementation Details for Decentralised ISR Application

Algorithm 3 Map stitching algorithm
1: procedure StitchMap(Gi, Gj , zj(t))
2: for zk ∈ Zi do
3: s← SimilarityScore(zj , zk)
4: if s > s⋆ then
5: T̂ ←EstimateRelativePose(zj , zk)
6: if T̂ ̸= ∅ then
7: AddLoopClosure(Gi, Gj , pk, pj , T̂ )
8: G ← SolvePoseGraph(Gi

⋃
Gj)

9: return G

relative pose estimates, multiple loop closures can be added between Gi and Gj from zk.

When all the measurements in Zi have been checked against the incoming zj , the joint

pose graph is solved. Hence the maps of drones i and j are joined together in G. This

allows a shared geographic reference between the drones i and j which can operate in

GPS-denied scenarios, facilitating the sharing of target beliefs among drones.

A.1.3 Local planner

We use the local obstacle avoidance planner proposed in [277]. Its role is to take the

planned paths from the global planner and generate a local collision-free trajectory near

the drone’s current location for the low-level PX4Cube to follow.

The local planner uses the last few frames from the D435 to map the obstacles. This

ensures two layers of redundancy against unmapped or moving obstacles. The global plan

is collision-free with respect to the large-scale map built by the decentralised mapping

module, and the local plan is collision-free with respect to the local RGBD measurements,

which does not depend on the decentralised mapping module.

A.2 Communication Architecture

A.2.1 ROS and MOOS networks

ROS [229] is a software library that provides a common interface for different C++ and

Python programs, called nodes, to communicate with one another. ROS is used onboard
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each drone to manage communications within the drone’s NVIDIA Jetson TX2 computer.

However, ROS cannot be used in a decentralised way between multiple computers, as it

requires a unique ROS “master” to be run on the network. The failure of this ROS “master”

would bring down the entire team, which is undesirable. Hence, a different middleware

solution called Mission-Oriented Operating Suite (MOOS) [278] is used for inter-vehicle

communications. MOOS has the advantage that it can be used in a decentralised way,

without a single “master” computer. With most of the algorithms being written in ROS,

including the local and global planners, the classifiers, the SLAM algorithm, and the sensor

drivers, bridge between ROS and MOOS was used, called rospymoos2. We developed a

modified version of rospymoos to handle custom ROS messages required in this project.

Any ROS messages containing information necessary to be sent offboard the drone are

converted into a MOOS message, and sent to other drones over WiFi via MOOS. Similarly,

messages from other drones are received by MOOS and converted into ROS-compatible

messages via rospymoos.

A.2.2 Low-level communications

Within the ROS network running on the NVIDIA Jetson TX2 onboard each drone, the

local planner calculates a nearby “local waypoint” for use as a setpoint for the PX4Cube.

This local waypoint is communicated to the PX4 via the mavros3 ROS node, which is

translated into a MAVLINK message using mavlink_router4, and then finally transmitted

from the Jetson TX2 to the PX4 over a universal asynchronous receive-transmit (UART)

connection.

A.2.3 Ground station

To facilitate mission monitoring by humans, we modified the popular open-source QGround-

Control (QGC) software, which is commonly used to monitor and control hobby drones.

The concept was to have one computer with QGC per drone to monitor its status, as
2https://github.com/SyllogismRXS/moos-ros-bridge
3https://github.com/mavlink/mavros
4https://github.com/mavlink-router/mavlink-router
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Figure A.2: Simulation architecture diagram.

well as a “team” QGC that displays higher-level information about all the drones in the

team. The major change to QGC was the added capability to access information from each

drone’s onboard ROS network, which is absent from standard QGC. Important algorithmic

diagnostic information, such as metrics about the “health” of mapping and localisation al-

gorithm, local and global planners, detected targets, and more are now displayed on QGC.

Since a ROS subscriber cannot subscribe to topics managed by two different ROS “masters”

(i.e., on two different drones) at once, a ROS node was implemented to relay ROS messages

to QGC upon receiving an HTTP GET request from QGC. This allows each QGC to access

ROS information from multiple drones, and for each drone to serve multiple QGC instances

on the various ground stations.
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A.3 Distributed Simulation Architecture

A distributed simulation framework was set up to perform hardware in the loop (HIL)

testing after field trials became infeasible. The perception, mapping, and planning software

described in Section A.1 was used on four NVIDIA Jetson AGX Xaviers, a more powerful

but pin-compatible version of the Jetson TX2 onboard the drones. The Jetson AGX

Xaviers are connected via an ethernet switch to two desktop computers with Core i7

processors and NVIDIA RTX2060 graphics cards. These desktops simulated the motion

of the four drones using the open-source PX4 simulator [232] in simulated environments

using a custom version of the Modular Open Robotics Simulation Engine (MORSE) [233].

