
 

 

 1 
1. Introduction 2 
 3 

The construction industry is increasingly emphasising 4 
sustainability, and accordingly interest has increased 5 
sharply in recent years in developing environmentally 6 
friendly “Green Concrete” (Omran et al. 2014). Coal-7 
fuelled power generation produces fly-ash as a primary 8 
waste material. Additionally, the waste product known as 9 
slag from steel and iron industries is widely available. 10 
Disposal of fly ash has proven to be costly and 11 
environmentally threating, whereas siliceous fly ash can 12 
be a valuable additive to concrete, resulting in green 13 
concretes with enhanced mechanical properties (Golewski 14 
2018).  In light of this, Supplementary Cementitious 15 
Materials (SCMs) are increasingly employed in concrete 16 
mixtures to enhance the properties of plastic and hardened 17 
concrete, typically by pozzolanic reaction. Examples of 18 
such materials include fly ashes, Ground Granulated Blast 19 
Furnace Slag (GGBFS), and silica fume (Far & Far 2018).  20 
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 27 
Adding these constituents to concrete mixtures 28 

enhances their mechanical and material properties by 29 
increasing strength, workability, resistance to fire and 30 
chemical attack and reducing permeability. In addition, 31 
using SCMs reduces cost, since these materials are 32 
recycled materials and by-products of other industrial 33 
processes (Duxson et al. 2007). Concretes incorporating 34 
Supplementary Cementitious Materials are referred to in 35 
the literature as Geopolymers (Davidovits 1991). Utilising 36 
SCMs correspondingly reduces the energy requirement of 37 
manufacturing cement and concrete, thus incurring further 38 
cost savings. Moreover, Supplementary Cementitious 39 
Materials are typically industrial waste materials which, if 40 
not utilised, would end up in landfills or man-made ponds 41 
where their contents are liable to leach into surface and 42 
ground water, causing extensive pollution and health 43 
hazards. 44 

Geopolymer Concrete (GPC) has been found to have 45 
higher compressive strength than comparable concretes 46 
utilising ordinary Portland cement (Deb et al. 2015; Far & 47 
Flint 2017). Highlighting these enhanced properties, the 48 
phrase "High Performance Concrete" (HPC) has emerged 49 
as synonym for GPC in the construction sector. 50 
Geopolymer-based high performance and ultra-high 51 
performance concretes are accordingly considered some 52 
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of the most promising materials for concrete construction  1 
(Abellán-García 2022). In addition to the Portland cement, 2 
fine and coarse aggregates, and water that make up 3 
traditional concrete, additional cementitious elements 4 
including fly ash and Ground Granulated Blast Furnace 5 
Slag (GGBFS) as well as chemical admixtures like 6 
superplasticiser are required for the production of 7 
Geopolymer and High Performance concretes; thus 8 
modelling the behaviour of these types concrete is a 9 
challenging endeavour due to the materials’ extreme 10 
complexity (Yeh 1998).  11 

Concrete mix design is a complex and important 12 
subject that necessitates expert knowledge of the 13 
consistent materials and challenges related to their use. 14 
Constructing a useful end-product, a building or bridge for 15 
example, is contingent on availability of concrete with the 16 
necessary strength and other utility qualities. Concrete 17 
hardening and hydration are irreversible processes. 18 
Therefore, any mistakes in the concrete mix design are 19 
quite expensive for the investor, both during construction 20 
and after the structure has been used due to reduced 21 
durability (Saleh et al. 2018; Tabatabaiefar 2016; 22 
Ziolkowski et al. 2019). 23 

Facing these challenges, Artificial Intelligence (AI) is 24 
increasingly utilised in concrete research as a 25 
complementary approach, and is providing new 26 
perspectives and useful solutions for accelerating 27 
innovations in the design and development of 28 
cementitious materials. The intrinsic complexity of 29 
concrete mixtures and their attributes can be taken into 30 
account by (AI) by utilising current datasets with data-31 
driven models, which can automatically learn implicit 32 
patterns. An experiment series employing a particular 33 
material is used to train a neural network, which is the 34 
fundamental approach to creating a brain-based model for 35 
material behaviour. The trained neural network will have 36 
enough knowledge of the material's behaviour to qualify 37 
as a material model if the experimental findings contain 38 
the pertinent information about the material's behaviour. 39 
Such a trained neural network should be able to 40 
approximate the outcomes of other trials in addition to 41 
being able to replicate the experimental findings it was 42 
trained on (Ghaboussi et al. 1991). 43 

