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We initiate the study of tradeoffs between exploration and exploitation in
online learning of properties of quantum states. Given sequential oracle access
to an unknown quantum state, in each round, we are tasked to choose an ob-
servable from a set of actions aiming to maximize its expectation value on the
state (the reward). Information gained about the unknown state from previous
rounds can be used to gradually improve the choice of action, thus reducing
the gap between the reward and the maximal reward attainable with the given
action set (the regret). We provide various information-theoretic lower bounds
on the cumulative regret that an optimal learner must incur, and show that
it scales at least as the square root of the number of rounds played. We also
investigate the dependence of the cumulative regret on the number of avail-
able actions and the dimension of the underlying space. Moreover, we exhibit
strategies that are optimal for bandits with a finite number of arms and general
mixed states.

1 Introduction
Multi-armed bandits have been studied for nearly a century and it is nowadays a very
active research field, in terms of both theory and applications [1, 2, 3, 4]. The multi-
armed bandit problem is a simple model of decision making with uncertainty that lies
in the class of classical reinforcement learning problems. Given a set of arms, a learner
interacts sequentially with these arms sampling a reward at each round and the objective of
the learner is to identify the arm with largest expected reward while maximizing the total
cumulative reward. The problem that the learner faces is a trade-off between exploration
and exploitation: one wants to explore all the arms to identify the best one but also wants
to exploit those arms that give the best rewards. Bandit algorithms are online, which
means that the strategy is adaptive at each round and is learned from previously observed
events. This is one of the reasons why nowadays bandit algorithms are applied to online
services such as advertisement recommendation [5] or dynamical pricing [6].

The problem was introduced by Thompson in 1933 [7] where the original motivation
was to study medical trials. The problem was to decide which treatment to use in the
next patient given a set of different treatments for a certain disease. The mathematical
formalization and popularization of the field is due to the mathematician and statistician
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Robbins [8], who described the problem as a set of arms such that the reward associated to
each arm follows an independent unknown probability distribution. This model is usually
referred to as multi-armed stochastic bandits.

The main technique to solve this problem is based on upper confidence bounds that
were introduced by Lai and Robbins [9]. There are many different models of bandits,
including adversarial models, but the main setting that we are interested for our work
are the multi-armed stochastic linear bandits, first considered by Aurer in [10]. In this
model, the arms can be viewed as vectors and the expected reward of each arm is given by
the inner product of the vector associated to the arm and an unknown vector that is the
same for all arms. Since the literature of bandits is very extensive we refer to the book by
Lattimore and Szepesvári [1] for a comprehensive review of bandit algorithms.

Quantum algorithms for the classical multi-armed stochastic bandit problem have been
proposed recently [11, 12]. A quantum version of the Hedging algorithm, which is related
to the adversarial bandit model, has also been studied [13]. These algorithms investigate
potential improvements on the respective classical bandit algorithms when a quantum
learner is given superposition access to the oracle, i.e., it can probe rewards for several
arms in superposition.

Our work treats multi-armed bandits from a different perspective, focusing instead
on the learning theory for quantum states. In our model, which we call the multi-armed
quantum bandit model, the arms correspond to different observables or measurements and
the corresponding reward is distributed according to Born’s rule for these measurements on
an unknown quantum state. We are interested in the optimal tradeoff between exploration
(i.e. learning more about the unknown quantum state) and exploitation (i.e. using acquired
information about the unknown state to choose the most rewarding but not necessarily
most informative measurement). More precisely, we consider a learner that at each round
has access to a copy of an unknown quantum state ρ (the environment) and has to choose
an observable from a given set A (the action set) in order to perform a measurement and
receive a reward. The reward is sampled from the probability distribution associated with
the measurement of ρ using the chosen observable. The figure of merit that we study
is the cumulative expected regret, the sum over all rounds of the difference between the
maximal expected reward over A and the expected actual reward associated to the chosen
observable at each round. If the actions set is comprised of all rank-1 projectors, we arrive
at the problem of finding the maximal eigenvector of the unknown state. The detailed
model is introduced in Section 2.

This notion of regret has a natural interpretation in some physical settings. Consider
for example a sparse source of single photons with fixed but unknown polarisation (i.e., the
reference frame is unknown). In order to learn the unknown reference frame we can perform
a phase shift and apply a polarisation filter, adjusting the phase (the action) until the
photons consistently pass the filter (the reward). The regret would then be proportional
to the energy absorbed in the filter during our learning process. As mentioned above,
classical bandit algorithms find applications in recommendation systems, and it is a valid
question whether quantum bandit models could be used similarly for recommendation
systems for quantum devices. However, we think that our present model does not capture
any interesting recommendation tasks, and that a further generalisation of our model to
allow for contextual information would be necessary. This is outside the scope of the
current work.

In this work we give lower and upper bounds on the minimal regret attainable by any
strategy in terms of the number of rounds, n, the number of arms, k, and the dimension of
the Hilbert space, d, for different sets of environments and actions. We discuss our results
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in detail in Section 3 and give the proofs in Sections 5, 6 and 7. For the upper bounds
in Section 7 we use an algorithmic approach, i.e, we try to find an algorithm that has
low regret for all states and perform the regret analysis. Here our main technique is to
apply known classical algorithms using a vector representation of our problem (see Lemma
16). For the lower bounds in Sections 5 and 6 we use information theoretical techniques,
focusing on finding environments for which all strategies perform “poorly”.

It is worth stressing here that our model falls within the class of (classical) multi-armed
stochastic linear bandits. This is not surprising: most problems in quantum tomography,
metrology or learning can be converted to a classical problem with additional structure,
since, in the end, we are interested in learning a matrix of complex numbers constituting
the density operator. The question of interest then is whether the structure imposed by
the quantum problem is helpful to find more efficient algorithms. Indeed, the fact that
our model is a subset of a more general class of problems for which classical algorithms
are known does not imply that these algorithms yield the smallest possible regret for the
subset of problems we consider. In fact, our results show that the classical algorithms are
optimal in most cases, although we identify at least one setting (learning pure states using
the set of all rank-1 projectors) where we expect bespoke algorithms to perform better.
Moreover, while inspired by lower bounds on the classical multi-armed stochastic bandit
problem, our bounds require novel constructions that are specific to the quantum state
space. On the one hand, due to correlations in the reward distribution associated to each
arm (observable), the standard multi-armed stochastic bandit lower bounds proofs do not
apply to our case. On the other hand, lower bounds for linear stochastic bandits have
been studied only for specific action sets like the hypercube or unit sphere (see [14] and
[15]) and there is no combination of action sets and environments in the classical proofs
that can be mapped to our particular class of problems. For that reason, known classical
regret lower bounds do not apply to our case.

Beyond bandits, there are other reinforcement learning frameworks where one can
model more complex environments where actions have long-term consequences. One ex-
ample are Markov decision processes (MDPs) where the learner interacts with the en-
vironment by choosing an action, receiving a reward, and observing a state (or partial
information). The reward received by the learner not only depends on the action, it also
depends on the state and this state also evolves depending on the action taken by the
learner. MDPs have been generalized to the quantum setting (see [16, 17] where the un-
derlying states are quantum states and the evolution and rewards are generated following
quantum processes. Our model fits as a restricted version of [17] since actions do not
prompt state transformations in our model. The model presented in [17] also involves
measurements providing additional partial information. However, our model, being more
specific, allows us to reach more detailed results including lower and upper bounds for the
cumulative regret.

Finally, we note that one can try to apply techniques from quantum state tomogra-
phy [18] or shadow tomography [19] in this setting using the observables of the action set
in order to estimate the unknown quantum state. If we learn the unknown quantum state
(or some approximation thereof) we can choose the best action in order to minimize the
regret. However this strategy is not optimal: quantum state tomography algorithms can
be thought of as pure exploration strategies since the algorithm only cares about choosing
the action that helps us to learn most about the unknown quantum state, which is not
necessarily the action that minimizes the regret. In particular, our setting is thus different
from the setting of online learning of quantum states [20]. There, the learner is tasked
to produce an estimate ωt of ρ in each round and the regret is related to the quality of
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Figure 1: Scheme for the multi-armed quantum bandit setting.

this estimate. The main difference with our model is that we do not require our policy
to produce an estimate of the unknown quantum state, just to choose an observable with
large expectation value on the unknown quantum state.

2 Multi-armed quantum bandits
We assume familiarity with basic concepts and notations in probability theory and quan-
tum information theory. Here we introduce notations needed to set up the model and
present our results. Some more concepts will be introduced in the sections of proofs. We
denote the natural logarithm as log. We define [n] := {1, 2, . . . , n} for n ∈ N. We restrict
our attention to finite-dimensional quantum systems. Let Sd = {ρ ∈ Cd×d : ρ ≥ 0∧Tr(ρ) =
1} denote the set of positive semi-definite operators with unit trace, i.e quantum states
that act on a d-dimensional Hilbert space Cd. Pure states are rank-1 projectors in the set
of states, given by S∗d = {ρ ∈ Sd : ρ2 = ρ}. Moreover, observables are Hermitian operators
acting on Cd, collected in the set Od = {O ∈ Cd×d : O† = O}. An observable O is called
traceless if Tr(O) = 0 and it is called sub-normalised if ‖O‖ ≤ 1, where ‖ · ‖ denotes
the operator norm. For two quantum states ρ, σ ∈ Sd we write their trace distance as
1
2‖ρ− σ‖1 where ‖X‖1 = Tr |X| is the Schatten 1-norm.

We will consider bandits with a finite set of actions, which we call discrete bandits,
and bandits with a general, potentially continuous, set of actions.

2.1 Discrete bandits
Definition 1 (Multi-armed quantum bandit). Let d ∈ N. A d-dimensional discrete multi-
armed quantum bandit is given by a finite set A ⊆ Od of observables that we call the action
set. The bandit is in an environment, a quantum state ρ ∈ Γ, that is unknown but taken
from a set of potential environments Γ ⊆ Sd. The bandit problem is fully characterized
by the tuple (A,Γ).

As potential environments in this work we consider either general states or only pure
states. We will consider discrete bandits with (almost) arbitrary action sets and bandits
with structured action sets, for example given by Pauli measurements.

Let us now fix a bandit with unknown state ρ and action set A = {O1, O2, . . . , Ok} of
cardinality k = |A|. For each observable indexed by a ∈ [k], we also introduce its spectral
decomposition,

Oa =
da∑
i=1

λa,iΠa,i, (1)
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where λa,i ∈ R denote the da ≤ d distinct eigenvalues of Oa and Πa,i are the orthog-
onal projectors on the respective eigenspaces. We also introduce the spectrum Λa =
{λa,1, . . . , λa,da} of the observable Oa.

With this in hand we can now describe the learning process (see also Figure 1). In
each round t ∈ N, the learner (probabilistically or deterministically) chooses an action
At ∈ [k] and measures the observable OAt on a copy of the unknown quantum state
ρ. The result of the measurement is the reward Xt ∈ ΛAt . More specifically, given the
spectral decompositions in (1), the conditional probability distribution of the reward Xt

is given by Born’s rule:

Pr[Xt = x|At = a] = Pρ(x|a) =
{

Tr(ρΠa,i) if x = λa,i

0 else
. (2)

for any a ∈ [k]. The probability is thus nonzero only if x ∈ Λa. Note in particular that
the conditional expectation of Xt is given by Eρ[Xt|At] = Tr(ρOAt). The learner’s choice
of action is determined by a policy.