The desktops were also responsible for the computationally expensive task of ray-tracing

to simulate RGBD and LIDAR sensor measurements for each of the four drones, facilitated

through MORSE and Blender. Fig. A.2 shows a graphical representation of the simulation

architecture.

A.4 Hardware Experiments

The core unit of the multi-robot system is an individual drone (Fig. A.3). The team of

drones consists of two types: drones that are task drones, and drones that are both scout

and task drones. In this team, there are no drones that are “scout-only” drones. All drones

share a common airframe and propulsion system, and differ only in their sensor payloads.

The specification is summarised in Table A.1. In total, the team consists of 4 drones. Fig.

A.4 shows an image taken during a field trial.

A.4.1 Sensors

The sensor payload for the RGBD drones consists of an Intel RealSense D435 RGBD

camera mounted facing forward for target recognition, and a nadir-pointing Intel RealSense

T265 RGBD camera for localisation and mapping. The T265 camera also includes an

onboard SLAM implementation, and can used to produce a pose estimate of a drone
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Table A.1: Specification of the drone platforms

Airframe S500
Size 500mm wheelbase

Maximum take-off weight 1.8 kg
Motors 4x NTM PROPDRIVE v2 3536 910kV

Propellers 10-inch x 4.7
ESC 4x Flycolor X-cross BL-32 50A
PDB Matek FCHUB-125 PDB

Battery Zippy 4S LiPo, 40C, 6200mAh, 0.59 kg
FCS Pixhawk Cube
GPS Here2 GPS

relative to its own initial pose. The T265 camera SLAM solution is considered a source of

odometry in a higher-level SLAM implementation (see Section A.1.2).

The D435 camera also contributes towards mapping and localisation; the RGBD images it

takes are fed to the aforementioned higher-level SLAM implementation. In addition, the

the RGBD images are also used as an input to a deep image classifier to recognise targets.

Target detections from the RGB classifier are considered to be true detections. In ideal

indoor conditions, the D435 is rated to give accurate depth readings at ranges up to 10m,

though in our outdoor experiments, this was never realised.

The LIDAR drones also carry T265 and D435, but is augmented by an Ouster OS1 3D

LIDAR. The OS1 LIDAR provides an omnidirectional field of view with an order of mag-

nitude longer sensor range than the RealSense D435 (about 100m), allowing the robots

carrying the OS1 to sense large areas quickly. However, a LIDAR scan was considered

to have insufficient resolution to reliably decide if a segment of the scan is a target or

not; especially at long ranges, the LIDAR point cloud can be very sparse. The LIDAR

sensor data was used as an input to the higher-level SLAM algorithm, as well as to detect

potential targets using the LIDAR classifier. Targets identified using the LIDAR classifier

are considered potential targets, and require confirmation using the shorter-range D435.

A.4.2 Electronics, flight control hardware

Low-level control (e.g., attitude control) of each drone is handled by a PX4Cube flight

control unit. Additionally, an NVIDIA Jetson TX2 is onboard each drone to perform
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Figure A.3: A 3D render of the UAV platform with LIDAR

Figure A.4: Obstacle avoidance test at the RAAF Williams in Victoria, Australia.

higher-level computing tasks, including target recognition, mapping, localisation, planning,

and also a “local planner” which gives commands to the PX4 flight computer.
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A.4.3 Lessons learned from field trials

Because of COVID-19 restrictions, full-system field tests of the hardware were not per-

formed. However, the field tests that were performed were invaluable in improving and

debugging the system. We describe some lessons learned here.

During field tests, it was discovered that the RealSense D435 camera interfered with the

GPS sensor module. When the D435 plugged into the Jetson TX2 computer onboard the

drone, GPS connection would be intermittently lost, or the wrong number of satellites

would be reported. Even when the connection seemed stable, the measurements from the

GPS sensor module accumulated unacceptably large drift during test flights, with over

10m of drift in under 5 minutes. Since the interference was believed to be electromagnetic,

this was remedied by changing the distance between the GPS module and the RealSense

D435. The implemented solution was to be to 3D-print a taller “mast” for the GPS module

to be raised about 10cm above the body of the drone, which was successful in recovering

good GPS sensor performance. The shorter mast is shown in Fig. A.3.