Machine learning and Artificial Neural Networks 44 
(ANN) have been employed in numerous studies to 45 
determine and predict the mechanical properties of 46 
concrete. Yeh (1998) prepared several batches of high 47 
performance concrete which showed satisfactory 48 
experimental results, and subsequently utilised the data to 49 
train an artificial neural network, concluding “the strength 50 
model based on the artificial neural network is more 51 
accurate than the model based on regression analysis”. 52 
Chou et al. (2014) used advanced Machine Learning (ML) 53 
techniques to predict concrete compressive strength, 54 
concluding that their results confirm the suitability of ML 55 
methods for quick and effective concrete compressive 56 
strength computations. Getahun et al. (2018) employed an 57 

artificial neural network based modelling approach to 58 
predict the compressive and tensile strengths of concretes 59 
employing recycled construction and agricultural waste 60 
materials, finding that their model successfully predicted 61 
compressive and tensile strengths with only a 3% 62 
deviation from experimental results. 63 

 Reflecting the rapid increase in research in this area 64 
in recent years, Boğa et al. (2013) developed a four-65 
layered artificial neural network method (ANN) and 66 
determined that the ANN model can estimate experimental 67 
data to a remarkably close degree. Dao et al. (2019) 68 
proposed AI algorithms and developed ANN models to 69 
predict the compressive strength of Geopolymer concretes 70 
incorporating Ground Granulated Blast Furnace Slag 71 
(GGBFS), and evaluating the models performance using 72 
metrics such as the absolute mean error (MAE) and root 73 
mean square error (RMSE). Dao et al. (2019) found that 74 
their model was capable of predicting compressive 75 
strength of GPC with MAE = 1.989 MPa, RMSE = 2.423 76 
MPa; concluding that the ANN model possessed a strong 77 
potential for predicting the compressive strength of GPC. 78 

It is necessary to identify appropriate assessment 79 
measures to analyse the effectiveness of AI/ML models. 80 
The Correlation coefficient (R) measures the strength of 81 
association between variables by estimating the strength 82 
of the linear association between them. Its use as a 83 
performance metric is well documented in the literature 84 
(Smith 1986). Among the advantages of the correlation 85 
coefficient (R) are that it is fairly straightforward calculate 86 
and provides a logical measure of the strength of linear 87 
association in the data. In a comprehensive comparative 88 
study of performance metrics, Naser et al. (2021) pointed 89 

out that a coefficient R > 0.8 implies strong correlation, 90 
adding that R does not change by equal scaling, can be 91 
used in predicting material properties well with numeric 92 
data, points which are in agreement with our logic to use 93 
Correlation coefficient (R) as a performance indicator in 94 
the current study.  95 

To provide a thorough picture of the error distribution, 96 
numerous metrics may occasionally be needed. The 97 
RMSE offers a benefit when the error distribution is 98 
anticipated to be Gaussian and there are sufficient samples 99 
(Chai et al. 2014). Naser et al. (2021) further noted the 100 
sensitivity of the RMSE to outliers as an advantage, which 101 
is applicable to the current study due to the likelihood of 102 
outliers in experimental data. Ultimately, while no single 103 
measure of error provides a complete and accurate 104 
representation of error, the RMSE is deemed suitable for 105 
the current study.  106 

 This study investigates the potential of utilising 107 
artificial neural networks (ANN) to determine the effect of 108 
replacement of ordinary Portland cement with 109 
supplementary cementitious materials (SCM), notably fly 110 
ash, Ground Granulated Blast Furnace Slag (GGBFS) and 111 
silica fume, on the mechanical properties of hardened 112 
concrete, including compressive strength, modulus of 113 
elasticity and tensile strength. The main advantages of 114 
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using a neural network approach are that all of a material's 1 
behaviour can be represented in a single, cohesive 2 
environment provided by a neural network, and the neural 3 
network-based model is created directly from 4 
experimental data using the neural network's learning 5 
capabilities. This study will not discuss in detail the 6 
artificial neural network methodology because it has been 7 
covered in numerous papers and books. Section 2 of the 8 
following sections provides an explanation of the artificial 9 
neural network. The network used to predict the 10 
compressive strength of concrete is examined in Section 11 
3. The model is examined in Section 4 along with a 12 
number of proportioning factors in order to track the 13 
HPC's strength behaviour. To validate the suggested 14 
strategy, experiments are used in Section 5. Sections 6 and 15 
7 provide results and conclusions. 16 

