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ABSTRACT
In this article, we provide representations of European and American exchange op-
tion prices under stochastic volatility jump-diffusion (SVJD) dynamics following
models by Merton (1976), Heston (1993), and Bates (1996). A Radon-Nikodým
derivative process is also introduced to facilitate the shift from the objective market
measure to other equivalent probability measures, including the equivalent mar-
tingale measure. Under the equivalent martingale measure, we derive the integro-
partial differential equation that characterizes the exchange option prices. We also
derive representations of the European exchange option price using the change-of-
numéraire technique proposed by Geman, El Karoui, and Rochet (1995) and the
Fourier inversion formula derived by Caldana and Fusai (2013), and show that these
two representations are comparable. Lastly, we show that the American exchange
option price can be decomposed into the price of the European exchange option and
an early exercise premium.

KEYWORDS
exchange options; American options; jump-diffusion processes; stochastic volatility;
Fourier inversion

1. Introduction

An exchange option is a contract that grants the holder the right, but not the obli-
gation, to exchange one risky asset for another. For example, if time t asset prices
are denoted by S1,t and S2,t, then the payoff of the European exchange option with
maturity T is given by (S1,T −S2,T )+, where x+ = max{x, 0}. The exchange option is
a special case of the spread option, which is an option written on the difference of the
prices of two assets. For example, the European call spread option with strike price K
has terminal payoff (S1,T − S2,T −K)+, and so the exchange option can be seen as a
call spread option with zero strike price. In the Black and Scholes (1973) framework,
the price of the European exchange option is given by the celebrated Margrabe (1978)
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formula. However, Carmona and Durrleman (2003) established that such a closed-form
equation is unavailable for general non-zero strike European spread options even in
the Black-Scholes model.

In recent years, literature in option pricing has moved beyond the classical model.
Empirical studies have shown that the classical Black-Scholes assumption that asset
prices are log-normally distributed is insufficient to capture pertinent features of asset
returns such as heavy tails, volatility clustering, and implied volatility smiles and skews
(Cont 2001; Cont and Tankov 2004; Kou 2008). In light of the limitations of the Black-
Scholes framework, alternative asset price models have been proposed to provide more
accurate characterizations of asset returns. Prominent examples of these alternative
models are jump-diffusion models (Merton 1976; Naik and Lee 1990; Pham 1997;
Kou 2002), stochastic volatility models (Hull and White 1987; Stein and Stein 1991;
Heston 1993), and combinations of stochastic volatility and jump-diffusion models
(Bates 1996; Bakshi, Cao, and Chen 1997; Scott 1997).

A practical consequence, however, of the use of alternative asset price models is
that option prices are no longer available in a form as elegant as the original Black-
Scholes formula. Indeed, the option pricing formulas obtained by Heston (1993) and
Bates (1996) are expressed in “semi-closed” forms in terms of the characteristic func-
tion of log-prices; in the Merton (1976) jump-diffusion setting, Cheang and Chiarella
(2012) obtain an infinite series representation of European option prices with Poisson-
probability weights. A popular approach that can be efficiently implemented using
computing software is the fast Fourier transform (FFT) approach proposed by Carr
and Madan (1999) and Lewis (2001).

The complexity of the pricing problem is further exacerbated when considering
early-exercise and American options, where one has to also account for the early exer-
cise boundary. In the pure diffusion setting, Kim (1990), Jacka (1991), and Jamshidian
(1992) were able to show that the price of the American option on a single stock decom-
poses into the sum of the price of the corresponding European option and a quantity
that is commonly interpreted as the early exercise premium. Pham (1997) and Gukhal
(2001) were able to derive a similar representation in the jump-diffusion setting, not-
ing that the early exercise premium is heavily affected by the possibility of jumps in
asset prices. Pham (1997) and Touzi (1999), in the jump-diffusion and the stochastic
volatility frameworks, respectively, provide an analysis of the American option price
with respect to the early exercise boundary. Cheang, Chiarella, and Ziogas (2013) show
that a similar decomposition holds under a stochastic volatility jump-diffusion model
for the underlying asset.

Parallel to the developments in single-asset option pricing under alternative price
processes, the valuation of the European exchange option has also since then been
conducted under jump-diffusion models and stochastic volatility models. Jamshidian
(2007) considered the pricing of European exchange options and constructing hedging
portfolios when asset prices are driven by pure-diffusion processes with deterministic
volatility and when they are modelled using exponential Poisson processes. Antonelli
and Scarlatti (2010), Alòs and Rheinlander (2017), and Kim and Park (2017) provide
prices for the European exchange option under stochastic volatility dynamics. Cheang
and Chiarella (2011) extended Merton’s jump-diffusion model to the case of two assets
and characterized the price of European exchange options, an analysis which has been
refined by Caldana et al. (2015). Cufaro-Petroni and Sabino (2018) consider a market
model with correlated jumps in pricing European exchange options.

On the legacy of the fast Fourier transform approaches developed by Dempster
and Hong (2002) and Hurd and Zhou (2010), European spread option prices have
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also been derived under alternative price processes. Cane and Olivares (2014) used
the Hurd and Zhou (2010) method to price European spread options under a two-
dimensional Bates (1996) model. Alfeus and Schlögl (2018) showed that the Hurd
and Zhou (2010) method is a particular application of the two-dimensional Parseval’s
Identity. A striking feature of the Fourier transform approach is that closed form
expressions or approximations for European spread option prices can be obtained
with knowledge of the joint characteristic function of the log-prices of the underlying
assets, which is available in most models.

It was noted however by Caldana and Fusai (2013) that the method of Hurd and
Zhou (2010) is unable to produce prices for European exchange options, so they pro-
posed alternative lower-bound approximations of spread option prices based on the
approach of Dempster and Hong (2002) as a generalization of the approximations de-
rived by Bjerskund and Stensland (2011). The Caldana and Fusai (2013) result only
requires the joint characteristic function of the log-prices of the assets and is exact for
European exchange options.

Analysis of exchange and spread options with non-European payoffs have also gained
traction in financial literature. Under the Black-Scholes framework, Bjerskund and
Stensland (1993) analyzed the American exchange option by approaching it as an op-
timal stopping problem. Broadie and Detemple (1997) established pricing formulas
for multi-asset options, including the exchange and spread options, under the pure-
diffusion framework. Following their analysis of the European exchange option under
jump-diffusion dynamics, Cheang and Chiarella (2011) obtained a linked system of pa-
trial integro-differential equations characterizing the price of the American exchange
option and the associated early exercise boundary. Following the methods of McKean
(1965) and Jamshidian (1992), an analysis of American options written on two underly-
ing assets in the pure-diffusion setting was tackled via partial differential equations and
Fourier integral transforms by Chiarella and Ziveyi (2014). Cheang and Lian (2015)
have priced perpetual exchange options under jump-diffusion dynamics, while Peng
and Peng (2016) analyzed the price of Bermudan-style exchange options under a jump-
diffusion model. Typical of American-style derivatives, however, is the unavailability
of a closed-form option pricing formula, and so one must resort to approximations or
numerical solutions.

In this paper, we focus on the representation of the European and American ex-
change option prices when the underlying asset prices are characterized by a stochastic
volatility jump-diffusion model. After establishing the two-dimensional Bates (1996)
model of the financial market and the necessary change-of-measure mechanisms, we
derive the integro-partial differential equation (and the associated boundary condi-
tions) that characterizes exchange option prices under SVJD dynamics. We then em-
ploy probabilistic arguments to obtain expressions for the European and American
exchange option prices arising from the IPDE.

Our discussion of the European exchange option employs two methods—a proba-
bilistic approach and a Fourier transform approach. First, we demonstrate the use of
the Geman, El Karoui, and Rochet (1995) change-of-numéraire technique to obtain
an alternative probabilistic representation of European exchange option prices that
resembles the original Margrabe (1978) formula. In this analysis, we also establish
some conditions on the volatility processes to ensure that asset and option prices are
well-defined after changes in probability measures. Second, with the imposition of ad-
ditional assumptions on the correlation structure of the market model, we derive the
the joint characteristic function of the log-prices of the stocks (following Cont and
Tankov (2004) and Cane and Olivares (2014)) and use the result of Caldana and Fusai
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(2013) to obtain the price of the European exchange option. Our analysis shows that
the Caldana and Fusai (2013) formulation is compatible with the representation of
option prices obtain via the change-of-numéraire procedure, linking the probabilities
of option exercise (under the secondary probability measures) to Fourier inversion
formulas.

To the best of our knowledge, an analysis of American exchange options under both
stochastic volatility and jump-diffusion dynamics is yet to be formulated. As such,
this paper aims to extend the probabilistic analysis of American exchange options by
Cheang and Chiarella (2011) to the case of stochastic volatility jump-diffusion dynam-
ics. Under the SVJD model, we were able to show that the American exchange option
price can also be decomposed into the sum of the price of the European exchange op-
tion and an early exercise premium, the latter of which can be decomposed further into
diffusive and jump components (a feature that was also shown by Cheang, Chiarella,
and Ziogas (2013) for the single-asset American option). In this regard, we also derive
the coupled system of integral equations that determine both the American exchange
option price and the unknown early exercise boundary.

The rest of the paper is organized as follows. Section 2 presents the stochastic volatil-
ity jump-diffusion model based on Bates (1996) and some pertinent results surround-
ing the stochastic volatility process; Section 3 presents the Radon-Nikodým derivative
that will be used to shift to an equivalent martingale measure as well as to the sec-
ondary probability measures required in the change-of-numéraire technique; Section
4 contains the derivation of the exchange option pricing integro-partial differential
equation; Section 5 discusses a representation of the European exchange option price
based on the change-of-numéraire technique (Section 5.1) and the Fourier transform
method of Caldana and Fusai (2013) (Section 5.2); Section 6 shows the derivation of
the decomposition of the American exchange option price; Section 7 concludes the
paper.

2. A Stochastic Volatility Jump-Diffusion Model

Let (Ω,F , {Ft},P) be a filtered probability space where P is interpreted to be the
market probability measure and the filtration {Ft} is one that is generated by all
stochastic process which will be included in the models hereafter.

Let S1,t and S2,t denote the prices of two stocks at time t. Denote by Si,t− =
limu→t− Si,u the price of stock i (i = 1, 2) immediately before time t; in particular, if a
jump in stock price occurs at time t, then Si,t− represents the pre-jump price of stock
i. Assume that stock i pays a (constant) continuously compounded dividend yield qi.
We assume that the evolution of the price of stock i is given by a stochastic volatility
jump-diffusion (SVJD) model specified as

dSi,t = µiSi,t− dt+
√
vi,tSi,t− dWi,t + Si,t−

∫
R
(eyi − 1)

(
p(dyi, dt)− λimP(dyi) dt

)
(1)

dvi,t = ξi(ηi − vi,t) dt+ σi
√
vi,t dZi,t, (2)

where µi is the instantaneous return on asset i per unit time, vi,t is the instantaneous
variance per unit time, ξi is the rate of mean reversion of vi,t, ηi is the long-run mean
for vi,t, σi is the instantaneous volatility of vi,t, and {Wi,t} and {Zi,t} are standard
Wiener processes under P. It is assumed that µi, λi, ξi, ηi, and σi are positive constants.
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This assumption is particularly important for the variance process as it ensures that
vi,t reverts to a positive level (Andersen and Piterbarg 2007).

Furthermore, the counting measure p(dyi,dt) is associated to a marked Poisson
process (Yi,n, Ni,t), where the marks Yi,1, Yi,2, . . . are i.i.d. random variables with a non-
atomic P-density mP(dyi) and {Ni,t} is a Poisson process with intensity λi under P. In
the language of Runggaldier (2003), p(dyi,dt) has P-local characteristics (λi,mP(dyi)).
It is assumed that the marks Yi,n and the Poisson process {Ni,t} are independent of
each other and independent of the Wiener processes defined above. We further assume
that the marks and Poisson processes among the two assets are independent of each
other.

This model is a two-asset extension of the stock price dynamics in Cheang, Chiarella,
and Ziogas (2013), which combines the jump-diffusion model of Merton (1976) and the
square-root volatility process of Heston (1993) (as what was done by Bates (1996)).
Likewise, it is a stochastic volatility version of the model introduced in Cheang and
Chiarella (2011) and Cheang and Lian (2015) for exchange options.

Dependencies in the Wiener components in the stock price equations and volatility
equations are assumed to be the following:

dW1,t dW2,t = ρw dt (3)

dWi,t dZi,t = ρwzi dt, i = 1, 2 (4)

dZ1,t dZ2,t = ρz dt. (5)

Furthermore, we assume that dW1,t dZ2,t = dW1,t dZ2,t = 0, as correlations between
Wiener components in the stock price and volatility processes of stocks 1 and 2 have
already been introduced. In tabular form, the correlation structure of the model is
summarized as follows:

W1,t W2,t Z1,t Z2,t

W1,t 1 ρw ρwz1 0
W2,t ρw 1 0 ρwz2
Z1,t ρwz1 0 1 ρz
Z2,t 0 ρwz2 ρz 1

Let Σ denote the correlation matrix of the Wiener processes as given above. We assume
that ρw and ρz are not equal to ±1.

Remark 1. In the succeeding analysis, the correlation coefficients ρw and ρz may be
set to zero as simplifying assumptions.

We make the following assumptions on the correlation coefficients and the coeffi-
cients of the volatility processes.

Assumption 2.1. Assume that Z1,t and Z2,t are uncorrelated (i.e. ρz = 0). Further-
more, assume that the coefficients ξi, ηi, and σi are positive and satisfy

2ξiηi ≥ σ2
i , i = 1, 2. (6)

Lastly, assume that

− 1 < ρwzi < min

{
ξi
σi
, 1

}
, i = 1, 2. (7)
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The condition 2ξiηi ≥ σ2
i is required to ensure that the volatility processes do not

hit zero or explode in finite time under the objective market measure P (Andersen
and Piterbarg 2007; Bertini and Passalacqua 2008; Cheang, Chiarella, and Ziogas
2011). The condition on ρwzi ensures that the volatility processes do not do the same
under the equivalent martingale measure and the equivalent measures considered in
the change-of-numéraire procedure. This will be justified in the succeeding sections.

