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Regressing Word and Sentence Embeddings
for Low-Resource Neural Machine Translation
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Abstract—In recent years, neural machine translation (NMT)
has achieved unprecedented performance in automated transla-
tion of resource-rich languages. However, it has not yet managed
to achieve a comparable performance over the many low-resource
languages and specialized translation domains, mainly due its
tendency to overfit small training sets and consequently strive on
new data. For this reason, in this paper we propose a novel ap-
proach to regularize the training of NMT models to improve their
performance over low-resource language pairs. In the proposed
approach, the model is trained to co-predict the target training
sentences both as the usual categorical outputs (i.e., sequences
of words) and as word and sentence embeddings. The fact
that word and sentence embeddings are pre-trained over large
corpora of monolingual data helps the model generalize beyond
the available translation training set. Extensive experiments over
three low-resource language pairs have shown that the proposed
approach has been able to outperform strong state-of-the-art
baseline models, with more marked improvements over the
smaller training sets (e.g., up to +6.57 BLEU points in Basque-
English translation). A further experiment on unsupervised NMT
has also shown that the proposed approach has been able to
improve the quality of machine translation even with no parallel
data at all.

Impact Statement—Neural machine translation (NMT) is the
contemporary state of the art for machine translation. However,
NMT models are notoriously data-hungry and typically require
very large datasets to be trained effectively, in the order of
millions of parallel sentences from the source and target lan-
guages. For the remaining language pairs, which are collectively
classified as “low-resource”, NMT still struggles to achieve a
comparable level of performance. For this reason, in this paper
we propose a novel training approach for NMT models that
leverage existing, pre-trained word and sentence embeddings to
improve the models’ performance when only limited parallel
training data are available. The experimental results over three
low-resource language pairs show that the proposed approach
has been able to improve the models’ performance by several
percentage points in the majority of cases. We also show that
the proposed approach has been able to improve the models’
performance in unsupervised NMT, where no parallel data
are needed at all. We envisage that the proposed approach
– aptly nicknamed ReWE+ReSE – could be easily integrated
in mainstream deep learning libraries and achieve significant
adoption. To facilitate the uptake, we release all our code and
training set-ups publicly.

Index Terms—Machine translation, neural machine transla-
tion, regularization, sentence embeddings, word embeddings.
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I. INTRODUCTION

MACHINE translation (MT) is a field of natural lan-
guage processing (NLP) focussing on the automatic

translation of sentences from a source language to a target
language. In recent years, the field has been progressing
rapidly mainly thanks to the advances in deep learning and
the advent of neural machine translation (NMT). The first
NMT model was presented in 2014 by Sutskever et al. [1]
and consisted of a plain encoder-decoder architecture based
on recurrent neural networks (RNNs). In the following years,
a series of improvements has led to major performance in-
creases, including the attention mechanism (a word-alignment
model between words in the source and target sentences)
[2], [3] and the transformer (a non-recurrent neural network
that offers a highly-parallelizable alternative to RNNs) [4].
As a result, NMT models have significantly outperformed
traditional approaches such as phrase-based statistical machine
translation (PBSMT) [5] in many translation contests (e.g.,
the WMT conference series). Nowadays, the majority of MT
systems in use utilise NMT in some form.

However, NMT models are not exempt from limitations.
The main is their tendency to overfit the training set due
to their typically massive number of parameters. The direct
consequence of overfitting is an inadequate and often unfluent
performance of the models once deployed in field. While
this issue can be countered with training sets of increasingly
large size, such as those available for resource-rich language
pairs (e.g., French-English, English-Chinese), it remains a
very challenging problem for translation between many of the
approximately 6, 900 languages currently used in the world
[6]. In the context of contemporary machine translation, it is
not uncommon for a resource-rich language pair to avail of
parallel datasets of 1-10M+ sentences. Conversely, any trans-
lation dataset with only a few tens or hundreds of thousands
parallel sentences can be currently classified as low-resource.

In technical terms, the main acknowledged cause of over-
fitting lies in the way NMT models are trained [7]. Usually,
NMT models are trained with maximum likelihood estimation
(MLE, or cross entropy) using a single reference translation in
the target language for every example in the source language.
For every training sentence pair, the MLE objective is to
assign all of the model’s probability to the reference target
sentence, and zero to any alternative. However, a model could
legitimately produce a translation that is different from the
reference and is still perfectly correct (e.g., using paraphrases
and synonyms). In addition, translations that deviate from
the reference are not all equally incorrect. For instance, if
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the reference sentence contains the word pigeon, a prediction
such as bird, even if only partially faithful, should score
better than predicting a word such as car. Standard MLE
is not able to leverage these important distinctions since it
treats every word other than those in the provided reference
as completely incorrect. In principle, MLE could achieve
optimal performance with infinite training data, but in practice
this is impossible to pursue since the available resources are
inevitably limited. In particular, when the training data are
scarce such as for low-resource language pairs or specialized
domains, NMT models display a modest performance, and
more traditional approaches (e.g., PBSMT [8]) often obtain
better accuracies. As such, generalization of NMT systems
still calls for significant improvement.

In our recent work [9], we have proposed a novel regu-
larization technique for the training objective that is based
on co-predicting words and their embeddings (“regressing
word embeddings”, or ReWE for short). ReWE is a module
added to the decoder of a sequence-to-sequence model during
training, so that the model is trained to jointly predict the
next word in the translation (a categorical value) and its
pre-trained word embedding (a multi-dimensional, continuous
value). This approach has proved able to leverage the con-
textual information embedded in pre-trained word vectors, in
particular with low/medium size training sets [9]. Given the
increasing attention recently raised by sentence embeddings
[10], [11] (inferred vectors that embed whole sentences), in
this paper we extend this idea to the regression of sentence
embeddings (ReSE). For every input sentence, ReSE uses a
self-attention mechanism to infer a single, fixed-dimensional
vector in output. During training, the model is trained to
regress this inferred vector toward the pre-trained sentence
embedding of the reference sentence. In specific, we pro-
pose jointly regressing word and sentence embeddings as a
combined training regularizer, and we nickname the proposed
approach as ReWE+ReSE. Overall, the main contributions of
our paper are:

• The proposal of a new regularization technique for NMT
training based on sentence embeddings (ReSE), and its
joint use with a word-level regularizer (ReWE+ReSE).

• Extensive experiments over four language pairs: three
low-resource (< 250K examples) datasets, and one high-
resource (∼ 5M examples) dataset. We show that using
ReWE and ReSE jointly on the low-resource datasets
can outperform strong state-of-the-art baselines based
on transformers and long short-term memory networks
(LSTMs). On the high-resource dataset, we show how the
need for regularization decreases as the available training
data increase.