Definition 2. A policy (or algorithm) for a multi-armed quantum bandit is a set of
(conditional) probability distributions π = {πt}t∈N on the action index set [k] of the form

πt(·|a1, x1, ..., at−1, xt−1), (3)

defined for all valid combinations of actions and rewards (a1, x1), . . . , (at−1, xt−1) up to
time t− 1.

Then, if we run the policy π on the state ρ over n ∈ N rounds, we can define a joint
probability distribution over the set of actions and rewards as

Pρ,π(a1, x1, ..., an, xn) :=
n∏
t=1

πt(at|a1, x1, ..., at−1, xt−1)Pρ(xt|at). (4)

This distribution fully describes the random learning process.

2.2 Regret
The objective of the learner is to find the action (observable) that in expectation maximizes
the reward. This is equivalent to minimizing the expected cumulative regret.

Definition 3. Given a multi-armed quantum bandit problem (A,Γ), a state ρ ∈ Γ, a
policy π and n ∈ N, we define the expected cumulative regret as

Rn(A, ρ, π) :=
n∑
t=1

max
O∈A

Tr(ρO)− Eρ,π[Xt] , (5)

where the expectation value is taken with respect to the probability density (4).

We note that Eρ,π[Xt] = Tr(ρOAt). We define the sub-optimality gap as,

∆a := max
O∈A

Tr(ρO)− Tr(ρOa), (6)

for a ∈ [k]. The sub-optimality gap represents the relative loss between the optimal
measurement and the measurement induced by Oa ∈ A. Note that ∆a ≥ 0 and the
equality is only achieved by the optimal observables (it does not need to be unique). In
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order to analyse the expected cumulative regret it is often more convenient to work with
the equivalent expression given by

Rn(A, ρ, π) =
k∑
a=1

n∑
t=1

Eρ,π[(max
O∈A

Tr(ρO)−Xt)I{At = a}] (7)

=
k∑
a=1

n∑
t=1

∆a Eρ,π[I{At = a}] (8)

=
k∑
a=1

∆a Eρ,π[Ta(n)] , (9)

where Ta(n) = ∑n
t=1 I{At = a} is a random variable that tells us how many times we have

picked the action a over n rounds.
For a fixed policy π the cumulative expected regret depends on ρ. Thus, in order to

determine how well a policy performs for a given set Γ of environments we need to find a
state-independent metrics.

Definition 4. Given a multi-armed quantum bandit problem (A,Γ), a policy π and n ∈ N,
we define the worst-case regret as

Rn(A,Γ, π) = sup
ρ∈Γ

Rn(A, ρ, π). (10)

Moreover, the minimax regret is defined as,

Rn(A,Γ) = inf
π
Rn(A,Γ, π), (11)

where the infimum goes over all possible policies of the form in Definition 2.

The minimax regret is a measure of how difficult the multi-armed quantum bandit
problem is and we will attempt to find upper and lower bounds on Rn(A,Γ) as a function
of n and the Hilbert space dimension. A small value of Rn(A,Γ) means that the problem
is less difficult to learn.

2.3 General bandits
Often it is natural to allow a continuous set of possible observables, for example all rank-1
projectors. This leads us to a more general definition of multi-armed quantum bandits
that works for any measurable space of actions.

We will only mention the changes in the formalism in comparison to the discrete case,
and build on the notions introduced above.

Definition 5. Let d ∈ N. A general d-dimensional multi-armed quantum bandit is given
by a measurable space (A,Σ), where Σ is a σ-algebra of subsets of A. A policy for such a
bandit is given by conditional probability measures πt(·|a1, x1, . . . , at−1, xt−1) : Σ→ [0, 1].

The reward distribution Pρ(x|a) conditioned on playing arm a ∈ A when the environ-
ment state is ρ is still given by Born’s rule in (2) and, importantly, remains discrete. To
simplify our presentation we in the following also assume that the spectra of the observ-
ables satisfy Λa ⊂ X for some finite set X , i.e., we only allow for a discrete set of possible
rewards independently of the choice of action. This is for example trivially satisfied for
the case of rank-1 projectors, where X = {0, 1} is trivial. We also need to assume that
the function a 7→ Pρ(x|a) is Σ-measurable for all environment states ρ and x ∈ X .
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The environment state ρ and the policy π define the probability measure Pρ,π : (Σ ×
X )×n → [0, 1] through

Pρ,π(A1, x1, . . . , An, xn)

=
∫
A1
· · ·
∫
An
Pρ(xn|an)πn(dan|a1, x1, . . . , an−1, xn−1) · · ·Pρ(x1|a1)π1(da1) (12)

This map will be treated as a measure although it is not strictly speaking a set function.
However, this should cause no confusion.

In order to present a formula for regret, we need the continuous counterpart for the
function a 7→ Eρ,π

(
Ta(n)

)
of the discrete case. To this end, we define, for all t = 1, . . . , n,

the margins P
(t)
ρ,π : Σ×X → [0, 1] through

P (t)
ρ,π(A, x) =

∑
x1∈X

· · ·
∑

xt−1∈X

∑
xt+1∈X

· · ·
∑
xn∈X

Pρ,π(A, x1, . . . ,A, xt−1, A, x,A, xt+1, . . . ,A, xn).

(13)

We now define the measure γρ,π : Σ→ [0, n] through

γρ,π(A) =
n∑
t=1

∑
x∈X

P (t)
ρ,π(A, x). (14)

We denote by Eρ|a the expectation value of the conditional distribution x 7→ Pρ(x|a) and
by ∆a the supremum of the function b 7→ Eρ|b −Eρ|a for any arm a ∈ A; this is naturally
the continuous analogue of the sub-optimality gap. Note that, in all the cases we study,
A is a compact topological space, Σ is the associated Borel σ-algebra, and a 7→ Eρ|a
is continuous for every environment ρ, so this supremum (which is also a maximum)
technically makes sense. Using the measure γρ,π and the above sub-optimality gap, we
may define the expected cumulative regret analogously to the discrete case:

Rn(ρ, π,A) :=
n∑
t=1

Eρ,π(∆at) (15)

=
n∑
t=1

∑
x1∈X

· · ·
∑
xn∈X

∫
An

∆at Pρ,π(da1, x1, . . . , dan, xn) (16)

=
∫
A

∆a dγρ,π(a). (17)

Note that Equation (15) implies that, for the optimal strategy which always plays the best
arm, the regret vanishes. The worst-case and minimax regrets are defined in the obvious
way.

A generalisation of these definitions to environments comprised of states on infinite-
dimensional Hilbert spaces is straight-forward, but outside the scope of this work. Espe-
cially, in the infinite-dimensional setting, it is natural that the reward set is also continuous.

3 Main results and discussion
We present our main results of lower and upper bounds on the minimax regret for different
environments and action sets. The results are summarized in Table 1.
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Discrete Continuous
Arm-limited Dimension-limited (all rank-1 projectors)

Γ = Sd

Rn(A,Γ) = Ω(
√
kn) (k < d2) Rn(A,Γ) = Ω (d

√
n) Rn(A,Γ) = Ω (

√
n)

Result 2 Result 2 Result 4

Rn(A,Γ) = Õ(
√
kn) Rn(A,Γ) = Õ (d

√
n) Rn(A,Γ) = Õ(d2√n)

Result 5

Γ = S∗d

Result 6 Result 6 Rn(A,Γ) = Õ(
√
n), (d = 2)

Result 7
Rn(A,Γ) = Ω (

√
n) (d = 2, k = 3) Rn(A,Γ) =?

Result 3

Table 1: Scaling of the minimax regret in terms of the number of rounds, n, dimension of the Hilbert
space, d, and number of actions, k, for discrete bandits. We study general state environments, Sd,
and pure-states environments, S∗d . For discrete actions sets we differentiate between arm-limited (the
number of arms is smaller than the degrees of freedom in the quantum state space) and dimension-
limited (the number of arms can be arbitrary large).

3.1 Lower bounds
We start giving the lower bounds results, see Section 5 and Section 6 for the detailed
statements and proofs. We first give a generic lower bound that works for (almost) all
discrete models.

Result 1. Consider a discrete multi-armed quantum bandit problem (A,Γ = Sd) for some
d ≥ 2 where the action set A is comprised of traceless observables. Then, the minimax
regret satisfies

Rn(A,Sd) = Ω
(√
n
)

(18)

under some mild regularity conditions.

This is shown as Theorem 10 in Section 5.1. This result shows the dependence of the
lower bound on the number of actions for a large class of action sets with mixed-state
environments. The regularity condition serves to exclude sets where there is a dominant
operator that performs optimally for all states, thus giving a trivial bound on the minimax
regret. We also demand the observables to be traceless to aid the analysis.

For the special case of environments of one qubit quantum states and set of actions
consisting of rank-1 projectors we give an exact form of the minimax regret lower bound.
In this case, the minimax regret can be bounded as

Rn(A,S2) ≥
√

1− c− (1− c)
30

√
n, (19)

where c = Tr(ΠaΠb) for the two observables that minimize the overlap max{Tr(ΠiΠj),
Tr
(
Πi(I −Πj)

)
}. This is proved as Theorem 12 in Section 5.2.

Next we want to study the dependence of the lower bound on the number of available
actions and the dimension for suitable action sets. For this purpose we consider action sets
comprised of strings of Pauli observables (strings of single-qubit Pauli operators, excluding
the overall identity).

Accepted in Quantum 2022-06-02, click title to verify. Published under CC-BY 4.0. 8



Result 2. Consider a discrete multi-armed quantum bandit problem (A,Γ = Sd) for d = 2`
and ` ∈ N, where the action set A is comprised of k distinct length-l strings of single-qubit
Pauli operators. Then the minimax regret can be bounded as

Rn(A,Sd) = Ω
(√

(k − 1)n
)
. (20)

Note in particular that we can have d2 − 1 such strings; thus, we get a lower bound of
Rn(A,Sd) = Ω

(
d
√
n
)

for the most difficult of this type of quantum bandit problems. This
result is stated as Theorem 13 in Section 5.3. As we will see when we discuss the generic
algorithm, this dependence is optimal.

We also study the specific case of one qubit rank-1 environments and show that even
under these restricted environments the scaling of the regret with the number of rounds
is the same.

Result 3. Consider a discrete multi-armed quantum bandit problem (A,Γ = S∗2 ), where
the action set A is comprised of the one qubit Pauli observables. Then the minimax regret
can be bounded as

Rn(A,S∗2 ) = Ω
(√
n
)
. (21)

This result is stated as Theorem 14 in Section 5.4.

Now we move to general bandits with continuous action sets. In this case it is actually
much more difficult to show lower bounds. One reason is that the sub-optimality gap is
now not bounded away from zero when we choose a sub-optimal observable. We show
that the scaling in the number of rounds is still the same also in this case.

Result 4. Consider a general multi-armed quantum bandit problem (A,Γ = Sd) where the
action set A consists of all rank-1 projectors in d dimensions. Then, the minimax regret
can be bounded as,

Rn(A,Sd) = Ω(
√
n). (22)

This result is shown in Theorem 15 in Section 6.1. We would expect that the minimax
regret necessarily also scales with the dimension, but we currently cannot show this. (See
the discussion in Sections 6.1 and 8.)

3.2 Upper bounds
In order to provide upper bounds for the minimax regret we explore algorithms and analyse
the regret. For the general case we adapt one of the main algorithms for linear stochastic
bandits called LinUCB to our quantum setting, which leads to the following result.