Denote by κi the expected jump-size increment under P, which is given by

κi =

∫
R
(eyi − 1)mP(dyi). (8)

Then equation (1) may be rewritten as

dSi,t = (µi − λiκi)Si,t− dt+
√
vi,tSi,t− dWi,t + Si,t−

∫
R
(eyi − 1)p(dyi,dt). (9)

We assume that the moment generating function of jump sizes, denoted by MP,Yi
(u) =

EP[euYi ], exists but the distribution is not specified.
By Itô’s Lemma for jump-diffusion processes (see Runggaldier 2003), the dynamics

of the log-price Xi,t = lnSi,t, provided Si,t satisfies equation (9), is given by

dXi,t =

(
µi − λiκi −

1

2
vi,t

)
dt+

√
vi,t dWi,t +

∫
R
yip(dyi, dt), (10)

for i = 1, 2. This implies that equation (1) admits a solution of the form

Si,t = Si,0 exp

(µi − λiκi)t−
1

2

∫ t

0
vi,s ds+

∫ t

0

√
vi,s dWi,s +

Ni,t∑
n=1

Yi,n

 , (11)

for i = 1, 2. Let S̃i,t = e−(r−q)tSi,t. Then {S̃i,t} gives the discounted yield process for
stock i and its P-dynamics is given by the SDE

dS̃i,t = (µi + qi − r − λiκi)S̃i,t− dt+
√
vi,tS̃i,t− dWi,t

+ S̃i,t−

∫
R
(eyi − 1)p(dyi,dt).

(12)

We investigate later the dynamics of the discounted yield process under the equivalent
risk-neutral measure in line with the option pricing problem.

With respect to the expressions obtained for the log-price and stock price dynamics,
the non-explosion of the volatility process ensures that the integrals

∫ t
0 vi,s ds and∫ t

0

√
vi,s dWi,s are properly defined.1 Furthermore, it also guarantees that the process

{Mi,t}, where

Mi,t = exp

−1

2

∫ t

0
vi,s ds+

∫ t

0

√
vi,s dWi,s − λiκit+

Ni,t∑
n=1

Yi,n

 , i = 1, 2, (13)

1A discussion of sensible integrands for stochastic integrals can be found in Shreve (2004) and Kuo (2006).
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is a P-martingale (see Appendix A).

3. A Change of Measure Mechanism

Let Bt = (W1,t,W2,t, Z1,t, Z2,t)
> be a vector of standard P-Wiener processes with

correlation matrix Σ and let Q1,t =
∑N1,t

n=1 Y1,n and Q2,t =
∑N2,t

n=1 Y2,n be compound
Poisson processes. In order to achieve a risk-neutral valuation of the price of an ex-
change option, we must find a suitable Radon-Nikodým derivative that translates the
situation from the market measure P to a risk-neutral probability measure Q under
which the discounted stock yield processes are martingales.

Let θt = (ψ1,t, ψ2,t, ζ1,t, ζ2,t)
> be a vector of real-valued adapted processes. The

parameters ψi,t and ζi,t are related to the market price of Wiener risk and market price
of volatility risk associated to asset i, as shall be seen in the succeeding discussion.
Assumption 2.1 ensures that these market prices of risks are strictly positive and do
not explode in finite time (Cheang, Chiarella, and Ziogas 2013).

Following Runggaldier (2003), Cheang and Chiarella (2011), Cheang, Chiarella, and
Ziogas (2013), Cheang and Teh (2014), we state the following Radon-Nikodým deriva-
tive to facilitate a change of measure from P to Q, inducing a drift in the components
of Bt under Q, a change in intensity of the Poisson processes, and a change in density
of the jump size variables.

Proposition 3.1. Let (Ω,F , {Ft},P) be a probability space such that {Ft} is the nat-
ural filtration generated by Bt, Q1,t, and Q2,t (as defined above). Let Lt be given by
the equation

Lt = exp

{
−
∫ t

0
(Σ−1θs)

> dBs −
1

2

∫ t

0
θ>s Σ−1θs ds

}

× exp


N1,t∑
n=1

(γ1Y1,n + ν1)− λ1t
(
eν1EP(eγ1Y1)− 1

)
× exp


N2,t∑
n=1

(γ2Y2,n + ν2)− λ2t
(
eν2EP(eγ2Y2)− 1

)
(14)

and suppose that {Lt} is a strict P-martingale such that EP[Lt] = 1. Then LT is
the Radon-Nikodým derivative of some probability measure Q equivalent to P and the
following hold:

(1) Wi,t and Zi,t have drift −ψi,t and −ζi,t, respectively for i = 1, 2, under Q;

(2) the compound Poisson process Qi,t =
∑N1,t

n=1 Yi,n has a new intensity rate

λ̃i = λie
νiEP[eγiYi ], i = 1, 2 (15)

under Q; and
(3) the moment generating function of jump sizes under Q is given by

MQ,Yi
(u) =

MP,Yi
(u+ γi)

MP,Yi
(γi)

, i = 1, 2. (16)
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Proof. The proof is similar to those presented by Runggaldier (2003) and Cheang
and Teh (2014).

Remark 2. In the subsequent analysis, any change of measure will be facilitated by
a Radon-Nikodým derivative of the form given in equation (14) and the properties of
the new probability measure will be reflected in the choice of parameters θt, γ1, γ2,
ν1, and ν2.

Since it is assumed that the jump components in the model and in the Radon-
Nikodým deirvative are independent of the Wiener components, the new distributions
of these components can be obtained separately from the corresponding components
in equation (14) (Cheang and Teh 2014). That is, the first factor of equation (14)
facilitates the change of measure in the Wiener processes, whereas the last two factors
handle the change in distribution of the jump components in the transition to a new
probability measure.

We assume that the parameters γ1, γ2, ν1, and ν2 are constant so that the Poisson
processes N1,t and N2,t remain homogenous and that the jump sizes remain identically
distributed under Q (Cheang, Chiarella, and Ziogas 2013). Also, the independence of
Bt, Q1,t, and Q2,t allows the multiplicative nature of the Radon-Nikodým derivative.

Cheang and Chiarella (2011) proposed a number of ways to select appropriate val-
ues of the parameters of the Radon-Nikodým derivative. Among their suggestions is
the selection of parameters that induce the minimum entropy martingale measure in
Miyahara (1999). The observation that there are infinitely many equivalent proba-
bility measures also stems from the fact that the market under the SVJD model is
incomplete in the Harrison and Pliska (1981) sense. On top of the Wiener components
of the stock price dynamics, the stochastic volatility components add two additional
sources of randomness from their own Wiener components and the jump components
also induce additional randomness (Cheang, Chiarella, and Ziogas 2013).

We now investigate the Q-dynamics of the discounted yield processes. From Propo-
sition 3.1, we can write

dWi,t = −ψi,t dt+ dW̃i,t, i = 1, 2, (17)

where {W̃i,t} is a standard Q-Wiener process. The conjecture also implies that the

Q-local characteristics of the counting measure p(dyi, dt) are given by (λ̃i,mQ(dyi)),
where

mQ(dyi) =
eγiyi

EP[eγiYi ]
mP(dyi), (18)

for i = 1, 2. As in Runggaldier (2003), define the Q-compensated counting measure
q(dyi, dt) as

q(dyi, dt) = p(dyi, dt)− λ̃imQ(dyi) dt. (19)

As was shown in the prior section, the P-dynamics of the discounted yield process
{S̃i,t} is given by the SDE

dS̃i,t = S̃i,t−

{
(µi + qi − r − λiκi) dt+

√
vi,t dWi,t +

∫
R
(eyi − 1)p(dyi, dt)

}
.
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Substituting the expressions for dWi,t and q(dyi,dt) above, we obtain

dS̃i,t = S̃i,t−(µi + qi − r − λiκi) dt+
√
vi,tS̃i,t−(−ψi,t dt+ dW̃i,t)

+ S̃i,t−

∫
R
(eyi − 1)

[
q(dyi,dt) + λ̃imQ(dyi) dt

]
If we let

κ̃i =

∫
R
(eyi − 1)mQ(dyi) = EQ

[
eYi − 1

]
(20)

be the mean relative jump size increment under Q, then dS̃i,t can be simplified to

dS̃i,t = S̃i,t−

(
µi + qi − r − λiκi + λ̃iκ̃i −

√
vi,tψi,t

)
dt+

√
vi,tS̃i,t− dW̃i,t

+ S̃i,t−

∫
R
(eyi − 1)q(dyi, dt).

(21)

From here, we can choose the market price of Wi,t risk as

ψi,t =
µi + qi − r − λiκi + λ̃iκ̃i√

vi,t
, (22)

which is the risk premium of the stock µi + qi − r less the jump risk λiκi − λ̃iκ̃i per
unit volatility

√
vi,t. It follows that

dS̃i,t = S̃i,t−

{
√
vi,t dW̃i,t +

∫
R
(eyi − 1)q(dyi,dt)

}
. (23)

and so with this selection for ψi,t, it is clear that the discounted yield process

{e−(r−qi)tSi,t} is a martingale under Q.
From the above equation, we can recover the dynamics of the stock price Si,t under

Q. Noting that Si,t = S̃i,te
(r−qi)t, stochastic integration by parts yields

dSi,t = S̃i,t−(r − qi)e(r−qi)t dt+ e(r−qi)t dS̃i,t

= Si,t−(r − qi) dt+ e(r−qi)tS̃i,t−

{
√
vi,t dW̃i,t +

∫
R
(eyi − 1)q(dyi, dt)

}
= Si,t−

{
(r − qi) dt+

√
vi,t dW̃i,t +

∫
R
(eyi − 1)q(dyi,dt)

}
.

Equivalently, we can write

dSi,t = Si,t−

{
(r − qi − λ̃iκ̃i) dt+

√
vi,t dW̃i,t +

∫
R
(eyi − 1)p(dyi,dt)

}
. (24)

From here, the Q-dynamics of the log-price Xi,t = lnSi,t is given by

dXi,t =

(
r − qi − λ̃κ̃i −

1

2
vi,t

)
dt+

√
vi,t dW̃i,t +

∫
R
yip(dyi, dt). (25)

9



From here, it can be seen that the solution Si,t, for 0 < t ≤ T , to equation (24) is
given by

Si,t = Si,0 exp

(r − qi − λ̃iκ̃i)t−
1

2

∫ t

0
vi,s ds+

∫ t

0

√
vi,s dW̃i,s +

Ni,t∑
n=1

Yi,n

 . (26)

Let Z̃1,t and Z̃2,t be standard Wiener processes under Q. Then by Proposition 3.1,
we can write

dZi,t = −ζi,t dt+ dZ̃i,t, i = 1, 2. (27)

Thus, the Q-dynamics of the volatility processes are given by

dvi,t = ξi(ηi − vi,t) dt+ σi
√
vi,t(−ζi,t dt+ dZ̃i,t)

=
[
ξi(ηi − vi,t)− ζi,tσi

√
vi,t
]

dt+ σi
√
vi,t dZ̃i,t.

The quantity ζi,tσi
√
vi,t is interpreted as the market price of volatility risk and is

assumed to be independent of the asset price and proportional to current volatility vi,t
(Heston 1993). That is, for some constant Λi, we can write the market price of risk as

ζi,tσi
√
vi,t = Λivi,t. (28)

The constant of proportionality Λi must be nonnegative to keep consistent with the fi-
nancial argument that investors demand a positive premium for volatility risk (Cheang,
Chiarella, and Ziogas 2013). Thus, we can re-express the Q-dynamics of vi,t as

dvi,t =
[
ξiηi − (ξi + Λi)vi,t

]
dt+ σi

√
vi,t dZ̃i,t

= (ξi + Λi)

[
ξiηi

ξi + Λi
− vi,t

]
dt+ σi

√
vi,t dZ̃i,t.

(29)

Remark 3. The form of ψi,t and ζi,t requires that vi,t is nonzero and finite. These are
guaranteed by Assumption 2.1.

Assumption 2.1 ensures that, under Q, the volatility processes neither hit zero nor
explode. Indeed, if ξ′i = ξi + Λi and η′i = ξiηi/(ξi + Λi), we find that

2ξ′iη
′
i = 2(ξi + Λi) ·

ξiηi
ξi + Λi

= 2ξiηi ≥ σ2
i ,

where the last inequality is due to Assumption 2.1.

4. An Integro-Partial Differential Equation for Exchange Option Prices

Consider a European exchange option based on two assets with prices S1,t and S2,t such
that the final payoff is (S1,T−S2,T )+. Due to the Markov property of the vector process
(S1,t, S2,t, v1,t, v2,t)

> and the final payoff not being dependent on the entire history of
stock prices, the time t price of the European exchange option, denoted by CEt , is a

10



function of only t, S1,t, S2,t, v1,t, and v2,t (Cont and Tankov 2004; Cheang, Chiarella,
and Ziogas 2013). We can thus write CEt (S1,t, S2,t, v1,t, v2,t) to denote the time t price
of the European exchange option. In the same vein, denote by CAt (S1,t, S2,t, v1,t, v2,t)
the price at time t of the American exchange option. If the European and American
exchange options both expire at time T , then the terminal payoff is given by

CET (S1,T , S2,T , v1,T , v2,T ) = CAT (S1,T , S2,T , v1,T , v2,T ) = (S1,T − S2,T )+. (30)

Let Q the the risk-neutral measure determined by the Radon-Nikodým derivative
in Proposition 3.1. Then, the risk-neutral price of the European exchange option is
given by

CEt (S1,t, S2,t, v1,t, v2,t) = e−r(T−t)EQ

[
(S1,T − S2,T )+

∣∣∣Ft]
= e−r(T−t)EQ

[
(S1,T − S2,T )+

∣∣∣S1,t, S2,t, v1,t, v2,t

]
.