• Insights on how ReWE and ReSE help improve the NMT
models. Our analysis shows that the proposed regularizers
make the decoder’s output space more uniform, facilitat-
ing correct word classification.

• A further experiment on unsupervised machine trans-
lation, showing that the proposed regularizers are able
to improve the quality of the translations even in the
complete absence of parallel training data.

The rest of this paper is organized as follows: Section II
presents and discusses the related work. Section III describes
the models used as baselines. Section IV first recaps ReWE,
and then presents the new regularizer, ReSE. Section V
describes the experiments and discusses the results. Finally,
Section VI concludes the paper.

II. RELATED WORK

The related work is organized over the three main research
subareas that have motivated this work: regularization of NMT
models, word and sentence embeddings and unsupervised
NMT.

A. Regularization of NMT Models

In recent years, the research community has dedicated much
attention to the problem of overfitting in deep neural models.
Several regularization approaches have been proposed in turn
such as dropout [12], [13], data augmentation [14] and multi-
task learning [15], [16]. Their common aim is to encourage the
model to learn parameters that allow for better generalization.

In NMT, too, mitigating overfitting due to small training
sets has been the focus of much research. Fadee et al. [14]
have proposed augmenting the training data with synthetically-
generated sentence pairs containing rare words. In this way,
during training the model is able to see such rare words
in a plausible context. Similarly, monolingual data in the
target language have been used for data augmentation using
“back-translation” [17], [18]. Basically, an existing target-to-
source MT model is employed to translate the monolingual
target data back to the source language, thus creating addi-
tional, quasi-parallel data that can be used to augment the
available training set. However, the effectiveness of back-
translation heavily depends on the quality of the auxiliary MT
model, which is inherently limited in the case of low-resource
language pairs. In [19], Kudo has proposed using multiple
subword segmentations to improve the model’s robustness,
achieving notable improvements with low-resource languages
and out-of-domain settings. Another line of work has focused
on “smoothing” the output probability distribution over the
target vocabulary [7], [20]. These approaches use token-
level and sentence-level reward functions that push the model
to spread the output probability over words other than the
ground-truth reference. In a similar vein, Ma et al. in [21]
have augmented the training objective with a bag-of-words
representation of the reference sentence, assuming that all
acceptable translations would share comparable bag-of-words.
Finally, curriculum learning has also been explored to use the
available training data more effectively [22], [23], [24]. In
curriculum learning, the training samples are carefully selected
so that the “easier” ones are used in the initial stages of
training, while increasingly ”difficult” samples are introduced
as training progresses. Empirically, curriculum learning has
proved effective at mollifying overfitting [23], [24].

B. Word and Sentence Embeddings

Recently, large pre-trained language models (LMs) such as
ELMo [25], BERT [26], GPT [27] and T5 [28] have been
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Fig. 1: Baseline NMT model. (Left) The encoder receives the input sentence and generates a context vector cj for each
decoding step using an attention mechanism. (Right) The decoder generates one-by-one the output vectors pj , which represent
the probability distribution over the target vocabulary. During training yj is a token from the ground truth sentence, but during
inference the model uses its own predictions.

used to improve the performance of deep learning models in
several NLP tasks (an approach often referred to as “transfer
learning”). These pre-trained models are able to generate
“contextual” embeddings for each word in a given sentence,
supporting better disambiguation than conventional, “static”
word embeddings [29], [30], and making for informative input
features for downstream tasks. In addition to word embed-
dings, pre-trained LMs have been used to generate embeddings
for larger chunks of texts (e.g., sentences, documents), which
can also be used to improve downstream tasks [10], [31], [11].

In NMT models, word embeddings play an important role as
input of both the encoder and the decoder. A recent paper has
shown that contextual word embeddings provide effective in-
put features for both stages [32]. However, very little research
has been devoted to using word embeddings as targets. Kumar
and Tsvetkov in [33] have removed the typical output softmax
layer, forcing the decoder to generate continuous outputs. At
inference time, they use a nearest-neighbour search in the word
embedding space to select the word to predict. Their model
allows for significantly faster training while performing on par
with state-of-the-art models. Our approach differs from [33]
in that our decoder generates continuous outputs in parallel
with the standard softmax layer, and only during training
to provide regularization. At inference time, the continuous
output is ignored and prediction operates as in a standard NMT
model. In this work, in addition to using word embeddings, we
also explore the use of sentence embeddings generated with
pre-trained LMs for NMT regularization. To the best of our
knowledge, our model is the first to use embeddings as targets
for regularization, and at both word and sentence level.

C. Unsupervised NMT

In extreme cases, a language pair may completely lack
a parallel training set. In such cases, a possible approach
is to use unsupervised NMT [34], [35], [36] which does
not require any aligned, bilingual text for training and only
learns to translate from monolingual text in both languages.
Even though the accuracy of unsupervised NMT models is

still much lower than that of their supervised counterparts,
they have started to reach interesting levels. In addition,
unsupervised NMT models can be the basis for few-shot NMT
adaptation [37]. The architecture of unsupervised NMT sys-
tems differs from that of supervised systems in that it combines
translation in both directions (source-to-target and target-to-
source). Typically, a single encoder is used to encode sentences
from both languages, and a separate decoder generates the
translations in each language. The training of such systems
follows three stages: 1) building a bilingual dictionary and
word embedding space, 2) training two monolingual language
models as denoising autoencoders [38], and 3) converting the
unsupervised problem into a weakly-supervised one by use of
back-translations [17]. For more details of unsupervised NMT
models, we refer the reader to the original papers [34], [35],
[36].

In this paper, we explore using the proposed regularization
approach also for unsupervised NMT. Unsupervised NMT
models still require substantial amounts of monolingual data
for training, and often such amounts are not available. There-
fore, these models, too, are expected to benefit from improved
regularization.