Result 5. For any general multi-armed quantum bandit problem (A,Γ) with Γ = Sd or
Γ = S∗d , there exists a policy π such that the worst-case regret can be bounded as

Rn(A,Γ, π) = O
(
d2√n logn

)
. (23)

We give all the details in Section 7.1. Note that the scaling in terms of the numbers
of rounds n is quasi-optimal since it matches the previous lower bound up to logarithmic
terms. However there is a gap in the dimensional dependence in comparison to the lower
bound Ω(

√
n) of Results 1 and 4 or the lower bound Ω(d

√
n) that we established for Pauli

observables. The gap for Pauli observables can be closed if we consider a more generic
algorithm called UCB that can be applied to any multi-armed stochastic bandit with a
discrete number of arms, and thus can also treat linear bandits.
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Result 6. For any discrete multi-armed quantum bandit problem (A,Γ) with Γ = Sd or
Γ = S∗d such that k = |A|, there exist policies π1, π2 such that the worst-case regret can be
bounded as

Rn(A,Sd, π1) = O
(√

kn
)
, Rn(A,Sd, π2) = O

(
d
√
n log(nk)

)
. (24)

The details for the above results can be found in Section 7.2.

Finally, we consider potential environments that contain all pure states in S∗d , again
with an action set A containing all rank-1 projectors. For this case, the cumulative regret
can be expressed as, Rn(A, ρ, π) = ∑n

t=1 Eρ,π(1
2‖ρ − ΠAt‖1)2 where ρ = |ψ〉〈ψ| is the

unknown pure quantum state and ΠAt ∈ A is a rank-1 projector selected at time step t.
This regret now has a resemblance with the regret in online learning of quantum states
since it is a natural loss function for our estimate ΠAt of the state ρ. However, the
important difference is that in online learning the state estimate is provided separately
from the choice of the next measurement, which is often chosen at random.

We are currently unable to provide a non-trivial lower bound on Rn(A,S∗d), and pose
this as an open question. To get an upper bound we propose a policy that is based on a
explore-then-commit strategy (see [1][Chapter 6)] ) where the exploration is done using a
quantum state tomography algorithm. Using this policy we can show the following result.

Result 7. For any general multi-armed quantum bandit problem (A,Γ = S∗2 ) there exists
a policy π such that the worst-case regret can be bounded as

Rn(A,Γ, π) = O
(√
n logn

)
. (25)

We will see in Section 7.3 that this policy is “simple” in the sense that it is not very
adaptive, suggesting room for improvements. Nevertheless it achieves the same type of
scaling in the number of rounds that Result 5.

4 Bretagnolle-Huber inequality and divergence decomposition lemma
We will need to introduce some additional notation. For two probability measures P,Q
defined on the same probability space (Ω,Σ) we may introduce a (probability) measure
µ that is dominating P and Q and define the Radon–Nikodym derivatives p = dP

dµ and

q = dQ
dµ . The choice of µ is arbitrary for the following definitions. We define the Kullback–

Leibler divergence as

D(P‖Q) :=
∫
p(log p− log q) dµ (26)

where we use the convention that 0 log 0 = 0 and D(P‖Q) = ∞ whenever Q does not
dominate P . We also define the (squared) Bhattacharyya coefficient as

F (P,Q) =
(∫ √

pq dµ

)2
. (27)

For two quantum states ρ, σ ∈ Sd we denote their quantum relative entropy as D(ρ‖σ) =
Tr(ρ log ρ) − Tr(ρ log σ) if supp(ρ) ⊆ supp(σ) and D(ρ‖σ) = ∞ otherwise. Their fidelity
is defined as F (ρ, σ) = (Tr |√ρ

√
σ|)2.

In this section we present some important technical results which we need in the
subsequent proofs in order to prove the lower bounds summed up in the preceding section.
One of the technical tools that we will use in order to bound the regret is the following
lemma due to Bertagnolle and Huber [21].
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Lemma 6 (Bretagnolle–Huber inequality). Let P and Q be probability measures on the
same measurable space (Ω,Σ), and let A ∈ Σ be an arbitrary event. Then,

P (A) +Q(Ac) ≥ 1
2 exp(−D(P‖Q)), (28)

where Ac = Ω\A is the complement of A and D(P‖Q) is the Kullback–Leibler divergence.

We will use also a stronger bound that replaces D(P‖Q) with the Rényi divergence of
order α = 1

2 , defined as

D 1
2
(P‖Q) = − logF (P,Q). (29)

We use the proof given in [1] for the Bretagnolle-Huber inequality in order to prove the
alternative version.

Lemma 7. Let P and Q be probability measures on the same measurable space (Ω,Σ),
and let A ∈ Σ be an arbitrary event with Ac its complement. Then,

P (A) +Q(Ac) ≥ 1
2 exp(−D 1

2
(P‖Q)) = 1

2F (P,Q). (30)

Proof. Let us define the probability measure µ := 1
2(P +Q) which dominates both P and

Q and denote dP/dµ =: p and dQ/dµ =: q. Note that,

P (A) +Q(Ac) =
∫
A
p dµ+

∫
AC

q dµ ≥
∫
A

min{p, q}dµ+
∫
AC

min{p, q} dµ (31)

=
∫

min{p, q}dµ. (32)

In order to find a lower bound on this expression we use the Cauchy–Schwarz inequality
to show that

1
2

(∫ √
pq dµ

)2
= 1

2

(∫ √
max{p, q}min{p, q} dµ

)2
(33)

≤ 1
2

(∫
max{p, q} dµ

)(∫
min{p, q} dµ

)
≤
∫

min{p, q}dµ, (34)

where in the final step we used that
∫

max{p, q}dµ ≤
∫

(p+ q)dµ = 2.

The other main result that we will need allows us to decompose the divergence com-
puted for two joint distribution that result from the same policy applied to two different
quantum states.

Lemma 8 (Divergence decomposition lemma). Let A = {O1, ..., Ok} be a set of actions
and ρ and ρ′ two quantum states defining two multi-armed quantum bandits with action
set A. Fix some policy π and let Pρ,π and Pρ′π be the probability distributions induced by
the n-round interconnection of π and ρ described in (4). Then,

D(Pρ,π‖Pρ′,π) =
k∑
a=1

Eρ,π[Ta(n)]D
(
Pρ(·|a)

∥∥Pρ′(·|a)
)
. (35)

The above lemma and the proof can be found in [1, Chapter 15] for the classical model
of multi-armed stochastic bandits. We have restated the lemma for our quantum case
but this statement and the proof follows trivially from the original one. The proof is
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a consequence of the chain rule for the KL divergence. Unfortunately, there is no such
decomposition for Rényi divergences but we will see in Section 5 that applying the data
processing inequality and bounding it with the sandwiched quantum Rényi divergences
(see, e.g., [22, 23]) between ρ and ρ′ is sufficient to bound the regret.

For this purpose, we present result on the divergences between the probability distri-
butions Pρ,π. Note that this result also holds in the general bandit case where the set
of arms can be continuous. What we mean below by ‘quantum extension’ of a classical
relative entropy D is that, if quantum states ρ and σ commute, then D̃(ρ‖σ) = D(p‖q)
where p and, respectively, q are the vectors of eigenvalues of ρ and, respectively, σ, in a
common eigenbasis.

Lemma 9. Let α ∈ R be such that the classical Rényi relative entropy Dα can be given a
quantum extension (which we denote with the same symbol) which is additive and satisfies
the data processing inequality. For any policy π and environment states ρ, ρ′, we have

Dα(Pρ,π‖Pρ′,π) ≤ nDα(ρ‖ρ′). (36)

In particular, for α = 1/2 we can choose D 1
2
(ρ‖ρ′) = − logF (ρ, ρ′) and, for α = 1, we

can let the quantum extension D ≡ D1 of the Kullback-Leibler relative entropy be the
quantum relative entropy.

Proof. Let us fix the policy π and use the notations and definitions of Section 2.3. We
prove the claim by constructing a positive-operator-valued measure (POVM) E over the
value space C := (Σ×X )n and operating in H⊗n such that

Pσ,π(A1, x1, . . . , An, xn) = Tr
(
σ⊗nE(A1, x1, . . . , An, xn)

)
(37)

for all states σ, and At ∈ Σ and x|t ∈ X for t = 1, . . . , n. Note that, as E is not a set
function, it is, strictly speaking, not a POVM in the same sense as Pσ,π is not a measure.
However, this should cause no confusion. Using the data-processing inequality and the
additivity of Dα, we have, for all states ρ and ρ′,

Dα(Pρ,π‖Pρ′,π) ≤ Dα(ρ⊗n‖ρ′⊗n) = nDα(ρ‖ρ′), (38)

implying Inequality (36). (Note that the POVM E corresponds to a quantum-to-classical
channel which maps σ⊗n into Pσ,π). Thus all that remains is to write down E.

Recall the reward distributions Pσ(x|a) in state σ conditioned by the arm a ∈ A.
Through linear extension, we may define these distributions Pτ (x|a) for any (trace-class)
operators τ ; these are, in general, complex distributions. We may define the POVM E
through

Tr ((τ1 ⊗ · · · ⊗ τn)E(A1, x1, . . . , An, xn))

=
∫
A1
· · ·
∫
An

n∏
t=1

Pτt(xt|at)πt(dat|a1, x1, . . . , at−1, xt−1) (39)

for all (trace-class) operators τt and At ∈ B and xt ∈ X , t = 1, . . . , n. As τ 7→ Pτ (x|a)
is a linear functional and x 7→ Pσ(x|a) is a probability distribution whenever σ is a state,
it easily follows that there are POVMs Pa on X operating in H such that Pτ (x|a) =
Tr (τPa(x)). Equivalently (although slightly less formally) we may now write E in the
differential form

E(da1, x1, . . . , dan, xn) =
n⊗
t=1

πt(dat|a1, x1, . . . , at−1, xt−1)Pat(xt). (40)
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By substituting τt = σ for all t = 1, . . . , n in Equation (39), we immediately see that
Pσ,π(A1, x1 . . . , An, xn) = Tr (σ⊗nE(A1, x1 . . . , An, xn)) for all At ∈ Σ and xt ∈ X , t =
1, . . . , n, and, thus, Equation (37) holds.

5 Regret lower bounds for discrete bandits
In this section we will focus on proving mini-max regret lower bounds for different sets of
environments using information-theoretic tools.

5.1 General case
The first case that we study are quantum multi-armed bandits where the environment can
be any state in a Hilbert space of dimension d, and the action set any set of observables.
We will give a lower bound for the minimax regret, and in order to do it we construct a
quantum state such that for every policy it achieves a non-trivial lower bound. Note that if
we do not impose any condition on the action set the lower bound will vanish. The reason is
that if there is an operator in the action set that dominates over the others, the policy that
always chooses this operator at each round achieves 0 regret. More specifically, suppose
that A = {O1, O2} with O1 ≥ O2. Then we know that independently of the environment
ρ, Tr(ρO1) ≥ Tr(ρO2) and the policy that always chooses O1 will always pick the optimal
action.

So, we will impose a condition on the action set that ensures that there is no such
dominant action/operator. The condition is the following: in the action set A there exist
at least two operators Oa, Ob ∈ A with maximal eigenvectors |ψA〉 , |ψB〉 such that for any
i 6= a and j 6= b

〈ψA|Oa |ψA〉 > 〈ψA|Oi |ψA〉 and 〈ψB|Ob |ψB〉 > 〈ψB|Oj |ψB〉 . (41)

Theorem 10. Let n ∈ N. For any policy π and action set of traceless observables A that
obeys condition (41) there exists an environment ρ ∈ Sd such that,

Rn(A, ρ, π) ≥ CA
√
n, (42)

where CA > 0 is a constant that depends on the action set.