(31)

Furthermore, let TT denote the collection of all stopping times τ in the interval [0, T ]
with respect to the filtration {Ft}. Then the price of the American exchange option is
given by (Bjerskund and Stensland 1993)

CAt (S1,t, S2,t, v1,t, v2,t) = sup
τ∈TT

EQ

[
e−r(τ−t)(S1,τ − S2,τ )+

∣∣∣S1,t, S2,t, v1,t, v2,t

]
. (32)

In order to apply Itô’s formula for jump-diffusion processes, we require the following
assumption on the European and American option price formulas.

Assumption 4.1. For t > 0, the functions

CEt (S1,t, S2,t, v1,t, v2,t), CAt (S1,t, S2,t, v1,t, v2,t)

are at least twice-differentiable in the stock price and volatility variables with contin-
uous second-order partial derivatives. Assume also that these functions have a contin-
uous first-order partial derivative with respect to t.

For now, we do not impose the assumption ρz = 0, as this is not needed in the
derivation of the IPDE. We do, however, require that the other conditions in Assump-
tion 2.1 hold.

Given the Q-dynamics of asset prices and volatility processes in equations (24) and
(29), respectively, we can now solve for the stochastic differential equation for exchange
option prices Ct(S1,t, S2,t, v1,t, v2,t) under Q. Let

Ct− = Ct(S1,t−, S2,t−, v1,t, v2,t)

denote the pre-jump price of the exchange option in the event that at time t there is
a jump in either S1,t or S2,t. From the dynamics of the exchange option price, we can
then derive the corresponding pricing IPDE, as shown in the next proposition. Note
that different boundary conditions will be used to characterize the American exchange
option price from the derived IPDE.

11



Proposition 4.2. Given the that asset prices and volatilities have Q-dynamics given
by equations (24) and (29), the exchange option price Ct(S1,t, S2,t, v1,t, v2,t) satisfies
the IPDE

rCt− = L[Ct−] + λ̃1EY1

Q

[
Ct

(
S1,t−e

Y1 , S2,t−, v1,t, v2,t

)
− Ct−

]
+ λ̃2EY2

Q

[
Ct

(
S1,t−, S2,t−e

Y2 , v1,t, v2,t

)
− Ct−

]
,

(33)

where the differential operator L is defined by

L[f ] =
∂f

∂t
+

2∑
i=1

(r − qi − λ̃iκ̃i)Si,t−
∂f

∂si
+

2∑
i=1

[ξiηi − (ξi + Λi)vi,t]
∂f

∂vi

+
1

2

2∑
i=1

vi,tS
2
i,t−

∂2f

∂s2
i

+
1

2

2∑
i=1

σ2
i vi,t

∂2f

∂v2
i

+ ρw
√
v1,tv2,tS1,t−S2,t−

∂2f

∂s1∂s2

+ ρwz1σ1v1,tS1,t−
∂2f

∂s1∂v1
+ ρwz2σ2v2,tS2,t−

∂2f

∂s2∂v2
+ ρZσ1σ2

√
v1,tv2,t

∂2f

∂v1∂v2
,

(34)

Note that the above proposition lacks terminal and boundary conditions to specify
the solution of the IPDE. A remark on these conditions will be provided after the
proof of the proposition.

Proof. Using Itô’s formula for jump-diffusion processes (see Runggaldier 2003; Shreve
2004), we find that Ct satisfies the stochastic differential equation

dCt =

∂Ct−∂t +

2∑
i=1

(r − qi − λ̃iκ̃i)Si,t−
∂Ct−
∂si

+

2∑
i=1

[ξiηi − (ξi + Λi)vi,t]
∂Ct−
∂vi

+
1

2

2∑
i=1

vi,tS
2
i,t−

∂2Ct−
∂s2

i

+
1

2

2∑
i=1

σ2
i vi,t

∂2Ct−
∂v2

i

+ ρw
√
v1,tv2,tS1,t−S2,t−

∂2Ct−
∂s1∂s2

+ ρwz1σ1v1,tS1,t−
∂2Ct−
∂s1∂v1

+ ρwz2σ2v2,tS2,t−
∂2Ct−
∂s2∂v2

+ ρZσ1σ2
√
v1,tv2,t

∂2Ct−
∂v1∂v2

}
dt

+

2∑
i=1

√
vi,tSi,t−

∂Ct−
∂si

dW̃i,t +

2∑
i=1

σi
√
vi,t

∂Ct−
∂vi

dZ̃i,t

+

∫
R

[
Ct(S1,t−e

y1 , S2,t−, v1,t, v2,t)− Ct−
]
p(dy1, dt)

+

∫
R

[
Ct(S1,t−, S2,t−e

y2 , v1,t, v2,t)− Ct−
]
p(dy2,dt).

The counting measure p(dyi,dt) can be replaced by the Q-compensated counting mea-
sure q(dyi,dt), giving us∫

R

[
Ct(S1,t−e

y1 , S2,t−, v1,t, v2,t)− Ct−
]
p(dy1, dt)
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=

∫
R

[
Ct(S1,t−e

y1 , S2,t−, v1,t, v2,t)− Ct−
] [
q(dy1, dt) + λ̃1mQ(dy1) dt

]
= λ̃1EY1

Q

[
Ct

(
S1,t−e

Y1 , S2,t−, v1,t, v2,t

)
− Ct−

]
dt

+

∫
R

[
Ct(S1,t−e

y1 , S2,t−, v1,t, v2,t)− Ct−
]
q(dy1,dt),

where

EY1

Q

[
Ct(S1,t−e

Y1 , S2,t−, v1,t, v2,t)− Ct−
]

=

∫
R

[
Ct(S1,t−e

y1 , S2,t−, v1,t, v2,t)− Ct−
]
mQ(dy1)

represents the expected change in the price of the exchange option due to jumps in
the price of stock 1. Likewise, we can write∫

R

[
Ct(S1,t−, S2,t−e

y2 , v1,t, v2,t)− Ct−
]
p(dy2,dt)

= λ̃2EY2

Q

[
Ct

(
S1,t−, S2,t−e

Y2 , v1,t, v2,t

)
− Ct−

]
dt

+

∫
R

[
Ct(S1,t−, S2,t−e

y2 , v1,t, v2,t)− Ct−
]
q(dy2, dt)

We can thus rewrite dCt as

dCt =

∂Ct−∂t +

2∑
i=1

(r − qi − λ̃iκ̃i)Si,t−
∂Ct−
∂si

+

2∑
i=1

[ξiηi − (ξi + Λi)vi,t]
∂Ct−
∂vi

+
1

2

2∑
i=1

vi,tS
2
i,t−

∂2Ct−
∂s2

i

+
1

2

2∑
i=1

σ2
i vi,t

∂2Ct−
∂v2

i

+ ρw
√
v1,tv2,tS1,t−S2,t−

∂2Ct−
∂s1∂s2

+ ρwz1σ1v1,tS1,t−
∂2Ct−
∂s1∂v1

+ ρwz2σ2v2,tS2,t−
∂2Ct−
∂s2∂v2

+ ρZσ1σ2
√
v1,tv2,t

∂2Ct−
∂v1∂v2

+ λ̃1EY1

Q

[
Ct

(
S1,t−e

Y1 , S2,t−, v1,t, v2,t

)
− Ct−

]
+ λ̃2EY2

Q

[
Ct

(
S1,t−, S2,t−e

Y2 , v1,t, v2,t

)
− Ct−

]}
dt

+

2∑
i=1

√
vi,tSi,t−

∂Ct−
∂si

dW̃i,t +

2∑
i=1

σi
√
vi,t

∂Ct−
∂vi

dZ̃i,t

+

∫
R

[
Ct(S1,t−e

y1 , S2,t−, v1,t, v2,t)− Ct−
]
q(dy1,dt)

+

∫
R

[
Ct(S1,t−, S2,t−e

y2 , v1,t, v2,t)− Ct−
]
q(dy2,dt).

If C̃t = e−rtCt represents the discounted exchange option price, then we find that

13



C̃t satisfies the SDE

dC̃t = −rCt−e−rt dt+ e−rt dCt

= e−rt

∂Ct−∂t +

2∑
i=1

(r − qi − λ̃iκ̃i)Si,t−
∂Ct−
∂si

+

2∑
i=1

[ξiηi − (ξi + Λi)vi,t]
∂Ct−
∂vi

+
1

2

2∑
i=1

vi,tS
2
i,t−

∂2Ct−
∂s2

i

+
1

2

2∑
i=1

σ2
i vi,t

∂2Ct−
∂v2

i

+ ρw
√
v1,tv2,tS1,t−S2,t−

∂2Ct−
∂s1∂s2

+ ρwz1σ1v1,tS1,t−
∂2Ct−
∂s1∂v1

+ ρwz2σ2v2,tS2,t−
∂2Ct−
∂s2∂v2

+ ρZσ1σ2
√
v1,tv2,t

∂2Ct−
∂v1∂v2

+ λ̃1EY1

Q

[
Ct

(
S1,t−e

Y1 , S2,t−, v1,t, v2,t

)
− Ct−

]
+ λ̃2EY2

Q

[
Ct

(
S1,t−, S2,t−e

Y2 , v1,t, v2,t

)
− Ct−

]
− rCt−

}
dt

+ e−rt
2∑
i=1

√
vi,tSi,t−

∂Ct−
∂si

dW̃i,t + e−rt
2∑
i=1

σi
√
vi,t

∂Ct−
∂vi

dZ̃i,t

+ e−rt
∫
R

[
Ct(S1,t−e

y1 , S2,t−, v1,t, v2,t)− Ct−
]
q(dy1,dt)

+ e−rt
∫
R

[
Ct(S1,t−, S2,t−e

y2 , v1,t, v2,t)− Ct−
]
q(dy2,dt)

(35)

The non-explosion of the volatility processes (implied by Assumption 2.1) and the
differentiability of the option price (Assumption 4.1) ensure that

EQ

[∫ t

0

∣∣∣∣e−rs√vi,sSi,s−∂Cs−∂si

∣∣∣∣2 ds

]
<∞ and EQ

[∫ t

0

∣∣∣∣e−rsσi√vi,s∂Cs−∂vi

∣∣∣∣2 ds

]
<∞

hold for i = 1, 2, and so processes whose stochastic differentials correspond to the
dW̃i,t and dZ̃i,t terms are Q-martingales (see Kuo 2006, Theorem 4.6.1). Furthermore,
Runggaldier (2003, Theorem 2.2) ensures that the last two terms of the right-hand side
of the above equation correspond to Q-martingales, provided integrability conditions
hold for the option price increments.

Under Q, we require C̃t to have no drift. Setting the coefficient of dt in equation
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(35) to zero, we find that the exchange option price satisfies the IPDE

rCt− =
∂Ct−
∂t

+

2∑
i=1

(r − qi − λ̃iκ̃i)Si,t−
∂Ct−
∂si

+

2∑
i=1

[ξiηi − (ξi + Λi)vi,t]
∂Ct−
∂vi

+
1

2

2∑
i=1

vi,tS
2
i,t−

∂2Ct−
∂s2

i

+
1

2

2∑
i=1

σ2
i vi,t

∂2Ct−
∂v2

i

+ ρw
√
v1,tv2,tS1,t−S2,t−

∂2Ct−
∂s1∂s2

+ ρwz1σ1v1,tS1,t−
∂2Ct−
∂s1∂v1

+ ρwz2σ2v2,tS2,t−
∂2Ct−
∂s2∂v2

+ ρZσ1σ2
√
v1,tv2,t

∂2Ct−
∂v1∂v2

+ λ̃1EY1

Q

[
Ct

(
S1,t−e

Y1 , S2,t−, v1,t, v2,t

)
− Ct−

]
+ λ̃2EY2

Q

[
Ct

(
S1,t−, S2,t−e

Y2 , v1,t, v2,t

)
− Ct−

]
(36)

Using the differential operator L, the preceding IPDE may be written as

rCt− = L[Ct−] + λ̃1EY1

Q

[
Ct

(
S1,t−e

Y1 , S2,t−, v1,t, v2,t

)
− Ct−

]
+ λ̃2EY2

Q

[
Ct

(
S1,t−, S2,t−e

Y2 , v1,t, v2,t

)
− Ct−

]
.

The IPDE derived above extends the result obtained by Cheang and Chiarella
(2011) for exchange options under jump-diffusion dynamics to the case of stochastic
volatility and jump-diffusion dynamics. It is also an extension of the IPDE derived by
Cheang, Chiarella, and Ziogas (2013) for the one-asset option under SVJD dynamics
to the case of two risky assets.

For the European exchange option, the terminal condition for the IPDE is

CET = (S1,T − S2,T )+.

In the case of the American exchange option, additional conditions, namely the early
exercise boundary condition and smooth-pasting conditions, must be specified given
the early exercise boundary of the option (Chiarella et al. 2009; Cheang and Chiarella
2011; Cheang, Chiarella, and Ziogas 2013; Chiarella, Kang, and Meyer 2015). These
will be discussed in Section 6.

5. A Representation of the European Exchange Option Price

In this section, we now consider analytical representations of the price of the Euro-
pean exchange option. To this end, we employ two methods: the change-of-numéraire
technique of Geman, El Karoui, and Rochet (1995), which was applied by Cheang
and Chiarella (2011) to the exchange option, and the Fourier transform approach by
Dempster and Hong (2002) and Caldana and Fusai (2013). For the first approach, we
assume that ρz = 0 and that Assumption 2.1 hold. In the latter approach, we require
additional restrictions on the correlation structure of the Wiener processes.
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5.1. A Change-of-Numéraire Approach

In this section, we employ the change of numéraire technique of Geman, El Karoui,
and Rochet (1995) to evaluate the Q-expectation that gives the price of the European
exchange option. This technique has been employed in Cheang and Chiarella (2011)
and Caldana et al. (2015) to price exchange options under jump-diffusion dynamics,
Cheang and Teh (2014) to price single-asset options under jump-diffusion dynamics
with stochastic interest rate, and Cheang, Chiarella, and Ziogas (2011) and Cheang,
Chiarella, and Ziogas (2013) to price single-asset European options under SVJD dy-
namics. Here, we derive a representation for European exchange option prices under
the two-asset SVJD model.