III. THE BASELINE NMT MODEL

In this section, we describe the NMT model that has
been used as the basis for the proposed regularizer. It is
a neural encoder-decoder architecture with attention [2] that
can be regarded as a strong baseline as it incorporates both
LSTMs and transformers as modules. Although we refer to
this model simply as “baseline” in the rest of our paper, it
holds state-of-the-art accuracy on several machine translation
datasets [39], [40], [41]. Therefore the improvements over this
baseline that we present in Section V set a new state-of-the-
art accuracy. Let us note a source sentence with n tokens as
x = {x1 . . . xn}, and the corresponding target sentence with
m tokens as y = {y1 . . . ym}. First, the words in the source
sentence are encoded by an embedding layer into respective
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Fig. 2: Full model: Baseline + ReWE + ReSE. (Left) The encoder with the attention mechanism generates vectors cj in
the same way as the baseline system. (Right) The decoder generates one-by-one the output vectors pj , which represent the
probability distribution over the target vocabulary, and ej , which is a continuous word vector. Additionally, the model can also
generate another continuous vector, r, which represents the sentence embedding.

word embeddings, xe1 . . . xen:

xei = src emb(xi) i = 1 . . . n. (1)

Then, the source sentence is encoded by a sequential module
into its hidden vectors, h1 . . . hn:

hi = enc(hi−1, xei ) i = 1 . . . n (2)

Next, for each decoding step j = 1 . . .m, an attention
network provides a context vector cj as a weighted average of
all the encoded vectors, h1 . . . hn, conditional on the decoder’s
hidden vector at the previous step, sj−1:

cj = attn(h1 . . . hn, sj−1) j = 1 . . .m (3)

For this network, we have used the standard attention
mechanism of Bahdanau et al. [2]. Given the context vector,
cj , the decoder output at the previous step, sj−1, and the word
embedding of the previous word in the target sentence, yej (Eq.
4), the decoder generates vector sj (Eq. 5). This vector is later
transformed into a larger vector of the same size as the target
vocabulary via learned parameters W, b and a softmax layer
(Eq. 6). The resulting vector, pj , is the inferred probability
distribution over the target vocabulary at decoding step j. Fig.
1 depicts the full architecture of the baseline model.

ye
j = tgt emb(yj) j = 1 . . .m (4)

sj = dec(cj , sj−1, yej−1) j = 1 . . .m (5)

pj = softmax(Wsj + b) (6)

The model is trained by minimizing the negative log-
likelihood (NLL) which can be expressed as:

LNLL = −
m∑
j=1

log pj(yj) (7)

where the probability of ground-truth word yj has been noted
as pj(yj). Minimizing the NLL is equivalent to MLE and
results in assigning maximum probability to the words in the
reference translation, yj , j = 1 . . .m. The training objective
is minimized with standard backpropagation over the training
data, and at inference time the model uses beam search for
decoding.

IV. REGRESSING WORD AND SENTENCE EMBEDDINGS

As mentioned in the introduction, MLE suffers from some
limitations when training a neural machine translation system.
To alleviate these shortcomings, in our recent paper [9] we
have proposed a new regularization technique based on re-
gressing word embeddings (ReWE). In this section, we briefly
review ReWE, and then present its extension to sentence
embeddings (ReSE).

A. ReWE

Pre-trained word embeddings are trained on large monolin-
gual corpora by measuring the co-occurences of words in text
windows (“contexts”). Words that occur in similar contexts are
assumed to have similar meaning, and hence, similar vectors
in the embedding space. Our goal with ReWE is to incorporate
the information embedded in the word vector in the loss
function to encourage model regularization.

In order to generate continuous vector representations as
outputs, we have added a ReWE block to the NMT baseline
(Fig. 2). At each decoding step, the ReWE block receives
the hidden vector from the decoder, sj , as input, and outputs
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another vector, ej , of the same size of the pre-trained word
embeddings:

ej = ReWE(sj)
= W2(ReLU(W1sj + b1)) + b2

(8)

In Eq. (8), W1, W2, b1 and b2 are the learnable parameters
of a two-layer feed-forward network with a Rectified Linear
Unit (ReLU) as activation function between the layers. Vector
ej aims to reproduce the word embedding of the target word,
and thus the distributional properties (or co-occurrences) of its
contexts.

During training, the model is guided to regress the predicted
vector, ej , toward the word embedding of the ground-truth
word, yej . This is achieved by using a loss function that
computes the distance between ej and ye

j (Eq. 9). Previous
work [9] has shown that the cosine distance is empirically
an effective distance between word embeddings and has thus
been adopted as loss. This loss and the original NLL loss
are combined together with a tunable hyperparameter, λ (Eq.
10). Therefore, the model is trained to jointly predict both a
categorical and a continuous representation of the words. Even
though the system is performing a single task, this setting
could also be interpreted as a form of multi-task learning with
different representations of the same targets.

LReWE =

m∑
j=1

(1− cos(ej , yej)) (9)

Lw = LNLL + λLReWE (10)

The word vectors of both the source (xe) and target (ye)
vocabularies are initialized with pre-trained embeddings, and
updated during training. At inference time, we ignore the
outputs of the ReWE block and perform translation using only
the categorical prediction.

B. Extending ReWE to sentence embeddings: ReSE

Sentence vectors, too, are extensively used as input rep-
resentations in many NLP tasks such as text classification,
paraphrase detection, natural language inference and question
answering. The intuition behind them is very similar to that
of word embeddings: sentences with similar meanings are
expected to be close to each other in vector space. Several
off-the-shelf sentence embedders are currently available and
they can be easily integrated in deep learning models. Based
on similar assumptions to the case of word embeddings, we
hypothesize that an NMT model could also benefit from a
regularization term based on regressing sentence embeddings
(the ReSE block in Fig. 2).

The main difference of ReSE compared to ReWE is that it
predicts a single regressed vector per sentence rather than one
per word. Thus, ReSE first uses a self-attention mechanism

to learn a weighted average of the decoder’s hidden vectors,
s1 . . . sm:

self attn(s1 . . . sm) =

m∑
j=0

αjsj (11)

αj =
elj∑m
k=0 e

lk
(12)

lj = U2 tanh(U1sj) (13)

where the αj attention weights are obtained from Eqs. 12
and 13, and U1 and U2 are learnable parameters. Then, a
two-layered neural network similar to ReWE’s predicts the
sentence vector, r (Eq. 14). Parameters W3, W4, b3 and b4

are also learned during training.

r = ReSE([s1, . . . , sm])

= W3(ReLU(W4 self attn(s1 . . . sm) + b3)) + b4

(14)

Similarly to ReWE, a loss function computes the cosine
distance between the predicted sentence vector, r, and the
sentence vector inferred with an external sentence embedder,
yr:

LReSE = 1− cos(r, yr) (15)

To embed the sentences, we have experimented with four
different embedders:

• avgEmbs: A sentence embedding formed by the average
of the word embeddings of the ground-truth sentence.

• maxpoolEmbs: A 1D max-pooling of the word embed-
dings of the ground-truth sentence.

• USE: The universal sentence encoder [10], a transformer-
based network trained in a multi-task framework to
generate versatile sentence embeddings.

• SBERT: Sentence-BERT [11], another transformer-based
network trained in an unsupervised manner with a masked
language model objective, and fine-tuned over a sentence
similarity task.

