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Abstract
To alleviate the traffic congestion caused by the sharp increase in the number of private 
cars and save commuting costs, taxi carpooling service has become the choice of many 
people. Current research on taxi carpooling services has focused on shortening the detour 
distances. While with the development of intelligent cities, efficiently match passengers 
and vehicles and planning routes become urgent. And the privacy between passengers in 
the taxi carpooling service also needs to be considered. In this paper, we propose a time-
optimal and privacy-preserving carpool route planning system via deep reinforcement 
learning. This system uses the traffic information around the carpooling vehicle to optimize 
passengers’ travel time, not only to efficiently match passengers and vehicles but also to 
generate detailed route planning for carpooling vehicles. We conducted experiments on an 
Internet of Vehicles simulator CARLA, and the results demonstrate that our method is bet-
ter than other advanced methods and has better performance in complex environments.
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1 Introduction

In recent years, traffic congestion caused by the sharp increase in the number of vehicles has 
become a significant problem that must be solved in the development of cities. In order to ease 
traffic congestion and save commuting time, public transportation has become the choice of 
many people, in which taxis (which also include ride-hailing apps like Uber, Lyft, and DiDi) play 
an important role. According to a New York City reports [5], there were more than 20 million 
classic taxi trips daily in New York City in 2019, and 76 million ride-hailing trips were taken 
daily. Faced with such a massive demand for taxis, to further alleviate traffic congestion [7], a 
new taxi travel mode based on the current traffic road network, carpooling, is proposed.

In a taxi carpooling service, the starting point and destination of each passenger may 
be different, but there is overlap in the itinerary. This method can not only alleviate traffic 
congestion but also can reduce users commuting costs. For example, in the report in 2019, 
carpooling was accounted for 23% of the total taxi trips, and each carpooling trip had at 
least two passengers, so nearly half of the users chose carpooling service.

Carpooling service problem can be divided into two scenarios. One is private car-shar-
ing, and another is taxi carpooling. In private car sharing, users share their private car with 
other passengers. In this scenario, private car drivers have their own destination, and the 
routes of other passengers generally need to be highly overlapping with the driver, and the 
travel distance is usually quite long. In the scenario of taxi carpooling, taxi drivers have no 
personal destination, and the routes are completely based on the needs of passengers. The 
routes between passengers do not need to be highly overlapped, and the distance is short. 
Compared with private car sharing, taxi carpooling is more complex and more commonly 
used. Due to the different starting points and destinations of passengers in taxi carpooling, 
how to dispatch vehicles and assign passengers to taxis to achieve more effective carpool-
ing services has become the main issue of current research.

In a classic taxi carpooling environment, multiple individual passengers in the same 
area use the ride-hailing apps to upload their destination and current location to a central 
decision-making system. The system searches for available taxis and, based on location 
information, assigns passengers in a similar direction to a taxi, which picks them up and 
drops them off at the destination one by one. In this process, the central decision-making 
system needs to match passengers and taxis according to the location, destination, the max-
imum number of passengers taxis can carry. Efficiently matching taxis and passengers is an 
essential part of decision-making.

At present, the research on carpooling service problem mainly focuses on shortening 
the travel detours and minimizing vehicle mileage and passenger travel cost [27]. However, 
with the rapid development of electric vehicles and transportation networks in smart cities, 
vehicle mileage and detours are no longer the primary concerns, and commuting time is 
more of a problem. Another critical issue in carpooling is privacy [25]. Many passengers 
have concerns about their privacy when choosing a carpooling service [18], which exposes 
the location of their home or business to other passengers. To address these problems, we 
propose a Time-Optimal and Privacy-Preserving carpool (TO-PP) route planning system. 
The main contributions of our work are summarized as follows: 

1)  We preserve passenger-to-passenger privacy in the carpooling problem.
2)  We use the real-time traffic information to optimize the commuting time of passen-

gers, not only to efficiently match passengers but also to generate detailed route plan-
ning for carpooling vehicles.

1152 World Wide Web (2022) 25:1151–1168



1 3

 The rest of the paper is organized as follows: Section 2 described related work on car-
pooling service problems and deep reinforcement learning. In Section  3, privacy, traffic 
information, and the model are defined. Section 4 proposes our time-optimal and privacy-
preserving carpooling planning system. Section 5 includes the experiments. Section 6 pro-
vides the conclusion and future work.