Without loss of generality, we analyze the European exchange option price at time
t = 0, which is given by

CE0 (S1,0, S2,0, v1,0, v2,0) = e−rTEQ

[
(S1,T − S2,T )+

]
.

Define the event A0 = {S1,T > S2,T } (the event that the option is in-the-money), so
that we can write

CE0 = e−rTEQ[S1,T1A0
]− e−rTEQ[S2,T1A0

]. (37)

Using equation (26), we may substitute expressions for S1,T and S2,T , giving us

CE0 = S1,0e
−q1TEQ[U1,T1A0

]− S2,0e
−q2TEQ[U2,T1A0

], (38)

where

Ui,T = exp

−1

2

∫ T

0
vi,t dt+

∫ T

0

√
vi,t dW̃i,t − λ̃iκ̃iT +

Ni,T∑
n=1

Yi,n

 . (39)

Therefore, the expectations may be seen as the probability that the option is in the
money at time T under two new probability measures Q̂1 and Q̂2 whose relative
densities with respect to Q are U1,T and U2,T , respectively. The probability measures

Q̂1 and Q̂2 are those that result from using S1,t and S2,t, respectively, as the numéraire.
To show that U1,T and U2,T are sensible Radon-Nikodým derivatives in the sense

of Proposition 3.1, we must show that U1,t and U2,t are Q-martingales and EQ[Ui,t] =
1, i = 1, 2. This implies that we must ensure that the volatility processes do not
explode under the new probability measures Q̂1 and Q̂2 (which in effect guarantees
the existence of an expression for asset prices in the new probability measures).

The subsequent analysis is for {U1,t} and is also applicable to {U2,t}. As shown
in Section 3, the condition 2ξ1η1 ≥ σ2

1 on the P-dynamics of {v1,t} is sufficient to
ensure that the process neither explodes nor makes excursions to the origin under Q.
As such,

∫ t
0 v1,s ds < ∞ Q-a.s., which satisfies the Novikov condition to ensure that

exp{−1
2

∫ t
0 v1,s ds+

∫ t
0

√
v1,s dW1,s} is a Q-martingale and

EQ

exp

{
−1

2

∫ t

0
v1,s ds+

∫ t

0

√
v1,s dW1,s

} = 1.
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We also note that

EQ

exp


N1,t∑
i=1

Y1,n


 = exp

{
λ̃1t(EQ(eYi)− 1)

}
= eλ̃1κ̃1t.

Independence of the Wiener and jump components imply that

EQ[U1,t] = EQ

exp

{
−1

2

∫ t

0
v1,s ds+

∫ t

0

√
v1,s dW1,s

} · e−λ̃1κ̃1t · EQ

exp


N1,t∑
i=1

Y1,n




= 1 = U1,0.

This also shows that {U1,t} is a Q-martingale.
By Proposition 3.1, U1,T defines a Radon-Nikodým derivative that facilitates a

change of measure from Q to some equivalent measure Q̂1. To determine the drift
of the Wiener processes and the distributional properties of the jumps under Q̂1, we
compare equation (39) (with i = 1) with equation (14) to determine the change of
measure parameters.

We first investigate changes in the jump components arising from the shift to Q̂1.
Note that the jump component of S2,t does not appear in U1,T , implying that the
change of measure has no effect on the jumps in stock 2. From the comparison, we
find that γ1 = 1 and ν1 = 0, which implies that the Poisson process {Ni,t} has Q̂1-
intensity

λ̂
(1)
1 = λ̃1EQ(eY1) = λ̃1(1 + κ̃1)

and the new distribution of the jump random variables Y1,n is given by the moment
generating function

MQ̂1,Y1
(u) =

MQ,Y1
(u+ 1)

MQ,Y1
(1)

.

This relation between the moment generating functions also implies that the Q̂1-
density of Y1 is given by

mQ̂1
(dy1) =

ey1

EQ(eY1)
mQ(dy1).

This analysis therefore implies that the compensated counting measures under Q̂1

corresponding to the original counting measure p(dyi, dt) are given by

q̂(1)(dy1, dt) = p(dy1, dt)− λ̂(1)
1 mQ̂1

(dy1) dt

q̂(1)(dy2, dt) = p(dy2, dt)− λ̂(1)
2 mQ̂1

(dy2) dt,
(40)

where λ̂
(1)
1 and mQ̂1

(dy1) are given above, and λ̂
(1)
2 = λ̃2 and mQ̂1

(dy2) = mQ(dy2) as
no changes are introduced to the jump components of stock 2.
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Now we consider the diffusion components. The parameter θ̂
(1)
t for this change of

measure (analogous to θ1 in equation (14)) is defined such that(
Σ−1θ̂

(1)
t

)>
dB̃t =

√
v1,t dW̃1,t,

where dB̃t = (dW̃1,t,dW̃2,t,dZ̃1,t, dZ̃2,t)
> is the vector of the Q-Wiener increments

and Σ is the original correlation matrix of the Wiener processes. The above equation,
in matrix form, can also be written as

1 ρw ρwz1 0
ρw 1 0 ρwz2
ρwz1 0 1 ρz

0 ρwz2 ρz 1


−1

θ̂
(1)
t =


√
v1,t

0
0
0

 .
This implies that

θ̂
(1)
t =

(√
v1,t, ρw

√
v1,t, ρwz1

√
v1,t, 0

)>
.

Thus, if Ŵ
(1)
1,t , Ŵ

(1)
2,t , Ẑ

(1)
1,t , and Ẑ

(1)
2,t are standard Q̂1-Wiener processes, then the Q̂1-

dynamics of the Q-Wiener processes are given by

dW̃1,t = −√v1,t dt+ dŴ
(1)
1,t

dW̃2,t = −ρw
√
v1,t dt+ dŴ

(1)
2,t

dZ̃1,t = −ρwz1
√
v1,t dt+ dẐ

(1)
1,t

dZ̃2,t = dẐ
(1)
2,t .

(41)

Under Q̂1, the variance process v1,t satisfies the equation

dv1,t = (ξ1 + Λ1 − σ1ρwz1)

[
ξ1η1

ξ1 + Λ1 − σ1ρwz1
− v1,t

]
dt+ σ1

√
v1,t dẐ

(1)
1,t , (42)

which is obtained by substituting dZ̃1,t = −ρwz1
√
v1,t dt+ dẐ

(1)
1,t into equation (29). In

light of Assumption 2.1, we require that ξ1 + Λ1 − σ1ρwz1 > 0. From here and from
the fact that Λ1 is chosen to be a nonnegative constant, we see that the condition

− 1 < ρwz1 < min

{
ξ1

σ1
, 1

}
(43)

is sufficient to ensure that the coefficients of the volatility process under Q̂1 are positive.
Furthermore, we observe that

2 (ξ1 + Λ1 − σ1ρwz1) ·
ξ1η1

ξ1 + Λ1 − σ1ρwz1
= 2ξ1η1 ≥ σ2

1,

which means that v1,t neither explodes in finite time or makes excursions to 0 under

Q̂1.
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Similarly, the Q̂1 dynamics of v2,t is given by

dv2,t = (ξ2 + Λ2)

[
ξ2η2

ξ2 + Λ2
− v2,t

]
dt+ σ2

√
v2,t dẐ

(1)
2,t ,

which we note to be identical to equation (29) except for the change in the Wiener
process. At this point, no further parameter assumptions are required aside from those
in Assumption 2.1 to ensure that v2,t does not vanish or explode in finite time under

Q̂1.
An analysis similar to that above also shows that {U2,t} is a Q-martingale, allowing

us to define a new probability measure Q̂2 equivalent to Q via the Radon-Nikodým

derivative U2,T . Under Q̂2, the local characteristics (λ̂
(2)
1 ,mQ̂2

(dy1)) of the counting

measure p(dy1,dt) are given by

λ̂
(2)
1 = λ̃1, mQ̂2

(dy1) = mQ(dy1),

as U2,T is parameterized such that no changes are induced on the distributional prop-
erties of the jump component of stock 1. Analogous to the above analysis, we find that

the Q̂2-local characteristics (λ̂
(2)
2 ,mQ̂2

(dy2)) of p(dy2, dt) are given by

λ̂
(2)
2 = λ̃2(1 + κ̃2)

mQ̂2
(dy2) =

ey2

EQ(eY2)
mQ(dy2).

A comparison between equation (39) (with i = 2) with equation (14) produces

θ̂
(2)
t =

(
ρw
√
v2,t,
√
v2,t, 0, ρwz2

√
v2,t

)>
,

to facilitate the change of drift upon shifting to Q̂2. Let Ŵ
(2)
1,t , Ŵ

(2)
2,t , Ẑ

(2)
1,t , and Ẑ

(2)
2,t be

standard Q̂2-Wiener processes; then the Q̂2-dynamics of the Q-Wiener processes are
given by

dW̃1,t = −ρw
√
v2,t dt+ dŴ

(2)
1,t

dW̃2,t = −√v2,t dt+ dŴ
(2)
2,t

dZ̃1,t = dẐ
(2)
1,t

dZ̃2,t = ρwz2
√
v2,t dt+ dẐ

(2)
2,t .

(44)

Consequently, the Q̂2-dynamics of v2,t is given by the equation

dv2,t = (ξ2 + Λ2 − σ2ρwz2)

[
ξ2η2

ξ2 + Λ2 − σ2ρwz2
− v2,t

]
dt+ σ2

√
v2,t dẐ

(2)
2,t , (45)

which is guaranteed to neither explode in finite time nor make excursions to 0 under
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Q̂2 by enforcing the condition

− 1 < ρwz2 < min

{
ξ2

σ2
, 1

}
. (46)

No additional restrictions need to be made to ensure that v1,t, aside from those in

Assumption 2.1, does not explode nor go to zero under Q̂2.

Remark 4. The preceding discussion indeed show that Assumption 2.1, in the case
that ρz = 0, is sufficient to ensure that the volatility processes {v1,t} and {v2,t} neither
explode in finite time nor hit zero under the risk-neutral measure Q and the probability
measures Q̂1 and Q̂2 equivalent to Q determined by the Radon-Nikodým derivatives
U1,T and U2,T . This extends the discussion of Cheang, Chiarella, and Ziogas (2011) to
the case of two assets modelled with stochastic volatility and jump-diffusion dynamics.

In terms of the new probability measures Q̂1 and Q̂2, the price of the European
exchange option may be written as

CE0 = S1,0e
−q1T Q̂1(A0)− S2,0e

−q2T Q̂2(A0). (47)

Using equation (26), the event A0 may be rewritten asA0,T > ln

(
S2,0

S1,0

)
−
(
q2 − q1 − λ̃1κ̃1 + λ̃2κ̃2

)
T

 , (48)

where A0,T is the random variable

A0,T = −1

2

∫ T

0
(v1,t− v2,t) dt+

∫ T

0

√
v1,t dW̃1,t−

∫ T

0

√
v2,t dW̃2,t +

N1,T∑
n=1

Y1,n−
N2,T∑
n=1

Y2,n.

(49)

Remark 5. Similar to the original Margrabe (1978) formula, our characterization of
the European exchange option price under SVJD dynamics is also independent of the
risk-free interest rate r.

In general, for any 0 ≤ t < T , the time-t price of the European exchange option is
given by

CEt = S1,te
−q1(T−t)Q̂1(At)− S2,te

−q2(T−t)Q̂2(At), (50)

where At is the eventAt,T > ln

(
S2,t

S1,t

)
−
(
q2 − q1 − λ̃1κ̃1 + λ̃2κ̃2

)
(T − t)


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and At,T is the random variable

At,T = −1

2

∫ T

t
(v1,s−v2,s) ds+

∫ T

t

√
v1,s dW̃1,s−

∫ T

t

√
v2,s dW̃2,s+

N1,T∑
n=N1,t

Y1,n−
N2,T∑
n=N2,t

Y2,n.

Here, the summations count the number of jumps that occur in the period (t, T ]. By
construction, CEt as given above is a solution to the IPDE in Proposition 4.2 subject
to the terminal condition CET = (S1,T − S2,T )+.

In the presence of stochastic volatilities v1,t and v2,t, a series expression for the Eu-
ropean exchange option price similar to those obtained in Cheang and Chiarella (2011)
and Caldana et al. (2015) cannot be obtained. In light of our general correlation struc-
ture for the Wiener processes, the probabilities above may be computed via simulation
methods. Alternatively, a solution via characteristic functions can be made possible
by making additional assumptions on the relationship between the stock prices and
the volatilties, as will be shown in the next section. In the next section, we will derive
a representation of the European exchange option price in terms of Fourier inversion
formulas whose form is comparable to equations (37) and (47).

5.2. A Fourier Transform Approach

One may derive a Fourier inversion formula for the price of the European exchange
option in terms of the joint characteristic function of the log-prices of the stocks.
However, an explicit formula for the characteristic function is available if we make
additional simplifying assumptions to the correlation structure of the Wiener processes.
The derivation of the characteristic function and the application of the Caldana and
Fusai (2013) result to derive the exact price of the European exchange option is the
main topic of this section. Here, we show that the Caldana and Fusai (2013) result also
lends itself to a decomposition similar to equation (47) in the case of the European
exchange option.

