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Abstract—Internet of vehicle (IoV) network comprises Road
Side Unit (RSU), which has become a computation and com-
munication device for effective LiDAR data communication (ex:
object detect information) between vehicle-to-infrastructure (V2I)
and vehicle-to-vehicle. However, the LiDARs generate a massive
volume of 3D data with a notable redundancy rate leads to
inadequate object detection accuracy, and the high operational
cost of RSU due to inadequate resource and time consumption.
Estimating the computation capacity for RSU selection is an
NP-hard problem. To address this issue, we propose a Deep
Reinforcement Learning (DRL) influenced 4-r computation model
to measure RSU cost based on resource feasibility factor and ob-
ject region detection rate based on novel region-of-interest (RoI)
strategy. The resource feasibility factor appraises the residual
capacity and cost of RSU based on a criterion of optimality. The
RoI strategy eliminates irrelevant points, noise and ground points
based on distance and shape measures of an object on RSU with
feasible consumption of computation resources. The simulation
results show that our mechanism achieves 83% average object
detection accuracy rate, 81% average service rate and 17%
service offloading rate than state-of-art approaches.

I. INTRODUCTION

Internet of Vehicles (IoV) orchestration is an emerging
paradigm in vehicular applications for the effective design of
automated vehicles, in which RSU integrated LiDARs plays
a vital role to accomplish the target. LiDAR sensors are
frequently utilized in autonomous vehicles based on a detailed
investigation of their deployment. The Light Detecting and
Ranging (LiDAR) sensors are mainly three types. First, the
Airborne sensor measures environmental and atmospheric con-
ditions, which are mounted on satellites and aircraft. Second,
spaceborne sensor measures docking distance of space station,
space exploration by mounting on probe robots, and third,
ground-based LiDARs to measure vehicle speed and distance,
which become a prominent component for AVs, UAVs, and
robots. Ground-based LiDAR sensor measures the objects with
reliable depth information, which plays a vital role to localize
the object with effective shape characteristics. The RSUs are

enriched with limited computation resources and storage space
to map the execution of latency constraint applications. The
RSU-LiDAR is a static deployment. It detects the objects in
abnormal environments such as rain, fog, and snow, but the
LiDAR Point Clouds are sparse, irregular with high variable
point density which causes occlusion and 3D space non-
uniform sampling. For instance, complete traffic information
is measured without noise and occlusions because of no
vibrations, making the accurate computation for Autonomous
Vehicles, autonomous harbours, and mining sectors. The back-
ground filter is not initiated for each object detection, but when
the background changes, the performance might be dimin-
ished. In this regard, an Artificial Intelligent edge computing
service is praised for IoV frameworks. Leveraging the RSU
capability helps to apprehend the resource requirements to
meet the QoS of connected vehicles [1], [2]. The RSUs inter-
connects to edge servers to provide the services to vehicles in
their range of coverage with cloud service backbone. Suppose
the computational service request violates the server comput-
ing capacity; the service request offloads to the cloud server
for effective execution. In this scenario, 3-tired architecture is
required to construct for effective vehicle orchestration. Recent
computation offloading strategies pay attention to optimize the
latency of applications [3], but achieving joint communication
between servers is still a global challenge. The heterogeneity
services (like object detection, object tracking) needs attention
to balance the workload among the RSUs to enhance the
service quality and system performance.
The RSU-vehicle communication enhances pedestrian and
vehicle safety by sharing object detection, internet connective,
road scene and traffic congestion information [4]. However,
the RSU needs novel sensor data manipulation strategies to
regulate data transmission service with limited resources in
a scalable manner within the vehicle range. In [5], Bayes
filter based object detection system has been designed with the
LiDAR framework. In [6], robust curb tracking and localiza-



tion system have been developed with the LiDAR framework.
Various studies are attempted to minimize the cost of RSU
but were not considered the object detection rate during cost
analysis. Our main contributions are as follows:

1) Develop a Deep Reinforcement Learning (DRL) inspired
4-r model to optimize the RSU cost and object region.