2  Related work

2.1  Carpooling

Huang et  al.  [8] presented an intelligent carpool system based on the service-oriented 
architecture and a fuzzy-controlled genetic-based carpool algorithm by using the combined 
approach of the genetic algorithm and the fuzzy control system, with which to optimize the 
route and match the vehicles and the passengers in the intelligent carpool system. In the 
same year, Huang et al.  [8] also proposed an advanced carpool system called the intelli-
gent carpool system (ICS), which provides passengers the use of the carpool services via a 
mobile phone anywhere any time. The carpool service agency in the ICS is integrated with 
the abundant geographical, traffic, and societal information and used to manage requests.

Plezer et al. [19] proposed a method that aims to best utilize carpooling potential while 
keeping detours below a specific limit. The method specifically targets carpooling systems on 
a very large scale and with a high degree of dynamics, and the road network is divided into 
distinct partitions which define the search space for ride matches. This allows optimizing the 
partitioning with regard to sharing potential utilization and inconvenience minimization.

Duan et al. [5] focused on removing the static capacity constraint and proposed a greedy 
approach based on multi-round matching. It allows a vehicle to carry more passengers than 
the vehicle’s capacity, which is possible if some people are dropped off, and new passen-
gers take their places during the journey.

Ma et  al.  [16] presented path optimization models and algorithms of taxi carpooling 
based on the single improved objective and multiple-objective genetic algorithm, and it 
could quickly get the taxi carpooling path and increase the income of taxi drivers while 
reducing the cost for passengers.

Qiang et al. [20] used the data field energy function to calculate the field energy of each 
data point in the passenger taxi off-point dataset. They proposed a clustering algorithm for 
urban taxi carpooling based on data field energy and point spacing.

Jindal et  al.  [10] proposed a reinforcement learning based system to learn an effective 
policy for carpooling that maximizes transportation efficiency so that fewer cars are required 
to fulfill the given amount of trip demand. AN et al. [1] modeled the carpooling problem as 
a Markov Decision Process problem and introduced Deep Deterministic Policy Gradient, 
a state-of-the-art reinforcement learning framework. In this model, a new reward method 
called picking, and parking bonus is proposed to solve an imbalance problem of shared cars 
in spatial distribution. In the process of driving, the environmental state space of surround-
ing vehicles is also complex, so DQN can be used to generate specific travel routes.

2.2  Reinforcement learning in routing planning

Zolfpour et  al.  [33] proposed a path planning system model based on the multi-agent 
reinforcement learning algorithm to solve the problem of vehicle delay. In this model, a 
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combination of Q-value based dynamic programming and Boltzmann distribution is adopted 
to create a priority route plan for vehicles by studying the weights of weather, traffic, road 
safety, fuel capacity, and other factors in the road network environment.

Due to the problem that the actual delivery routes of most orders in online food delivery 
are not consistent with the recommended routes, Liu et al.  [15] proposed a deep inverse 
reinforcement learning algorithm to capture the preferences of food deliverymen from his-
torical GPS tracks and recommend their preferred delivery routes. Considering the features 
of food delivery routes, the model uses Dijkstra’s algorithm instead of value iteration to 
determine the current policy.

Dynamic taxi route recommendations are crucial to ease passenger wait times and 
increase taxi drivers’ income. Therefore, Ji et  al.  [9] studied the dynamic taxi route rec-
ommendation problem as a sequential decision problem and presented an adaptive deep 
reinforcement learning method. The deep policy network in this method can better fuse the 
extracted spatial-temporal features to realize effective route recommendations.

Koh et al. [11] presented a deep reinforcement learning method to enable real-time inter-
action between vehicles and complex urban environments. By defining tasks as a sequence 
of decisions, a real-time intelligent vehicle routing and navigation system is constructed.

Wang et al.  [26] modeled the carpooling vehicle planning problem as a Markov deci-
sion process and proposed a learning solution based on deep Q-network and action search 
to optimize the scheduling policy for drivers on the carpooling platform. To improve the 
adaptability and efficiency of learning, a new transfer method, correlation feature progres-
sive transfer, is used in this method which realizes the transfer of knowledge in spatial and 
temporal space.