Recall that the risk-neutral dynamics of the log-price of the stock is given by

dXi,t =

(
r − qi − λ̃iκ̃i −

1

2
vi,t

)
dt+

√
vi,t dW̃i,t + dQ̃i,t, i = 1, 2 (51)

where Q̃i,t is a compound Poisson process with intensity λ̃i under Q whose jump
components Yi,1, Yi,2, . . . independent and identically distributed with common char-
acteristic function φYi

(u). We also recall that under Q, the volatility processes vi,t
satisfy the equation

dvi,t =
[
ξiηi − (ξi + Λi)vi,t

]
dt+ σi

√
vi,t dZ̃i,t, (52)

where the model parameters follow Assumption 2.1.
Denote by Xc

i,t the continuous part of Xi,t such that it satisfies the equation

dXc
i,t =

(
r − qi − λ̃iκ̃i −

1

2
vi,t

)
dt+

√
vi,t dW̃i,t. (53)

At this juncture, we follow the steps in Cont and Tankov (2004) and Cane and Olivares
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(2014) in deriving the joint characteristic function of Xc
1,t and Xc

2,t and, eventually,
the joint characteristic function of the log-prices.

Lemma 5.1. Suppose ρw = ρz = 0. The joint characteristic function φXt
(u1, u2) of

the log-price vector Xt = (X1,t, X2,T )> is given by

φXt
(u1, u2) = exp

{
i(u1x1 + u2x2) + C(t;u1, u2) +D1(t;u1)v1 +D2(t;u2)v2

}
× exp

{
λ̃1t
(
φY1

(u1)− 1
)

+ λ̃2t
(
φY2

(u2)− 1
)} (54)

where

Dj(s;uj) = −
u2
j + iuj

γj coth(γjs/2) + (ξj + λj)− iujρwzjσj
, j = 1, 2, (55)

where γj is given by

γj =
√
σ2
j (u

2
j + iuj) + (ξj + Λj − iujρwzjσj)2, j = 1, 2,

and

C(s;u1, u2) =

2∑
j=1

{
iujs(r − qj − λ̃j κ̃j) +

ξjηjs(ξj + λj − iujρwzjσj)
σ2
j

−2ξjηj
σ2
j

ln

(
cosh

γjs

2
+
ξj + Λj − iujρwzjσj

γ
sinh

γjs

2

)}
.

(56)

Proof. We first determine the characteristic function of the continuous parts of the
log-prices. Define the function f as

f(t, x1, x2, v1, v2) = EQ

{
ei(u1Xc

1,T +u2Xc
2,T )|Xc

1,t = x1, X
c
2,t = x2, v1,t = v1, v2,t = v2

}
,

(57)
and let Mt = f(t,Xc

1,t, X
c
2,t, v1,t, v2,t). In the next calculation, we do not yet invoke

the assumption that ρw = ρz = 0. By Itô’s Lemma, Mt satisfies

dMt =

∂f∂t +

2∑
i=1

(
r − qi − λ̃iκ̃i −

1

2
vi,t

)
∂f

∂xi
+

2∑
i=1

[
ξiηi − (ξi + Λi)vi,t

] ∂f
∂vi

+
1

2

2∑
i=1

vi,t
∂2f

∂x2
i

+
1

2

2∑
i=1

σ2
i vi,t

∂2f

∂v2
i

+ ρw
√
v1,tv2,t

∂2f

∂x1∂x2

+

2∑
i=1

ρwziσivi,t
∂2f

∂xi∂vi
+ ρzσ1σ2

√
v1,tv2,t

∂2f

∂v1∂v2

dt

+

2∑
i=1

√
vi,t

∂f

∂xi
dW̃i,t +

2∑
i=1

σi
√
vi,t

∂f

∂vi
dZ̃i,t.
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Since Mt is a martingale, the drift coefficient is equal to zero, which leads to the
equation

0 =
∂f

∂t
+

2∑
i=1

(
r − qi − λ̃iκ̃i −

1

2
vi,t

)
∂f

∂xi
+

2∑
i=1

[
ξiηi − (ξi + Λi)vi,t

] ∂f
∂vi

+
1

2

2∑
i=1

vi,t
∂2f

∂x2
i

+
1

2

2∑
i=1

σ2
i vi,t

∂2f

∂v2
i

+ ρw
√
v1,tv2,t

∂2f

∂x1∂x2

+

2∑
i=1

ρwziσivi,t
∂2f

∂xi∂vi
+ ρzσ1σ2

√
v1,tv2,t

∂2f

∂v1∂v2
.

The corresponding terminal condition is given by

f(T, x1, x2, v1, v2) = ei(u1x1+u2x2).

This PDE is to be solved for t ∈ [0, T ], (x1, x2) ∈ R2, and (v1, v2) ∈ R2
+, where

R2
+ = (0,∞)× (0,∞).
To be able to solve the above PDE explicitly, we now assume that ρw = ρz = 0.

Cane and Olivares (2014) refer to this situation as the independent volatility case. This
simplifies the preceding PDE such that its coefficients become linear. The resulting
equation given the the simplifying assumptions is

0 =
∂f

∂t
+

2∑
i=1

(
r − qi − λ̃iκ̃i −

1

2
vi,t

)
∂f

∂xi
+

2∑
i=1

[
ξiηi − (ξi + Λi)vi,t

] ∂f
∂vi

(58)

+
1

2

2∑
i=1

vi,t
∂2f

∂x2
i

+
1

2

2∑
i=1

σ2
i vi,t

∂2f

∂v2
i

+

2∑
i=1

ρwziσivi,t
∂2f

∂xi∂vi
, (59)

and to solve the equation, we guess a solution of the form

f(t, x1, x2, v1, v2) = exp
{
i(u1x1 + u2x2) + C(T − t) +D1(T − t)v1 +D2(T − t)v2

}
,

(60)
for some functions C(s), D1(s), and D2(s) of one variable evaluated at s = T − t
(Heston 1993; Cont and Tankov 2004; Cane and Olivares 2014). At this point, we
suppress the t subscript and introduce the notation ft = f(t, x1, x2, v1, v2). With this
specification, the PDE becomes

0 = ft
[
−C ′(T − t)−D′1(T − t)v1 −D′2(T − t)v2

]
+

(
r − q1 − λ̃1κ̃1 −

1

2
v1

)
ftiu1 +

(
r − q2 − λ̃2κ̃2 −

1

2
v2

)
ftiu2

+ [ξ1η1 − (ξ1 + Λ1)v1]ftD1(T − t) + [ξ2η2 − (ξ2 + Λ2)v2]ftD2(T − t)

− 1

2
v1u

2
1ft −

1

2
v2u

2
2ft +

1

2
σ2

1v1D
2
1(T − t)ft +

1

2
σ2

2v2D
2
2(T − t)ft

+ ρwz1σ1v1iu1D1(T − t)ft + ρwz2σ2v2iu2D2(T − t)ft,

where C ′(T − t), D′1(T − t), and D′2(T − t) are the first derivatives of C(s), D1(s), and
D2(s) evaluated at s = T − t. Simplifying and collecting the coefficients of v1 and v2,
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we have

0 = v1

{
−D′

1(T − t)− iu1
2
− u21

2
+

1

2
σ2
1D

2
1(T − t) + (iu1ρwz1σ1 − ξ1 − Λ1)D1(T − t)

}

+ v2

{
−D′

2(T − t)− iu2
2
− u22

2
+

1

2
σ2
2D

2
2(T − t) + (iu2ρwz2σ2 − ξ2 − Λ2)D2(T − t)

}
− C ′(T − t) + (r − q1 − λ̃1κ̃1)iu1 + (r − q2 − λ̃2κ̃2)iu2 + ξ1η1D1(T − t) + ξ2η2D2(T − t).

Since v1 and v2 are nonzero, it follows that C(s), D1(s), and D2(s) must satisfy the
equations

D′1(s) =
σ2

1

2
D2

1(s) + (iu1ρwz1σ1 − ξ1 − Λ1)D1(s)− 1

2
(iu1 + u2

1) (61)

D′2(s) =
σ2

2

2
D2

2(s) + (iu2ρwz2σ2 − ξ2 − Λ2)D2(s)− 1

2
(iu2 + u2

2) (62)

C ′(s) = (r − q1 − λ̃1κ̃1)iu1 + (r − q2 − λ̃2κ̃2)iu2 + ξ1η1D1(s) + ξ2η2D2(s), (63)

subject to the initial condition D1(0) = D2(0) = C(0) = 0. Adapting the results of
Heston (1993), Bates (1996), and Cont and Tankov (2004), D1(s) and D2(s) are given
by

Dj(s) = −
u2
j + iuj

γj coth(γjs/2) + (ξj + λj)− iujρwzjσj
, j = 1, 2,

where γj is given by

γj =
√
σ2
j (u

2
j + iuj) + (ξj + Λj − iujρwzjσj)2, j = 1, 2.

Integration for C(s) yields

C(s) =

2∑
j=1

{
iujs(r − qj − λ̃j κ̃j) +

ξjηjs(ξj + λj − iujρwzjσj)
σ2
j

−2ξjηj
σ2
j

ln

(
cosh

γjs

2
+
ξj + Λj − iujρwzjσj

γ
sinh

γjs

2

)}
.

Note that

f(0, x1, x2, v1, v2) = EQ

[
ei(u1Xc

1,T +u2Xc
2,T )
∣∣∣Xc

1,0 = x1, X
c
2,0 = x2, v1,0 = v1, v2,0 = v2

]
= EQ

[
ei(u1Xc

1,T +u2Xc
2,T )
]
.

If x1 and x2 represent the log of initial stock prices and v1 and v2 represent initial
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volatility levels, then from the assumed functional form of f , it follows that

EQ

[
ei(u1Xc

1,T +u2Xc
2,T )
]

= exp
{
i(u1x1 + u2x2) + C(T ) +D1(T )v1 +D2(T )v2

}
,

where C(T ), D1(T ), and D2(T ) are given as above. Thus for any 0 < t ≤ T , the joint
characteristic function of the continuous part of the log-asset prices, which we denote
by φXc

t
(u1, u2) is given by

φXc
t
(u1, u2) = exp

{
i(u1x1 + u2x2) + C(t;u1, u2) +D1(t;u1, u2)v1 +D2(t;u1, u2)v2

}
(64)

We now turn to the joint characteristic function φQt
(u1, u2) of the jump parts. From

the assumptions on the SVJD model, we note that the jump components of stock 1
and stock 2 are independent, hence

φQt
(u1, u2) = EQ

exp

iu1

N1,t∑
n=1

Y1,n + iu2

N2,t∑
n=1

Y2,n




= EQ

exp

iu1

N1,t∑
n=1

Y1,n

EQ

exp

iu2

N2,t∑
n=1

Y2,n




If φYi
(·) denotes the common characteristic function of the Yi,n’s under the risk-neutral

measure Q, then we have

φQt
(u1, u2) = exp

{
λ̃1t
(
φY1

(u1)− 1
)

+ λ̃2t
(
φY2

(u2)− 1
)}
, (65)

where λ̃1 and λ̃2 are the intensities of N1,t and N2,t, respectively, under Q.
Following the independence of the continuous and jump parts of the log-price pro-

cesses, the joint characteristic function of the log-prices X1,t and X2,t, which we denote
by φXt

(u1, u2) is therefore given by

φXt
(u1, u2) = exp

{
i(u1x1 + u2x2) + C(t;u1, u2) +D1(t;u1, u2)v1 +D2(t;u1, u2)v2

}
× exp

{
λ̃1t
(
φY1

(u1)− 1
)

+ λ̃2t
(
φY2

(u2)− 1
)}
.

This is defined for all (x1, x2) ∈ R2, (v1, v2) ∈ R2
+, t ∈ [0, T ], and u1, u2 ∈ C.

Remark 6. Let φXT |t(u1, u2) = EQ

[
ei(u1X1,T +u2X2,T )

∣∣∣Ft]. From the above calcula-

tions, we have

φXT |t(u1, u2)

= exp
{
i(u1x1 + u2x2) + C(T − t;u1, u2) +D1(T − t;u1, u2)v1 +D2(T − t;u1, u2)v2

}
× exp

{
λ̃1(T − t)

(
φY1

(u1)− 1
)

+ λ̃2(T − t)
(
φY2

(u2)− 1
)}
,

(66)
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where x1, x2, v1, and v2 now denote time t values of the processes {X1,t}, {X2,t},
{v1,t}, and {v2,t}, respectively.

At this point, we briefly state the results of Caldana and Fusai (2013) on the
approximate pricing of European spread options under general stock price dynam-
ics, as this will be used to derive European exchange option prices under the as-
sumed SVJD model. Consider a European option with strike price K written on
the spread S1,T − S2,T . Then the price today of the spread option is CK,0 =
e−rTEQ

[
(S1,T − S2,T −K)+

]
. For some parameters α and k, define the event

A =
{
S1,T > ekS2,T /EQ[Sα2,T ]

}
.

This event, as noted by Bjerskund and Stensland (2011), is a sub-optimal exercise
strategy and produces the following lower bound on the European spread option payoff,

(S1,T − S2,T −K)+ ≥ (S1,T − S2,T −K)1A. (67)

It follows therefore that a lower bound for the spread option price is given by

Ck,αK,0 = e−rTEQ
[
(S1,T − S2,T −K)1A

]
. (68)

The following theorem (Caldana and Fusai 2013, Proposition 1) provides an expression

for Ck,αK,0 in terms of the joint characteristic function φXT
(u1, u2)of the log-price vector

XT = (X1,T , X2,T )>.