2) Develop a resource feasibility factor to assess the resid-
ual capacity and cost of RSU based on criterion of op-
timality for effective data transmission among vehicles
and RSUs.

3) Develop a RoI strategy to remove noise, ground, and
irrelevant objects to measure object region.

4) MATLAB Simulations for object detection and assess-
ment of computation capacity to optimize the RSU
lifetime.

The manuscript continues as Section II briefly explains re-
search gaps and problem statements of extant approaches.
Section III describes the proposed system and its mathe-
matical model with novel algorithm in detail. Section IV,
evaluates the investigation outcomes and Section V concludes
the manuscript.

II. RELATED WORK

This section describes object detection based on RoI and
RSU deployment methods based on the deterministic instances
to make an AV movement decision.

A. RSU-LiDAR Consolidation Methods

The majority of works mainly concentrated on formulating
object detection difficulties of AV systems. In [7], an RSU
LiDAR strategy has been designed for isolating the back-
ground by distinguishing the road lane. The point density helps
for background dissemination, and the multiclassified density-
based spatial clustering method (MCDBSCAN) is applied for
lane assessment. In [8], a traffic control strategy is designed
dependent on LiDAR and image through Gaussian-Bernoulli
profound Boltzmann machine model (GB-DBM) with earlier
information on intensity, road width, pole stature, environ-
ment structure and traffic-sign size. A voxel and random
sample consensus (RANSAC) approach are designed based
on statistical filtering with Gaussian distribution for ground-
level assessment and snag identification [9]. A segment-based
technique has been designed based on features like shape, size
for adequate classification to recognize the vehicle orientation.
The moving vehicles evaluated through the distance moved by
the portions and movement direction are utilized in [10].
Data fusion with low noise from RSU LiDAR for effective
object tracking and detection is challenging. Most approaches
are being implemented based on onboard LiDAR and RSU
LiDAR. Various calculations have been led for object detection
utilizing the LiDAR data, and a large portion of simulations
attempted based on airborne LiDAR, and onboard LiDAR
[11]. In [12] an object detection and tracking strategy has
been designed based on LiDAR information. Two equal mean-
shift calculations were smeared towards object identification
and tracking based on 2D/3D Kalman filter. Anyhow, this

technique detects the proper shape of objects, but the detection
range was restricted. In [13], a dynamic object localization
mechanism has been designed utilizing 2D LiDAR and subse-
quently detect and removes the obstacles during object consol-
idation. This strategy is deficient in semantic translation during
object detection and tracking. In [14], 3D LiDAR data is used
to classify objects based on a spatial encoder-decoder strategy
for autonomous vehicles. The Temporal-Channel Transformer
(TCTR) has been designed with spatial data to detect the
object. However, those methods need pre-trained and shaped
data to detect the object, and the gate mechanism has been
used to re-calibrate the features. In [15], a searching strategy
has been designed to assess object angle, which does not suits
L-shape box methods. In [16], a shape calculation method
has been designed using a 2D bounding box. The shape has
been measured by regulating the computation mechanism to
diminish the least square errors.

B. Object Detection Methods

The RSU deployment affects latency, performance, and data
transmission rate among vehicles within the region. Vehicle
density-based RSU installation strategy has been designed
with deployment cost and geography scheme; however, high
vehicle density causes to violate the threshold value of cost
[17], [18]. Dynamic linear dimensionality scheme has been
used for RSU relocation to mitigate content conveyance during
complex conditions [19]. In [20] 0-1 knapsack approach
has been used to minimize the cost of RSU installation
in metropolitan regions. In [21], a novel analytical model
considers connected and disconnected RSUs data to maximize
the profit of RSU deployment. In [22], an adaptive algorithm
has been designed to enhance the service execution rate by
considering a novel offloading strategy to increase the data
transmission rate among vehicles and RSU. In [23], a data
transmission method has been designed based on RSU to
extend the communication service in metropolitan regions.
The author assumed parked vehicles as RSUs to offer service
support to clients [24]. In [25], [26] parked vehicle has used
to expand data transmission service in coverage of RSUs
while cogitating content freshness, resource usage rate, and
the vitality consumption. In [27], [28], the vehicular distributed
computing framework enables pragmatic RSUs to gather in-
formation (Ex: LiDAR information) for sharing to related
vehicles through multiple request replication strategies. A self-
sorting method has been designed to choose several parked
vehicles to expand the framework capacity.
In this regard, we design a DRL influenced 4-r model to
consolidate the RSU resource cost along with a moderate
object detection accuracy rate in two steps. First, identifying
the regions of the object using LiDAR data is accomplished
by streamlining ground, noise and other objects through a
RoI consolidation mechanism based on the KNN approach.
Second, the resources of RSU has been optimized based on
estimating data communication and computation delay factors
to diminish service request execution (object detection through