2.3  Privacy in carpooling and routing planning

Current online route planning services require the precise location of users [32]. However, 
due to privacy concerns, some users may be reluctant to reveal their current locations and 
destination locations. Providing a false location to an existing service or not providing a 
location can result in poor service quality or failure to provide a service. Vicente et al. [24] 
proposed a solution that can return accurate path planning results when using source and 
destination areas to achieve privacy-preserving.

Collaborative route planning optimizes vehicle routing by collecting data on planned 
routes from connected vehicles at the cost of increasing privacy risks for participating 
users. The current location, destination, and route of passengers and drivers are all highly 
sensitive information, so Florian et al. [6] demonstrated how collaborative routing planning 
could be implemented primarily by the anonymous fashion of publication intentions with 
strong privacy guarantees, without significantly reducing utility or cost.

To reduce the cruising time of ride-hailing vehicles and improve the efficiency and ben-
efit, Shi et al. [22] proposed a route planning method for ride-hailing based on deep rein-
forcement learning. Considering the location of ride-hailing vehicles, different time peri-
ods of the day, competition between ride-hailing vehicles, and other factors, the method 
enables the online ride-hailing service center to understand the dynamic service environ-
ment and plan the route of idle vehicles.

In the process of carpooling, fog computing raises new privacy issues while providing 
low-latency local data processing, in which users’ personal information (such as identity and 
location) may be compromised. Therefore, Li et al. [14] proposed an efficient and privacy-
preserving carpooling scheme that uses blockchain-assisted vehicle fog computing to support 
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conditional privacy, one-to-many matching, destination matching, and data auditability. The 
method uses a private proximity test to realize one-to-many proximity matching and extends 
it to effectively establish the secret communication key between passenger and driver.

3  Background

3.1  Route planning

Route planning is the calculation of the best possible path in a road network from a given 
source to a given target location. It is often used in daily life, such as people using it to 
plan car trips [21]. Many applications, such as logistics planning or traffic simulation, need 
to address many path queries and planning. With the rapid development of urban traffic 
networks, path planning service providers have to provide strong computing capacity to 
achieve accurate services to customers, which will also bring high costs to service pro-
viders [30]. For these reasons, researchers have considerable interest in developing more 
efficient and accurate route planning techniques. A road network in route planning can eas-
ily be represented as a graph, i.e., as a collection of nodes (junctions) and edges (road seg-
ments) where each edge connects two nodes. Each edge is assigned a weight (distance).

At present, most path planning algorithms aim at the shortest path, which can be divided 
into the following categories [2]:

– Basic technique. The standard solution to the one-to-all shortest path problem is Dijk-
stra’s algorithm [3]. This algorithm preserves a transient distance array for each node, 
and accesses the nodes of the network in order of the distance from the nodes to the 
source node, and keeps the transient distance equal to the correct distance of the nodes. 
The algorithm stops when the target node is accessed. Dijkstra’s algorithm is generally 
used as a baseline to evaluate the quality of other route planning algorithms.

– Goal-Directed technique. Dijkstra’s algorithm scans all nodes whose distance is less 
than that of the source node to the target node. In contrast, the purpose of goal-directed 
techniques is to “direct” search to a target by avoiding scanning nodes that are not in 
the direction of the target. They make use of either the (geometric) embedding of the 
network or properties of the graph itself to accelerate query, such as the structure of the 
shortest path tree leading to the (compact) region of the graph.

– Separator-based technique. Planar graphs have small and computable separators, and 
although road networks are not planar (tunnels or overpasses), they have also been 
observed to have small separations. The separator-based technique uses this feature of 
the Planar graphs to divide the graph into smaller parts, which can then be used with 
smaller overlay graphs to accelerate (partial) query algorithms.

– Hierarchical technique. The hierarchical Technique takes advantage of the inherent lay-
ers of the road network so that the shortest paths long enough eventually converge into 
a small trunk network of essential roads, such as highways. Intuitively, when the query 
algorithm is far away from the source, and target nodes, only the nodes of the subnet 
can be scanned, which can also accelerate the query.

– Bounded-Hop technique. The bounded-Hop technique calculates the distance between 
nodes in advance, adding this hidden information to the graph first. Queries can then 
return the length of the virtual path with only a few hops, and this process can acceler-
ate the query algorithms.
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3.2  Deep reinforcement learning

Reinforcement learning [31] is an AI-based method in which an agent acts based on the 
feedback of the environment, through continuous interaction with the environment in a trial 
and error manner, and finally accomplishes a specific purpose or maximizes the revenue.