Proof. Choose two operators Oa, Ob ∈ A that obey the condition in (41) with maximal
eigenvectors |ψA〉 and |ψB〉, respectively. Define the following environments:

ρ := 1−∆
d

I + ∆ |ψA〉 〈ψA| , ρ′ := 1−∆
d

I + ∆ |ψB〉 〈ψB| , (43)

for some constant 0 ≤ ∆ ≤ 1
2 to be defined later. Note that ρ and ρ′ ≥ 0. Define

c = min {〈ψA|Oa |ψA〉 − 〈ψA|Oi |ψA〉 , 〈ψB|Ob |ψB〉 − 〈ψB|Oj |ψB〉} , (44)

for i 6= a and j 6= b. Using the expression for the regret in Equation (7), we can compute
the regret for ρ as,

Rn(A, ρ, π) =
k∑
i=1

Eρ,π(Ti(n))∆ (〈ψA|Oa |ψA〉 − 〈ψA|Oi |ψA〉) (45)
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where we have used that the observables are traceless and

max
Oi∈A

Tr(ρOi) = Tr(ρOa) = ∆ 〈ψA|Oa |ψA〉 . (46)

Note that for i = a the sub-optimality gaps Equation (6) are zero. Thus, using Condition
(41) we can bound the regret as,

Rn(A, ρ, π) =
∑
i 6=a

Eρ,π[Ti(n)]∆ (〈ψA|Oa |ψA〉 − 〈ψA|Oi |ψA〉) ≥ ∆c
∑
i 6=a

Eρ,π[Ti(n)]. (47)

Using that n = ∑k
i=1 Eρ,π[Ti(n)] and Markov inequality we have,

Rn(A, ρ, π) ≥ ∆cEρ,π [n− Ta(n)] ≥ cn∆
2 Pρ,π

(
Ta(n) ≤ n

2

)
. (48)

Similarly, the regret for ρ′ can be bounded as,

Rn(A, ρ′, π) ≥ ∆Eρ′,π[Ta(n)] (〈ψB|Ob |ψB〉 − 〈ψB|Oi |ψB〉) , (49)

where we have taken into account just the term with i = a. Using Condition (41) and
Markov inequality we have,

Rn(A, ρ′, π) ≥ cn∆
2 Pρ′,π

(
Ta(n) > n

2

)
. (50)

Thus, combining Equations (48) and (50),

Rn(A, ρ, π) +Rn(A, ρ′, π) ≥ cn∆
2

(
Pρ,π

(
Ta(n) ≤ n

2

)
+ Pρ′,π

(
Ta(n) > n

2

))
. (51)

Using Lemma 6 we can bound the above expression as,

Rn(A, ρ, π) +Rn(A, ρ′, π) ≥ cn∆
4 exp

(
−D(Pρ,π‖Pρ′,π)

)
. (52)

Using Lemma 8 combined with data-processing inequality we can bound the Kullback-
divergence as,

D(Pρ,π‖Pρ′,π) =
k∑
a=1

Eρ,π(Ta(n))D
(
Pρ(·|a)

∥∥Pρ′(·|a)
)
) ≤ D(ρ‖ρ′)

k∑
a=1

Eρ′,π[Ta(n)]

=nD(ρ‖ρ′). (53)

where D(ρ‖ρ′) = Tr ρ log ρ−Tr ρ log ρ′ is the relative entropy between ρ and ρ′. Now define
f(∆) = D(ρ‖ρ′) for the corresponding expressions of ρ and ρ′ and note that f(0) = 0 since
for ∆ = 0, ρ = ρ′ and f ′(0) = 0 using the convexity of the quantum relative entropy. Thus,
using Taylor’s theorem we can express f(∆) as,

f(∆) = ∆2

2 f ′′(χ), (54)

for some χ ∈ [0,∆]. Define,

cf = max f ′′(χ) for χ ∈ [0, 1
2]. (55)
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Note that f ′′(χ) is well defined since the states ρ, ρ′ have full support and then f(χ) is
a smooth function. Thus using that f ′′(χ) ≤ cf for ∆ ∈ [0, 1

2 ] we can plug the above
expression into Equation (53) and using Equation (52) we have,

Rn(A, ρ, π) +Rn(A, ρ′, π) ≥ cn∆
4 exp

(
−n∆2

2 cf

)
. (56)

Finally, if we choose ∆ = 1
2
√
n

,

Rn(A, ρ, π) +Rn(A, ρ′, π) ≥ c

8 exp
(
−1

8cf
)√

n, (57)

and the result follows using 2 max {Rn(A, ρ, π), Rn(A, ρ′, π)} ≥ Rn(A, ρ, π) +Rn(A, ρ′, π).

5.2 Special case: one qubit and rank-1 projectors
Now we study the specific case where the environment belongs to the set of one-qubit
quantum states and the set of actions is a set of rank-1 projectors, i.e A = {Π1, ...,Πk}
where Πi are rank-1 matrices such that Π2

i = Πi. For this case we are able to give the
exact constant of Theorem 10.

Given a quantum state ρ we will use the Bloch state representation,

ρ = I

2 + 1
2r · σ, (58)

where r ∈ R3 is the Bloch vector and σ = (σx, σy, σz) is the Pauli vector. Recall that for
mixed states ‖r‖2 < 1 and for pure states ‖r‖2 = 1. The projectors Πi of the action set
can be written as (58) for some unit vector ri ∈ R3. So, the action set is characterized by
the set of measurement directions Ar = {r1, ..., rk} and the mean of each action is,

Tr (ρΠt) = 1
2 + 1

2r · rt. (59)

In order to prove the main result we will need the computation of the relative entropy
between two quantum states given by the following Lemma.

Lemma 11. Let ρ = I
2 + ∆

2 σx and ρ′ = I
2 + ∆

2 σz be two one-qubit density matrices. Then,
their quantum relative entropy can be computed as,

D(ρ‖ρ′) = ∆
2 log

(1 + ∆
1−∆

)
. (60)

Proof. Let Π+
i ,Π−i be the projectors for the i = x, z Pauli matrix into the subspaces of

eigenvalue +1 and −1 respectively. Then we can express the density matrices as,

ρ = 1 + ∆
2 Π+

x + 1−∆
2 Π−x , ρ′ = 1 + ∆

2 Π+
z + 1−∆

2 Π−z , (61)

where we have used that σi = Π+
i − Π−i . Then using that I = Π+

i + Π−i , Tr(σi) = 0 and
Trσxσz = 0 we can compute the following identity

Tr(Π+
i Π−j ) =

{
1
2 if i 6= j
0 if i = j.

(62)
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Then, using Equations (61) and (62),

Tr ρ log ρ = 1 + ∆
2 log

(1 + ∆
2

)
+ 1−∆

2 log
(1−∆

2

)
, (63)

Tr ρ log ρ′ = 1
2 log

(1 + ∆
2

)
+ 1

2 log
(1−∆

2

)
. (64)

The result follows from the definition of the relative entropy and rearranging the above
terms.

Theorem 12. Let n ∈ N. For any policy π and finite action set of observables A of rank-1
projectors, there exists a 1-qubit environment ρ ∈ S2 such that,

Rn(A, ρ, π) ≥
√

1− c− (1− c)
30

√
n, (65)

where c = Tr(ΠaΠb) and (Πa,Πb) = argminΠi,Πj∈Amax
{

Tr(ΠiΠj),Tr
(
Πi(I −Πj)

)}
.

Note that that
√

1− c ≥ 1 − c since c ∈ [0, 1], and the constant is thus positive and
only vanishes for c ∈ {0, 1}.

Proof. Let Ar = {r1, ..., rk} be the set of vectors associated to the k elements of A. Let
∆ ∈ [0, 1

2 ] be a constant to be chosen later. Pick ra, rb ∈ Ar such that they are the two
directions with smallest inner product, that is

(ra, rb) = argmin
ri,rj∈Ar

|ri · rj | = argmin
Πi,Πj∈A

∣∣Tr(ΠiΠj)− Tr
(
Πi(I −Πj)

)∣∣ (66)

= argmin
Πi,Πj∈A

max
{

Tr(ΠiΠj)− Tr
(
Πi(I −Πj)

)
,Tr

(
Πi(I −Πj)

)
− Tr(ΠiΠj)

}
(67)

= argmin
Πi,Πj∈A

max
{

Tr(ΠiΠj),Tr
(
Πi(I −Πj)

)}
, (68)

where in the last step we used that Tr(ΠiΠj) + Tr
(
Πi(I − Πj)

)
= 1. Since A contains at

least two independent directions, ra, rb determine a plane. Now rotate ra, rb symmetrically
in this plane until we find two orthogonal directions r′a and r′b that obey the following
conditions:

• |r′a| = |r′b| = 1 and r′a · r′b = 0 (unit orthogonal vectors).

• ra · r′a = rb · r′b (symmetrical rotation).

• ra × rb = r′a × r′b (they remain in the same plane).

• maxri∈A r′a · ri = r′a · ra, maxri∈A r′b · ri = r′b · rb (closest directions that obey the
above conditions).

Using the directions r′a and r′b define the following environments ρa, ρb

ρa := I

2 + ∆
2 r′a · σ ρb := I

2 + ∆
2 r′b · σ. (69)
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ra rb
r′a r′b

Figure 2: Scheme for the choice of the vectors r′a and r′b.

Note that ρ ≥ 0 and ρb ≥ 0. In order to calculate the sub-optimality gaps (6) for ρ
and ρb we will use Equation (59) and an orthonormal system of coordinates defined by
the directions Ca,b = {r′a, r′b, r′a × r′b}. Using the above conditions for r′a and r′b we have

∆a
i = Tr(ρΠi) = ∆(p− ria), ∆b

i = Tr(ρbΠb) = ∆(p− rib) for i = 1, ..., k, (70)

where p = ra ·r′a and ria, rib are the first and second coordinates of ri ∈ A in the coordinate
system Ca,b respectively. This last fact is because we defined Ca,b to be a orthonormal set
of coordinates. Note that by the construction of r′a and r′b we have

p = cos
(
π

4 −
θ

2

)
, (71)

where θ is defined via cos θ = ra ·rb. Let Πa,Πb be the projectors associated to ra, rb, then
using the trigonometric identity for cos

(
a
2
)

we have Tr(ΠaΠb) = cos2
(
θ
2

)
. Thus, using

the trigonometric identity for cos(a+ b) we have

p = 1√
2

(√
Tr(ΠaΠb) +

√
1− Tr(ΠaΠb)

)
. (72)

Now define the following subsets of indices of [k],

Na =
{
i : r2

ia ≥
1
2 for ri ∈ Ar

}
NC
a =

{
i : r2

ia <
1
2 for ri ∈ Ar

}
. (73)

Note that this sets are complementary, Na ∩NC
a = ∅ and Na ∪NC

a = [k].
Using the expression for the regret (7) and the sub-optimality gap (70), the regret for

ρ can be bounded as,

Rn(A, ρa, π) = ∆
k∑
i=1

(p− ria)Eρa,π[Ti(n)] (74)

≥ ∆
∑
i∈NCa

(p− ria)Eρa,π[Ti(n)] (75)

≥ ∆
(
p− 1√

2

) ∑
i∈NCa

Eρa,π[Ti(n)], (76)

where we have used that for i ∈ NC
a , we have ria ≤ 1√

2 . Using that n = ∑k
i=1 Eπ,ρa(Ti(n)),

Rn(A, ρa, π) ≥ ∆
(
p− 1√

2

)
Eπ,ρa

n− ∑
i∈Na

Ti(n)

 . (77)
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Applying Markov’s inequality to the above expression we have,