RoI) cost that influence continuous monitoring and detection
of the object.

III. PROPOSED WORK

The vehicle requests are of two types. One is download
request and computation request, which is processed based
on the measured data from deployed sensors like LiDAR,
and it can observe in Fig. 1. In our orchestration, LiDAR
sensor data consider estimating the object region based on
a novel RoI strategy. The service request is either executed
at a vehicle or offloads to RSU to assess object orientation.
Here, we have to notice the variations in resource consumption
and latency’s while executing the request at a vehicle and
RSU. If the content request is generated from a vehicle,
then RSU has to share the data or fetch it from a cloud
server to execute the request. In this paper, the computa-
tion request is defined as identifying the object from the
measured point clouds. The object detection process consists
of three parts, pre-assessment, clustering based on RoI and
depth measurement. The complete mechanism is divided into
two main functions: RSU deployment with low cost, and,
second, optimizing resource consumption while detecting the
object. The Rate-Return-Range of RSU (4 − r) model is
designed to assess the performance rate (execution of object
detection request) and return cost (resource usage to execute
the request), and coverage range (to accomplish the service
reliability) factors while consolidating the RSU. Consequently,
the RSU is interconnected with LAN, which helps to balance
the execution mechanism.

A. 4-r Measurement based Intelligent RSU Computing using
DRL

In our orchestration, R = {r = 1, 2, . . . , R} number of
RSUs are connected with high-speed LAN and the RSUs are
rich in computing & storage capacity to process the arrived
service request. V = {v = 1, 2, . . . , V } number of vehicles
which communicate with RSU through orthogonal frequency
division multiplexing model. Let S = {1, 2, . . . , s, . . . , S}
number of service requests and T = {1, 2, . . . , t, . . . , T − 1}
number of time slots concerning to update the measures and
assessment strategies. The communication delay between RSU
(r) and vehicle (v) at time t is measured as follows

φtr,v = ~log2

(
1 + φvpog

t
r,v

(np)
2

)
(1)

Where, ~ is RSU bandwidth capacity, φvpo is vehicle trans-
mission energy and np, gtr,v is energy noise and channel gain
between vehicle and RSU. The RSU cost is formulated as

Ctr =
∑
vr∈V

(
cvn · φtr,v + cdf

(
1− qtv

)
sed
)

+ cse · Lr (2)

Where, vr bunch of vehicles associated with RSU, cvn, cdf ,
csc denotes virtual network cost, data sharing cost, service
execution cost respectively and Sed denotes anticipated service
request size, qtv ∈ {0, 1} is a data fetching decision, whereas
qtv = 0 denotes the RSU fetch the data from server, Lr

Algorithm 1: RSU Computation Analysis
input : R number of RSUs, V number of vehicles, Let S

number of service requests and T number of time
slots

output: RSU computation decision
1 Let ρv = 0;
2 for each t = 1 to T do
3 Estimate service count of each RSU;
4 if φtr,v ≤ φ̂tr,v then
5 Estimate service queue cost of RSU as follows;
6 κr/sed × κsedv ;
7 The service queue length is
8 ρrv,t+1 = max{ρrv,t + φtr,v − ˆφtr,v, 0};
9 end