It is a process in which an agent takes action to change its state and get rewards to inter-
act with the environment. At the beginning of this process, the agent takes random actions 
first in the initial state because in the absence of any additional information and strategies 
in the initial state, the agent can only randomly select an action first to explore the environ-
ment. With the exploration of the environment, the agent will take the actions with the 
highest estimated value and maximum reward to approach the final goal [23].

Reinforcement learning can be divided into model-based learning methods and model-
free learning methods. In model-based reinforcement learning, the transition of the state of 
the environment must be known, that is, model-based. However, in model-free reinforce-
ment learning [29], agents are used to constantly explore the environment, constantly try, 
make mistakes, and learn. Therefore, the data efficiency of the model-free method is not 
high. Model-based approaches, by comparison, can make full use of existing models and 
make efficient use of data. In model-free reinforcement learning, the most widely used 
learning approach is Q-learning. The main idea of this algorithm is to define the Q function 
(performance function), substitute the observed online data into the following update for-
mula for iterative learning of the Q function, and get the exact solution and save the record 
of the value function in the form of a table.

Where � is the learning rate and � is the discount factor. The greater the � , the less effec-
tive the retention of previous training is. Q(s�, a) is Q value of action a on state S′ , and r is 
reward. Q learning uses a reasonable strategy to generate the action, according to the action 
interaction with the environment to get the next state and reward to learn to acquire optimal 
Q function.

Controlling agents directly by learning higher-dimensional perceptual inputs (images, 
speech, etc.) is a long-term challenge for reinforcement learning [28]. The quality of rein-
forcement learning results seriously depends on the quality of feature selection [12]. The 
development of deep learning makes it possible to extract high-level features from original 
data directly. Deep learning has strong perception ability but lacks specific decision-mak-
ing ability. Reinforcement learning has the ability to make decisions but can do nothing 
about the perception problem.

Therefore, the combination of the two complementary advantages provides a solution 
for the problem of perception decisions in complex systems. Deep Reinforcement Learning 
(DRL) is an algorithm that combines deep learning with reinforcement learning and real-
izes end-to-end learning from perception to action. In the early stage of deep reinforcement 
learning research, the research mainly focused on dimension reduction of high-dimensional 
input data by the deep neural network. Lange et al.  [13] proposed a Deep Auto-Encoder 
(DAE) model by combining the deep learning model and the reinforcement learning 
method. However, DAE is only applicable to control problems with visual perception as 
input signal and small dimension of state space. Mnih et al. [17] combined the convolution 
neural network with the Q-learning algorithm and proposed the Deep Q-Network (DQN) 
model. This model is used to deal with control tasks with huge state space and is a pioneer-
ing work in the field of DRL.

(1)Q(s�, a) ← (1 − �) ⋅ Q(s, a) + � ⋅ (r + � ⋅max
a�

Q(s�, a�))
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4  Problem definition

4.1  Privacy problem and definition

Different from the classic taxi, passengers in taxi carpooling are strangers to each other. 
It has great privacy concerns. As is shown in Figure 1, if passenger A gets on the vehicle 
first, then passenger B gets on and gets off the vehicle before passenger A gets off, then 
the starting point and destination of passenger B are exposed to passenger A, which is a 
serious privacy problem. Therefore, we define a passenger’s starting point and destination 
together as a passenger’s privacy, and a passenger’s starting point and destination are both 
exposed to another passenger as privacy leakage. This includes passengers who have the 
same starting point or destination. This seems to be an unavoidable problem in carpooling, 
and it’s one of the reasons why so many people don’t choose to carpool. However, suppose 
passenger A gets on first. In that case, passenger B gets on, then passenger A gets off, then 
passenger B gets off, in which case passenger A only knows the starting point of passenger 
B. Passenger B only knows the destination of passenger A, then privacy issues can be mini-
mized, which is shown in Figure 2. At the same time, we can see the distance of the vehicle 
in Figure 2 is longer than in Figure 1, leading to a longer time.

However, taking actual traffic conditions into account, as shown in Figure 3, an intersec-
tion in Figure 1 route is a red light, and another intersection in Figure 2 route is a green 
light. Although the distance of route 2 is longer, it takes less time to complete route 2, and 
it also can protect the privacy of two passengers. In more complex traffic conditions with 
more passengers and vehicles, more routes look like a detour but actually get to the des-
tination faster. This is how we protect passenger privacy by not allowing one passenger’s 
whole itinerary to be included in another.