Theorem 5.2. The lower bound Ck,αK,0 for the European spread option price is given
by

Ck,αK,0 =

{
e−δk−rT

π

∫ ∞
0

e−izkΨT (z, δ, α) dz

}+

, (69)

where

ψT (z, δ, α) =
ei(z−iδ) lnφXT

(0,−iα)

i(z − iδ)

[
φXT

(
z − iδ − i,−α(z − iδ)

)
−φXT

(
z − iδ,−α(z − iδ)− i

)
−KφXT

(
z − iδ,−α(z − iδ)

)]
,

(70)

and

α =
EQ[S2,T ]

EQ[S2,T ] +K
, k = ln

(
EQ[S2,T ] +K

)
. (71)

The preceding theorem requires the existence of the joint characteristic function of
the log-prices of the two stocks. In our model, we have shown that the characteristic
function φXt

is given by equation (54), and hence the above result can be applied
in approximating European spread option prices and pricing the European exchange
option under our SVJD model.
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We make some remarks on the other quantities that appear in the formula. First, δ

is associated to the exponentially decaying term e−δk that must be multiplied to Ck,αK,0
to produce a square-integrable term in the negative k-axis. A discussion of the choice
of δ can be found in Carr and Madan (1999) and Dempster and Hong (2002). Next,
since the discounted yield process {e−(r−q2)tS2,t} is a martingale under Q, EQ[S2,T ]
represents the forward price today of asset 2 for delivery at time T . In terms of the
characteristic function, the forward price can also be expressed as φXT

(0,−i). The
positive part (·)+ is required since, without it, the formula (as well as the original
Bjerskund and Stensland (2011) result) may produce negative values for deeply out-
of-the-money options. Thus for practical purposes, out-of-the-money exchange options
are assigned a value of 0 (Caldana and Fusai 2013). Note that this consideration is
consistent with equation (37), since if the option is out-of-the-money, then 1A = 0,
which results to CE0 = 0.

Caldana and Fusai (2013) note that this result is an improvement from the Hurd
and Zhou (2010) Fourier inversion formula since the exchange option case (K = 0) can
be handled here without complications. In this regard, the Caldana and Fusai (2013)
formula also gives an exact price for the exchange option through an appropriate choice
of the parameters k and α (which will be discussed next). Furthermore, the integration
in the formula above involves a univariate Fourier inversion in contrast to the bivariate
inversion of Hurd and Zhou (2010), implying that the Caldana and Fusai (2013) result
requires less computation time. However, the result of Caldana and Fusai (2013) is a
lower bound approximation for the spread option price, in contrast to the exact price
derived by Hurd and Zhou (2010). The Hurd and Zhou (2010) formula also does not
depend on the decay parameter δ.

In the following proposition we extend the Caldana and Fusai (2013) result in The-
orem 5.2 to a version that provides a lower bound for the European spread option
price at any time t ∈ [0, T ).

Proposition 5.3. A lower bound for the time t ∈ [0, T ) price of a European spread
option with strike price K is given by

Cα,kK,t =

{
e−r(T−t)−δk

π

∫ ∞
0

e−izkψT |t(z, δ, α) dz

}+

, (72)

where

ψT |t(z, δ, α) =
ei(z−iδ) lnφXT |t(0,−iα)

iz + δ

[
φXT |t

(
z − iδ − i,−α(z − iδ)

)
φXT |t

(
z − iδ,−α(z − iδ)− i

)
−KφXT |t

(
z − iδ,−α(z − iδ)

)]
,

(73)

φXT |t = EQ[eiu1X1,T +iu2X2,T |Ft], α and k are given by

α =
F2(t, T )

F2(t, T ) +K
and k = ln

[
F2(t, T ) +K

]
, (74)

and F2(t, T ) is the time t forward price of asset with for delivery at time T .

Proof. The proof we present follows the outline of Theorem 5.2 in Appendix A of
Caldana and Fusai (2013). Recall that the time t price of the European spread option
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is given by

e−r(T−t)EQ

[
(S1,T − S2,T −K)+

∣∣∣Ft] .
To obtain an approximation for the time t price, we define the event At as

At =

{
S1,T ≥

ekSα2,T
EQ[Sα2,T |Ft]

}
, (75)

where α and k are defined as above. This is similar to the event A defined by Caldana
and Fusai (2013) (see discussion preceding Theorem 5.2), except that the expectation
is conditional on Ft and forward prices are taken at time t. Following the argument
of Bjerskund and Stensland (2011), the quantity

Cα,kK,t = e−r(T−t)EQ

[
(S1,T − S2,T −K)1At

∣∣Ft] (76)

is a lower bound for the true option price at time t.
At this point, we rewrite some of the quantities above in terms of the notation

established before. First, we note that since the discounted yield process {e−(r−q2)tS2,t}
is a Q-martingale, the forward price F2(t, T ) can be expressed as EQ[S2,T |Ft]. In terms
of the conditional characteristic function φXT |t (which, under the SVJD model, is given
by equation (66)), the quantity EQ[Sα2,T |Ft] is given by φXT |t(0,−iα). Furthermore, we
may rewrite the exercise strategy At in terms of log-prices as

At =
{
X1,T − αX2,T + lnφXT |t(0,−iα) > k

}
. (77)

Now, we seek to express Cα,kK (t) as a Fourier inversion formula following the proof
in Caldana and Fusai (2013) (see Appendix A of their paper). To this end, let δ be a
positive number and define ψT |t as

ψT |t(z, δ, α) =

∫ ∞
−∞

eizk+δkEQ

[
(S1,T − S2,T −K)1At

∣∣Ft] dk.

In other words, ψT |t is the Fourier transform of eδkEQ[(S1,T −S2,T −K)1At
|Ft] in the

k-variable. Let g(x1, x2) be the transition density function of the log-price vector XT .
Thus, the ψT |t may be evaluated as the triple integral

ψT |t(z, δ, α) =

∫ ∞
−∞

eizk+δk

[∫ ∞
−∞

∫ ∞
β

(ex1 − ex2 −K) g(x1, x2) dx1 dx2

]
dk,

where β = k+αx2− lnφXT |t(0,−iα). Let β′ = x1−αx2 +lnφXT |t(0,−iα). Then, after
changing the order of integration, we have the following:

ψT |t(z, δ, α) =

∫ ∞
−∞

∫ ∞
−∞

[∫ β′

−∞
eizk+δk dk

]
(ex1 − ex2 −K) g(x1, x2) dx1 dx2
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=

∫ ∞
−∞

∫ ∞
−∞

ei(z−iδ)β
′

iz + δ
(ex1 − ex2 −K) g(x1, x2) dx1 dx2

=
ei(z−iδ) lnφXT |t(0,−iα)

iz + δ

×
∫ ∞
−∞

∫ ∞
−∞

ei(z−iδ)(x1−αx2) (ex1 − ex2 −K) g(x1, x2) dx1 dx2

=
ei(z−iδ) lnφXT |t(0,−iα)

iz + δ[∫ ∞
−∞

∫ ∞
−∞

exp
{
i(z − iδ − i)x1 − iα(z − iδ)x2

}
g(x1, x2) dx1 dx2

−
∫ ∞
−∞

∫ ∞
−∞

exp
{
i(z − iδ)x1 − i(αz − iαδ + i)x2

}
g(x1, x2) dx1 dx2

−K
∫ ∞
−∞

∫ ∞
−∞

exp
{
i(z − iδ)x1 − iα(z − iδ)x2

}
g(x1, x2) dx1 dx2

]

The preceding double integrals may be written in terms of φXT |t, which thus results
to

ψT |t(z, δ, α) =
ei(z−iδ) lnφXT |t(0,−iα)

iz + δ

[
φXT |t

(
z − iδ − i,−α(z − iδ)

)
φXT |t

(
z − iδ,−α(z − iδ)− i

)
−KφXT |t

(
z − iδ,−α(z − iδ)

)]
We then invert the Fourier transform to obtain

eδkEQ[(S1,T − S2,T −K)1At
|Ft] =

1

π

∫ ∞
0

e−izkψT |t(z, δ, α) dz.

It follows therefore that

Cα,kK (t) =

{
e−r(T−t)−δk

π

∫ ∞
0

e−izkψT |t(z, δ, α) dz

}+

.

We require the positive part in the preceding formula to avoid negative prices for
deeply-out-of-money options (Caldana and Fusai 2013). As in Bjerskund and Stensland
(2011) and Caldana and Fusai (2013) α and k may be chosen as

α =
F2(t, T )

F2(t, T ) +K
and k = ln

[
F2(t, T ) +K

]
.

Remark 7. Theorem 5.2 follows naturally by setting t = 0.

We recall the approximate strategy At introduced in the proof of Proposition 5.3.
If we set K = 0 (as is the case for the exchange option) in the expressions for α
and k, we obtain α = 1 and k = lnF2(t, T ). Since F2(t, T ) = EQ[S2,T |Ft], setting
K = 0 causes At to coincide with the true exercise strategy B = {S1,T ≥ S2,T } for
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the European exchange option. Thus, similar to the findings of Caldana and Fusai

(2013), Cα,kK,t (or Cα,kK,0 in Theorem 5.2) is exact for the European exchange option. The
following corollary provides the time t price of the European exchange option.

Corollary 5.4. The time t price of the European exchange option is given by

CEt =

{
e−r(T−t)−δk

π

∫ ∞
0

e−izkψT |t(z, δ, 1) dz

}+

, (78)

where

ψT |t(z, δ, 1) =
ei(z−iδ)k

iz + δ

[
φXT |t (z − iδ − i,−z + iδ)− φXT |t (z − iδ,−z + iδ − i)

]
.

In the analysis that follows, we focus on the price of the European exchange option
at time 0. Suppose the exchange option is not deeply out-of-the-money (i.e. CE0 ≥ 0).
Then the following proposition expresses the Caldana and Fusai (2013) result into a
form that is consistent with what we obtained in equation (47) from the change-of-
numéraire technique.

Proposition 5.5. The time 0 price of the European exchange option is given by

CE0 = S1,0e
−q1T

∫ ∞
0

1

π(iz + δ)
φ

(1)
XT

(iz + δ,−iz − δ) dz

− S2,0e
−q2T

∫ ∞
0

1

π(iz + δ)
φ

(2)
XT

(iz + δ,−iz − δ) dz.

(79)

where φ
(1)
XT

and φ
(2)
XT

denote the joint characteristic function of XT = (X1,T , X2,T )>

under Q̂1 and Q̂2 (defined in Section 5.1), respectively.

Proof. Since we assume that the option price is nonnegative, we may remove the
positive part in equation (78) (with t = 0) and write

CE0 = e−rT
∫ ∞

0

e−(iz+δ)k

π
ψT (z, δ, 1) dz.

Substituting the expression for ψT , we have

CE0 = e−rT

{∫ ∞
0

e−(iz+δ)k+(iz+δ)k

π(iz + δ)
φXT

(z − iδ − i,−z + iδ) dz

−
∫ ∞

0

e−(iz+δ)k+(iz+δ)k

π(iz + δ)
φXT

(z − iδ,−z + iδ − i) dz

}
.

We also note that

φXT
(z − iδ − i,−z + iδ) = EQ

[
S1,T exp

{
(iz + δ)X1,T + (−iz − δ)X2,T

}]
φXT

(z − iδ,−z + iδ − i) = EQ

[
S2,T exp

{
(iz + δ)X1,T + (−iz − δ)X2,T

}]
.
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But note that for i = 1, 2, the terminal stock prices can be written as Si,T =

Si,0e
(r−qi)TUi,T , where Ui,T is defined as in equation (39). We can thus write

φXT
(z − iδ − i,−z + iδ) = S1,0e

(r−q1)TEQ

[
U1,T exp

{
(iz + δ)X1,T + (−iz − δ)X2,T

}]
φXT

(z − iδ,−z + iδ − i) = S2,0e
(r−q2)TEQ

[
U2,T exp

{
(iz + δ)X1,T + (−iz − δ)X2,T

}]
.

Using these expressions for φXT
, the European exchange option price is therefore given

by

CE0 = S1,0e
−q1T

∫ ∞
0

1

π(iz + δ)
EQ

[
U1,T exp

{
(iz + δ)X1,T + (−iz − δ)X2,T

}]
dz

− S2,0e
−q2T

∫ ∞
0

1

π(iz + δ)
EQ

[
U2,T exp

{
(iz + δ)X1,T + (−iz − δ)X2,T

}]
dz.

Recall from Section 5.1 that U1,T and U2,T are Radon-Nikodým derivatives that define

new probability measures Q̂1 and Q̂2 equivalent to Q. Therefore, the expectations that
appear above define joint characteristic functions of the log-prices under these new
probability measures. The desired result thus follows from replacing the expectations

with φ
(1)
XT

and φ
(2)
XT

, the characteristic function of XT = (X1,T , X2,T )> under Q̂1 and

Q̂2 respectively.

Remark 8. Under the SVJD specification, the joint characteristic functions φ
(1)
XT

and

φ
(2)
XT

have forms similar to φXT
as provided in equation (54), with some slight changes

in the values of the parameters due to the change of measure. Properties of log-
prices after the change of measure follow from the discussion in Section 5.1, under the

assumption that ρw = ρz = 0 in addition to Assumption 2.1. As such, φ
(1)
XT

and φ
(2)
XT

may be determined in a manner similar to the calculations presented in the first part
of this section.

The above calculations therefore show that the Caldana and Fusai (2013) result,
when applied to European exchange options, allows for a decomposition similar to
equation (47), which was obtained via the change-of-numéraire technique. This there-

fore presents the possibility that the probabilities Q̂1(A0) and Q̂2(A0) (the probability

of the option being in-the-money under the alternative measures Q̂1 and Q̂2) may be
computed using Fourier inversion in equation (79).

The same analysis can be applied to produce a similar representation for the time
t price of the European exchange option, as shown in the next proposition.

Proposition 5.6. The time t European exchange option price is given by

CEt = S1,te
−q1(T−t)

∫ ∞
0

1

π(iz + δ)
φ

(1)
XT |t(iz + δ,−iz − δ) dz

S2,T e
−q2(T−t)

∫ ∞
0

1

π(iz + δ)
φ

(2)
XT |t(iz + δ,−iz − δ) dz,

(80)
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where

φ
(i)
XT |t(u1, u2) = EQ̂i

[
eiu1X1,T +iu2X2,T

∣∣∣Ft] , i = 1, 2

gives the joint conditional characteristic function of XT = (X1,T , X2,T )> under Q̂i,

and Q̂1 and Q̂2 are the probability measures equivalent to Q discussed in Section 5.1.