10 else
11 Offload the request to the feasible RSU through

LAN;
12 end
13 end

Algorithm 2: RSU Computation Cost Analysis
input : κr/sed × κsedv , R number of RSUs, V number of

vehicles, Let S number of service requests and T
number of time slots

output: RSU cost minimization
1 Let κr/sed × κsedv 6= 0, φtr,v 6= 0, D 6= 0, cvn 6= 0,

cdf 6= 0, cse 6= 0;
2 for each t = 1 to T do
3 Estimate communication delay;

4 φtr,v = ~log2

(
1+φv

pog
t
r,v

(np)2

)
;

5 Estimate computation delay with Eq. 6;
6 if φtr,v ≤ threshold&&D ≤ threshold then
7 Estimate the system cost ;
8 Ctr =∑

vr∈V

(
cvn · φtr,v + cdf (1− qtv) sed

)
+ cse · Lr;

9 end
10 if Ctr ≤ threshold then
11 Continue the execution with RSU;
12 end
13 else
14 Switch to other RSU or RSU updates the

service through server;
15 end
16 end
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Fig. 1: System model

is load of RSU. The required data is not available, then
data fetching may affect the computation performance, leads
computation delay [29], [30]. Therefore, the data availability
delay is estimated as follows

Dfe,t =

R∑
r=1

ptvq
t
v

(
sed

~r (srd)

)
(3)

Where, srd refers service demand on RSU r and ptv ∈ {0, 1} is
a data offloading decision between vehicle and RSU, whereas
ptv = 0 denotes the vehicle executes the request by itself
other wise offload to nearby RSU. The communication delay
is estimated as follows

Dcom,t =

R∑
r=1

(
1− ptm

)
Dm
cm,t +

(
ptm +Dm

tran,t +

V∑
v=1

Dv
cm,t

)
(4)

Where, vehicle computation delay is Dv
cm,t =∑

vr∈V

∆t
v×sed×κ

sed
v

κv
. Here ∆t

v is coverage capacity of

vehicle, κsedv is anticipated MIPS for execution of bit-data,
and κv MIPS count of vehicle. RSU transmission delay is
Dm
tran,t =

∑
vr∈V

∆t
m×sed
φt
r,v

, here ∆t
m is coverage capacity of

RSU. The RSU computation delay is estimated as follows

Dm
cm,t =

Lr
(κr/sed × κsedv )− Lr

(5)

Where, κr/sed × κsedv denotes anticipated service rate. Now,
the required data availability or fetching and concerning data
transfer delay are augmented together to assess the network
computation performance or computation delay as follows

D = Dfe,t +Dcom,t (6)

Algorithm 1 illustrates the decision of service execution re-
quest. Line -2 defines the service queue initial value, which is
ρ = 0. The estimation of RSU service queue cost concerning
time is carried out with line-3, and line-4 measures the service
list of RSU. Here, φ̂tr,v is a threshold of service communication
cost. If the service cost is less than the threshold value,
measure the total queue cost and update it as a threshold
value observed in Line 5-8. Otherwise, the service request is

offloaded to RSU because the cost is too high, which causes to
violate the threshold condition, as can be observed in line-10.
Algorithm 2 illustrates the RSU computation cost estima-
tion and analysis of the RSU orchestration cost optimization
strategy. Line-2 defines the entail parameters. Line-5 estimate
the communication delay between the vehicle and RSU and
the computation delay of RSU estimate with Eq. 6. Before
estimating the computation cost, the computation delay and
communication delay are less than the threshold values. Line-
9 estimates the system cost of RSU. As per the arrived service
request, if the RSU cost is moderate, then continues the
execution; otherwise, selects the optimal RSU or offload to
the server.