4.2  Traffic information

Traffic information refers to the number of vehicles in the surrounding environment of 
the agent, which can be transmitted to each other by other agents or directly to the cen-
tral decision-making system. As shown in Figure 4, red vehicles are our target vehicles, 

Fig. 1  Taxi picking up route without privacy concern
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and the surrounding environmental vehicles can be divided into several different parts 
as the state space of the target vehicles. For example, the intersection in the red box in 
Figure 4 as the center can be used as the first part of the state space of the target vehicle, 
in which there are two cars.

5  Time‑optimal and privacy‑preserving carpool route planning system

Our Time-Optimal and Privacy-Preserving carpool route planning system is divided into 
four steps: Distribution of passengers, Task planning, Generate the route, Estimate the 
time and choose the optimal route. Figure 5 shows the sequences of those steps. Before 
we present the details of those steps, we formally define the route planning model.

Fig. 2  Taxi picking up route with privacy and detour concern

Fig. 3  Taxi picking up route with privacy concern, detour and traffic signal concern
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5.1  Model definition

In our model, passengers are defined as a set of people P = { p
1
 , p

2
 , p

3
 , …, pn }, each 

passenger i has a starting point Si , and a destination point Di . Both the starting point and 
the destination point contain horizontal and vertical coordinates (latitude and longitude 
coordinates).

Fig. 4  Traffic information around 
the agent

Fig. 5  Overview of Time-
Optimal and Privacy-Preserving 
carpool route planning system
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Taxis are defined as a set of vehicles V = { v
1
 , v

2
 , v

3
 , …, vm }, each vehicle i has the cur-

rent location li ,maximum seating capacity Mi and passenger matching list mi = ( p
1
 , p

2
 , 

…, po ). This means vehicle i is responsible for picking up theses passengers and o is equal 
or less than Mi . Each vehicle also has a action task list Ti = ( Pickp1 , Pickp2 , …, Pickpo , 
Dropp1 , Dropp2 , …, Droppo ), such as T

1
 = ( Pickp1 , Pickp2 , Dropp1 , Dropp2 ), it means the 

action task for vehicle 1 is to pick up passenger 1 first, then pick up passenger 2, after that 
drop off passenger 1, finally, drop off passenger 2. Each item in action task list is also the 
stop point for the vehicle.

When the tasks of each vehicle are combined without conflict (A passenger can only 
be picked up and dropped off by one vehicle) and can be responsible for the completion of 
all passenger pickup is called a possible solution for this group of passengers and a group 
of vehicles. Each action task of vehicle i has the corresponding sum of the Manhattan dis-
tance ManDi , it is the Manhattan distance between the latitude and longitude coordinates 
of each adjacent stop point in the task. The goal of our model is to find a solution that mini-
mizes the total estimated travel time.

5.2  Distribution of passengers

According to the given P, V and Mi for each vehicle, all combinations of vehicles and pas-
sengers are enumerated. Meanwhile, to satisfy the privacy-preserving requirement in Sec-
tion  4.1, the combination of the same destination or starting point (two points are con-
sidered identical if the distance between them is less than ds ) of passengers in the same 
vehicle is filtered out. One of these combinations is:

For example, one of the combinations in 3 vehicles and 6 passengers task:

It means vehicle 1 is responsible for picking up passengers 1 and 2, vehicle 2 is responsible 
for picking up passengers 3 and 4, and vehicle 3 is responsible for picking up passengers 5 
and 6.

5.3  Task planning

Specific action tasks are planned for each combination of vehicle and passenger 
in each possible solution, such as v1 ∶ (p1, p2) . Specific tasks for vehicle 1 could be: 
t1 = [Pickp1,Pickp2,Dropp2,Dropp1] However, in this specific task, starting point and 
destination passenger 2 are both exposed to passenger 1. According to Section  4.1 
privacy definition, this task does not satisfy the privacy-preserving requirement. 
Cross all the passengers itineraries in the task, so only one of a passenger’s destina-
tion and starting point is exposed to other passengers. In this way, privacy between 

v1 ∶ (p1,… , pq)

v2 ∶ (pq + 1,… , pw)