 17 
2. Architecture of Artificial Neural Networks 18 
 19 

Artificial neural networks (ANN) are a class of 20 
massively parallel architecture that function in 21 
conjunction with highly networked artificial neurons to 22 
tackle complex problems (Seiffert 2002). The structure 23 
and operation of the biological neural network serve as the 24 
foundation for ANN architecture. The neurons of ANN are 25 
arranged in several layers, just like the neurons in the 26 
brain. A common type of neural network is the feed-27 
forward neural network, which has three layers: an input 28 
layer for receiving outside data needed for pattern 29 
recognition, an output layer for providing the solution, and 30 
a hidden layer that acts as an intermediary layer between 31 
the other layers. Acyclic arcs connect the nearby neurons 32 
in the input layer to the output layer.  33 

The ANN employs a training algorithm to learn the 34 
datasets, and contingent on the error rate between the 35 
target and actual output, updates the neuron weights 36 
(Sairamya et al. 2019). The back propagation algorithm is 37 
typically used by ANN as a training procedure to learn the 38 
datasets. Fig. 1 depicts the general architecture of an ANN. 39 
The vast majority of research utilises back-propagation 40 
neural networks (McClelland et al. 1987). 41 

 42 

 
Fig. 1 General structure of an Artificial Neural Network 

(ANN) (Sairamya et al. 2019). 
 43 
The network is trained by altering the link weights in 44 

accordance with the knowledge it has gained through 45 
training. By comparing each input pattern's goal output 46 
with the network's output for that pattern, the network 47 
learns by computing the error and propagating an error 48 
function backward through the network. After the network 49 
has been trained, it is given values for the project's input 50 
parameters in order to run. Following that, the network 51 
computes the node outputs using the weight values and 52 
thresholds already in place from the training phase. 53 
Because the system only needs to generate the network 54 
node values once, executing the network happens very 55 
quickly (Zupan 1994). 56 

To test the accuracy of a trained network, the Root 57 
Mean Square Error (RMSE) is adopted, which is a 58 
commonly used method for comparing values predicted 59 
by a model or estimate to values observed in a sample or 60 
population. It gauges how well the proposed model can 61 
predict and replicate patterns in the experimental data in 62 
order to forecast the outcome (Hyndman et al. 2006). 63 

 64 
3. Modelling of strength of Geopolymer concrete 65 

 66 
3.1 Learning Algorithm 67 

 68 
The Levenberg-Marquardt method has been used as 69 

the learning algorithm to train the ANN model for the 70 
current study (Marquardt 1963). The Gauss-Newton and 71 
Gradient Descent functions are both used by this approach 72 
to access the best run-by-run performance. While gradient 73 
descent uses the idea of absolute minima and absolute 74 
maxima, Gauss-Newton uses MSE as the cost function; 75 
the criterion which quantifies how good a model is 76 
(Sheskin 2004). By updating the parameters along the 77 
steepest-descent direction, the gradient descent method 78 
reduces the sum of the squared errors (Gavin 2020). The 79 
absolute maximum is the highest value on a cost function 80 
graph, whereas absolute minimum is the lowest point on 81 
the graph. Because it makes use of both the Gradient 82 
Decent and the cost function, the Levenberg-Marquardt 83 
algorithm performs better than other algorithms (Bafitlhile 84 
et al. 2018). Since this algorithm gets the optimal value 85 
more quickly than other algorithms, it requires less 86 
training time (Wilamowski et al. 2010).  87 

The number of neurons in the Hidden Layer is 88 
determined as follows. The number of hidden layer 89 
neurons are 2/3 (or 70% to 90%) of the size of the input 90 
layer. If this is insufficient then number of output layer 91 
neurons can be added later on (Boger et al. 1997). The 92 
number of hidden layer neurons should be less than twice 93 
of the number of neurons in input layer (Berry et al. 2011). 94 

With these considerations in mind, the cost function 95 
was optimised to determine the number of neurons in the 96 
hidden layer. The performance of the cost function was 97 
recorded for each iteration of the program, which was 98 
repeated a number of times. It was decided to choose the 99 
number of neurons that predicted the output with the 100 
highest correlation. 101 
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 1 
3.2 How the ANN code functions 2 