B. Object Detection Request as a Computation Request

The point clouds (P̂ = {P̂j : j = 1, 2, . . . , P̂}) are
filtered by which violates the distance threshold treated as
noise points. The filtered point clouds are denoted as P =
{pj : j = 1, 2, . . . , P} of region a = {1, 2, . . . , n}. Synthesis
clustering is used to group or project the region of an object
along with depth measurement. The downsampling is used
to optimize point clouds based on a voxel filter, but random
voxel size is not proficient; therefore, the k-nearest neighbour
strategy is considered to optimize the grid size. Min-distance
point clouds are selected to form the cluster, and the KNN
mechanism is deployed to optimize the trade-off between too
small and large distance point clouds. The RoI is estimates
based on the minimum mean-variance of distance strategy.
The RANSAC mechanism is considered to remove the ground
points while training the model to divide the point clouds into
small bins.
Algorithm 3 illustrates the assessment of object region to
identify the object using point clouds. δ is a grid of point
clouds filtered by the KNN approach based on distance. Line
4 & 5 assess the minimum distance point clouds to form a
grid or cluster. The grid ground truth values were eliminated
with the RANSAC mechanism and updated the grid with line-
10. Measuring the region of the object is carried out based
on estimating the distance from the identified centroid of the
grid or cluster. Therefore, the minimum mean of distance
parameters is considered to form the region, enabling the
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Fig. 2: Service arrival rate (%) vs Expected service rate analysis at R=4 & 9 with 100Mbps

Algorithm 3: RoI based object detection

input : P̂ point cloud, R number of RSUs, V number of
vehicles

output: Region based Object detection
1 Let for p = 1 to length(P ) do
2 δ ← knn(p[j]);
3 δmax ← max{δ};
4 δgrid ← min{δmax};
5 for δ = 1 to δgrid do
6 Update the grid with RANSAC algorithm to

remove the ground truth point clouds;
7 δgrid ← RANSAC{δgrid};
8 Estimate the Euclidean mean variance distance

of grid point clouds to form the cluster;
9 Update δgrid;

10 end
11 for p = 1:numgrid do
12 Identify the centroid point of the grid based on

distance as follows;

13 η = 1
P

P∑
p=1

(
(xp − xp+1)

2
+ (yp − yp+1)

2

14 + (zp − zp+1)
2;

15 Update the p[j]← mean(η);
16 p[j] enables bunch of object region points;

17 end
18 end

objects to observe from lines 12-18. The DRL influenced Rate-
Return-Range of RSU (4 − r) model impacts performance
rate by analysing point cloud data to complete the object
detection request through algorithm 3 and return cost as per
resource usage to execute the request and coverage range to
accomplish high service reliability towards RSU consolidation

using algorithm 1 and algorithm 2, respectively.

IV. RESULT ANALYSIS

The PC runs 64-b Ubuntu 18.04.5 LTS on Intel Core i7-
10700 CPU 3.80GHz × 16 and NVIDIA GeForce RTX3090
and 64 GB RAM with MATLAB-2021a for assessing the
performance of our system. The Sed anticipated data size of
request is 25Mb, LAN capacity is 100Mps, φtr,v is 100mW,

κ
sedv
v is 1 cycle/bit, vehicle transmission delay is 0.5s are fixed

in simulation. The object detection accuracy is estimated based
on the KITTI dataset.

The proposed model performance is compared with three
approaches. First, Online Scheduling (ONS) [31] scheme is
designed for a data dissemination system for effective I2V and
V2V communications to maximize the system performance
through a greedy method by considering communication
constraints and vehicle application requirements. Maximum
Service (MS) [32] is designed for RSU based on bidirectional
roadway strategy to enhance vehicle network performance
through object-detection data dissemination scheduling policy.
Energy Efficient Cost (EEC) [33] method is designed based on
Energy-efficient dynamic offloading and resource scheduling
(eDors) strategy to diminish RSU performance cost. Fig. 2
illustrates the service execution rate in two scenarios (R=4 or
9 with 100Mbps LAN speed). The considered service arrival
rate is 10-50. The average service rate is 81% which has
continued by increasing the service arrival rate till 50% with
R = 4, 100 Mbps speed can observe in Fig.2(a). The EEC
method has achieved a moderate service rate which is better
than ONS and MS approaches. The prognosticated methods
have an immense effect on achieving the average service
rate of 81%. In the second scenario, the R = 9 with the
same speed but increasing R influence the error rate and data
congestion. The service rate is constantly increased along
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Fig. 4: Service arrival rate (%) vs Computation and transmission delay analysis at R=4 & 9 with 100Mbps speed, 20Mb request
size, and 100Mb fetching capacity