Although the T265 camera performs SLAM as opposed to simply visual odometry (i.e., it

attempts to detect loop closures), in practice this added functionality caused undesirable

behavior. When flying the drones at low altitude over grass for extended periods of time,

impossibly large jumps were detected from the T265 odometry output. This was caused

by different patches of grass being identified as the same patch, resulting in incorrect loop

closures and severe mapping and localisation failure. This issue affected only the task-

only drones, which did not have LIDAR information. The problem was ameliorated by

detecting the onset of this localisation failure in order to land the drone safely.
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Implementation Details for

OCEAN

In this appendix, we describe the details of implementation needed to perform our field

trials. The overview of the closed-loop implementation is shown in Fig. B.1. For a proof-

of-concept product, we decided to use Matlab as a development platform for its builtin

graphing capabilities and its quick development cycles.

When the glider is on a surface, it transmits the most recent glider data (.sbd) to Dock

server and waits for a new plan. Our autonomous system then updates the ocean current

estimates using drift between the dead reckoned and true locations. If the glider is close

Figure B.1: Autonomous closed-loop estimation and re-planning workflow with Amazon
Web Service
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enough to target waypoint, then the system chooses the next waypoint. Given the target

waypoint and the updated ocean current estimates, the system finds a glider control that

drives the glider to the target waypoint under the influence of estimated ocean currents.

Since the glider assumes idle ocean condition, the waypoint that the glider is assigned

to follow is different to where we want it to go. We call such waypoint virtual waypoint.

The virtual waypoint is computed given ocean currents estimation and a new mission file

containing the virtual waypoint is created. The file is uploaded to the glider and the glider

resumes its mission. The surface time required to process all mentioned are below a couple

of minutes; the glider would only be drifted a minimal distance on the surface.

The modularity of this project allowed us to test each component independently before

aggregating them to demonstrate how the objective of this project is satisfied. Fig. B.2

gives an overview of the structure of our software. For the class responsible for integrating

the modules (StatelessBOT and StreamBOT), we maintain our policy of statelessness so

that we are able to save working data and reload it after one surface iteration. This makes

the class act as if it were a collection of functions as opposed to an object with state. The

classes StatelessBOT and StreamBOT will be briefly covered in the following sections.

B.1 StatelessBOT

This class acts as a minimum working product to fulfil the requirements of this project. The

second half of the name refers to the “Blue Ocean Top” level of the solution. StatelessBOT

is responsible for interfacing between the components we have separately produced.

A typical usage of this class is outlined in Alg. 4. The data from the Slocum glider is

parsed and filtered into data that is used in Line 1. Line 2 constructs StatelessBOT with

the settings in the task config file. Line 3 uses the expected surfacing position of the

glider (from dead reckoning) and the actual surface position simultaneously reconstruct

the path and also estimate the current flow along the path. Line 4 uses an optimisation

algorithm called the simplex search method (Matlab’s fminsearch) to find the best

virtual waypoint to reach the desired position. A waypoint is considered “good”, if the

corresponding constant velocity vector it corresponds to produces the trajectory with a
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Algorithm 4 Pseudocode for one surface iteration
Input: config, data_sbd, nextPos, cache
Output: nextPos, cache

1: gliderData = parse_sbd(data_sbd);
2: bot = StatelessBOT(config);
3: [cache.oceanCurrent,∼,∼,currPos] = …

bot.update_oc(gliderData,cache.oceanCurrent,config.geoProjection);
4: [success,nextVirtPos] = bot.plan(cache.oceanCurrent,currPos,nextPos);
5: if success then
6: nextPos = nextVirtPos;
7: return [nextPos,cache];

point that is closest to the desired position. Finally, Line 5-7 conditional block ensures

that if we are unable to find a suitable waypoint, we use the desired position directly as a

waypoint for robustness.

B.2 StreamBOT

This class improves upon StatelessBOT’s planning which can be prone to falling into

local minima as there is no guarantee that the corresponding trajectory is optimal or

complete in any sense. The plan method of StatelessBOT is overridden with the use

of our streamline-based PRM∗ planner. Through inheritance, “StatelessBOT” can be

replaced by “StreamBOT” in Line 2 of Alg. 4.

As a sampling-based algorithm, we are able to restrict the state space (2D position).

We choose to sample within the ellipse with the start and goal points as focal points,

and eccentricity customisable in the task config file. This means that we are able to

dynamically scale the resolution of the path, depending on where the start and end goals

are. Because the streamline-based method appears to be time-optimal, this approach

should be complete and optimal.

It is important to note here, that without applying the idea of Sparse Gaussian Processes

to the current estimation process, repeated queries of current estimation becomes more

computationally intensive over mission time. To alleviate this effect, we equally sample

the current field and use that grid to interpolate the current vectors used in the planner.
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StatelessBOT

+ config: struct

+ StatelessBOT(config): void
+ update_oc(gliderData,oc,geoProj): [oc,path,prevPos,currPos,expCurrPos]
+ plan(oc,currPos,nextPos): [nextPos,err,traj]

OceanGPMM

...