 3 
The first step is importing the data set from the 4 

directory. Subsequently, pre-processing of the data 5 
(correlation, null values, filling missing data points) is 6 
carried out. Pertinent research has shown that when less 7 
than 10% of the cases had missing data, implementing 8 
imputation techniques were superior to dropping cases 9 
with missing values and performance of the downstream 10 
predictive process is significantly improved by 11 
imputation. (Jäger et al. 2021; Langkamp et al. 2010). 12 
Thus, filling null values and missing data points was 13 
conducting by sorting the data and averaging of the 14 
variable before and after the missing value, as per 15 
established methods, a procedure conducted for less than 16 
10% of the data. This was followed by distinguishing of 17 
input and output variables. The authors appreciate this 18 
insightful comment from the reviewers. Data is split for 19 
training, validation, and testing in proportions of 80%, 20 
10%, and 10%, respectively. This distribution has been 21 
found to achieve a high degree of training and validation 22 
accuracy (Golchubian et al. 2021). Chi et al. (2022) 23 
conducted a comparison between a 70-15-15 split and an 24 
80-10-10 split, finding the latter to achieve a higher rate of 25 
training and validation accuracy and noting “the best way 26 
to increase model performance and reduce overfitting on 27 
the dataset side was to use an 80-10-10 split of the data”, 28 
obtaining training accuracy of 91.53% and validation 29 
accuracy of 97.11%. These results show that the 80-10-10 30 
split is well established in the literature and has been 31 
shown to achieve high levels of accuracy. In addition, the 32 
dataset employed in the current study is class balanced, 33 
whereby random sampling is optimally suited. 34 

Model construction is then carried out utilising 10 35 
neurons. RMSE is subsequently calculated for every 36 
output, and the actual and anticipated values are used to 37 
produce the regression plot. This is followed by 38 
optimizing the quantity of neurons to produce the best 39 
correlation between experimental and predicted values. 40 
Optimisation allows for selecting the ideal number of 41 
neurons and reinforcing the model. Finally, the regression 42 
plots are replotted and the RMSE recalculated. The steps 43 
above are illustrated in the following flow chart shown in 44 
in Fig. 2. 45 

 
Fig. 2 Modelling methodology flowchart for current 

study 
 46 

4. Modelling of strength of Geopolymer concrete 47 
 48 
This study uses data obtained from the National 49 

Research and Development Project, known as New RC 50 
Project, supported by the Ministry of Construction and the  51 
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 1 
Research Committee on High-strength Concrete of the 2 

Architectural Institute of Japan (Tomosawa et al. 1995). 3 
More than 3,000 data points on the correlation between 4 
concrete composition and mechanical properties including 5 
compressive, tensile strengths and modulus of elasticity 6 
were gathered and statistically analysed (Tomosawa et al. 7 
1995). These data points were gathered by numerous 8 
researchers using a variety of materials. The examined 9 
concretes' compressive strengths ranged from 20 to 160 10 
MPa, with data collated and presented in Tomosawa et al. 11 
(1995). A total of 2903 data points were utilised in this 12 
study. A statistical analysis of this dataset is provided in 13 
Table 1. 14 

 15 
Table 1 Statistical analysis of dataset of experimental 16 

values (Tomosawa et al. 1995) 17 

 Performance Comparison in case of 

Compressive Strength 

 Compressive 

Strength (MPa) 

Modulus of 

Elasticity 

(GPa) 

Tensile Strength 

(MPa) 

Mean 65.33 33.35 3.89 

Median 60.60 34.30 3.77 

Standard 

Deviation 

28.88 8.62 1.33 

 18 
This data is used to train the developed artificial neural 19 

network developed for this study, such that by varying the 20 

factors of fly ash content, Ground Granulated Blast 21 
Furnace Slag (GGBFS) content and silica fume content, 22 
predictions for the value of compressive strength, modulus 23 
of elasticity and tensile strength can be obtained. 24 

 25 
5. Training Results 26 

 27 
As stated in the earlier explanation of the ANN code 28 

and shown in Figure 2, splitting for training, validation, 29 
and testing in proportions of 80%, 10%, and 10%, 30 
respectively had been carried out. The training results can 31 
be summarised as follows. 32 

 33 
5.1 Compressive Strength: 34 

 35 
Initially the model was trained with 10 number of 36 

neurons in the hidden layer, and the predications for 37 
compressive strength obtained and compared to 38 
experimental results. The performance of the model can 39 
be observed in the regression plots shown in Fig. 3. 40 