with the arrival rate, and the average service rate is 93.5%
when the arrival rate is in between 10%-30% that can be
observed in Fig.2(b).
Fig. 3 illustrates the comparative analysis of predicted error
rate and service rate. While executing the service request,
considering the error ratio and cost of service execution
factors helps regulate the system performance. The predicted
error rate range is [0,40], and service cost comparative
analysis is shown in Fig. 3(a). The proposed system has
achieved a low average cost than state-of-art approaches.
The ONS method has achieved high costs because of
continuous changes in resource requirements while executing
the service. EEC and MS methods have achieved a moderate
cost rate compare to the proposed system. Our system has

accomplished the low cost due to leveraging the vehicle,
RSU transmission and computation delay while selecting
the RSU. Fig. 3(b) illustrates the service rate concerning
prediction error rate. The service rate is relatively high when
the predictor error rate is conditionally equant to zero. As
the error rate increases, the service rate is proportionately
decreased than state-of-art approaches. However, the MS
method has achieved a constant service rate than ONS and
EEC methods.
Fig. 4 illustrates the computation and transmission delay
when R=4 & 9 with 100Mbps speed, 20Mb request size, and
100Mb fetching capacity. Fig. 4(a) shows computation delay
with first scenario. Subsequently, our approach has achieved a
lower delay rate than other state-of-art approaches because of



Fig. 5: Region based object detection train model accuracy

leveraging the computation delay of vehicle and RSU since
the computation delay depends on required data availability
to execute the service request. Therefore, transmission delay
is additionally analyzed, represented in Fig. 4(b). If RSU is
not feasible to execute the service request, then concerned
data is to fetch from other RSU or offloaded to the server.
Our approach has accomplished less delay in both cases, and
the system performance has increased with an average error
ratio and communication delay. The EEC has inadequate
transmission delay because were considered the computation
resource and energy factors of RSU with less transmission
priority.

Fig. 5 illustrates object detection accuracy based on RoI
consolidation. The loss rate is constant concerning time and
epochs. The training and test accuracy are adequate when
forming the object region to identify the object plane because
the KNN approach eliminates the unwanted point clouds
based on the distance factor. The ground point clouds are
disseminated based on the RANSAC method while forming
the cluster. The final grid is formulated to identify a region’s
centroid that helps form the cluster or grid by estimating the
mean-distance of point clouds p[j].

V. CONCLUSION

The RSU-LiDARs generate a massive amount of data that
may include the noise and be redundant, leading to inadequate
object detection accuracy and the high operational cost of RSU
due to inadequate resource consumption. In this regard, the
designed DRL influenced 4-r computation model effectively
optimizes the RSU resources along with a moderate object
detection accuracy rate by accomplishing two objectives. First,
identifying the regions of the object using LiDAR data is
accomplished by streamlining ground, noise and other objects
through a RoI consolidation mechanism based on the KNN ap-

proach. Subsequently, the RANSAC method efficiently forms
the cluster based on region centroid. Second, the resources
of RSU has been optimized based on data communication
and computation delay factors by diminishing service request
execution (object detection through RoI) cost that influence
continuous monitoring and detection of the object. Our ap-
proach has achieved 83% average object accuracy than state-
of-art approaches because of the RoI consolidation process,
which effectively removes noise, redundancy, and ground data.
Subsequently, 81% service rate has been achieved due to
streamlining the RUS resource capacity through Deep Rein-
forcement Learning based criterion of optimality mechanism,
which impacts on service offloading rate of RSU by 17% than
state-of-art approaches.
Future work would concentrate on service (RSU data compres-
sion, computation and compunction) offloading consolidation
and effective object tracking for V2I and V2V services based
on data association measurements of extended objects.
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