The ReSE loss is finally added to the objective with an
additional, tunable hyperparameter, β:

Lws = LNLL + λLReWE + βLReSE (16)

Since the number of sentences is significantly lower than
that of the words, β typically needs to be higher than λ.
Nevertheless, we tune it blindly using the validation set. At
inference time, the model ignores the predicted word and
sentence vectors and solely relies on the categorical prediction.

V. EXPERIMENTS

We have carried out an ample range of experiments to probe
the performance of the proposed regularization approaches.
This section describes the datasets, the models and the hyper-
parameters used, and presents and discusses all results.
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A. Datasets

Four different language pairs have been selected for the
experiments. The datasets for three language pairs have each
less than 250K parallel sentences and can be regarded as low-
resource. The last language pair has over 5M parallel sentences
and allows us to explore the trade-off between the training set
size and the effectiveness of the proposed regularizers.

• En-Fr: The English-French dataset (En-Fr) has been
sourced from the IWSLT 2016 translation shared task1.
This corpus contains translations of TED talks of very di-
verse topics. The training data provided by the organizers
consist of 219, 777 translations which makes this dataset
a low/medium-resource case. Following Denkowski and
Neubig [42], the validation set has been formed by
merging the 2013 and 2014 test sets from the same shared
task, and the test set has been formed with the 2015 and
2016 test sets.

• Cs-En: The Czech-English dataset (Cs-En) is also from
the IWSLT 2016 TED talks translation task. However,
this dataset is approximately half the size of En-Fr as
its training set consists of 114, 243 sentence pairs. Again
following Denkowski and Neubig [42]), the validation set
has been formed by merging the 2012 and 2013 test sets,
and the test set by merging the 2015 and 2016 test sets.
We rate this dataset as low-resource.

• Eu-En: The Basque-English dataset (Eu-En) has been
collected from the WMT16 IT-domain translation shared
task2. This is the smallest dataset, with only 89, 413
sentence pairs in the training set. However, only 2, 000
sentences in the training set have been translated by
human annotators. The remaining sentence pairs are
translations of IT-domain short phrases and Wikipedia
titles. Therefore, this dataset should be rated as very low-
resource. For this dataset, we have used the validation and
test sets (1, 000 sentences each) provided in the shared
task.

• De-En: The German-English dataset (De-En) has been
taken from the WMT18 news translation shared task3.
The training set contains over 5M sentence pairs collected
from the Europarl, CommonCrawl and Newscommentary
parallel corpora. As validation and test sets, we have
used the newstest2017 and the newstest2018 datasets, re-
spectively. This dataset is high-resource by contemporary
standards.

All the datasets have been pre-processed with the Moses
tokenizer4. Additionally, words have been split into subword
units using byte pair encoding (BPE) [43]. For the BPE merge
operations parameter, we have used 32, 000 (the default value)
for all the datasets, except for Eu-En where we have set
it to 8, 000 since this dataset is much smaller. Experiments
have been performed at both word and subword level since
morphologically-rich languages such as German, Czech and
Basque can benefit greatly from translating at subword level.

1IWSLT16: https://workshop2016.iwslt.org/
2WMT16 IT: http://www.statmt.org/wmt16/it-translation-task.html
3WMT18: http://www.statmt.org/wmt18/translation-task.html
4https://github.com/alvations/sacremoses

B. Model Training and Hyperparameter Selection

To implement ReWE and ReSE, we have modified the
popular OpenNMT open-source toolkit [44]5. Two variants of
the standard OpenNMT model have been used as baselines:
the LSTM and the transformer, described hereafter.

LSTM: A strong NMT baseline was prepared by fol-
lowing the indications given by Denkowski and Neubig
[42]. The model uses a bidirectional LSTM [45] for
the encoder and a unidirectional LSTM for the decoder.
The main hyperparameters such as the size of the word
embeddings (300, 512, 796), the size of the hidden states
(300, 512), the dropout rate (0.1, 0.2), the value of
λ (0.1, 1, 2, 5, 10, 20), the value of β (2, 50, 100)
and the learning rate (0.0002, 2) were tuned over the
validation set, while the remaining hyperparameters were
selected following the indications in [42]. All the selected
hyperparameter values for each dataset are reported in
Appendix A. As optimizer, we have used Adam [46].
During training, the learning rate was halved with simu-
lated annealing upon convergence of the perplexity over
the validation set, which was evaluated every 25, 000
training sentences. Training was stopped after halving the
learning rate 5 times.
Transformer: The transformer network [4] has somehow
become the de-facto neural network for the encoder and
decoder of NMT pipelines thanks to its strong empirical
accuracy and highly-parallelizable training. The same
hyperparameters as for the LSTM were tuned on the
validation set. The remaining hyperparameters were set
to the default values of OpenNMT (more details are
provided in Appendix A). With this model, we have not
used simulated annealing since preliminary experiments
showed that it did penalize performance. Training was
stopped upon convergence in perplexity over the vali-
dation set, which was evaluated at every epoch for 20
epochs.

In addition, the word embeddings for both models were
initialized with pre-trained fastText embeddings [47]. For the
300d word embeddings, we have used the word embeddings
available on the official fastText website6. For the 512d
embeddings and the subword units, we have trained our own
pre-trained vectors using the fastText embedder with a large
monolingual corpus from Wikipedia7 and the training data. We
have used pre-trained USE8 and SBERT9 sentence embedders
with the datasets where English is the target language (i.e., De-
En, Cs-En and Eu-En) because of their availability as mono-
lingual encoders. When using BPE, the subwords of every
sentence have been merged back into words before passing
them to the USE. The performance of the BPE models has
also been evaluated after post-processing the subwords back
into words. Finally, hyperparameters λ and β have been tuned

5Our code is publicly available on GitHub at:
https://github.com/ijauregiCMCRC/ReWE and ReSE.git. We will also
release it on Code Ocean.

6fastText: https://fasttext.cc/docs/en/crawl-vectors.html
7Wikipedia: https://linguatools.org/tools/corpora/
8USE: https://tfhub.dev/google/universal-sentence-encoder/2
9SBERT: https://github.com/UKPLab/sentence-transformers
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TABLE I: BLEU scores over the En-Fr test set. The reported
results are the average of 3 independent runs and the standard
deviation.