Proof. The proof of this proposition is similar to that of Proposition 5.5, except that
the expectations involved are replaced by their conditional counterparts (see Corollary
5.4).

Because of the equivalence between equations (50) and (80), it follows that equation
(80) characterizes a solution to the IPDE in Proposition 4.2 with terminal condition
CET = (S1,T − S2,T )+.

In summary, the European exchange option price under the SVJD model may be
represented by equation (47), which is a formula that resembles the original Margrabe
(1978) result under the Black-Scholes framework. It is also notable that our results in
equations (47) and (79) do not contain the risk-free rate r, similar to the Margrabe
(1978) formula. Due to the addition of stochastic volatilities, a closed formula for
the probabilities in equation (47) cannot be obtained. However, by making additional
assumptions on the correlation structure of the Wiener processes involved, we were
able to obtain equation (79), a Fourier inversion formula for the European exchange
option price (following the work of Caldana and Fusai (2013) and Cane and Olivares
(2014)). Lastly, by extending the analysis of Caldana and Fusai (2013) to obtain time-t
option prices, we were able to obtain a solution CEt of IPDE (4.2), for the case of the
European exchange option, in terms of Fourier inversion formulas.

6. A Representation of the American Exchange Option Price

In this section, we show that the price of the American exchange option, under our
SVJD model for underlying stock prices, can be decomposed into a sum of the Eu-
ropean exchange option price and the early exercise premium. As will be shown, the
early exercise premium can be decomposed into a premium arising from the diffusion
part of the asset dynamics and premia arising from the possibility of sudden jumps
in the asset prices. For expositional convenience, we proceed first with the discussion
then consolidate our main result in Proposition 6.1.

Note that equation (35) also applies to the discounted American exchange option
price C̃At . In terms of the partial differential operator L, C̃At = e−rtCAt satisfies the
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stochastic differential equation

dC̃At = e−rt

{
L[CAt−]− rCAt + λ̃1EY1

Q

[
CAt

(
S1,t−e

Y1 , S2,t−, v1,t, v2,t

)
− CAt−

]

+λ̃2EY2

Q

[
CAt

(
S1,t, S2,te

Y2 , v1,t, v2,t

)
− CAt−

]}
dt

+ e−rt
2∑
i=1

√
vi,tSi,t−

∂CAt−
∂si

dW̃i,t + e−rt
2∑
i=1

σi
√
vi,t

∂CAt−
∂vi

dZ̃i,t

+ e−rt
∫
R

[
Ct
(
S1,t−e

y1 , S2,t−, v1,t, v2,t

)
− CAt−

]
q(dy1,dt)

+ e−rt
∫
R

[
Ct
(
S1,t−, S2,t−e

y2 , v1,t, v2,t

)
− CAt−

]
q(dy2,dt),

(81)

where CAt− = CAt (S1,t−, S2,t−, v1,t, v2,t) represents the pre-jump price of the American
exchange option at time t. In integral form, we have

C̃AT = C̃At +

∫ T

t
e−ru

{
L[CAu−]− rCAu + λ̃1EY1

Q

[
CAu

(
S1,u−e

Y1 , S2,u−, v1,u, v2,u

)
− CAu−

]

+λ̃2EY2

Q

[
CAu

(
S1,u, S2,ue

Y2 , v1,u, v2,u

)
− CAu−

]}
du

+

∫ T

t
e−ru

2∑
i=1

√
vi,uSi,u−

∂CAu−
∂si

dW̃i,u +

∫ T

t
e−ru

2∑
i=1

σi
√
vi,u

∂CAu−
∂vi

dZ̃i,u

+

∫ T

t
e−ru

∫
R

[
Cu
(
S1,u−e

y1 , S2,u−, v1,u, v2,u

)
− CAu−

]
q(dy1,du)

+

∫ T

t
e−ru

∫
R

[
Cu
(
S1,u−, S2,u−e

y2 , v1,u, v2,u

)
− CAu−

]
q(dy2,du).

A division by e−rt produces the equation

CA
T

er(T−t)
= CA

t +

∫ T

t
e−r(u−t)

{
L[CA

u−]− rCA
u + λ̃1EY1

Q

[
CA

u

(
S1,u−e

Y1 , S2,u−, v1,u, v2,u
)
− CA

u−

]

+λ̃2EY2
Q

[
CA

u

(
S1,u, S2,ue

Y2 , v1,u, v2,u
)
− CA

u−

]}
du

+

∫ T

t
e−r(u−t)

2∑
i=1

√
vi,uSi,u−

∂CA
u−

∂si
dW̃i,u +

∫ T

t
e−r(u−t)

2∑
i=1

σi
√
vi,u

∂CA
u−

∂vi
dZ̃i,u

+

∫ T

t
e−r(u−t)

∫
R

[
Cu
(
S1,u−e

y1 , S2,u−, v1,u, v2,u
)
− CA

u−

]
q(dy1, du)

+

∫ T

t
e−r(u−t)

∫
R

[
Cu
(
S1,u−, S2,u−e

y2 , v1,u, v2,u
)
− CA

u−

]
q(dy2, du).
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To further simplify notation, define the operator L̄ as

L̄[CAu−] = L[CAu−]− rCAu− + λ̃1EY1

Q

[
CAu

(
S1,u−e

Y1 , S2,u−, v1,u, v2,u

)
− CAu−

]
+ λ̃2EY2

Q

[
CAu

(
S1,u−, S2,u−e

Y2 , v1,u, v2,u

)
− CAu−

]
,

(82)

so the equation above becomes

CAT
er(T−t)

= CAt +

∫ T

t
e−r(u−t)L̄[CAu−] du

+

∫ T

t
e−r(u−t)

2∑
i=1

√
vi,uSi,u−

∂CAu−
∂si

dW̃i,u +

∫ T

t
e−r(u−t)

2∑
i=1

σi
√
vi,u

∂CAu−
∂vi

dZ̃i,u

+

∫ T

t
e−r(u−t)

∫
R

[
Cu
(
S1,u−e

y1 , S2,u−, v1,u, v2,u

)
− CAu−

]
q(dy1, du)

+

∫ T

t
e−r(u−t)

∫
R

[
Cu
(
S1,u−, S2,u−e

y2 , v1,u, v2,u

)
− CAu−

]
q(dy2, du).

As remarked below equation (35), terms involving the Q-Wiener processes and the
Q-compensated counting measures are martingales with zero mean under Q. Hence,
taking the conditional expectation of the above equation under Q with respect to Ft,
we obtain

EQ

[
e−r(T−t)CAT

∣∣∣Ft] = CAt + EQ

∫ T

t
e−r(u−t)L̄[CAu−] du

∣∣∣∣∣Ft
 . (83)

Since the terminal price for both the European and American exchange options are
the same, we have the relation

EQ

[
e−r(T−t)CAT

∣∣∣Ft] = EQ

[
e−r(T−t)(S1,T − S2,T )+

∣∣∣Ft] = CEt ,

and so therefore we have

CAt = CEt − EQ

∫ T

t
e−r(u−t)L̄[CAu−] du

∣∣∣∣∣Ft
 . (84)

At this point, we introduce the early exercise region for American exchange options.
Consolidating the findings of Broadie and Detemple (1997), Touzi (1999), and Cheang
and Chiarella (2011), we define the early exercise region (or stopping region) at time
t for the American exchange option to be given by

S =
{(
S1,t, S2,t

)
∈ R2

+ : S1,t ≥ B(v1,t, v2,t, t)S2,t

}
, (85)
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Figure 1. The early exercise boundary and the continuation and stopping regions for the American exchange

option, adapted from Broadie and Detemple (1997); Cheang and Chiarella (2011). In the SVJD case, the slope
B(t) (shorthand for B(v1,t, v2,t, t)) of the early exercise boundary is also dependent on v1,t and v2,t (Touzi

1999).

where the line

s1,t = B(v1,t, v2,t, t)S2,t (86)

on the s1s2-plane is called the early exercise boundary. The continuation region C,
given by

C =
{(
S1,t, S2,t

)
∈ R2

+ : S1,t < B(v1,t, v2,t, t)S2,t

}
, (87)

is complement of S in the first quadrant of the s1s2-plane (see Figure 1).2 Note that
B(v1,t, v2,t, t) (which is greater than or equal to 1) represents the critical price ratio
of stocks 1 and 2 above which it is optimal to exercise the option. If at time t the
stock prices are in S, then it is optimal to exercise the American exchange option. If
the stock prices are in C at time t, then the option should not be exercised and the
investor should “continue” to wait until it is optimal.

In the stopping region S, the discounted American exchange option price is a strict
supermartingale (Broadie and Detemple 1997; Cheang and Chiarella 2011), hence from

2Optimal stopping arguments (see for example Myneni 1992, in the case of the single-asset American put

option) lead to a definition of the stopping and continuation regions in terms of the option price and its payoff.

In the case of the American exchange option (Broadie and Detemple 1997), the stopping region is given by

S =
{(
S1,t, S2,t

)
∈ R2

+ : CA
t (S1,t, S2,t, v1,t, v2,t) = (S1,t − S2,t)

+
}
.

Analogously, the continuation region is defined as

C =
{(
S1,t, S2,t

)
∈ R2

+ : CA
t (S1,t, S2,t, v1,t, v2,t) > (S1,t − S2,t)

+
}
.
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equation (83) it should hold that

L̄[CAt−] < 0, if (S1,t−, S2,t−) ∈ S. (88)

In the continuation region C, it is suboptimal to exercise the American option (i.e. the
American option behaves like the European option), and so the discounted American
option price is a martingale. This implies that

L̄[CAt−] = 0, if (S1,t−, S2,t−) ∈ C. (89)

From the last analysis above, it follows that the American exchange option price is
the solution to the IPDE

rCAt− = L[CAt−] + λ̃1EY1

Q

[
CAt

(
S1,t−e

Y1 , S2,t−, v1,t, v2,t

)
− CAt−

]
+ λ̃2EY2

Q

[
CAt

(
S1,t−, S2,t−e

Y2 , v1,t, v2,t

)
− CAt−

]
,

(90)

where 0 < S1,t < B(v1,t, v2,t, t)S2,t, S2,t > 0, v1,t > 0, v2,t > 0, and 0 ≤ t < T (i.e. the
continuation region C). Terminal and boundary conditions for the IPDE are given by

CAT (S1,T , S2,T , v1,T , v2,T ) = (S1,T − S2,T )+

CAt (0, S2,t, v1,t, v2,t) = 0, S2,t > 0

CAt (S1,t, 0, v1,t, v2,t) = S1,t, S1,t > 0.

(91)

The IPDE is also supplemented by the value-matching condition

CAt = S1,t − S2,t, for S1,t ≥ B(v1,t, v2,t, t)S2,t and S2,t > 0 (92)

that gives the price of the option once stock prices enter the stopping region S
(Cheang and Chiarella 2011; Chiarella, Kang, and Meyer 2015). In addition to the
value-matching condition, we also require additional conditions on the behavior of the
American exchange option price along the early exercise boundary. These additional
conditions are known as smooth-pasting conditions:

lim
s1→B(v1,v2,t)s2

∂CAt
∂s1

(s1, s2, v1, v2) = 1

lim
s1→B(v1,v2,t)s2

∂CAt
∂s2

(s1, s2, v1, v2) = −1

lim
s1→B(v1,v2,t)s2

∂CAt
∂v1

(s1, s2, v1, v2) = 0

lim
s1→B(v1,v2,t)s2

∂CAt
∂v2

(s1, s2, v1, v2) = 0

lim
s1→B(v1,v2,t)s2

∂CAt
∂t

(s1, s2, v1, v2) = 0.

(93)

The smooth-pasting conditions result from the assumption that the holder of the
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American exchange option will maximize its value by selecting the appropriate exercise
strategy. Consequently, the smooth-pasting conditions also ensure that the first-order
partial derivatives of CAt with respect to stock prices and volatility will be continuous
for any value of S1 and S2 (Chiarella, Kang, and Meyer 2015).

Remark 9. The American exchange option pricing problem can be formulated as a
linear complementarity problem based on the preceding arguments. Since the stock
price ordered pair (S1,t−, S2,t−) is always either in the stopping or continuation region,
it follows that

min

{
−L̄

[
CAt−

]
, CAt− − (S1,t− − S2,t−)

}
= 0 (94)

for any S1,t− > 0, S2,t− > 0, and 0 < t ≤ T . This equation is supplemented by the
inequalities

L̄[CAt−] ≤ 0 (95)

CAt− ≥ S1,t− − S2,t−, (96)

both of which are true for any S1,t− > 0, S2,t− > 0, and 0 < t ≤ T , and the terminal
payoff condition

CAT = S1,T − S2,T . (97)

Note that this formulation does not contain the early exercise boundary, which may be
useful in implementing numerical methods to find the solution to the pricing problem
(Seydel 2017). Similar to what was noted in Chiarella, Kang, and Meyer (2015, Chapter
7), the early exercise boundary may be found after finding the solution as the boundary
of the set {

S1,t, S2,t, v1,t, v2,t : CAt (S1,t, S2,t, v1,t, v2,t) > S1,t − S2,t

}
.