…

vm ∶ (pw + 1,… , pn)

v1 ∶ (p1, p2)

v2 ∶ (p3, p4)

v3 ∶ (p5, p6)
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passengers is preserved to a certain extent. Therefore, specific tasks for vehicle 1 can 
be: t2 = [Pickp1,Pickp2,Dropp1,Dropp2] or t3 = [Pickp2,Pickp1,Dropp2,Dropp1]

For each solution, every vehicle could enumerate specific tasks, the number of all 
possible combinations is overmuch, and the subsequent calculation cost is too large. 
Many of these possible tasks actually took a long detour, so we calculated the Manhat-
tan distance ManDi of the specific action task of i in each solution.

The total distance of each solution is sorted from small to large, and the first k solu-
tions are screened out according to the sorting results, and then the subsequent calcula-
tion for these screened solutions was carried out.

5.4  Generate the route

In this step, we use the trained DQN to generate the route that takes the least time for 
the specific task of each vehicle in the first k solutions. In these DQNs, the state is the 
current position of the vehicle and the traffic condition information in the current area, 
the reward is the time, and the action is the direction the vehicle chooses at the intersec-
tion. The traffic condition information here refers to the number of vehicles in different 
directions at each intersection. Well-trained DQNs can learn the change of traffic flow 
and traffic lights through the traffic information and travel time to take action at the 
intersection.

For example, in the specific task of vehicle 1 [Pickp1,Pickp2,Dropp1,Dropp2] , the first 
part of the task is from the starting point of the vehicle to the position of Passenger 1. 
The traffic data that also passes through these two points is searched in the data set, and 
a DQN is trained with these data. The surrounding traffic information of vehicle 1 is 
used as input, trained DQN will generate specific actions, which will be repeated many 
times until the stop point is reached, and then a series of actions will be taken as the 
specific route of this journey. Repeat this step to get the specific route of all the journeys 
of vehicle 1.

5.5  Estimate the time and choose the optimal rout

We use our surrounding traffic sub-path (ST-SP) time estimation to estimate the required 
travel time for the specific routes of the k solutions in the last step. The time estimator 
estimates the required travel time based on the starting point, destination, route, and traffic 
information of the vehicle. It is based on a large number of vehicle traffic data.

The route of each vehicle is divided into small parts according to the stopping point. 
The vehicle location and vehicle information of the first part are firstly used to look for 
similar vehicle traffic data in the data set, and then the estimated traffic time of the first part 
is estimated according to the mean of the traffic time of the similar data. Then use the traf-
fic information from the similar data after arriving at the destination as the starting point 
traffic information for the next part of the route, and repeat these steps until the travel time 
for all parts of the route has been estimated. Finally, all route travel time for each solution 
can be estimated

According to the estimated time of each part of the solution, calculate the average travel 
time for passengers in each solution. The shortest average travel time is chosen as the opti-
mal one, and the output is the specific task and the route for each vehicle.
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5.6  Privacy analysis

The passenger’s privacy is defined as his both starting point and destination together in 
the itinerary. Privacy is guaranteed if the passenger cannot acquire other passengers’ 
both starting point and destination in the same vehicle. In our proposed Time-Optimal 
and Privacy-Preserving carpool route planning system, the following two cases of pri-
vacy leak are filtered out.

Two passengers in a vehicle have the same starting point or destination. In this case, 
one passenger can acquire the other’s both starting point and destination because their 
starting point or destination is the same, and they overlap in the carpooling service. We 
filter out the combination of the passengers who have the same destination or starting 
point (two points are considered identical if the distance between them is less than ds ) in 
step 1 distribution of passengers. One passenger’s starting point and destination are in 
another passenger’s itinerary. In this case, the passenger with the longer trip can acquire 
both the starting point and destination of another passenger with the shorter trip. We 
cross all the passengers’ itineraries in step 2 task planning to avoid this case. Therefore, 
our method can completely preserve passengers’ privacy in carpooling service.

6  Experiments

6.1  Experiment setup

We applied our ST-SP time estimation and TOPP carpool route planning system to 
CARLA [4], which is one of the commonly used simulators for the research of the inter-
net of vehicles (IOV).