Models Word BPE
LSTM 34.29±0.34 34.45±0.06

+ ReWE 35.65† ±0.35 35.47† ±0.34

+ ReSEavgEmbs 34.16±0.42 34.36±0.08

+ ReSEmaxpoolEmbs 34.41±0.06 34.37±0.14

+ ReWE + ReSEavgEmbs 35.80† ±0.30 35.68† ±0.19

+ ReWE + ReSEmaxpoolEmbs 35.74† ±0.29 35.52† ±0.06

TRANS 33.73±0.71 34.47±0.52

+ ReWE 34.35±0.55 34.89† ±0.26

+ ReSEavgEmbs 33.76±0.59 34.12±0.46

+ ReSEmaxpoolEmbs 33.37±0.69 34.45±0.62

+ ReWE + ReSEavgEmbs 34.56±0.31 34.70±0.43

+ ReWE + ReSEmaxpoolEmbs 34.36±0.45 34.98† ±0.26

only once for all datasets by using the En-Fr validation set.
This was done in order to save the significant computational
time that would have been required by further hyperparameter
exploration. However, in the De-En case the initial results were
far from the state of the art and we therefore repeated the
selection with its own validation set. For all experiments, we
have used an Intel Xeon E5-2680 v4 with an NVIDIA GPU
card Quadro P5000. On this machine, the training time of the
transformer has been approximately an order of magnitude
larger than that of the LSTM.

C. Results

In this section, we report the results from a number of
experiments carried out with both baselines and different
combinations of ReWE and ReSE. The scores reported are
the BLEU (BiLingual Evaluation Understudy) scores (in
percentage points, or pp), a standard evaluation metric for
machine translation [48]. The † symbol denotes statistically
significant differences with respect to the baseline, computed
with a corpus-level bootstrap significance test with p-value
< 0.01 [49]. Table I shows the results over the En-Fr dataset.
For this dataset, the proposed models have outperformed the
LSTM and transformer baselines consistently by more than
1 BLEU pp. While applying ReSE alone has not improved
the baseline models, jointly applying ReWE and ReSE has
outperformed both the baselines and ReWE alone in all the
cases. The sentence encoder that has achieved the highest score
has been avgEmbs in all cases, except the transformer/BPE,
where maxpoolEmbs has proved the best. Overall, the highest
score reported by the proposed models (35.80, LSTM/Word)
is +1.33 pp higher than the highest score achieved by the
original models (34.47, Transformer/BPE) and sets the new
state of the art for this dataset.

Table II reports the results over the Cs-En dataset. Also in
this case, all the models with ReWE have improved over the
corresponding baselines. For instance, LSTM/BPE+ReWE has
achieved 23.75 BLEU pp, an improvement of +1.39 pp over
the baseline. With this language pair, the transformer model
has generally underperformed compared to the LSTM. In addi-
tion, this language pair has benefited more from the BPE pre-

TABLE II: BLEU scores over the Cs-En test set. The reported
results are the average of 3 independent runs and the standard
deviation.

Models Word BPE
LSTM 20.43±0.24 22.36±0.43

+ ReWE 21.90† ±0.21 23.75† ±0.26

+ ReSEavgEmbs 20.31±0.35 22.96† ±0.18

+ ReSEmaxpoolEmbs 20.42±0.53 22.48±0.17

+ ReSEUSE 20.23±0.24 22.71±0.21

+ ReSESBERT 20.65† ±0.14 22.62±0.03

+ ReWE + ReSEavgEmbs 21.60† ±0.06 23.55† ±0.59

+ ReWE + ReSEmaxpoolEmbs 21.47† ±0.26 23.56† ±0.11

+ ReWE + ReSEUSE 22.11† ±0.33 23.40† ±0.48

+ ReWE + ReSESBERT 21.47† ±0.30 23.73† ±0.36

TRANS 20.45±0.71 20.80±0.38

+ ReWE 21.08±0.008 22.14† ±0.35

+ ReSEavgEmbs 19.81±0.21 20.46±0.26

+ ReSEmaxpoolEmbs 19.91±0.25 20.85±0.21

+ ReSEUSE 19.67±0.19 20.88±0.36

+ ReSESBERT 19.92±0.13 20.91±0.52

+ ReWE + ReSEavgEmbs 21.07† ±0.34 22.02† ±0.45

+ ReWE + ReSEmaxpoolEmbs 20.80±0.15 22.06† ±0.23

+ ReWE + ReSEUSE 20.88±0.26 21.79† ±0.34

+ ReWE + ReSESBERT 21.24† ±0.26 22.20† ±0.18

TABLE III: BLEU scores over the Eu-En test set. The reported
results are the average of 3 independent runs and the standard
deviation.

Models Word BPE
LSTM 10.54±0.17 17.11±0.38

+ ReWE 13.33† ±2.51 19.35† ±0.94

+ ReSEavgEmbs 13.60† ±0.96 19.41† ±0.71

+ ReSEmaxpoolEmbs 14.18† ±2.58 17.94† ±0.55

+ ReSEUSE 14.68† ±0.36 17.50±0.46

+ ReSESBERT 13.83† ±2.06 18.38† ±0.26

+ ReWE + ReSEavgEmbs 16.44† ±0.97 21.24† ±0.14

+ ReWE + ReSEmaxpoolEmbs 17.11† ±1.12 20.88† ±0.57

+ ReWE + ReSEUSE 15.21† ±0.68 20.29† ±0.27

+ ReWE + ReSESBERT 15.41† ±1.48 20.28† ±0.99

TRANS 13.70±1.11 13.42±0.44

+ ReWE 14.83† ±0.59 14.55† ±0.77

+ ReSEavgEmbs 11.71±0.68 12.07±1.31

+ ReSEmaxpoolEmbs 12.57±0.77 10.98±0.16

+ ReSEUSE 11.79±0.38 10.42±1.73

+ ReSESBERT 12.96±1.32 10.86±0.98

+ ReWE + ReSEavgEmbs 14.03±0.30 11.45±0.69

+ ReWE + ReSEmaxpoolEmbs 14.20† ±0.25 11.33±1.09

+ ReWE + ReSEUSE 13.79±0.98 11.65±0.58

+ ReWE + ReSESBERT 13.69±0.15 11.44±0.10

processing, most likely because Czech is a morphologically-
rich language, with clearer subword divisions. Again, ReSE
has generally improved performance when used in conjunc-
tion with ReWE compared to ReWE alone. Since the target
language is English, on this dataset we have been able to
use the USE and SBERT sentence encoders which have
led to mildly highers scores than the averaging/maxpooling of
the word embeddings. Overall, the highest score reported by
the proposed models has been 23.75 (LSTM/BPE), +1.39 pp
higher than the highest score achieved by the original models
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TABLE IV: BLEU scores over the De-En test set. The reported
results are the average of 3 independent runs and the standard
deviation.