Rn(A, ρa, π) ≥ n∆
2

(
p− 1√

2

)
Pπ,ρa

n− ∑
i∈Na

Ti(n) ≥ n

2

 . (78)

Rearranging all the terms,

Rn(A, ρa, π) ≥ n∆
2

(
p− 1√

2

)
Pπ,ρa

∑
i∈Na

Ti(n) ≤ n

2

 . (79)

In order to bound the regret for ρb note that if i ∈ Na then r2
ib ≤

1
2 since ‖ri‖ = 1. Using

the same tricks as before,

Rn(A, ρb, π) ≥ ∆
∑
i∈Na

(p− rib)Eπ,ρb [Ti(n)] (80)

≥ ∆
(
p− 1√

2

) ∑
i∈Na

Eπ,ρb [Ti(n)]. (81)

Using again Markov’s inequality,

Rn(A, ρb, π) ≥ n∆
2

(
p− 1√

2

)
Pπ,ρb

∑
i∈Na

Ti(n) > n

2

 . (82)

Thus, combining Equations (79) and (82),

Rn(A, ρa, π) +Rn(A, ρb, π) ≥

n∆
2

(
p− 1√

2

)Pπ,ρa
∑
i∈Na

Ti(n) ≤ n

2

+ Pπ,ρb

∑
i∈Na

Ti(n) > n

2

 . (83)

Using Lemma 6 we can bound the above expression as,

Rn(ρa, π,A) +Rn(A, ρb, π) ≥ n∆
4

(
p− 1√

2

)
exp (−D(Pπ,ρa‖Pπ,ρb)) . (84)

Using Lemma 8 combined with data-processing inequality we can bound the Kullback–Leibler
divergence as,

D(Pπ,ρa‖Pπ,ρb) =
k∑
i=1

Eπ,ρa [Ti(n)]D
(
Pρa(·|i)

∥∥Pρb(·|i))) (85)

≤ D(ρa‖ρb)
k∑
i=1

Eρ,π[Ti(n)] = nD(ρa‖ρb). (86)

Using that the relative entropy D(ρa‖ρb) is unitarily invariant and r′a, r′b are orthogonal
we can use the computation of the relative entropy given by Lemma 11. Thus we can lower
bound Equation (84) as,

Rn(A, ρa, π) +Rn(A, ρb, π) ≥ n∆
4

(
p− 1√

2

)
exp

(
−n∆

2 log
(1 + ∆

1−∆

))
. (87)
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Choosing ∆ = 1
2
√
n

we have the following upper bound,

log
(1 + ∆

1−∆

)
≤ 2 log(3)∆ for ∆ ∈ [0, 1/2], (88)

where we have used that log
(

1+x
1−x

)
is convex and finite for x ∈ [0, 1

2 ]. Thus, choosing
∆ = 1

2
√
n

we have

Rn(A, ρa, π) +Rn(A, ρb, π) ≥
p− 1√

2
8 · 31/4

√
n, (89)

and the result follows using the expression for p (72) and 15 > 8 · 31/4√2. From Equation
(72) is easy to check that p ≥ 1√

2 , thus the above lower bound is positive.

5.3 Pauli observables
The next set of actions that we study are Pauli observables. If we consider a d =
2m−dimensional (m qubits) Hilbert space, there are d2 different Pauli observables and they
can be expressed as the m-fold tensor product of the 2× 2 Pauli matrices. Let σ1, ..., σd2

denote all the possible Pauli observables. Each σi can be expressed as σi = Π+
i − Π−i ,

where Π+
i ,Π−i are projectors associated to the +1 and −1 subspaces and they describe

the 2 possible outcomes when we perform measurements using Pauli observables.

Theorem 13. Let n ∈ N. For any policy π and action set of observables A comprised of
k distinct length-m strings of single-qubit Pauli observables for d = 2m with m ∈ N, there
exists an environment ρ ∈ Sd such that

Rn(A, ρ, π) ≥ 3
100

√
(k − 1)n, (90)

for n ≥ 2(k − 1).

Proof. The case k = 1 is trivial since Rn = 0 always. Suppose k > 1 and let 0 ≤ ∆ ≤ 1
3

be a constant to be chosen later. Pick σ1 ∈ A and define the following environment,

ρ := I

d
+ ∆
d
σ1. (91)

Define

l := argmin
j>1

Eρ,π [Tj(n)] (92)

as the index for the least expected picked observable different from σ1. Define a second
environment as,

ρ′ := I

d
+ ∆
d
σ1 + 2∆

d
σl. (93)

Note that ρ ≥ 0 and ρ′ ≥ 0 since 0 ≤ ∆ ≤ 1
3 . In order to compute the sub-optimality gaps

(6) we compute the following quantities for σi ∈ A,

Tr(ρσi) = ∆
d

Tr(σ1σi) =
{

∆ if i = 1.
0 otherwise.

(94)
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Tr(ρ′σi) = ∆
d

(Tr(σ1σi) + 2 Tr(σlσi)) =


2∆ i = l.

∆ i = 1.
0 otherwise.

(95)

For ρ the sub-optimality (6) gaps are ∆i = ∆ for i 6= 1 and ∆i = 0 for i = 1. Thus we
can compute the regret as,

Rn(A, ρ, π) =
k∑
a=1

Eρ,π[Ta(n)]∆a = ∆
∑
a6=1

Eρ,π[Ta(n)] (96)

Using Markov’s inequality and n = ∑k
i=a Eρ,π[Ta(n)],

Rn(A, ρ, π) = ∆Eρ,π [n− T1(n)] ≥ n∆
2 Pρ,π

(
T1(n) ≤ n

2

)
. (97)

For ρ′ we bound the regret for the term i = 1, using that the sub-optimality gap is
∆1 = ∆ and Markov’s inequality we have,

Rn(A, ρ′, π) =
k∑
a=1

Eρ′,π[Ta(n)]∆a ≥ ∆Eρ′,π[T1(n)] ≥ n∆
2 Pρ′,π

(
T1(n) > n

2

)
. (98)

Combining Equations (97),(98) and the Bretagnolle-Huber inequality (6) we have,

Rn(A, ρ, π) +Rn(A, ρ′, π) ≥ n∆
4 exp

(
−D(Pρ,π‖Pρ′,π)

)
. (99)

Note that the probabilities of the rewards are just Bernoulli distributions since the
observables σi ∈ A have two outcomes, +1 and -1. Using Lemma 8 we can express

D(Pρ,π‖Pρ′,π) =
k∑
a=1

Eρ,π[Ta(n)]D
(
Pρ(·|a)

∥∥Pρ′(·|a)
)
. (100)

Note that Pρ(·|a), Pρ′(·|a) are not equal only when a = l, so D
(
Pρ(·|a)

∥∥Pρ′(·|a)
)

= 0 for
a 6= l and,

D(Pρ,π, Pρ′,π) = Eρ,π[Tl(n)]D
(
Pρ(·|l)

∥∥Pρ′(·|l)). (101)

Using Equations (94) and (95) we have

Pρ(1|l) = 1
2 , Pρ′(1|l) = 1

2 + ∆. (102)

Then we can compute the Kullback–Leibler divergence as,

D
(
Pρ(·|l)

∥∥Pρ′(·|l)) = 1
2 log

1
2

1
2 + ∆

+ 1
2 log

1
2

1
2 −∆

= 1
2 log 1

1− 4∆2 . (103)

Note that using the definition of l (92) it follows that n = ∑k
i=1Eρ,π[Ti(n)] ≥∑k

i=2Eρ,π[Ti(n)]
≥ (k − 1)Eρ,π[Tl(n)]. Thus it holds that,

Eρ,π[Tl(n)] ≤ n

k − 1 . (104)
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Combining Equations (99),(101),(103) and (104) we have,

Rn(A, ρ, π) +Rn(A, ρ′, π) ≥ n∆
4 exp

(
− n

2(k − 1) log 1
1− 4∆2

)
. (105)

Finally choosing ∆ = 1
2

√
1− e− k−1

n and using that e−x ≤ (e−1 − 1)x+ 1 for 0 ≤ x ≤ 1 we
arrive to the result,

Rn(A, ρ, π) +Rn(A, ρ′, π) ≥ e−1/2√1− e−1

8

√
(k − 1)n. (106)

The condition n ≥ 2(k − 1) suffices to have 0 ≤ ∆ ≤ 1
3 . The theorem follows using

e−1/2√1−e−1

8 > 3
50 .

5.4 Pure-states environments
The last setting that we study for the discrete multi-armed quantum bandits is for pure-
states environments. Specifically we restrict the problem to one-qubit pure-state environ-
ments with actions set comprised of the Pauli observables.

Theorem 14. Let n ∈ N. For any policy π and action set A containing the Pauli observ-
ables for 1-qubit, there exists an environment |ψ〉〈ψ| ∈ S∗2 such that

Rn(A, ψ, π) ≥ 3
200
√
n.

Proof. Let ∆ ∈ [0, 1] and define the following the following two pure-states environments,

|ψ±〉 := c±

(
1 + 1±∆√

2
|0〉+ 1 + ∆√

2
|1〉
)
, (107)

where c± = 1√(
1+ 1±∆√

2

)2
+
(

1±∆√
2

)2
. Let |0〉, |+〉, |ψy〉 be the eigenvector of the Pauli observ-

ables σz, σx, σy respectively and define x± = 1±∆√
2 . Then, compute the following quantities

px± = |〈+|ψ±〉|2 = (1 + 2x±)2

2
(
(1 + x±)2 + x2

±
) , pz± = |〈0|ψ±〉|2 = (1 + x±)2

(1 + x±)2 + x2
±
, (108)

py± = |〈ψy|ψ±〉|2 = 1
2 .

Note that the expectation values for each arm on the environments can be computed as,

Tr (σi|ψ±〉〈ψ±|) = 2pi± − 1, (109)

for i = x, y, z. Note that Tr (σy|ψ±〉〈ψ±|) = 0, Tr (σx|ψ+〉〈ψ+|) ≥ Tr (σz|ψ+〉〈ψ+|) ≥ 0 and
Tr (σz|ψ−〉〈ψ−|) ≥ Tr (σx|ψ−〉〈ψ−|) ≥ 0 for ∆ ∈ [0, 1]. Thus, for the environment |ψ+〉 the
optimal action is given by σx and for |ψ−〉 by σz. Let ∆±i denote the sub-optimality gap
for the i−th action in the environment ψ± respectively. Using Equations (108) and (109)
we can compute the sub-optimality gaps as,

∆+
x = 0, ∆+

z = 2 + ∆
(1 + ∆)2 +

√
2(1 + ∆) + 1

∆, ∆+
y = (∆ + 1)(1 +

√
2 + ∆)

∆2 + (2 +
√

2)∆ + 2 +
√

2
(110)

∆−x = 2−∆
(1−∆)2 +

√
2(1−∆) + 1

∆, ∆−z = 0, ∆−y = −
√

2∆ + 1 +
√

2
∆2 − (

√
2 + 2)∆ +

√
2 + 2

.

(111)
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Figure 3: Sub-optimality gaps for the environments ψ+, ψ− and the lower bound 3
5+2
√

(2)
∆ in the

range ∆ ∈ [0, 1].

Analysing the behaviour of ∆+
z ,∆+

y ,∆−x ,∆−y for ∆ ∈ [0, 1] we see that all these quan-
tities are lower bounded by 3

5+2
√

(2)
∆. In order to simplify the expression we will use that

3
5+2
√

(2)
∆ > 3

10∆ and take 3
10∆ as the lower bound.