 41 
Fig. 3 shows the comparison between the predicted 42 

compressive strength and the actual values reported in the 43 
experimental results in Tomosawa et al. (1995). The 44 
sample correlation coefficient (R) measures how closely 45 
the points on a scatter plot are related to a linear regression 46 
line constructed using those points, with a value close to 1 47 
indicating a strong correlation. Performance of the model 48 
is acceptable for training but may be improved in the case 49 

 
 

Fig. 3 Model performance: Predicted compressive strength values of neural network compared with values 

actually observed in the laboratory for the testing examples. 
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of testing, therefore an attempt is made to optimise the 1 
number of neurons. Fig. 4 illustrates the optimisation 2 
process.  3 

 4 
Based upon the optimisation process shown in Fig. 4, 5 

the number of neurons adopted in the ANN is modified to 6 
19, in order to minimise the RMSE. Using the optimised 7 
number of neurons and rerunning the analysis, the 8 

obtained predicted compressive strength values were as 9 
follows (Fig. 5).   10 

 11 

 12 
 13 
The results are summarised in Table 2. These results 14 

show reduced root-mean-square error (RMSE) upon using 15 
the optimised number of neurons.  16 

 
 

Fig. 4 Optimisation of the number of neurons adopted in the ANN for prediction of compressive strength.  

 
 

Fig. 5 Model performance: Predicted compressive strength values of neural network compared with values 

actually observed in the laboratory for the testing examples using optimized number of neurons.  
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Table 2 Performance Comparison of RMSE for prediction 1 
Compressive Strength 2 

Performance Comparison in case of Compressive Strength  

State RMSE (10) RMSE Optimised 

(19)  

Training 12.367 8.969 

Validation 11.213 11.177 

Testing 13.730 9.816 

 3 
 4 
5.2 Modulus of Elasticity: 5 

 6 
Initially the model was trained with 10 number of 7 

neurons in the hidden layer, the performance of the model 8 
can be observed in the following regression plot (Fig. 6).  9 

 10 

 11 
 12 
 13 
The performance shown in Fig. 6 has been improved 14 

using the optimisation process shown in Fig. 7. 15 
 16 

 

 
 

Fig. 6   Model performance: Predicted modulus of elasticity values of neural network compared with values 

actually observed in the laboratory for the testing examples using number of neurons (10).  
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 1 
 2 

Based upon the optimisation process shown in Figure 7, 3 
the number of neurons adopted in the ANN is modified to 4 
24, in order to minimise the RMSE. Subsequently, the 5 
linear regression for the observed predicted modulus of 6 
elasticity values were as follows (Fig. 8). Significant 7 
improvement in the performance can be observed after 8 
adjusting the numbers of neurons in the hidden layer from 9 
10 to 24. The results are summarised in Table 3. 10 

  11 

 

 
 

 

Fig. 7 Optimisation of the number of neurons adopted in the ANN for prediction of modulus of elasticity.  
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 1 

 2 

Table 3 Performance Comparison of RMSE for prediction 3 
Modulus of Elasticity 4 

Performance Comparison in case of Compressive Strength  

State RMSE (10) RMSE Optimised 

(24) 

Training 4.465 3.037 

Validation 4.492 3.44 

Testing 4.871 3.41 

 5 
5.3 Tensile Strength: 6 

 7 
Initially the model was trained with 10 number of 8 

neurons in the hidden layer, the performance of the model 9 
can be observed in the following regression plot (Fig. 9). 10 

 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 

 20 
 21 

 

 
Fig. 8 Model performance: Predicted modulus of elasticity values of neural network compared with values 

actually observed in the laboratory for the testing examples using optimized number of neurons (24).  
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 1 
 2 
The performance of the model in case of tensile 3 

strength is not good enough, exhibiting a sample 4 
correlation coefficient (R) close to 0.8. Therefore, as for 5 

the training of the ANN for compressive strength and 6 
modulus of elasticity training, the optimisation technique 7 
was adopted to calculate the optimum number of neurons. 8 
Results of the optimization process is shown as follows 9 
(Fig. 10).  10 

 
 

Fig. 9  Model performance: Predicted tensile strength values of neural network compared with values actually 

observed in the laboratory for the testing examples using number of neurons (10).  