Models Word BPE
LSTM 29.83±0.05 34.16±0.10

+ ReWE 30.25† ±0.35 33.89±0.18

+ ReSEavgEmbs 29.79±0.20 33.49±0.11

+ ReSEmaxpoolEmbs 29.68±0.32 33.71±0.40

+ ReSEUSE 29.70±0.51 33.58±0.38

+ ReSESBERT 29.84±0.28 33.84±0.38

+ ReWE + ReSEavgEmbs 30.04±0.21 33.80±0.62

+ ReWE + ReSEmaxpoolEmbs 30.03±0.30 33.73±0.74

+ ReWE + ReSEUSE 30.16† ±0.27 33.87±0.63

+ ReWE + ReSESBERT 30.31† ±0.24 33.31±0.17

TRANS 29.68±0.10 37.10±0.21

+ ReWE 29.91† ±0.20 36.98±0.15

+ ReSEavgEmbs 29.62±0.48 36.88±0.88

+ ReSEmaxpoolEmbs 29.28±0.07 36.91±0.09

+ ReSEUSE 29.27±0.27 36.99±0.21

+ ReSESBERT 29.41±0.16 37.15±0.23

+ ReWE + ReSEavgEmbs 29.71±0.27 37.12±0.26

+ ReWE + ReSEmaxpoolEmbs 29.57±0.31 37.03±0.05

+ ReWE + ReSEUSE 29.53±0.23 36.99±0.05

+ ReWE + ReSESBERT 30.41† ±1.39 37.18±0.20

Fig. 3: BLEU scores over the De-En test set for models trained
with training sets of different size.

and also the highest reported to date for this dataset.
For the Eu-En dataset (Table III), the results show that,

again, ReWE has outperformed both baselines by a large
margin. Moreover, ReWE+ReSE has been able to improve
the results even further (+4.13 BLEU pp when using BPE
and +6.57 BLEU pp at word level over the correspond-
ing baselines), again with the avgEmbs and maxpoolEmbs
sentence encoders performing the best. Basque is, too, a
morphologically-rich language and using BPE has proved very
beneficial (+4.27 BLEU pp over the best word-level model).
As noted before, the Eu-En dataset is very low-resource
(< 90K sentence pairs) which makes it more likely for the
baselines to generalize poorly. Consequently, regularizers such
as ReWE and ReSE are more helpful, with larger margins
of improvement compared to other datasets. On a separate
note, the transformer has unexpectedly performed well below
the LSTM on this dataset, and especially so with BPE. We
speculate that the transformer may have suffered more from

TABLE V: BLEU scores over the En-Fr validation (“dev”) set.
The reported results are the average of 3 independent runs and
the standard deviation.

Models Word BPE
LSTM 36.64±0.26 37.09±0.13

+ ReWE 38.03±0.05 38.49±0.15

+ ReSEavgEmbs 36.77±0.18 37.31±0.27

+ ReSEmaxpoolEmbs 36.73±0.32 37.16±0.15

+ ReWE + ReSEavgEmbs 38.26±0.26 38.51±0.23

+ ReWE + ReSEmaxpoolEmbs 38.07±0.27 38.35±0.23

TABLE VI: Training time per epoch over the Cs-En dataset.

Models LSTM Transformer
Baseline 727 s 403 s

+ ReWE 734 s 408 s
+ ReSEavgEmbs 734 s 412 s
+ ReSEmaxpoolEmbs 736 s 413 s
+ ReSEUSE 1056 s 863 s
+ ReSESBERT 2555 s 3206 s
+ ReWE + ReSEavgEmbs 1061 s 420 s
+ ReWE + ReSEmaxpoolEmbs 1059 s 419 s
+ ReWE + ReSEUSE 1037 s 844 s
+ ReWE + ReSESBERT 1053 s 3224 s

the small size of this training set. Overall, the highest score
reported by the proposed models (LSTM/BPE) has been +4.13
higher than the highest score achieved by the baselines, setting
a new state-of-the-art accuracy also for this dataset.

Finally, Table IV shows the results over the De-En dataset
that we categorize as high-resource (5M+ sentence pairs). On
this dataset both ReWE and ReWE+ReSE have been able to
improve the results of the baselines, although the margins of
improvement have been smaller than for the other language
pairs. In the case of the transformer/BPE, the baseline itself
has achieved a very high score of 37.10 BLEU pp, and the best
proposed regularization combination (ReWE + ReSE SBERT)
has only improved it by 0.08 pp. This shows that when the
training data are abundant, the proposed regularizers may not
be beneficial. To probe this further, we have repeated these
experiments by training the models over subsets of the training
set of increasing size (200K, 500K, 1M, and 2M sentence
pairs). Fig. 3 shows the BLEU scores achieved by the baseline
and the regularized models for the different training data
sizes. The plot clearly shows that the performance margin
increases as the training data size decreases, as expected from
a regularized model.

On the whole, we have observed no single “best” among the
different sentence encoders, as their relative performance has
varied across the different datasets. We hypothesize that the
sentence embedders have better performance in more general
translation domains such as TED talks (Cs-En dataset) and
news (De-En dataset) than in specialized domains such as IT
(Eu-En dataset). In any case, the choice of sentence encoder
needs to be addressed as a discrete hyperparameter, selecting
the best encoder based on the performance on the validation
set. As an example, Table V shows the results for the LSTM
model over the En-Fr validation set, where it can be seen that
the best model is the same as the best model over the test
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(a) Normalized training loss at different training steps. (b) BLEU score over the test set, at different training steps.

Fig. 4: Impact of the proposed regularizers: the plots compare a transformer baseline (red dashed line) with a regularized model
using ReWE + ReSESBERT (blue continuous line) on the Cs-En dataset; a) training loss at successive epochs; b) test-set BLEU
scores at the corresponding epochs. The plots show that the regularized model is able to mollify overfitting and surpass the
baseline in test-set performance.

set (Table I). The relative rankings of the other models are
also very similar, showing that the selection of the sentence
encoder using the validation set is a viable approach.

A possible further factor to take into account for model
selection is the model’s training time. As an example, Table
VI shows the time per epoch for each model over the Cs-
En training set. When using ReWE and ReSE with simple
sentence encoders (avgEmbs and maxpoolEmbs), the training
time has barely increased compared to the baselines. However,
when using them with the more complex sentence encoders
(USE and SBERT) the training times have increased consid-
erably, especially with the transformer.

To further illustrate the impact of the proposed regularizers,
Figure 4 compares a transformer baseline and a regularized
model as the training progresses. Figure 4a plots the value
of the training loss at successive training epochs. The plots
show that the training loss of the regularized model decreases
more slowly, possibly indicating that the regularized model is
able to avoid overfitting the training set. In turn, Figure 4b
plots the test-set BLEU scores of the partially-trained models
at corresponding training epochs. The plots show that the
regularized model initially achieves lower BLEU scores, but at
a certain point it manages to surpass the baseline, confirming
its ability to escape overfitting.