The simulation platform provides 3D models of various static objects, such as build-
ings, grass plants, traffic signs, and infrastructure, as well as dynamic objects, such as 
vehicles and pedestrians. And these objects can be created under control, which makes 
the experimental environment more like the real world. Here we use the map Town05 in 
the CARLA platform (as shown in Figure 6) as the experimental environment because 
the layout of the map is relatively complex, with multiple traffic lights at crossroads, and 
the map is similar to the layout of many real city CBDs, which can better simulate the 
real world.

6.2  Time estimation

We select a starting point, a destination, and a specific route on this map, and then con-
trol a vehicle to drive at a constant speed from the starting point, arrive at the destination, 
calculate the real travel time, and compare it with the time estimated by our method. In 
the experiment, the starting point and destination, as well as the specific route connecting 
the two points, were randomly selected. The total distance was about 400-600m, and each 
route contained 4-6 intersections. We adjusted the complexity of the experimental environ-
ment by adjusting the total number of vehicles on the map. The more the total number of 
vehicles, the longer the waiting time at the traffic light intersection will be, and the more 
serious the traffic jam will be.
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1) Evaluation method: Here, we list the travel time estimation methods compared to 
ST-SP: 

a.  MLR, We performed a multiple linear regression based on the route distance and the 
total number of surrounding vehicles to predict the time.

b.  AVG. This method finds the same route as the target route in the data set to calculate 
the average time.

c.  ST-SP. This is our method proposed in Section 5.5.

2) Evaluation measures: We use Root Mean Squared Error (RMSE) to evaluate the 
performance of these three methods. RMSE is the square root of the mean of the square 
of all of the difference between estimated travel time fi and real-time yi .

Figure  7 compares the performance of the proposed method for time estimation. 
From this figure, we observe that our proposed method is far better than the other two 
methods. Although the method of multiple linear regression considers the two most 
critical factors, traffic condition, and distance, compared with our method, there is a 
big gap, and the error increases with the increase of the complexity of the environment. 
Another approach AVG is to find historically identical routes in the data set to esti-
mate the time. This approach does not consider traffic conditions, so as traffic conditions 
become more complex as the total number of vehicles on the map increases, RMSE 
becomes large. Our method makes full use of similar routes and traffic conditions to 
estimate the time, so RMSE does not fluctuate greatly when the total number of vehicles 
on the map increases and the traffic conditions become complicated.

(2)RMSE =

√

1

n
�n

i=1

(yi − fi

�i

)2

Fig. 6  Top View of Map Town05 in CARLA
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6.3  Carpooling

Firstly, we need to consider the value of parameter k in the proposed method. Parameter k 
is the task planning in Section 4.2, and first k solutions are screened out according to the 
sorting results by Manhattan distance. The k is very important for the whole method. The 
method used in the previous generation of the solution is enumerated. If all solutions are 
not further filtered, the computation cost for the subsequent generation of routes will be 
huge. If the value of k is too large, it will increase the computation cost; if it is too small, 
it will affect the final result (the optimal solution is screened out). Therefore, we need to 
determine the value of k in different environments by experiment.

The complexity of the task varies with the relative value of k. Therefore, we conducted 
experiments on our proposed method without privacy-preserving mechanism (TO) in the 
task of 2 vehicles matching 5 passengers and the task of 3 vehicles matching 7 passengers, 
respectively. The number of other vehicles in the surrounding environment in both tasks 
was 120.

From the task results of 2 vehicles matching 5 passengers in Figure 8(a), we can see 
that the time converges rapidly with the increase of k value, the possibility of the optimal 
solution among the first k solutions is also increasing. At k = 8 , the time converges almost 
completely. When k is greater than 8, there is a slight decrease in time, but the change 
is very small. Therefore, in the case of considering the computation cost and the optimal 
result of time, the value of k is 8 in the task of 2 vehicles matching 5 passengers.

As can be seen from the task of 3 vehicles matching 7 passengers in another Figure 8(b), 
with the increase of k value, the time converges quickly and completely when k = 13 . 
Therefore, the value of k is 13 in the task of 3 vehicles matching 7 passengers, also taking 
into account the computation cost and the optimal result of time. With the privacy-preserv-
ing mechanism, the number of all enumerated solutions will also be reduced. Therefore, 
TO-PP converges faster than TO with the increase of k value in the same task. However, for 
the purpose of fairer comparison in subsequent experiments, we still adopted the same k 
value for the two methods (TO and TO-PP).