To proceed with equation (84), we decompose the conditional expectation into in-
tegrals over the stopping and continuation regions. If At denotes the event that the
stock prices at time t are in S, then

CAt = CEt −
∫ T

t
e−r(u−t)EQ

[
L̄[CAu−]1Au

+ L̄[CAu−]1Ac
u

∣∣∣Ft]du

= CEt −
∫ T

t
e−r(u−t)EQ

[
L̄[CAu−]1Au

∣∣∣Ft]du

Suppose (S1,t−, S2,t−) ∈ S (i.e. the event At holds). It follows from the value-matching
condition that

CAt− = CAt (S1,t−, S2,t−, v1,t, v2,t) = S1,t− − S2,t−,

and so

∂CAt−
∂s1

= 1,
∂CAt−
∂s1

= −1,
∂CAt−
∂t

=
∂CAt−
∂v1

=
∂CAt−
∂v2

= 0
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for (S1,t−, S2,t−) ∈ S. Consequently, all second-order partial derivatives appearing in
L̄[CAt−] vanish in the stopping region. This implies that

L̄[CAu−]1Au
= L[CAu−]1Au

− rCAu−1Au

+ λ̃1EY1

Q

[
CAu

(
S1,u−e

Y1 , S2,u−, v1,u, v2,u

)
− CAu−

]
1Au

+ λ̃2EY2

Q

[
CAu

(
S1,u−, S2,u−e

Y2 , v1,u, v2,u

)
− CAu−

]
1Au

=
[
(r − q1 − λ̃1κ̃1)S1,u−(1) + (r − q2 − λ̃2κ̃2)S2,u−(−1)

]
1Au

− r
(
S1,u− − S2,u−

)
1Au

+ λ̃1EY1

Q

[
CAu

(
S1,u−e

Y1 , S2,u−, v1,u, v2,u

)
− (S1,u− − S2,u−)

]
1Au

+ λ̃2EY2

Q

[
CAu

(
S1,u−, S2,u−e

Y2 , v1,u, v2,u

)
− (S1,u− − S2,u−)

]
1Au

.

Recalling that κ̃i = EYi

Q (eYi − 1), the last expression simplifies to

L̄[CAu−]1Au
= −

[
q1S1,u− − q2S2,u−

]
1Au

+ λ̃1EY1

Q

[
CAu

(
S1,u−e

Y1 , S2,u−, v1,u, v2,u

)
−
(
S1,u−e

Y1 − S2,u−

)]
1Au

+ λ̃2EY2

Q

[
CAu

(
S1,u−, S2,u−e

Y2 , v1,u, v2,u

)
−
(
S1,u− − S2,u−e

Y2

)]
1Au

It follows that the American exchange option price is given by

CA
t = CE

t +

∫ T

t
e−r(u−t)EQ

[(
q1S1,u− − q2S2,u−

)
1Au

∣∣∣Ft

]
du

−
∫ T

t
e−r(u−t)EQ

 λ̃1EY1
Q

[
CA

u

(
S1,u−e

Y1 , S2,u−, v1,u, v2,u
)
−
(
S1,u−e

Y1 − S2,u−
)]

1Au

∣∣∣∣∣Ft

du

−
∫ T

t
e−r(u−t)EQ

 λ̃2EY2
Q

[
CA

u

(
S1,u−, S2,u−e

Y2 , v1,u, v2,u
)
−
(
S1,u− − S2,u−e

Y2

)]
1Au

∣∣∣∣∣Ft

du

(98)

Note that the discounted price of the American exchange option C̃At is the Snell
envelope (the smallest supermartingale majorant) of the discounted intrinsic value
e−rt(S1,t − S2,t)

+, following the optimal stopping arguments for American options
(Karatzas 1988; Myneni 1992; Cheang and Chiarella 2011). Therefore, the discounted
American exchange option price is always greater than or equal to e−rt(S1,t − S2,t),
with equality occurring only in the stopping region. In this light, we note that

CAu

(
S1,u−e

Y1 , S2,u−, v1,u, v2,u

)
−
(
S1,u−e

Y1 − S2,u−

)
= 0

if S1,u−e
Y1 ≥ B(v1,u, v2,u, u)S2,u− (i.e. when (S1,u−e

Y1 , S2,u−) ∈ S) and

CAu

(
S1,u−e

Y1 , S2,u−, v1,u, v2,u

)
−
(
S1,u−e

Y1 − S2,u−

)
> 0
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when S1,u−e
Y1 < B(v1,u, v2,u, u)S2,u− (i.e. when (S1,u−e

Y1 , S2,u−) ∈ C). In the same
manner,

CAu

(
S1,u−, S2,u−e

Y2 , v1,u, v2,u

)
−
(
S1,u− − S2,u−e

Y2

)
= 0

when S1,u− ≥ B(v1,u, v2,u, u)S2,u−e
Y2 (i.e. when (S1,u−, S2,u−e

Y2) ∈ S) and

CAu

(
S1,u−, S2,u−e

Y2 , v1,u, v2,u

)
−
(
S1,u− − S2,u−e

Y2

)
> 0

when S1,u− < B(v1,u, v2,u, u)S2,u−e
Y2 (i.e. when (S1,u−, S2,u−e

Y2) ∈ C). In line with
these observations, define the events A1,u and A2,u as

A1,u = Au ∩
{
S1,u−e

Y1 < B(v1,u, v2,u, u)S2,u−

}
=

{
Bu ≤

S1,u−
S2,u−

< Bue
−Y1

}

A2,u = Au ∩
{
S1,u− < B(v1,u, v2,u, u)S2,u−e

Y2

}
=

{
Bu ≤

S1,u−
S2,u−

< Bue
Y2

}
,

where Bu is shorthand for B(v1,u, v2,u, u). Following the arguments made above, the
American exchange option price is therefore given by

CA
t = CE

t +

∫ T

t
e−r(u−t)EQ

[(
q1S1,u− − q2S2,u−

)
1Au

∣∣∣Ft

]
du

−
∫ T

t
e−r(u−t)EQ

 λ̃1EY1
Q

[
CA

u

(
S1,u−e

Y1 , S2,u−, v1,u, v2,u
)
−
(
S1,u−e

Y1 − S2,u−
)]

1A1,u

∣∣∣∣∣Ft

du

−
∫ T

t
e−r(u−t)EQ

 λ̃2EY2
Q

[
CA

u

(
S1,u−, S2,u−e

Y2 , v1,u, v2,u
)
−
(
S1,u− − S2,u−e

Y2

)]
1A2,u

∣∣∣∣∣Ft

du

We summarize the results of the preceding calculations in the following proposition.

Proposition 6.1. The price of the American exchange option admits the representa-
tion

CAt (S1,t, S2,t, v1,t, v2,t) = CEt (S1,t, S2,t, v1,t, v2,t) + CPt (S1,t, S2,t, v1,t, v2,t), (99)

where CEt is the price of the corresponding European exchange option and CPt is the
early exercise premium of the American exchange option. The early exercise premium
is given by

CP
t =

∫ T

t
e−r(u−t)EQ

[(
q1S1,u− − q2S2,u−

)
1Au

∣∣∣Ft

]
du

−
∫ T

t
e−r(u−t)EQ

 λ̃1EY1
Q

[
CA

u

(
S1,u−e

Y1 , S2,u−, v1,u, v2,u
)
−
(
S1,u−e

Y1 − S2,u−
)]

1A1,u

∣∣∣∣∣Ft

du

−
∫ T

t
e−r(u−t)EQ

 λ̃2EY2
Q

[
CA

u

(
S1,u−, S2,u−e

Y2 , v1,u, v2,u
)
−
(
S1,u− − S2,u−e

Y2

)]
1A2,u

∣∣∣∣∣Ft

du,

(100)
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where the events Au, A1,u, and A2,u are defined as

Au =
{

(S1,u−, S2,u−) ∈ S
}

= {S1,u− ≥ BuS2,u−} (101)

A1,u = Au ∩
{
S1,u−e

Y1 < B(v1,u, v2,u, u)S2,u−

}
=

{
Bu ≤

S1,u−
S2,u−

< Bue
−Y1

}
(102)

A2,u = Au ∩
{
S1,u− < B(v1,u, v2,u, u)S2,u−e

Y2

}
=

{
Bu ≤

S1,u−
S2,u−

< Bue
Y2

}
. (103)

Here, Bu = B(v1,u, v2,u, u) is the early exercise boundary at time u.

Remark 10. The Fourier inversion formulas we obtained for CEt in equations (78)
and (80) may be used as an input in equation (99).

The event Ai,u, i = 1, 2, represents the event that the pre-jump stock prices S1,u−
and S2,u− were in the stopping/early exercise region, but due to a jump in stock i
at time u, the post-jump stock prices were sent back to the continuation region. This
interpretation is analogous to that offered in Pham (1997) for the single-asset jump-
diffusion case and Cheang and Chiarella (2011) for the case of exchange options under
jump-diffusion dynamics.

The decomposition offered in the previous proposition is also similar to that in
Cheang and Chiarella (2011). We also note that the early exercise premium can also
be decomposed into a premium arising from the diffusion of the dynamics (the positive
term) and rebalancing costs arising from the possibility that stock prices suddenly
jump back into the continuation region (the negative terms), as was emphasized by
Gukhal (2001) and Cheang and Chiarella (2011). In these computations, we note that
the exercise boundary, and consequently the events defined with respect to the exercise
boundary, are all dependent on the volatility levels.

From the value-matching condition, we note that

CAt (BtS2,t, S2,t, v1,t, v2,t) = S2,t (Bt − 1) (104)

when the stock prices are on the early exercise boundary (i.e. when S1,t = BtS2,t).
From the earlier proposition, we may therefore express the early exercise boundary
Bt = B(v1,t, v2,t, t) as a solution to the equation

S2,t(Bt − 1) = CEt (BtS2,t, S2,t, v1,t, v2,t) + CPt (BtS2,t, S2,t, v1,t, v2,t). (105)

Note however that this equation must solved as a linked system in conjunction with
equation (99), since the equation for the early exercise boundary involves the (yet
unknown) American exchange option price CAt .

7. Summary and Conclusions

In this paper, we have provided an extension to the results of Margrabe (1978) and
Cheang and Chiarella (2011) to consider the case where, aside from the presence
of jumps, asset prices are also driven by a stochastic volatility process. To facili-
tate changes of measure from the objective probability measure to other equivalent
measures, we introduced a Radon-Nikodým derivative process, which requires some
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assumptions on the parameters of the volatility processes. From the construction of
the Radon-Nikodým derivative, it was noted that equivalent martingale measures are
not unique, which therefore can lead to multiple plausible option prices.

Representations for European exchange option prices were derived using two meth-
ods. The first method employs the change-of-numéraire technique to obtain a repre-
sentation that is similar to the classical Margrabe (1978). Alternatively, we considered
additional assumptions on the model’s correlation structure to allow an explicit form
of the joint-characteristic function of the log-prices of the stocks. This, in turn, enabled
us to represent European exchange option prices using in terms of this characteristic
function using the results of Caldana and Fusai (2013). We were able to show that the
European exchange option price obtained via the Caldana and Fusai (2013) method
can also be written in a form that is consistent with the characterization obtained via
the change-of-numéraire procedure.

Finally, we demonstrated that the American exchange option price can also be rep-
resented as the sum of the price of the corresponding European exchange option price
and an early exercise premium, similar to the findings of Broadie and Detemple (1997),
Gukhal (2001), and Cheang and Chiarella (2011) in the case of jump-diffusion dynam-
ics. We were also able to show that the early exercise premium can be decomposed
into a premium on the diffusive component of asset prices and a premium owing to
the possibility of jumps back into the continuation region right before exercise.

The use of a stochastic volatility jump-diffusion model for asset prices indeed allows
for a more accurate characterization of asset prices but presents some complications
in obtaining option prices. By making some minor additional assumptions on the cor-
relation structure of the market model, we were able to obtain a representation of the
European exchange option price in terms of Fourier inversion formulas. The represen-
tations we obtained may be numerically evaluated via Monte Carlo simulation or fast
Fourier transform methods (see Hurd and Zhou 2010; Caldana and Fusai 2013; Cane
and Olivares 2014, for example). Meanwhile, extensions to the numerical methods pro-
posed by Chiarella et al. (2009) and Chiarella and Ziveyi (2011) may be considered in
providing a numerical solution for the American exchange option pricing problem. The
efficacy of these methods in implementing our exchange option price representations
is a topic for further research.
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Alfeus, Mesias, and Erik Schlögl. 2018. “On Numerical Methods for Spread Options.” Quan-
titative Finance Research Center Research Paper 388 .
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Appendix A. On the Martingale Property of the Stochastic Exponential

Here, we show that the process {Mi,t} defined by equation (13) is a martingale under
P. We first note that

EP

exp

−λiκit+

Ni,t∑
n=1

Yi,n


 = e−λiκitEP

exp


Ni,t∑
n=1

Yi,n




= e−λiκit · exp

{
λit
(
EP(eYi)− 1

)}
= e−λiκiteλiκit = 1.

Next we examine if the process

Et = exp

{
−1

2

∫ t

0
vi,s ds+

∫ t

0

√
vi,s dWi,s

}

is a P-martingale. From Kuo (2006) Theorem 8.7.3 and Wong and Heyde (2004) The-
orem 1, Et is a martingale if and only if EP(Et) = 1 for all t ∈ [0, T ]. Kuo (2006) notes
that this condition is generally difficult to verify, but the stronger Novikov’s condition,
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EP[exp{1
2

∫ T
0 vi,t dt}] <∞, may be used instead.3

Following Proposition 2.1 of Andersen and Piterbarg (2007), the process {vi,t} sat-
isfying the conditions in Assumption 2.1 does not hit 0 and does not explode in in
finite time (see also Lewis 2000, Chapter 9). Hence, 0 < vi,t <∞ almost surely for all

t ∈ [0, T ], and so
∫ T

0 vi,t dt < ∞ almost surely. Thus, Novikov’s condition is satisfied,
allowing us to conclude that Et is a martingale and that EP(Et) = 1.

3As Novikov’s condition is stronger as pointed out by Kuo (2006), weaker alternative conditions for the

martingale property are discussed in Wong and Heyde (2004).
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