For a qualitative evaluation of the translations, Table VII
shows two examples for the Eu-En and Cs-En language pairs.
The examples show that both ReWE alone and ReWE+ReSE
have improved the quality of these translations. For instance,
in the Eu-En example ReWE has correctly translated “File
tab”, and ReWE+ReSE has correctly added “click Create”. In
the Cs-En example, the ReWE model has picked the correct
subject, “they”, yet only the ReWE+ReSE model has correctly
translated “students” and captured the opening phrase “What
was. . . about this. . . ”.

D. Analyzing the Behavior of the Proposed Regularizers

The quantitative experiments have proven that ReWE and
ReSE can act as effective regularizers for low-resource NMT.
Yet, it would be useful to understand how they influence
the training to achieve regularization. To this aim, we have
explored the values of the hidden vectors on the decoder end
(vector sj , Eq. 5). These values are the “feature space” used
by the final classification block (a linear transformation and
a softmax) and can provide insights into the model. For this
reason, we have stored all the sj vectors with their respective
word predictions for the LSTM models on the Cs-En test set.
Then, we have used t-SNE [50] to reduce the dimensionality
of the sj vectors to a visualizable two dimensions. Finally, we
have chosen a particular word (architecture) as the center of
the visualization, and plotted all the vectors within a chosen
neighborhood of this center word (Fig. 5). To avoid cluttering
the figure, we have not superimposed the predicted words to
the vectors, but only used a different color for each distinct
word (this figure should be viewed in color). The center word
in the two subfigures (a: baseline; b: baseline + ReWE) is the
same and from the same source sentence, so the visualized
regions can be compared. The visualizations also display
all other predicted instances of word architecture within the
neighborhood.

These visualizations show two interesting behaviors: 1)
from eye judgment, the points predicted by the ReWE model
seem more uniformly spread out; 2) instances of the same
words have sj vectors that are close to each other. For instance,
several instances of word architecture are close to each other
in Fig. 5b while no other instance other than the reference
appears in Fig. 5b. The overall observation is that the ReWE
regularizer leads to a vector space that is easier to discriminate
(i.e., find class boundaries for), facilitating the final word
prediction. In order to confirm this observation, we have also
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(a) Baseline

(b) Baseline + ReWE

Fig. 5: Visualization of the sj vectors from the decoder for a subset of the Cs-En test set. Please refer to Section V-D for
explanations. This figure should be viewed in color.

computed various clustering indexes over the clusters formed
by the vectors with identical predicted word. As indexes,
we have used the silhouette and Davies-Bouldin indexes that
are two well-known unsupervised metrics for clustering. The
silhouette index ranges from -1 to +1, where values closer
to 1 mean that the clusters are compact and well separated.
The Davies-Bouldin index is an unbounded nonnegative value,
with values closer to 0 meaning better clustering. Table VIII
shows the values of these clustering indexes over the Cs-En
test set. As the table shows, the models with ReWE and
ReWE+ReSE have reported the best values. This confirms

that applying these regularizers has a positive impact on the
decoder’s hidden space, ultimately justifying the increase in
translation accuracy.

For further exploration, we have created another visualiza-
tion of the sj vectors and their predictions over a smaller
neighborhood (Fig. 6). The same word (architecture) has been
used as the center word of the plot. Then, we have “vibrated”
each of the sj vector by small random increments (uniformly
in interval [0.05, 8]) in each of their dimensions, creating
several new synthetic instances of s vectors which are very
close to the original ones. All these synthetic vectors have



11

TABLE VII: Translation examples. Example 1: Eu-En; Ex-
ample 2: Cs-En. For these examples, we have used the best
performing sentence embedder over the validation set (i.e.,
maxpoolEmbs for Eu-En and SBERT for Cs-En).

Example 1:
Src: Sakatu Fitxategia fitxa Oihal

atzeko ikuspegia atzitzeko ;
sakatu Berria . Hautatu txantiloia
eta sakatu Sortu hautatutako
txantiloia erabiltzeko .

Ref: Click the File tab to access Back-
stage view , select New . Select a
template and click Create to use
the selected template .

Baseline: Click the default tab of the tab
that you want to open the tab tab
. Select the template and select
the selected template .

Baseline + ReWE: Press the File tab to access the
view view ; click New . Select the
template and click Add to create
the selected template .

Baseline + ReWE + ReSE: Press the File tab to access the
chart view ; press New . Select
the template and click Create to
use the selected template .

Example 2:
Src: Na tomto projektu bylo skvělé ,

že žáci viděli lokálnı́ problém a
bum – okamžitě se s nı́m snažı́
vyrovnat .

Ref: What was really cool about this
project was that the students saw
a local problem , and boom – they
are trying to immediately address
it .

Baseline: In this project , it was great that
the kids had seen local problems
and boom – immediately he’s try-
ing to deal with him .

Baseline + ReWE: In this project , it was great that
the kids saw a local issue , and
boom – they immediately try to
deal with it .

Baseline + ReWE + ReSE: What was great about this project
was that the students saw a local
problem, and boom , they’re try-
ing to deal with him .

TABLE VIII: Clustering indexes of the LSTM models over
the Cs-En test set. The reported results are the average of 5
independent runs.

Model Sillhouette Davies-Bouldin
LSTM -0.19 1.87
+ ReWE (λ = 2) -0.17 1.80
+ ReWE (λ = 2) + ReSE (β = 2) -0.16 1.80

then been classified with the trained NMT models to obtain
the corresponding word predictions. Finally, we have used t-
SNE to reduce the dimensionality to 2d, and visualized all
the vectors and their predictions in a small neighborhood
(±10 units) around the center word. Fig. 6 shows that, with
the ReWE model, all the vectors surrounding the center
word have consistently predicted the same word (architecture).
Conversely, with the baseline, the surrounding points have pre-
dicted different words (power, force, world). This is additional

(a) Baseline

(b) Baseline + ReWE

Fig. 6: Visualization of the sj vectors in a smaller neighbor-
hood of the center word.

evidence that the hidden s space is evened out by the use of
the proposed regularizers.

E. Experiments with Unsupervised NMT

As a last experiment, we have employed the proposed reg-
ularizers for an unsupervised NMT task. For this experiment,
we have used the open-source model provided by Lample et al.
[34]10 which is currently the state of the art for unsupervised
NMT, and also adopted its default hyperparameters and pre-
processing steps which include 4-layer transformers for the
encoder and both decoders (source and target languages), and
BPE subword learning. The experiments have been performed
by training the models with the monolingual data of the
WMT14 English-French training set, and by testing them on
the test set in both language directions (En-Fr and Fr-En).