After determining the value of k, we then conduct carpooling experiments to compare 
with other methods. Here we list the methods compared to TO-PP. 

Fig. 7  RMSE performance com-
parison of ST-SP with the other 
approaches for time estimation
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a.  TO, This is the method without privacy preserving proposed in this paper.
b.  TO-PP. This is the method with privacy preserving proposed in this paper.
c.  LNM. Location nearest match, this method is to match vehicles and passengers 

according to their location, and the specific route planning is generated by path plan-
ning system in CARLA itself.

d.  IPMA. This is a greedy approach based on multi-round matching [5], and it is modi-
fied for implement on CARLA, and the specific route planning is generated by path 
planning system in CARLA itself.

e.  D-DQN. This is a distributed deep Q-network-based route scheduling algorithm [22], 
and it is also modified for implement on CARLA.

These experimental methods were tested in four different tasks, the first task was 2 vehi-
cles matching 4 passengers, the second task was 2 vehicles matching 5 passengers, the 
third task was 3 vehicles matching 6 passengers, and the fourth task was 3 vehicles match-
ing 7 passengers. The tasks get more complicated, and the four tasks also cover the most 
common real-time carpooling situation in real life.

The results of the four methods to complete the first task are shown in Figure 9(a). As 
can be seen overall, with the increase of the number of surrounding vehicles, the average 

Fig. 8  Time performance of TO with different k in the task of 2 vehicles matching 5 passengers (a) and task 
of 3 vehicles matching 7 passengers (b)

Fig. 9  Time performance comparison of TO-PP with the other methods for carpooling task of 2 vehicles 
matching 4 passengers (a) and task of 2 vehicles matching 5 passengers (b)
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time required to complete the task by the four methods also increases. The increase in 
the number of surrounding vehicles makes the environment more prone to traffic conges-
tion. Among the four methods, TO has the best performance, followed by TO-PP, IPMA, 
D-DQN, and LNM. Similarly, as the environment becomes more complex, the gap between 
TO-PP and TO becomes smaller and smaller, while the gap between TO-PP and TO 
becomes larger and larger when compared with IPMA, D-DQN, and LNM, indicating that 
TO-PP and TO have better ability to adapt to the complex environment.

As shown in Figure  9(b), the results of the second task are similar to the results of 
the first task in terms of the overall trend, except that the time required for all methods 
increases as the task becomes more difficult. Compared to the first task, the number of 
carpooling vehicles stayed the same, and there was one more passenger in the second task. 
When there are only 40 vehicles around in this environment, the difference between the 
results of our method on the two tasks is 30 seconds, while when there are 240 vehicles 
around, the difference between the results of our method on the two tasks is only 20 sec-
onds, which also shows that our method performs better in complex environment and tasks.

The third and fourth tasks’ results are shown in Figure 10(a) and (b), respectively. The 
overall results are also similar to the previous two figures. When the number of environ-
ment vehicles is larger than 160 for LNM, D-DQN, and IPMA, the required time per pas-
senger increases rapidly, while the time increases slowly in our two methods. When the 
number of environment vehicles increases, the difference between TO and TO-PP becomes 
smaller and smaller, when the number of environment vehicles is 240, the difference 
between these two results is less than 5 seconds.

Overall, TO has the best performance. The gap between TO and TO-PP becomes 
smaller and smaller as tasks and environments become more complex, and the perfor-
mance of our method will be better in complex environments.

7  Conclusion

In this paper, we discuss the problems of commuting time optimization and passenger pri-
vacy-preserving by the existing carpooling method. We develop a time-optimal and pri-
vacy-preserving carpool route planning system via deep reinforcement learning. This sys-
tem adopts the traffic information around the carpooling vehicle to optimize the commuting 

Fig. 10  Time performance comparison of TO-PP with the other methods for carpooling task of 3 vehicles 
matching 6 passengers (a) and task of 3 vehicles matching 7 passengers (b)
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time of passengers. The aim of the system is to efficiently match passengers and vehicles 
and to generate detailed route planning for carpooling vehicles. To evaluate our methods, 
we conducted the experiment on IOV simulators CARLA, and the results demonstrate the 
advantages of our proposed methods over other carpooling algorithms, especially in com-
plex environments and tasks. The idea of passing through multiple stops and using sur-
rounding traffic information to optimize the route can also be used for food delivery and 
express delivery, which can be studied as future work.
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