+ OceanGPMM(...): void
+ update_en(prevPos,expCurrPos,currPos,diveDuration): reformedPath
+ predict_en(easting,northing): [u,v,cov]
...

blue_ocean_dev 

Stream-PRM

Use

Use

Use

slocum-tools

DirectPlanner

Extends

StreamBOT

+ none

+ StreamBOT(config): void
+ plan(oc,currPos,nextPos): [success,nextPos,err,traj]

Use

Region

...

...

Stream2DRobot

...

+ Stream2DRobot(...): void
+ sampleVelocities(init,goal)

RealOceanCurrent

...

...

InterpolatingCurrent

...

...

EllipseRegion

...

...

«interface»
OceanCurrent

+ isValid(pos): valid
+ getCurrent(pos): curr
+ getStreamFunctionValue(pos): value

«interface»
Robot

+ timeCost(init,goal): cost = 0
+ simulate(path): [trajectory,props] = 0

Extends

1

1

Use

Use

Use
Use

«interface»
SamplingRobot

...

+ sampleVelocities(init,goal): v = 0
+ timeCost(init,goal): cost
+ simulate(path): [trajectory,props]
+ shoot(init,goal): [traj,v_d]

1 1

Figure B.2: Simplified class diagram showing the relationship between different modules
to achieve glider navigation

The trade of accuracy for computation time appears to make little impact to the overall

outcome of the planner, especially for higher interpolating resolutions.



Appendix C

Empirical Analysis of RSTL

This appendix empirically analyses the performance characteristics of the gradient-based

synthesis algorithm for random signal temporal logic (RSTL) described in Ch. 6. We

first examine the convergence characteristics of the gradient ascent (6.31) solution, and

demonstrate the computational benefits of graphics processing unit (GPU) acceleration.

We then show that the framework is GPU-compatible and that it finds a better solution

by concurrently running many initial conditions.

C.1 Convergence

Gradient-based methods cannot guarantee globally optimal solutions unless the objective

is convex. We analyse the convergence characteristics of the proposed computation rules

in the target search scenario (Fig. 6.2). We randomly generated 100 initial conditions

from the control prior P(U), and ran the gradient ascent step for 2000 iterations, with

Ns = 1, 50, 100 number of trajectory samples.

Figure C.1 shows the probability of satisfaction over gradient ascent steps for naive condi-

tionally independent (CI) ((6.11), red), log-odds CI ((6.17), green) and log-odds mutually

exclusive (ME) ((6.19), blue) methods with varying number of trajectory samples Ns. It

can be seen that while log-odds CI and ME methods find global and local optima, the

naive CI method does not find any. The naive CI method’s failure is attributed to the

159



160 Appendix C. Empirical Analysis of RSTL

(a) Ns = 1 (b) Ns = 50 (c) Ns = 100

Figure C.1: Comparison of convergence with varying number of trajectory samples.
Solid lines are medians.

Figure C.2: Comparison of average computation time per gradient ascent step between
combinations of CPU (red) and GPU (green) with CI (upward triangle and ME (downward
triangle). GPU shows 4-fold improvement in scalability. Variance was in the order of 10−4

for all configurations.

computation rules (6.11) being bounded to [0, 1] range, which causes numerical errors

to build up. Note that log-odds ME reports lower probability of satisfaction due to its

underestimation property, but we found that the resulting trajectories were still similar.

With increasing Ns, the variance in probability of satisfaction is decreased. In practice,

this means the generated plan will more reliably account for state uncertainty, which is

useful for, e.g., the collision avoidance scenario in Fig. 6.3.

C.2 Computation Time

The results in Sec. C.1 illustrate that it is important to use multiple initial conditions

and more trajectory samples to ensure reliable operation. However, this would inevitably

increase the computation time as well.
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GPU acceleration is a prominent means to circumvent the issue of computation time, but

not all algorithms benefit from GPU acceleration. To determine if our proposed methods

benefit from GPU acceleration, we compare the computation time per gradient ascent step

of our Tensorflow [245] implementation between GPU and CPU. We used all combinations

between Ns = 1, 10, 50, 100 and Nu = 1, 10, 50, 100, and computed the mean over 1000

gradient ascent steps. We used a desktop with CPU (Intel i5-9500) and a GPU (NVIDIA

RTX2060) to conduct the experiment.

Figure C.2 shows the computation time with varying number of initial conditions Nu and

the number of state samples Ns. We found that the total number of samples Nu × Ns

explains all changes. The result shows that the computation time with GPU is signifi-

cantly lower than that with CPU, and that using a GPU leads to 4-fold improvement in

scalability. This demonstrates that the proposed gradient ascent method benefits from

GPU acceleration.
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