As described in Section II-C, an unsupervised NMT model
includes two decoders to be able to translate into both lan-
guages. The model is trained by iterating over two alternate
steps: 1) training using the decoders as monolingual, de-
noising language models (e.g., En-En, Fr-Fr), and 2) training
using back-translations (e.g., En-Fr-En, Fr-En-Fr). This means
that an unsupervised NMT model uses a total of four different
objective functions across the two steps and the two translation
directions. Potentially, various regularizer combinations could

10UnsupervisedMT: https://github.com/facebookresearch/UnsupervisedMT

https://github.com/facebookresearch/UnsupervisedMT
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(a) En-Fr (b) Fr-En

Fig. 7: BLEU scores over the test set. The reported results are the average of 5 independent runs. The red dashed line represents
the baseline model and the blue continuous line represents the baseline + ReWE model.

be used with each of them. However, for simplicity we have
decided to limit this experiment to only the ReWE regularizer
and the back-translation step, in both directions. We plan
to experiment with the use of ReSE in future work. The
balancing hyperparameter, λ, was tuned over the validation
set and eventually set to 0.2.

Fig. 7 shows the results from the different models trained
with increasing amounts of monolingual data (50K, 500K,
1M, 2M, 5M and 10M sentences in each language). The
model trained using ReWE has been able to consistently
outperform the baseline in both language directions. The trend
we had observed in the supervised case has also applied to
these experiments: the performance margin has been larger
for smaller training data sizes, and has reduced as the training
size increased. For example, in the En-Fr direction the margin
has only been +0.44 BLEU points when training with 10M
sentences, but has been +1.74 BLEU points when training
with 50K sentences. Again, these results are in line with the
behavior of an effective regularized objective.

VI. CONCLUSION

In this paper, we have presented a regularization approach
for improving the performance of NMT models in low-
resource scenarios. The approach is based on regressing con-
tinuous representations of words and sentences (nicknamed
ReWE and ReSE, respectively) during training to improve
the models’ generalization beyond their parallel training data.
Extensive experiments over three low-resource datasets (89−
220K parallel sentences) and a variable-size dataset (200K-
2M parallel sentences) have shown that both ReWE and
ReWE+ReSE have significantly improved the performance
of the NMT models, for increases in BLEU score of up to
4.13 percentage points over the highest scores obtained by
the non-regularized models, and of up 6.57 percentage points
over a corresponding baseline. To analyze the behavior of

the proposed regularizers, we have also presented a detailed
analysis showing how the regularization impacts the decoder’s
output space, enhancing the clustering of the vectors associated
with unique words. Finally, we have shown that the regularized
models have also outperformed the baselines in an experiment
on unsupervised NMT, where no parallel data are required.
As future work, we plan to explore whether the categorical
and continuous predictions from our model could be jointly
utilized also at inference time to further refine the quality of
the translations.
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NMT adaptation,” in Proc. Fourth Workshop on Neural Generation and
Translation, pp. 43–53, 2020.

[38] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in Proc.
25th Int. Conf. Mach. Learn. (ICML), pp. 1096–1103, 2008.

[39] B. Ondrej, R. Chatterjee, F. Christian, G. Yvette, H. Barry, H. Matthias,
K. Philipp, L. Qun, L. Varvara, M. Christof, et al., “Findings of the
2017 conference on machine translation (WMT17),” in Proceedings of
the Second Conference on Machine Translation, pp. 169–214, 2017.

[40] O. Bojar, C. Federmann, M. Fishel, Y. Graham, B. Haddow, P. Koehn,
and C. Monz, “Findings of the 2018 conference on machine transla-
tion (WMT18),” in Proceedings of the Third Conference on Machine
Translation, pp. 272–303, 2018.

[41] L. Barrault, O. Bojar, M. R. Costa-Jussà, C. Federmann, M. Fishel,
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APPENDIX A
HYPERPARAMETERS

As mentioned in Section V-B, hyperparameter selection as
been performed over the validation set for each model. Tables
IX-XII show the final selected values for each dataset and
model type (i.e., LSTM or transformer) in order to facilitate
the reproducibility of all the results reported in the paper.

TABLE IX: Hyperparameters for the En-Fr dataset.

Hyperparameter LSTM Transformer
encoder Bi-LSTM Transformer
decoder LSTM Transformer
word embedding dim 300 512
hidden layer dim 1024 512
# layers 2 6
global attention mlp general
head count — 8
position encoding — True
dropout 0.1 0.1
label smoothing 0 0.1
batch type sentences tokens
batch size 32 4096
normalization sentences tokens
gradient accumulation 1 4
optimizer Adam Adam
decay method — noam
learning rate 0.0002 2
glorot initialization — True
warmup steps 0 8000
ReWE λ 20 20
ReSE β 100 100

TABLE X: Hyperparameters for the Cs-En dataset.

Hyperparameter LSTM Transformer
encoder Bi-LSTM Transformer
decoder LSTM Transformer
word embedding dim 300 300
hidden layer dim 1024 300
# layers 2 6
global attention mlp general
head count — 6
position encoding — True
dropout 0.1 0.1
label smoothing 0 0.1
batch type sentences tokens
batch size 32 1024
normalization sentences tokens
gradient accumulation 1 4
optimizer Adam Adam
decay method — noam
learning rate 0.0002 2
glorot initialization — True
warmup steps 0 8000
ReWE λ 20 20
ReSE β 100 100

TABLE XI: Hyperparameters for the Eu-En dataset.

Hyperparameter LSTM Transformer
encoder Bi-LSTM Transformer
decoder LSTM Transformer
word embedding dim 300 300
hidden layer dim 1024 300
# layers 2 6
global attention mlp general
head count — 6
position encoding — True
dropout 0.1 0.1
label smoothing 0 0.1
batch type sentences tokens
batch size 32 256
normalization sentences tokens
gradient accumulation 1 4
optimizer Adam Adam
decay method — noam
learning rate 0.0002 2
glorot initialization — True
warmup steps 0 8000
ReWE λ 20 20
ReSE β 100 100

TABLE XII: Hyperparameters for the De-En dataset.

Hyperparameter LSTM Transformer
encoder Bi-LSTM Transformer
decoder LSTM Transformer
word embedding dim 300 300
hidden layer dim 1024 300
# layers 2 6
global attention mlp general
head count — 6
position encoding — True
dropout 0.1 0.1
label smoothing 0 0.1
batch type sentences tokens
batch size 32 1024
normalization sentences tokens
gradient accumulation 1 4
optimizer Adam Adam
decay method — noam
learning rate 0.0002 2
glorot initialization — True
warmup steps 0 8000
ReWE λ 2 2
ReSE β 2 2
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