We start analysing the regret for ψ+. Using the Equations (110) for the sub-optimality
gaps and the bound ∆+

z ,∆+
y ≥ 3

10∆ we have

Rn(A, ψ+, π) =
∑

i=x,y,z
Eψ+,π(Ti(n))∆+

i ≥
3
10∆

∑
i=y,z

Eψ+,π(Ti(n)). (112)

Now using n = ∑
i=x,y,z Eψ+,π(Ti(n)) and applying Markov’s inequality we have

Rn(A, ψ+, π) ≥ 3
10∆Eψ+,π (n− Tx(n)) ≥ 3n∆

20 Pψ+,π

(
Tx(n) ≤ n

2

)
. (113)

In order to bound the regret for the environment ψ− we bound just the first term, use
Markov inequality and the bound ∆−x in order to obtain

Rn(A, ψ−, π) =
∑

i=x,y,z
Eψ−,π(Ti(n))∆−i ≥ ∆−x Eψ−,π(Ti(n)) ≥ 3n∆

20 Pψ−,π

(
Tx(n) > n

2

)
.

(114)

Combining Equations (113) and (114)

Rn(A, ψ+, π) +Rn(A, ψ−, π) ≥ 3n∆
20

(
Pψ+,π

(
Tx(n) ≤ n

2

)
+ Pψ−,π

(
Tx(n) > n

2

))
.

(115)

Applying Lemma 7 together with Lemma 9 we obtain

Rn(A, ψ+, π) +Rn(A, ψ−, π) ≥ 3n∆
40 exp

(
−nD 1

2
(ψ+‖ψ−)

)
, (116)

where D 1
2
(ψ+‖ψ−) = − log |〈ψ+|ψ−〉|2. The overlap between the two environments can be

computed as

〈ψ+|ψ−〉 = 2 +
√

2−∆2, (117)
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and we use it to give the following upper bound

− log |〈ψ+|ψ−〉| = log 1
2 +
√

2−∆2 ≤
∆2 − 1−

√
2

2 +
√

2−∆2 ≤
∆2

2 +
√

2−∆2 ≤
∆2

1 +
√

2
, (118)

where the last inequality follows from 1
2+
√

2−∆2 ≤ 1
1+
√

2 for ∆ ∈ [0, 1].
Thus, plugging Equation (118) into Equation (116) we have

Rn(A, ψ+, π) +Rn(A, ψ−, π) ≥ 3n∆
40 exp

(
− 2

1 +
√

2
n∆2

)
. (119)

Finally, if we choose ∆ = 1√
n

,

Rn(A, ψ+, π) +Rn(A, ψ−, π) ≥ 3
40 exp

(
− 2

1 +
√

2

)√
n, (120)

and the result follows using 3
40 exp

(
− 2

1+
√

2

)
≥ 3

100 .

6 Regret lower bounds for general bandits
6.1 Rank-1 projectors for general environments
In the following theorem, we consider a bandit whose action set is the set of all rank-1
projections, i.e., A = S∗d where d ∈ N is the dimension of the Hilbert space. When we play
the arm |ϕ〉〈ϕ| ∈ S∗d on the environment state ρ, the probability of reward 1 is 〈ϕ|ρ|ϕ〉
and the probability of reward 0 is 1−〈ϕ|ρ|ϕ〉. Denoting by λmax(ρ) the highest eigenvalue
of any environment state ρ, the sub-optimality gap is ∆ϕ := λmax(ρ) − 〈ϕ|ρ|ϕ〉 for the
environment state ρ upon playing the arm |ϕ〉〈ϕ|.

Theorem 15. Let n, d ∈ N. For any policy π and action set of observables A containing
all rank-1 projections, i.e., A = S∗d , there exists an environment ρ ∈ Sd such that

Rn(A, ρ, π) ≥ CA
√
n (121)

for some constant CA > 0 that depends on the action set.

Proof. Let us fix a policy π and an orthonormal basis {|n〉}d−1
n=0 for Cd and define |ψ〉 :=

d−1/2(|0〉+ · · ·+ |d− 1〉) and the sets

N1 :=
{
|η〉〈η| ∈ S∗d

∣∣∣∣ |〈0|η〉|2 < 3
4 + 1

4d

}
, (122)

N2 :=
{
|η〉〈η| ∈ S∗d

∣∣∣∣ |〈ψ|η〉|2 < 3
4 + 1

4d

}
. (123)

Let us show that these sets are disjoint. First note that P (|0〉〈0|, |ψ〉〈ψ|) =
√

1− 1/d
where P =

√
1− F 2 is the purified distance where, in turn, F is the fidelity. Assume that

|η〉〈η| ∈ N1, so that, using the triangle inequality for the purified distance,√
1− 1

d
= P (|0〉〈0|, |ψ〉〈ψ|) ≤ P (|0〉〈0|, |η〉〈η|) + P (|η〉〈η|, |ψ〉〈ψ|) (124)

<
1
2

√
1− 1

d
+ P (|η〉〈η|, |ψ〉〈ψ|) (125)
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where we have used the definition of N1 in the final inequality. Thus, P (|η〉〈η|, |ψ〉〈ψ|) >
(1/2)

√
1− 1/d which is easily seen to imply |η〉〈η| ∈ N c

2 . Thus, N1 ∩N2 = ∅.
Let us now define

ρ := 1−∆
d

I + ∆|0〉〈0| , (126)

where ∆ ∈ [0, 1] is a constant to be determined later. For this environment, the sub-
optimality gap is

∆η = ∆(1− |〈0|η〉|2). (127)

We may now evaluate

Rn(A, ρ, π) ≥ ∆
∫
N c1

(1− |〈0|η〉|2) dγρ,π(|η〉〈η|) ≥ ∆d− 1
4d γρ,π(N c

1 ). (128)

Let us define another state

ρ′ := 1−∆
d

I + ∆|ψ〉〈ψ| , (129)

where |ψ〉 is the unit vector defined earlier. Similarly as above, we find

Rn(A, ρ′, π) ≥ ∆
∫
N c2

(1− |〈ψ|η〉|2) dγρ′,π(|η〉〈η|) ≥ ∆d− 1
4d γρ′,π(N c

2 ) (130)

≥ ∆d− 1
4d γρ′,π(N1) (131)

where the final inequality follows from N1 ⊆ N c
2 ; recall that N1 and N2 are disjoint.

Recalling that (1/n)γρ,π and (1/n)γρ′,π are probability measures and using Lemma 6, we
now obtain

Rn(A, ρ, π) +Rn(A, ρ′, π) ≥ ∆d− 1
4d n

( 1
n
γρ,π(N c

1 ) + 1
n
γρ′,π(N1)

)
(132)

≥ ∆d− 1
4d n exp

(
−D

( 1
n
γρ,π

∥∥∥∥ 1
n
γρ′,π

))
. (133)

Recall that, e.g., γρ,π = ∑n
t=1

(
P

(t)
ρ,π(·, 0) +P

(t)
ρ,π(·, 1)

)
. Defining, for all t = 1, . . . , n, the

(measurable) function ft : (A× {0, 1})n → A through

ft
(
(|ηs〉〈ηs|, xs)ns=1

)
= |ηt〉〈ηt|, (134)

we now see that γρ,π = ∑n
t=1 Pρ,π ◦ f−1

t where we view Pρ,π as a measure. Using the joint
convexity of the Kullback-Leibler divergence and the data processing inequality, we finally
get

D

( 1
n
γρ,π

∥∥∥∥ 1
n
γρ′,π

)
≤ 1
n

n∑
t=1

D(Pρ,π ◦ f−1
t ‖Pρ′,π ◦ f−1

t ) (135)

≤ 1
n

n∑
t=1

D(Pρ,π‖Pρ′,π) = D(Pρ,π‖Pρ′,π) (136)

≤ nD(ρ‖ρ′) (137)
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where the final inequality follows from Lemma 9 (for α = 1). Combining this with Equa-
tion (132) gives us

Rn(A, ρ, π) +Rn(A, ρ′, π) ≥ ∆d− 1
4d n exp

(
− nD(ρ‖ρ′)

)
. (138)

Whenever ∆ ≤ 1/2, we may follow the end of the proof of Theorem 10 and obtain
c > 0 such that D(ρ‖ρ′) ≤ (c/2)∆2. Fixing ∆ = 1/

√
n, we now have

max{Rn(A, ρ, π), Rn(A, ρ′, π)} ≥ 1
2
(
Rn(A, ρ, π) +Rn(A, ρ′, π)

)
≥ d− 1

8d
√
ne−c/2. (139)

We would like to mention that for continuous action sets there are different methods for
proving minimax regret lower bounds for classical stochastic linear bandit (see [1][Chapter
24] or [15]). While the generalization to quantum is far from trivial we expect that
alternatives techniques would be able to extract a non-trivial dimensional dependence on
our regret lower bound.

7 Algorithms and regret upper bounds
In this section we are going to review some of the multi-armed stochastic bandit algorithms
and see how they can be implemented in the multi-armed quantum bandit case. First we
are going to review the linear stochastic bandits where the expected reward has a linear
structure in terms of the actions and explain the LinUCB (linear upper confidence bound)
algorithm. We will see that the LinUCB algorithm can be applied to both discrete or
continuous sets of actions for multi-armed quantum bandits. For the discrete case we are
going to review the UCB algorithm and the Phased Elimination algorithm. The first one
does not assume correlations between the arms whereas the second one does. For different
regimes of the number of actions, these algorithms offer better scaling on the regret than
LinUCB.

First of all we are going to give an expression for the rewards of the multi-armed
quantum bandit model where there is a linear part that depends on the actions and
a random part that comes from some subgaussian noise. We introduce the notion of
subgaussianity. We say that a random variable X is R-subgaussian if for all µ ∈ R we
have,

E [exp(µX)] ≤ exp(R2µ2/2). (140)

The notion of subgaussianity implies that E[X] = 0 and V[X] ≤ R2.
The following Lemma will allow us to match the linear structure of the rewards of the

multi-armed quantum bandit problem to the classical bandit problem.

Lemma 16. Let n, d ∈ N. Consider a general or discrete multi-armed quantum bandit
problem (A,Γ) with environment ρ ∈ Γ such that, for any O ∈ A, ‖O‖ ≤ 1. Then if
Ot ∈ A is the observable selected at round t ∈ [n], the rewards are of the form

Xt = θ ·At + ηt, (141)

where θ,At ∈ Rd2, Tr(ρOt) = θ ·At and ηt is 1-subgaussian given X1, O1, ..., Xt−1, Ot−1.
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Proof. Let {σi}d
2

i=1 be a set of orthonormal (Tr (σiσj) = δij) Hermitian matrices (σ†i = σi).
Then we have that for any ρ ∈ Γ and action Oa ∈ Od

ρ =
d2∑
i=1

θiσi, Oa =
d2∑
i=1

Aa,iσi, (142)

where θi = Tr(ρσi) and Aa,i = Tr(Oaσi). We will denote θ ∈ Rd2 the vector associated to
ρ with components θi and Aa ∈ Rd2 the vector associated to Oa with components Aa,i.
Note that Tr(ρOa) = θ ·Aa since the set {σi}d

2

i=1 is orthonormal.
At round t define ηt = Xt − Tr(ρOt) where Xt is the reward and Ot the observable

selected by the learner. Recall that E[Xt] = Tr(ρOt) and using the assumption ‖Oa‖ ≤ 1
we have |Xt| ≤ 1. Thus, if he apply Hoeffding Lemma [24, Equation 4.16] to ηt we have
that for any λ ∈ R,

E[exp(ληt)] ≤ exp
(
λ2

2

)
. (143)

By definition of subgaussian (140) it follows that ηt is 1-subgaussian, and the result follows.