 
 

Fig. 10   Optimisation of the number of neurons adopted in the ANN for prediction of tensile strength.  



 

Utilising Artificial Neural Networks for Prediction Properties of Geopolymer concrete 

11 

 

 1 
 2 
Based upon the optimisation process shown in Figure 3 

10, the number of neurons adopted in the ANN is modified 4 
to 15, in order to minimise the RMSE. Subsequently, the 5 
linear regression for the observed predicted modulus of 6 
elasticity values were as follows (Fig. 11).   7 

 8 

 9 
 10 

Significant improvement in the performance can be 11 

observed after adjusting the numbers of neurons in the 12 

hidden layer from 10 to 24. The results are summarised in 13 
Table 4. 14 

 15 

Table 4 Performance Comparison of RMSE for prediction 16 

Tensile Strength 17 

Performance Comparison in case of Compressive Strength  

State RMSE (10 neurons) RMSE Optimised 

(15 neurons) 

Training 0.750 0.62 

Validation 0.735 0.732 

Testing 0.732 0.717 

 18 
 19 

6. Results 20 
 21 
Upon validation of the ANN model, the model is 22 

utilised to evaluate the influence of different parameters, 23 
namely the percentage content of fly ash, Ground 24 
Granulated Blast Furnace Slag (GGBFS), and silica fume 25 
on the compressive strength, modulus of elasticity and 26 
tensile strength of Geopolymer concrete. 27 

 28 
Figure 12 presents the results of the predicted values 29 

for compressive strength by the ANN model, for 30 
admixture contents increasing in increments of 5% by 31 
mass. 32 

 
 

Fig. 11 Model performance: Predicted tensile strength values of neural network compared with values actually 

observed in the laboratory for the testing examples using optimized number of neurons (24). 
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 1 
 2 
The results exhibited in Fig. 12 show that the 3 

compressive strength increases initially with increasing 4 
content of mineral admixtures, namely Silica Fume, 5 
Ground Granulated Blast Furnace Slag (GGBFS) and Fly 6 
Ash. However compressive strength is predicted to peak 7 
at percentage replacements ranging from 15-30% and 8 
begins to decrease beyond that. These results agree well 9 
with previous experimental studies (Bendapudi et al. 10 
2011; Duval et al. 1998; Sharma et al. 2012).  11 

 12 
Figure 13 presents the results of the predicted values 13 

for modulus of elasticity by the ANN model, for admixture 14 
contents increasing in increments of 5% by mass.   15 

 16 
The results shown in Fig. 13 display a decrease in 17 
predicted modulus of elasticity of concrete with increasing 18 
fly ash content, which is agreeable with previous research 19 
(Atchley 1959; Mohammed Ali et al. 2020). For the 20 
remaining additives (Silica Fume and GGBFS), the results 21 

show minimal effect of increasing the percentage of 22 
additive by weight. The influence of these additives 23 
requires further research.   24 

 25 
 Figure 14 presents the results of the predicted values 26 

for tensile strength by the ANN model, for admixture 27 
contents increasing in increments of 5% by mass. 28 

 29 

 

 
 

Fig. 12    Predicted compressive strength of concrete at 28 days 

 

 
 

Fig. 13 Predicted Modulus of elasticity of concrete at 28 days . 
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 1 
The results shown in Fig. 14 show that the tensile 2 

strength increases initially with increasing content of 3 
mineral admixtures, namely Silica Fume, Ground 4 
Granulated Blast Furnace Slag (GGBFS) and fly ash. 5 
However, this trend only extends until about 15% 6 
replacement by mass, beyond which the tensile strength 7 
generally decreases as admixture content increases. These 8 
results are in good agreement with results of experimental 9 
procedures reported in the literature (Mohammed Ali et al. 10 
2020; Smarzewski 2019).  11 

 12 
7. Conclusions 13 
 14 

Overall, the above results show that the ANN model is 15 
capable of predicting the mechanical properties of mineral 16 
additive enhanced high performance concretes. The 17 
results are generally in good agreement with previous 18 
experimental research. However, further research is 19 
required to enhance the accuracy of the model, and to 20 
predict mechanical properties with various percentages of 21 
multiple additives simultaneously. The results of this 22 
research may then be utilised to achieve higher utilisation 23 
of additives which would otherwise constitute hazardous 24 
waste materials in producing superior concretes for use in 25 
the construction industry, entailing both environmental 26 
and economic benefits. 27 
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