7.1 LinUCB algorithm for general multi-armed quantum bandits
In this section we will review one algorithm that has been used for classical bandits named
LinUCB (linear upper confidence bound) or LinRel (linear reinforcement learning). The
classical bandits are analogous to our quantum case with the main difference that instead
of performing a measurement at each round we sample a reward from a set of probability
distributions. In order to introduce the LinUCB algorithm we quickly review stochastic
linear bandits.

The linear bandit model is described as follows. Let θ ∈ Rd be an unknown vector
and A ⊂ Rd be a set of vectors that we call the action set. Then we have a learner, that
during a sequence of n rounds, at each round t ∈ {1, ..., n} selects a vector At ∈ A and
samples a reward

Xt = θ ·At + ηt (144)

where ηt is R-subgaussian given A1, X1, ...,At−1, Xt−1 and we call it the gaussian noise.
The regret is defined as

Rn(θ, π,A) =
n∑
t=1

max
Ai∈A

θ ·Ai − Eθ,π[θ ·At]. (145)

The expectation value above is taken with respect to the probability distribution Pθ,π
determined by the policy π analogously to Equation (4) where the conditional probabilities
Pρ(·|·) = Pθ(·|·) are now some subgaussian conditional distributions which depend on the
specific problem we are studying. In order to analyse the regret of an algorithm it is
convenient to define the pseudo-regret as

R̂n(θ, π,A) =
n∑
t=1

max
Ai∈A

θ ·Ai − θ ·At. (146)
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Note that Eθ,π[R̂n] = Rn. Now we introduce the LinUCB algorithm and explain how it
fits to our quantum model. The first paper that studied an algorithm for linear stochastic
bandits was [25] where they considered a finite action set. The LinUCB algorithm that we
shall now introduce is based on [26, 27, 28] where they allow an infinite action set and
are based on statistical techniques in order to estimate the unknown parameter θ. The
constructions and proofs that we will explain can be found in these references.

The LinUCB is an algorithm that minimizes the regret for linear stochastic bandits
and it works constructing a confidence ellipsoid region for the unknown parameter θ and
selecting the best action on A that maximizes the reward in the confidence region. The
confidence region is constructed via the least-square estimator,

θ̂t = argmin
θ∈Rd

(
t∑

s=1
(Xs − θ ·As)2 + λ‖θ‖22

)
, (147)

where Xs is the reward received at round s, As the action selected from A at round s and
λ ≥ 0 is a regulator parameter that ensures that the function has a unique minimum. The
above equation can be solved for θ, which has the following closed form:

θ̂t = V −1
t

t∑
s=1

AsXs (148)

where Vt is a d× d matrix,

Vt = λI +
t∑

s=1
AsAT

s . (149)

Note that Vt is positive definite by construction and induces the norm ‖x‖2Vt = xTVtx for

any x ∈ Rd. Using the estimator (148) we can build at each round t a confidence region
Ct ⊂ Rd. Assume that the gaussian noise ηt for each Xt is 1-subgaussian and let m be an
upper bound on ‖θ‖2, L an upper bound for any action, i.e for any A ∈ A, ‖A‖2 ≤ L, and
δ ∈ (0, 1). Then the following theorem gives us the exact form of the confidence region:

Theorem 17 (Theorem 20.5 in [1]). Let d, n ∈ N, t ∈ [n] and δ ∈ (0, 1). Define a classical
linear bandit problem with action set A ⊂ Rd and hidden parameter θ ∈ Rd such that for
any A ∈ A, ‖A‖2 ≤ L and ‖θ‖2 ≤ m for some L,m ∈ R. Assume that the rewards are of
the form (144) with 1-subgaussian noise. Then, Pθ,π(exists t ∈ [n] : θ /∈ Ct) ≤ δ with

Ct =

θ∗ ∈ Rd : ‖θ∗ − θ̂t−1‖Vt−1 ≤ m
√
λ+

√
2 log

(1
δ

+ d log
(
dλ+ nL2

dλ

)) . (150)

Algorithm 1 LinUCB
1: for t = 1, 2, . . . do
2: (At, θ̃t) = argmaxA∈A,θ∈Ct〈θ,A〉;
3: Select At and observe reward Xt;
4: Update Ct;
5: end for

The LinUCB algorithm works as follows: at each round t ∈ {1, ..., n} it constructs the
confidence interval Ct and chooses and estimator θ̃t and action that maximizes the reward,
i.e (At, θ̃t) = argmaxA∈A,θ∈Ct〈θ,A〉, and selects At in order to sample the reward. The
pseudo-code can be found in Algorithm 1.
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Theorem 18 (Theorem 19.2 in [1]). Under the assumptions of Theorem 17 for θ ∈
Rd,A ⊆ Rd the pseudo-regret (146) of LinUCB satisfies

R̂n(θ, π,A) ≤
√

8dnβn log
(
dλ+ nL2

dλ

)
(151)

where

√
βn =

√
λm+

√
2 log

(1
δ

)
+ d log

(
dλ+ nL2

dλ
.

)
(152)

In particular the regret (145) of LinUCB with δ = 1/n is bounded by

Rn(θ, π,A) ≤ Cd
√
n log(n), (153)

where n ∈ N and C > 0 is a suitably large universal constant.

The following theorem shows how the LinUCB can be applied to the multiarmed quan-
tum bandit problem and the scaling of the regret.

Theorem 19. Let d, n ∈ N, and consider a general or discrete multi-armed quantum
bandit with action set A such that, for all O ∈ A, ‖O‖ ≤ 1. Then the LinUCB algorithm,
associated to policy π, can be applied to the general or discrete multi-armed bandit problem
and for some universal constant C > 0 and for any ρ ∈ Sd the regret is bounded by

Rn(A, ρ, π) ≤ Cd2√nlog(n). (154)

Proof. Considering a set {σi}d
2
i=1 of orthonormal Hermitian matrices, we can parametrize

ρ ∈ Sd and any Oa ∈ A as ρ = ∑d2
i=1 θiσi, Oa = ∑d2

i=1Aa,iσi where θi = Tr(ρσi) and
Aa,i = Tr(Oaσi). We denote θ,Aa ∈ Rd2 as the vectors of components θi and Aa,i
respectively. If Ot is the action selected at time step t ∈ [n] we can use Lemma 9 and
express the rewards of a multi-armed quantum bandit as

Xt = θ ·At + ηt, (155)

where ηt is 1-subgaussian. Thus, this rewards is of the form (144). Using that Tr(ρOa) =
θ ·Aa and Eρ,π(ηt) = 0, we can express the regret for the multi-armed quantum bandit as

Rn(A, ρ, π) =
n∑
t=1

max
Ai

θ ·Ai − Eρ,π[θ ·At], (156)

which is of the form of the linear stochastic bandit (145). With these observations we
see how the multi-armed quantum bandit is mapped to the linear bandit and the LinUCB
algorithm can be used. In order to bound the regret we need to check the conditions of
Theorem 17. It remains to check an upper bound for ‖θ‖2. Using that the set {σi}d

2
i=1 is

orthonormal we have that Tr(σ2
i ) = 1, so ‖σ‖ ≤ 1. Thus,

‖θ‖2 =

√√√√ d2∑
i=1

Tr(ρσi)2 ≤ d. (157)

Inserting the above bound into the analysis of Theorem 18 and taking into account
that θ,Aa ∈ Rd2 the result follows.
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7.2 UCB and Phased Elimination algorithms for discrete multi-armed quantum bandits
The previous algorithm can be applied to both discrete and general multi-armed quantum
bandits. For the discrete case we can apply the upper confidence bound (UCB) algorithm
that was first introduced in [29]. We will see that UCB can offer a tighter bound of the
regret under certain condition on the number of actions and the dimension of the Hilbert
space. First we are going to review the UCB algorithm for multi-armed stochastic bandits.

A multi-armed stochastic bandit is defined with a set of probability distributions (en-
vironment) ν = (Pa : a ∈ A) where A is the set of actions of cardinality k = |A| and we
denote by µi for i ∈ [k] the mean of each action. At each round t ∈ [n] a learner selects
an action At ∈ A and samples a reward Xt ∼ PAt . The regret is defined as

Rn(ν, π) =
n∑
t=1

max
i∈[k]

µi − E[Xt], (158)

where π is the policy and for each action a ∈ [k] the sub-optimality gap is defined as
∆a = maxi∈[k] µi−µa. Note that this model is more general than the linear bandits where
the rewards where of the form (144). Moreover, the discrete multi-armed quantum bandit
falls trivially in this class of bandits.

The basic idea of the UCB algorithm is to overestimate the mean of each action with
high probability. The version of UCB that we consider assumes that the rewards are 1-
subgaussian and it is based on the following bound of the empirical mean. If (Zt)nt=1 is a
sequence of independent 1-subgaussian random variables with mean µ and empirical mean
µ̂, then for δ ∈ (0, 1),

Pr

µ ≥ µ̂+

√
2 log(1/δ)

n

 ≤ δ. (159)

Let n be the number of rounds and (Xt)nt=1 be the sequence of rewards for a multi-
armed stochastic bandit. For each action indexed by a ∈ [k] we define its empirical mean
as

µ̂a(n) = 1
Ta(n)

n∑
t=1

XtI{At = a}, (160)

where At is the index of the action picked at round t and Ta(n) = ∑n
t=1 I{At = a} the

number of times that we have picked the action indexed by a ∈ [k]. Then at each round
t ∈ [n] for each action a ∈ [k] the UCB algorithm assigns a possible mean µ̃(t)a as

µ̃(t)a =


∞ if Ta(t− 1) = 0.

µ̂a(t− 1) +
√

2 log(1/δ)
Ta(t−1) otherwise

(161)

and selects the action At = argmaxa∈[k]µ̃(t)a. Note that the assignment of∞ to the actions
that have not been played ensures that each is action is played at least once during the
first k rounds. The pseudocode of the UCB algorithm can be found in Algorithm 2.
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Algorithm 2 UCB
1: for t = 1, 2, . . . , n do

2: Choose action At = argmaxi∈[k]


∞ if Ti(t− 1) = 0.

µ̂i(t− 1) +
√

2 log(1/δ)
Ti(t−1) otherwise.

3: Observe reward Xt and update confidence bounds;
4: end for

The following result on the scaling of the regret of UCB applied to discrete multi-armed
quantum bandits follows from Lemma 16 and the analysis of the UCB regret for stochastic
bandits from Theorem 7.2 in [1]. Recall that UCB can be applied to the multi-armed
quantum bandit problem since they fall in the class of multi-armed stochastic bandits.

Theorem 20. Let n ∈ N and consider discrete multi-armed quantum bandit with action
set A of cardinality k = |A| such that for all O ∈ A, ‖O‖ ≤ 1. Then, the UCB algorithm
associated to policy π, can be applied to the discrete multi-armed bandit problem with and
for δ = 1

n2 and any ρ ∈ Sd the regret can be bounded by

Rn(A, ρ, π) ≤ 8
√
nk log(n) +

k∑
a=1

∆a. (162)

Now we are going to compare the scaling of the UCB regret with the LinUCB regret
for the discrete multi-armed quantum bandits. Let k be the number of observables and
d the dimension of the Hilbert space of a discrete multi-armed bandit problem. The
above Theorem shows that if k ≤ d4 the regret scaling of UCB is better than LinUCB
(Theorem (19)). Note that if we apply UCB to the discrete multi-armed quantum bandits
the algorithm does not take advantage of the linear structure of the rewards.

We mention that there is a variant of LinUCB (see [1][Chapter 22]) that assumes a
finite number of actions and can be applied to the discrete multi-armed quantum bandits.
This variant is called Phased Elimination and it is stated in Algorithm 3. This algorithm
requires the assumptions of Theorem 17 and the action set A ⊆ Rd to be finite. The
analysis of Theorem 22.1 in [1] along with the observations of the proof of Theorem 19
lead immediately to the following result:

Theorem 21. Let d, n ∈ N, and consider a discrete multi-armed quantum bandit problem
with action set A of cardinality k = |A| such that for all O ∈ A, ‖O‖ ≤ 1. Then, the
Phased Elimination algorithm associated to policy π, with δ = 1

n , can be applied to the
discrete multi-armed bandit problem and for some universal constant C > 0 and for all
ρ ∈ Sd the regret is bounded by

Rn(A, ρ, π) ≤ Cd
√
n log(nk). (163)

Note that the scaling is better than LinUCB as long as the number of observables k is
not exponential in the dimension of the Hilbert space.
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Algorithm 3 Phased Elimination
1: Set l = 1 and A1 = A.
2: Let tl = t be the current time step t and find πl : Al → [0, 1] with support(πl) ≤ d(d+1)

2
that maximises

log det
(∑

a∈A
π(a)aaT

)
subject to

∑
a∈Al

π(a) = 1

3: Let εl = 1
2l and Tl(a) =

⌈
2dπl(a)
ε2
l

log
(
kl(l+1)

δ

)⌉
and Tl = ∑

a∈Al Tl(a)
4: Choose each action a ∈ Al exactly Tl(a) times
5: Calculate the empirical estimate:

θ̂l = V −1
l

tl+Tl∑
t=tl

AtXt with Vl =
∑

a∈Al

Tl(a)aaT

6: Eliminate low rewarding arms:

Al+1 = {a ∈ Al : max
b∈Al

θ̂l · (b− a) ≤ 2εl}

7: l = l + 1 and Goto Step 1

7.3 Tomography algorithm for pure-states environments
The last algorithm that we study is for the general model of multi-armed quantum bandits
with pure-states environments. Recall that in this setting the regret can be given as,

Rn(A, ψ, π) := 1
4

n∑
t=1

Eρ,π
∥∥ρ−ΠAt

∥∥2
1 , (164)

where ρ = |ψ〉〈ψ| is the unknown pure quantum state and ΠAt is the rank-1 projector from
our action set A that contains all rank-1 projectors.

The algorithm that we propose is based on the projected least squares (PLS) method
given in [30]. Now, we briefly review this method and explain how to apply it for the
regret analysis. Let Hd be a d−dimensional Hilbert space, ρ ∈ D(Hd) be an unknown
quantum state that we want to estimate and {Mi}mi=1 the elements of a POVM that we
will use to measure ρ. Suppose that we perform measurements over n rounds and ni is
the number of times that we have observed the outcome i associated to the element Mi

from the POVM. Then knowing that the probabilities associated to each outcome i are
given by the Born’s rule Tr(ρMi), the least square estimator for ρ is defined as,

Ln = argmin
X∈Od

m∑
i=1

(
ni
n
− Tr (MiX)

)2
. (165)

The estimator Ln is not guaranteed to be a physical state, so the next step is to project
it to the physical state space as follows,

ρ̂n = argmin
ρ̃∈Sd

‖Ln − ρ̃‖2, (166)

Accepted in Quantum 2022-06-02, click title to verify. Published under CC-BY 4.0. 31



where ‖ · ů‖2 denotes de Frobenius norm. In [30] the above estimator is studied for
structured POVMs, Pauli observables and Pauli basis measurements. For our problem we

will use Pauli observables. Fix d = 2k, and let {σi}d
2

i=1 be the set of all possible tensor
products of the 2× 2 Pauli matrices. Note that they form a basis of the form (142). For
Pauli observables the least square estimator (165) has the following form

Ln = 1
d

d2∑
i=1

(
n+
i − n

−
i

n/d2

)
σi, (167)

where n±i are the empirical frequencies associated to the 2-outcomes POVM Π±i = 1
2(I±σi)

and each observable has been measured n/d2 times. The next step is to take the projection
(166). The convergence analysis in [30] shows the following theorem.

Theorem 22 (Theorem 1 in [30]). Let ρ be a quantum state in a d-dimensional Hilbert
space and fix a number of samples n ∈ N. Then, using Pauli measurements, the PLS
estimator ρ̂n (166) obeys,

Pr (‖ρ̂n − ρ‖1 ≤ ε) ≥ 1− e−
nε2

43d2r2 for ε ∈ [0, 1],

where r = min {rank(ρ), rank(ρ̂n)}.

After reviewing the PLS estimation method we explain how we use it to construct
an algorithm for our pure state problem and how to analyse the regret. Recall that
we have considered an action set that contains all rank-1 projectors. For that reason
we consider the algorithm for one qubit states (d = 2) since Pauli observables for one
qubit can be measured using rank-1 projectors. The pseudo-code for the algorithm can
be found in Algorithm 2. If n is the number of rounds, fix the error ε2 = 172 log(n)√

n
and

assume 172 log(n)√
n
≤ 1 in order to have ε ∈ [0, 1]. The condition 172 log(n)√

n
≤ 1 is achieved by

n ≥ 8 · 106. Then the algorithm (policy π) works as follows:

• During the first
√
n rounds we perform the Pauli observables measurements, and

calculate the estimator ρ̂√n (166) for ρ. Then using Theorem 22 we have,

Pρ,π
(
‖ρ̂√n − ρ‖1 ≤ ε

)
≥ 1− 1

n
, (168)

where we have used r = 1 since rank(ρ) = 1 and ε2 = 172 log(n)√
n

. In order to ensure

that the estimator is pure we project the estimator into the rank-1 subspace in a
ε−ball as follows,

ρ̂ = argmin
ρ∈S∗1

‖ρ̂√n − ρ‖1 such that ‖ρ̂√n − ρ‖1 ≤ ε. (169)

Recall that for the above equation there is at least one solution with probability
greater than 1 − 1/n since ρ is rank-1 by assumption. Note that using (168) we
have,

Pρ,π (‖ρ̂− ρ‖1 ≤ 2ε) ≥ 1− 1
n
. (170)

• For the remaining rounds we perform the measurement using ρ̂ as the rank-1 pro-
jector from our action set.
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Algorithm 4 Bandit PLS
1: for i = 1, 2, . . . , d2 do
2: for j = 1, 2, . . . , d

√
ne/d2 do

3: Measure ρ with σi;
4: Update outcomes n±i ;
5: end for
6: end for
7: Compute Ln = 1

d

∑d2
i=1

(
n+
i −n

−
i

n/d2

)
σi;

8: Compute ρ̂√n = argminρ̃∈Sd ‖Ln − ρ̃‖2;
9: Fix ε2 = 43d2 log(n)√

n

10: Compute ρ̂ = argminρ∈S∗
d
‖ρ̂√n − ρ‖1 such that ‖ρ̂√n − ρ‖1 ≤ ε

11: for t = d
√
ne+ 1, ..., n do

12: Measure ρ with ρ̂;
13: end for

Theorem 23. Let |ψ〉 be some unknown one-qubit pure state. Fix π to be the policy
associated to Algorithm 4 with d = 2 applied to the unknown state |ψ〉. Let n ∈ N denote
the number of rounds, assume 172 log(n)√

n
≤ 1

(
n ≥ 8 · 106) and let A be a set containing all

one-qubit rank-1 projectors. Then the regret can be bounded as,

Rn(A, ψ, π) = O
(√
n log(n)

)
. (171)

Proof. First we will bound the random regret defined as,

R∗n(A, ψ, π) := 1
4

n∑
t=1

∥∥|ψ〉〈ψ| −ΠAt

∥∥2
1 , (172)

and then we will take the expectation value. During the first
√
n rounds the algorithm

performs the Pauli measurements using rank-1 projectors and builds the estimator ρ̂ using
Equation (169). Using Equation (170) we have the probabilistic error bound

Pψ,π (‖|ψ〉〈ψ| − ρ̂‖1 ≤ 2ε) ≥ 1− 1
n
, (173)

where ε2 = 172 log(n)√
n

. Then, with probability greater than 1 − 1
n , the random regret can

be bounded as,

R∗n(A, ψ, π) ≤
√
n+ (n−

√
n)172 log(n)√

n
= O(

√
n log(n)), (174)

where the first term comes from the trivial bound 1
2‖|ψ〉〈ψ| − Πt‖1 ≤ 1 for the first

√
n

rounds and the second term from the bound of Equation (173) for the remaining rounds
where Πt is the estimator (169). Let C be the hidden constant in O(

√
n log(n)), and G

the probabilistic event where R∗n(A, ψ, π) ≤ C
√
n log(n) and GC its complement. Note

that Pψ,π(GC) ≤ 1/n. Then we can calculate the regret as,

Rn(A, ψ, π) = Eψ,π[R∗n(A, ψ, π)] = Eψ,π[I {G}R∗n(A, ψ, π)] + Eψ,π[I
{
GC
}
R∗n(A, ψ, π)].

(175)
For the first term we use the bound (174) given by the event G. For the second term we
use the trivial bound Rn(A, ψ, π) ≤ n combined with Pψ,π(GCi ) ≤ 1/n. Thus,

Rn(A, ψ, π) ≤ C
√
n log(n) + nPψ,π(GCi ) ≤ C

√
n log(n) + 1 = O(

√
n log(n)). (176)
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8 Conclusions
We have proposed a new quantum learning framework generalizing multi-armed stochastic
bandits to the quantum setting. We have given fundamental bounds on the scaling of the
regret for different environments and action sets that show the difficulty of the associated
learning tasks. For the case of mixed-state environments and discrete bandits our upper
and lower bounds match. For the case of general bandits with action set containing all
rank-1 projectors our upper and lower bound match in terms of the number of rounds n
but there is a gap in the dimension of the system of d2. However, in the case of pure-state
environments, we are not yet able to show lower bounds that scale with the number of arms
or the dimension of the system and we leave this as an open question. We showed that
an algorithm based in the explore-then-commit strategy and the PLS estimator achieves a
regret upper bound Rn = O(

√
n log(n)) which scales as good as LinUCB in this setting. For

the qubit case this problem can be mapped to stochastic linear bandits where the actions
and the environments are vectors that lie in the unit sphere Sd−1 = {x ∈ Rd : ‖x‖22 = 1}.
In this setting, classical techniques fail to show a lower bound Rn = Ω(

√
n), since although

the unit sphere action set has been considered (see Chapter 24 in [1]) the lower bound is
proven for environments where the 2-norm of the vector scales as 1/

√
n. The problem can

also be connected to phase retrieval bandits [31] but we encounter the same issue with
the lower bounds. In [15] they showed a lower bound Rn = Ω(

√
n) for actions in the

unit sphere using a randomization technique that consists on computing the expectation
of the regret over a distribution of possible environments. This result relies heavily in
some properties of the linear least square estimator that do not hold if one consider a
distribution of environments over the unit sphere. Thus, we identify that there is also a
gap in the classical bandit literature if one considers a stochastic linear bandit with actions
and environments in the unit sphere.
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Rényi Entropies: A New Generalization and Some Properties”. Journal of Mathe-
matical Physics 54, 122203 (2013).

[23] M. Wilde, A. Winter, and D. Yang. “Strong Converse for the Classical Capacity of
Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative
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